
Prof. Dr. Bachmann Partial Differential Equations I WS 2016/17
A. Dietlein, R. Schulte Homework Sheet 9 December 12, 2016

For the last exercise we’ll need the following fact which you can use without proof. For
p > 1 we define the smooth function

f(t) :=

exp(−t−p) t > 0
0 t ≤ 0

(1)

i.e. f ∈ C∞(R). One can then prove that for fixed p > 0 there exists θ := θ(p) ∈ (0, 1)
such that

|f (k)(t)| ≤ k!
(θt)k

exp
(
− 1

2tp
)
, t > 0.

Exercise 1 (Non-uniqueness of the initial value problem for the Heat Equation; 5 Points).
Let p > 1 and f the function defined in (1) above. We then define the function
g : (0,∞)× R→ R via

gp(t, x) :=
∞∑

k=0

f (k)(t)
(2k)! x

2k, (t, x) ∈ [0,∞)× R. (2)

(a) Prove that gp is well defined and that the series in (2) converges absolutely,
gp ∈ C∞((0,∞)× R) holds and limt→0 gp(t, x) = 0 for x ∈ Rn.
Hint: For suitable θ(p) prove an estimate such as

∞∑
k=0

∣∣∣∣∣f (k)(t)
(2k)! x

2k

∣∣∣∣∣ ≤ exp
(
|x|2

θt
− 1

2tp

)
.

(b) Prove that there exist infinitely many solutions of the initial value problemut − uxx = 0 in (0,∞)× R,
u = 0 on {t = 0} × R.

Exercise 2 (Weierstrauss’ approximation Theorem; 5 Points). Let n = 1 and Φ be the
fundamental solution of the heat equation. Use properties of the convolution

u(t, x) =
ˆ
R

Φ(t, x− y)f(y) dy

to prove Weierstrauss’ approximation theorem: A function f ∈ C([a, b]) can be approxi-
mated uniformly by polynomials. That is, there exists a sequence of polynomials pj such
that

max
x∈[a,b]

|f(x)− pj(x)| → 0 as j →∞.

Hint: Define f(x) = f(b) for x > b and f(x) = f(a) for x < a. You may use that in this
case u(t, x) → f(x) as t → 0 uniformly for a ≤ x ≤ b. Approximate Φ(t, x − y) by its
truncated power series with respect to x− y.
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Exercise 3 (Subsolution to the Heat Equation; 5 Points). Let U ⊂ Rn be open, bounded,
T > 0 and UT := (0, T ] × U . We say v ∈ C2(UT ) ∩ C0(UT ) is a subsolution of the heat
equation if

vt −∆v ≤ 0 in UT .

(i) Prove for a subsolution v that

v(x, t) ≤ 1
4rn

ˆ ˆ
E(t,x;r)

v(s, y) |x− y|
2

(t− s)2 dyds

for all E(t, x; r) ⊂ UT .

(ii) Let φ : R → R be smooth and convex. Assume u solves the heat equation and
v := φ(u). Prove v is a subsolution.

(iii) Prove v := |Du|2+u2
t is a subsolution whenever u ∈ C3(UT ) solves the heat equation.

Exercise 4 (Comparison Principle; 5 Points). Let U ⊂ Rn be open and bounded with
smooth boundary ∂U ∈ C1, T > 0 and UT defined as before.
Assume u1, u2 ∈ C2(UT )∩C0(UT ) are solutions of the (nonlinear) initial/boundary value
problem

∂tui(t, x)−4ui(t, x) = f(t, x, ui(t, x)) for all (t, x) ∈ UT

ui|∂′UT
= gi,

where f ∈ C0(UT × R) and gi ∈ C0(∂′UT ) for i ∈ {1, 2}.
Show that if f(t, x, u1(t, x)) ≤ f(t, x, u2(t, x)) holds for all (t, x) ∈ UT and g1 ≤ g2 holds
on ∂′UT , the solution satisfy u1 ≤ u2.

Hint: Use the previous exercise to derive a maximum principle.

You can drop your homework solutions until Monday, December 19 at 16 o’clock
into the appropriate letterbox on the first floor near the library.
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