

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Bachmann A. Dietlein, R. Schulte PARTIAL DIFFERENTIAL EQUATIONS I TUTORIAL SHEET 7 WS 2016/17 December 5, 2016

T 1. Show that the heat kernel Φ is a solution to the heat equation, i.e.

$$\partial_t \Phi(t, x) - \Delta \Phi(t, x) = 0$$

for all
$$(t, x) \in (0, \infty) \times \mathbb{R}^n$$
.

The heat kernel on $(0, \infty) \times \mathbb{R}^n$ is given by

$$\Phi(t,x) := \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4t}\right).$$

T 2. Let $g \in \mathcal{C}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, Φ be the heat kernel and let $u : [0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ be defined by:

$$u(t,x) := \int_{\mathbb{R}^n} \Phi(t, x - y) g(y) \, \mathrm{d}y. \tag{1}$$

i) Show that

$$|u(t,x)| \le \frac{1}{(4\pi t)^{n/2}} \|g\|_{L^1(\mathbb{R}^n)}, \quad \forall x \in \mathbb{R}^n, \ t > 0,$$
 (2)

under the condition that $g \in L^1(\mathbb{R}^n)$.

ii) Show that

$$|u(t,x)| \le \frac{\|g\|_{\mathrm{L}^1(\mathbb{R}^n)}}{(4\pi t)^{n/2}} e^{-\frac{(1-\varepsilon)|x|^2 - C_{\varepsilon}}{4t}}, \quad \forall x \in \mathbb{R}^n, \ t > 0, 0 < \varepsilon < 1, \tag{3}$$

whereas g is a function with compact support. The constant C_{ε} may only depend on ε and the support of g.

T 3 (Laplace-Transformation). Let $\Omega \subset \mathbb{R}^n$ be open and bounded, $f \in C^2(\Omega)$ and let $v \in C^2([0,\infty) \times \Omega) \cap L^{\infty}([0,\infty) \times \Omega)$ with $\|\nabla_{t,x}v\|_{L^{\infty}([0,\infty) \times \Omega)}, \|D_x^2v\|_{L^{\infty}([0,\infty) \times \Omega)} < \infty$ be a solution of the heat equation

$$\begin{cases} v_t - \Delta v = 0 & \text{in } (0, \infty) \times \Omega \\ v(0, \cdot) = f & \text{in } \Omega. \end{cases}$$
 (4)

The Laplace transform in the time component $v^{\#}$ of v is given by

$$v^{\#}(s,x) := \int_{0}^{\infty} e^{-st} v(t,x) \,\mathrm{d}t, \quad x \in \Omega, s > 0.$$
 (5)

Show that for a fixed s > 0 the function $u := v^{\#}(s,\cdot)$ solves the resolven equation

$$-\Delta u + su = f \text{ in } \Omega. \tag{6}$$