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Die letzte Hand an sein Werk
legen, das heiBt verbrennen.

(Lichtenberg,
Aphorismus 173, Sb F)

VORWORT

Inhalt

In der Physik des 20. Jahrhunderts haben geometrische Methoden stidndig an
Bedeutung gewonnen. Das beginnt mit der geometrischen Formulierung der Allgemeinen
Relativitdtstheorie durch Einstein und setzt sich fort in der Quantenfeldtheorie, in der
eine eichtheoretische Beschreibung der Feldtheorie und damit die Geometrie der Faser—
biindel zugrundegelegt wird. Auch andere geometrische Methoden neben der Differen-
tialgeometrie werden in aktuellen Entwicklungen der Physik angewendet, z.B. aus der
Darstellungstheorie der Lie-Gruppen und Lie-Algebren, der Algebraischen Geometrie
und der Algebraischen Topologie sowie iiber Supersymmetrie, Konforme Symmetrie und
Quantengruppen.

Das Ziel des Buches ist es, an einen Teil dieser geometrische Strukturen und
Symmetrieprinzipien heranzufiihren; und zwar im Rahmen der Klassischen Mechanik,
der Elektrodynamik, der Relativititstheorie und der Quantentheorie. Als Héhepunkte in
diesem Sinne lassen sich nennen: In der Klassischen Mechanik die Noetherschen Sitze
und die Reduktion der Freiheitsgrade mittels Bewegungskonstanten oder Momenten-
abbildung. In der Quantenme;:hanik die Relevanz der unitiren, irreduziblen Darstellun-
gen von bestimmten Lie—Grubpen und der {ibergang von projektiven zu unitdren Dar~
stellungen. In der Elektrodynamik die Bedeutung der Poincaré-Gruppe anstelle der
Galilei-Gruppe als Symmetriegruppe mit den Konsequenzen der Poincaré-Invarianz fiir
die Spezielle und die Allgemeine Relativititstheorie. In der Quantenelektrodynamik und
der Quantenfeldtheorie die Beschreibung der Eichtheorien und ihre geometrische Inter-
pretation als Theorie des Parallelismus in Prinzipalfaserbiindeln.

Diese vier im Buch behandelten Hauptthemen geben auch einen Uberblick
liber den Inhalt, sie entsprechen namlich den Kapiteln II, III, IV und V, wihrend das
Kapitel I eine ausfiihrliche Einfiihrung zum Thema "Geometrie und Symmetrie in der
Physik"” darstellt. In den drei Anhéngen iiber Mannigfaltigkeiten, Differentialgeometrie
und Lie—-Algebren wird ein Teil der verwendeten Mathematik bereitgestellt.
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Entstehung

Das vorliegende Buch ist aus Begleittexten zur Vorlesung "Geometrie und
Symmetrie in der Physik" entstanden, die von mir als Fortbildungsveranstaltung fiir
Gymnasiallehrer im Sommersemester 1989 an der Ludwig-Maximilians-Universitét
Miinchen gehalten wurde. Diese Texte hatten zunichst den Sinn, den Horern der Vorle-
sung einige Zitate groBer Forscher iiber Physik und Mathematik zugénglich zu machen.
Sie wurden dann auch dazu benutzt, eine Reihe von Beispielen griindlicher zu behandeln
und Erginzungen zu liefern. Die Zusammenstellung der Begleittexte ergab ein im

Sommer 1989 fertiggestelltes Manuskript von etwa 160 Seiten. Dieses Manuskript wurde

iiberarbeitet-und erweitert. Das Ergebnis-ist-dieses -Buch:

Die Grundstruktur der Begleittexte ist beibehalten worden. Dadurch ergibt
sich ein relativ breit angelegtes erstes Kapitel iiber Mathematik, Physik, Geometrie und
Symmetrie. In den darauffolgenden Kapiteln wird von ausfiihrlich behandelten, einfa-
chen Beispielen und Strukturen (wie z.B. das "Pendel” oder die "Zentralkraftfelder auf
®3\{0} ") ausgegangen, um dann sukzessive abstraktere Gesichtspunkte darzulegen. Die
dazu bendtigten mathematischen Begriffe und Frgebnisse werden in dem jeweiligen
Kontext schrittweise vorgestellt, und nicht im voraus systematisch entwickelt, bevor
sie angewendet werden. Es wird dabei nicht so sehr Wert darauf gelegt, die benutzten
Begriffe und Resultate in voller Allgemeinheit zu erldutern, sondern es wird an einfa-
chen, speziellen Situationen die jeweils relevante mathematische Struktur so herausge-
arbeitet, daB einerseits auf das Wesentliche hingewiesen werden kann und sich andrer-
seits — bei ausreichender Kenntnis abstrakter mathematischer Begriffe — die Struktur
leicht auf allgemeinere Situationen iibertragen l4Bt. So sind zum Beispiel in der Klassi-
schen Mechanik die Konfigurationsrdume zundchst nur offene Teilmengen Q des R™,
bevor kurz auf den Fall von allgemeine Mannigfaltigkeiten Q eingegangen wird. Ent-
sprechend werden vor der Behandlung von Symmetrien, die durch Lie-Gruppen als
Symmetriegruppen gegeben sind, erst einmal die Rotationen des ®% in ihrer Bedeu-
tung fiir die Zentralkraftfelder ausfiihrlich untersucht und damit die Drehgruppe
SO(3) als Symmetriegruppe studiert. Ahnlich sind die Phasenréume bei der Darstellung
der Hamiltonschen Formulierung der Klassischen Mechanik zundchst flir lingere Zeit
von der Form Q X Rn, Qc RrR" offen, bevor kurz der allgemeine Fall einer symplekti-
schen Mannigfaltigkeit als Phasenraum behandelt wird.

Einige einfache Beispiele werden besonders ausfiihrlich behandelt. Selbst im
Vergleich zu elementaren Lehrbiichern erscheinen diese Beispiele vielleicht als tibertrie-
ben ausfiihrlich dargestellt. Aber es gehért zu den Zielen des Buches, die jeweils
dargelegten Strukturen, wie z.B. "holonome Zwangsbedingungen”, griindlich herauszu-
arbeiten. Auf diese Weise werden zum Beispiel der Herleitung des eigentlichen Konfigu-
rationsraumes des Kreisels einige Seiten gewidmet, obwohl dem Physiker in der Regel
wenige Zeilen ausreichen werden, um einzusehen und zu erliutern, warum der Konfigu~-

rationsraum des Kreisels die Drehgruppe SO(3) ist.
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Der Stil dieses Buches unterscheidet sich vom Stil anderer auch dadurch, daB
einerseits im Vergleich zu Lehrbiichern der Physik die jeweils auftretenden mathemati~
schen Strukturen im Vordergrund des Interesses stehen und daB andrerseits im Ver-
gleich zu Lehrbtichern der Mathematik weniger Beweise vorkommen und stattdessen viel

Wert auf Motivationen und Beispiele sowie auf Erldauterungen der Begriffe gelegt wird.

Aufbau

Eine mathematisch vollsténdige und befriedigende Darstellung der angespro-
chenen geometrischen Methoden in der modernen Physik ist allerdings mit einem erheb-
lichen-Aufwand verbunden; es-sei- denn; man-setzt eine Fiille'von mathematischen Struk=
turen und Resultaten als bekannt voraus; z.B. aus der Differentialgeometrie, iiber die
Analysis auf Mannigfaltigkeiten und aus der Darstellungstheorie von Lie-Gruppen und
Lie—~Algebren. Die nétigen mathematischen Kenntnisse sind nicht nur umfangreich son-
dern in der Regel auch von einem hohen Abstraktionsgrad; eine systematische Darstel-
lung wiirde wohl einige mathematische Lehrbiicher umfassen. An interessanten und
guten Lehrbiichern und Monographien iiber die geometrische Formulierung physikali-
scher Theorien fehlt es eigentlich nicht. Diesem Thema widmen sich — jeweils mit ver-
schiedenen Schwerpunkten - etwa vierzig der im Literaturverzeichnis angegebenen
Biicher, von denen ich nur die folgenden hervorheben méochte: [ABMI, [ARNI, [ATil,
[BEE], [DYS IV], [GUS], [MAN2], [WAW]. In allen diese Biichern werden allerdings die
genannten mathematischen Vorkenntnisse entweder vorausgesetzt oder systematisch
entwickelt. Aus Sicht eines Nichtexperten wird bei dem Studium dieser Biicher die Hiir-
de des zu beherrschenden mathematischen Stoffes sehr groB sein, und er wird in der
Regel ausfiihrlich dargestellte elementare Beispiele vermissen.

Dagegen wird in diesem Buch der Versuch unternommen, die notwendigen
mathematischen Begriffe und Ergebnisse zur Geometrie und zur Symmetrie gemeinsam
mit der Darstellung der physikalischen Modelle zu entwickeln. An mathematischen
Fertigkeiten werden daher nicht mehr als Grundkenntnisse in Analysis und Linearer
Algebra vorausgesetzt, und selbst diese Kenntnisse werden gelegentlich noch kurz wie-
derholt. Die jeweiligen physikalischen Theorien werden nur als mathematische Modelle
beschrieben, ohne daB viel auf Motivationen und Interpretationen eingegangen werden
kann. In gewisser Weise wird die jeweilige physikalische Theorie nicht anders als eine
mathematische Struktur behandelt. In diesem Sinne kann zum Beispiel ein GroBteil der
(konservativen) Klassischen Mechanik als die Theorie der symplektischen Mannigfaltig-
keiten mit einer jeweils ausgezeichneten Hamiltonfunktion aufgefaBt werden.

Diese Darstellungsweise, in der darauf verzichtet wird, die mathematischen
Hilfsmittel von vornherein systematisch und vollstandig zu entwickeln oder sie einfach
vorauszusetzen, hat den Nachteil, daB sich einige der Argumentationen wiederholen und
dafl eine Reihe von Briichen, Spriingen und Unvollstindigkeiten unvermeidlich sind. Sie

hat den Vorteil, daB der interessierte Nichtexperte zumindestens den jeweiligen Beginn
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der Kapitel und vielfach auch den Beginn der fortgeschrittenen Paragraphen ohne beson-
dere Vorkenntnisse und ohne groBen Aufwand verstehen kann und dadurch einen ersten
Eindruck zum Thema "Geometrie und Symmetrie in der Physik" gewinnen wird. Das Buch
wendet sich ausdriicklich an einen solchen interessierten Nichtexperten, der sich dann
mit einem gewissen Einsatz durch ein weiteres Studium des Buches einen Grundstock
von abstrakten Konzepten der Mathematik und von ihren Anwendungen in der Physik
erarbeiten kann. Damit sollte es mdoglich sein, die oben genannten Biicher und auch
Originalliteratur zur geometrischen Formulierung physikalischer Theorien mit Verstdnd-
nis zu lesen.

Im iibrigen werden die oben genannten Briiche und Unvollstindigkeiten auf
mathematischer Seite teilweise ausgeglichen durch die drei Anhinge iiber Mannigfaltig-
keiten, Differentialgeometrie und Lie-Gruppen, in denen die fiir das Buch wesentlichen
Begriffe und Ergebnisse aus der Mathematik so dargestellt werden, daB8 sie zuminde-
stens als Nachschlagewerk dienen kénnen. Diese Anhinge sind als Steilkurse in die

jeweiligen Themenkreise konzipiert.

Bedeutung

Die Bedeutung von Geometrie und Symmetrie fiir die Physik kann gar nicht
unterschitzt werden. Zum einen sind geometrische Grundkonzepte in einigen physikali-
schen Theorien wie zum Beispiel in der Klassischen Mechanik oder in der Allgemeinen
Relativitdtstheorie zwingend vorgegeben. Zum anderen haben Geometrie und Symmetrie
einen dsthetischen Reiz, der bei der Entdeckung von Theorien eine grofie Rolle spielt.
Dariiberhinaus hat des Auffinden von Symmetrien auch immense praktische Bedeutung,
weil nach dem Satz von Noether mit einer kontinuierlichen Symmetrie immer auch eine
Bewegungskonstante verbunden ist, die zum Beispiel in der Klassischen Mechanik zu
einer Reduktion der Freiheitsgrade fiihrt und in den anderen Theorien von vergleichbarer
Wichtigkeit ist. Fiir die Entwicklung neuer Theorien schlieBlich spielen geometrische
Uiberlegungen und Symmetriebetrachtungen die Rolle von Leitlinien. Das gilt besonders
fiir die Elementarteilchenphysik, fiir die beispielsweise im Bereich der GriBenordnung
von 107 em oder kleiner keine experimentellen Befunde zur Verfiigung stehen und
wegen der groBen Energien, die man flir solche Experimente brauchte, auch fiir lange
Zeit nicht zur Verfiigung stehen werden. Geometrie und Symmetrie — als Einheit ver-
standen — dient daher in der aktuellen Modellbildung der Physik als Leitmotiv.

Ein Beispiel fiir die Entdeckung neuer Bestandteile einer Theorie durch Sym-
metriebetrachtungen und dann auch zur Entdeckung der entsprechenden physikalischen
Phdnomene wird Maxwell zugesprochen, der bei der Aufstellung der Gleichungen fiir die
elektromagnetischen Wechselwirkungen (den sogenannten Maxwell-Gleichungen, vgl.
Kapitel III) aus Symmetriegriinden den Gleichungen einen Term hinzugefiigt hat, welcher
die danach erst entdeckte Stromerzeugung durch Bewegung von Magneten erklart. Ein

anderes Beispiel ist ebenfalls mit den Maxwell-Gleichungen verbunden, ndmlich die
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Vermutung, daB8 es analog zu den positiven und negativen elektrischen Ladungen auch
magnetische Monopole mit entgegengesetzter Feldwirkung existeren (Vgl. dazu die Er-
lauterung am Ende des dritten Paragraphen in Kapitell III). Bisher wurde die Existenz
von Monopolen allerdings nicht durch Experimente bestitigt.

Das Thema "Symmetrie und Geometrie in der Physik” eignet sich besonders
gut fiir eine elementare und doch iibergreifende mathematische Behandlung physikali-
scher Theorien. Zum einen finden sich einfache und anschauliche Beispiele zu diesem
Thema. Zum anderen lassen sich anhand von Geometrie und Symmetrieprinzipien einige
wesentliche moderne Entwicklungen der Theoretischen Physik aus mathematischer Sicht
erldutern, ohne allzu viel mathematisches Wissen voraussetzen zu miissen. Dariiber
hinaus konnen gemeinsame Aspekte von Symmetrie und Geometrie in allen weiter oben
genannten Theorien herausgearbeitet werden. Das Thema ermoglicht es auBerdem, die
Bedeutung der Mathematik hervorzuheben als die Sprache, in der Geometrie und Sym-

metrie und schlieBlich auch Physik beschrieben werden kénnen.

Hinweise

An Voraussetzungen fiir die Lektiire des Buches sind elementare Kenntnisse
aus Analysis und Linearer Algebra niitzlich, wie sie zum Beispiel in [FOR] bzw. [ART]
dargestellt sind. Dariiber hinaus wird &fters die Sprache der Topologie verwendet, ohne
allerdings auf besondere Resultate zurtickzugreifen. Uber diesen Sprachgebrauch kann
man sich ebenfalls in [FOR] oder in den Anfangsparagraphen aus [OSS] informieren.
Ansonsten wird die benstigte Mathematik im Verlaufe des Buches eingefiithrt oder in
den Anhingen erkldrt. Natiirlich wird auch eine gewisse Vertrautheit mit der Physik
vorausgesetzt.

Die Kapitel sind voneinander logisch unabhingig, nur der Symmetriebegriff
aus dem dritten Paragraphen im ersten Kapitel wird im gesamten Buch benétigt. Die
Kapitel Il — IV kénnen also in beliebiger Reihenfolge gelesen werden. Innerhalb der Ka-
pitel sind die Paragraphen in der Regel fortschreitend voneinander abhéngig. Innerhalb
der Kapitel wie auch der Paragraphen findet oft eine deutliche Steigerung von ausfiihr-
lich dargestellten und vergleichsweise konkreten Situationen zu abstrakten Konzepten
statt. Ein Teil der komplizierteren mathematischen Definitionen und Ergebnisse ist nur
in den Anhingen zu finden.

Viele der benutzten Symbole werden im Symbolverzeichnis erkladrt, oder es
wird dort auf eine entsprechende Erklarung verwiesen. Die numerierten Abschnitte wer-
den folgendermaBen zitiert: "11.6.8" weist auf den Abschnitt oder die Formel (6.8) im
Kapitel II hin; entsprechend 11.5.7.12° auf den Unterabschnitt 12° von (5.7) in Kapitel
II; oder "L.6.13°" auf den Unterabschnitt 13° von Abschnitt 6 in Anhang L. Innerhalb
der Kapitel wird die Kapitelnummer oft fortgelassen, also z.B. "6.8" statt "I1.6.8".
Entsprechendes gilt fiir die Abschnitte: Z.B. "12°" statt "5.7.12°" oder gar "11.5.7.12°.
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wird als bekannt vorausgesetzt. In der folgenden Liste sind die Eintrdge der Symbole
in der Regel geordnet nach dem ersten Auftreten im Text mit gelegentlichen Hinwei-
sen auf spitere Erweiterungen der Bedeutung. Wiederholungen in der Liste kommen
vor, wenn das Symbol in verschiedener Weise benutzt wird (z.B. © als Winkelge-
schwindigkeit, symplektische Form, Faktor bei einer zentralen Erweiterung einer

Gruppe oder Zusammenhangsform auf einem Prinzipalfaserbiindel).

d Gruppenwirkung ®: GxM — M 1, 25
<x,y2 Skalarprodukt auf R% und R™ 13

1x] Norm des Vektors x 13

B(y) Bogenldnge der Kurve v 14, 113, 123, 330, 356

$™ n-Sphire im R™' 14, 61
d(a,b) Distanz zweier Punkte 14, 28, 50
[P’n([R), [P’n(CD) projektive Rdume iiber R bzw., C 15, 84, 306

<x,y> Minkowski-Skalarprodukt 15; anderswo 71 197

22 Raum der quadratsummierbaren komplexen Zahlenfolgen 16, 157
&L Skalarprodukt in ¢* 16

4] Norm in ¢% 16

e, eg neutrales Element der Gruppe G 21; je nach Kontext auch 1 oder 0
w(xy), Xy, x’y, x +y Gruppenoperation 21/22

x! Inverse der Gruppenoperation 22

S(M) Permutationsgruppe, Gruppe aller Bijektionen M —> M 22

Ker Kern von einem Homomorphismus 22, 301

Im Bild von einem Homomorphismus 22, 301

it = cost +isint 23
S Permutationsgruppe der Menge {1,2, ... ,n} 23

n
z, zyklische Gruppe der Ordnung n 23 .
R(n), C(n} Raum der nxn—Matrizen mit Koeffizienten aus R bzw. C 23/24, 366
GL(n,R), GL(n,C) allgemeine lineare Gruppe 24, 366
O(n) orthogonale Gruppe 24, 367
SO(n) spezielle orthogonale Gruppe 24, 85, 368
SU(n) spezielle unitdre Gruppe 24, 365, 368
u(1) Kreisgruppe 24, 364

Mor{M) volle Svmmetrieortunne 711 einer Sterilbtie af MM o0
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GL(V) Gruppe der Vektorraumisomorphismen auf V 26

x“ev = Zszixvev (Einsteinsche Summenkonvention) 26
xva‘:eu Einsteinsche Summenkonvention 26, 49
T, Translation um den Vektor b 27

Aff(V) affine Gruppe 27

Aut(M)  Gruppe der Automorphismen einer Gruppe M 27

Ad Adjungierte einer Gruppe: Ad : G —> Aut(G) 27, 383

Top(M)  Gruppe der topologischen Abbildungen eines topologischen Raumes M 27
(M,d) metrischer Raum 28

Is(m,d)  Gruppe der Isometrien eines metrischen Raumes (M,d) 28

Diff(M) Gruppe der Diffeomorphismen 28

Hol(M)  Gruppe der biholomorphen Abbildungen 28

E(2) Gruppe der Bewegungen der euklidischen Ebene 30
D, Diedergruppe 31

E(n) euklidische Gruppe 32, 49, 55

5 Kronecker—Symbol 33, 164

i
GJLJ,(V) Gruppe der orientierungserhaltenden Vektorraumisomorphismen 34
Vol(P) Volumen eines Parallelepipeds P 34

SL(n,R)  spezielle lineare Gruppe 34, 366

O(p,q), SO{(p,q) verallgemeinerte orthogonale Gruppen 35, 370

Sp(2n) symplektische Gruppe 36, 140, 371

o xd (x,y) —> (o(x),0(y)) 36, 22, 305

A unitire Gruppe des Hilbertraumes £° 36, 160

U(n) unitdre Gruppe der nxn-Matrizen 36, 368

G/H Quotient nach Untergruppe HC G 38

G, Standgruppe oder Isotropiegruppe 38

Gla) Orbit der Gruppenwirkung durch a 40

g Lie-Algebra, Supersymmetrie—Algebra 43

E euklidischer dreidimensionaler Raum 47, 67

ab = b - a Verbindungsvektor von a nach b in einem affinen Raum 48
G, spezielle Galileitransformation 33

r Galilei-Gruppe 53

Gx H semidirektes Produkt der Gruppen G und H 56

4 ~4dq &7

4 zweite Ableitung von q(t) 57

F Kraftfeld 58

(P,L) Lagrange—System 358, 91

S Wirkungsfunktional 58, 118, 203
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I EINFUHRUNG IN GEOMETRIE, SYMMETRIE UND PHYSIK

Das ganze erste Kapitel ist als eine ausfiihrliche Einleitung zum Thema des
Buches aufzufassen. Wesentlich fiir die nachfolgenden Kapitel ist dabei die grundlegen-
de Behandlung des mathematischen Begriffs der "Symmetrie" im dritten Paragraphen
dieses ersten Kapitels. Unter einer Symmetrie verstehen wir in diesem Buch eine Grup-
penwirkung

GXM — M
einer Gruppe G (G ist die "Symmetriegruppe") auf einer Menge M. Auf M ist noch
eine (z.B. algebraische, topologische, geometrische, analytische, ... ) Struktur vorgege-
ben, derart daB8 die Wirkung die vorgegebene Struktur invariant 14B8t. Durch eine Reihe
von Beispielen wird dieser Symmetriebegriff illustriert. Wegen der grundsitzlichen
Bedeutung des Gruppenbegriffs in diesem Zusammenhang wird vorher auf die Definition
der Gruppe eingegangen.

Vor dem zentralen dritten Paragraphen wird im zweiten Paragraphen erldau-
tert, was im Sinne dieses Buches unter Geometrie zu verstehen ist, ndmlich Differential-
geometrie in einer sehr allgemeinen Auffassung. Anstatt nun genauer zu kldren, was
Geometrie oder Differentialgeometrie eigentlich ist, gehen wir auf einige Entwicklungs-
phasen der Geometrie ein und beschreiben kurz eine Reihe von bekannten geometrischen
Strukturen, wie zum Beispiel die euklidische Struktur der Ebene und des R™, die Geo-
metrie der Kurven und Flichen im R° und die Geometrie des Minkowski—Raumes. Diese
exemplarische Erliuterung des Begriffs Geometrie findet nach der Bereitstellung der
Definition des Symmetriebegriffs im dritten Paragraphen ihre Fortsetzung und Prazisie-
rung im vierten Paragraphen. Hier werden zunichst einfache Beispiele von Symmetrien
im Rahmen der Geometrie behandelt, also Gruppenwirkungen, bei der die jeweilige geo-
metrische Struktur invariant gelassen wird, um dann nach und nach anhand von weiter-
gehenden Beispielen zu zeigen, daB umgekehrt die Vorgabe einer Symmetrie die Geome~
trie einschrénkt oder sogar vollstindig bestimmt. Dieser Gesichtspunkt der Einheit von
Geometrie und Symmetrie ist in der Mathematik seit Felix Kleins Erlanger Programm
gelaufig. Zum SchiuB des Paragraphen wird daher kurz auf das Erlanger Programm ein-
gegangen.



2 1 Einfiihrung in Geometrie, Symmetrie und Physik

Statt auch nur mit dem Versuch zu beginnen, zu erkldren, was eigentlich
Mathematik ist oder Physik, finden sich im ersten Paragraphen eine Reihe von Zitaten
bedeutender Naturforscher, welche als DenkanstdBe zu dem vielschichtigen Verhiltnis
zwischen Mathematik und Physik dienen kénnen. Daneben wird kurz auf Einfliisse von
mathematischen Theorien auf wichtige Entwicklungen der theoretischen Physik in die-
sem Jahrhunderts eingegangen. Viele der Zitate wie auch einen Teil der Darstellung habe
ich den Artikeln von R. Jost [1] und D. Gross [2] entnommen. Der Paragraph schlieBt
mit der Beschreibung einer neuen und unerwarteten Entwicklung in dem Wechselspiel
zwischen Mathematik und Physik, daB nimlich neuerdings Ideen, Methoden und Ergeb-
nisse aus der Quantenfeldtheorie erfolgreich auf Probleme der Mathematik angewandt
werden und dort zu tiefliegenden Ergebnissen fiihren.

Im fiinften und letzten Paragraphen dieses Kapitels wird auf das Phédnomen
der Vereinheitlichung von physikalischen Theorien hingewiesen, indem einerseits Bei-
spiele von bereits erfolgten und erfolgreichen Vereinheitlichungen aufgezeigt werden
und indem andrerseits neue Ansitze dazu kurz vorgestellt werden. Flir unser Thema ist
dabei wichtig, die Rolle von Geometrie und Symmetrie bei diesen Vereinheitlichungen
hervorzuheben. Das gilt insbesondere fiir die neuen Ans#tze, bei denen die Struktur von
Symmetrie und Geometrie — als Einheit verstanden — einen wesentlichen Bestandteil der
Modelle ausmacht, und daher als ein Leitmotiv der Modellbildung bezeichnet werden

kann.

[1] JOST, R.: Mathematics and Physics since 1800. Discord and Sympathy. In: Relativité,
groupes et topologie II. Les Houches 1983. Session XL (Eds.: DEWITT, B.S. /
STORA, R.). Amsterdam: North—Holland, 1984, pp. 1-35.

[2] GROSS, D.: Physics and Mathematics at the Frontier. Lecture at the International
Center of Physics in Trieste at the occasion of receiving the Dirac Medal 1988.



I MATHEMATIK UND PHYSIK

Bis etwa 1800 haben sich Mathematik und Physik im groBen und ganzen ge-
meinsam entwickelt. Das 4Bt sich besonders gut verdeutlichen, wenn man versucht, die
groBen Physiker und die groBen Mathematiker vor 1800 aufzuzidhlen: Fast alle groBen
Physiker seit Newton (1642-1727) und vor 1800 waren auch bedeutende Mathematiker
und umgekehrt, oder sie werden jedenfalls aus heutiger Sicht so eingeschitzt. Dieser
Sachverhalt 4Bt sich zum Beispiel belegen anhand einer Zeittafel der bedeutendsten
Zahlentheoretiker, welche E. Hecke in seinem Buch " Vorlesungen iiber die Theorie der
algebraische Zahlen" (Akademische Verlagsanstalt, Leipzig, 1923) versffentlicht hat:

Euclid (um 300 v. Chr.) Kummer (1810-1893)
Diophant (um 300 n. Chr.) Galois (1811-1832)

Fermat (1601-1665) Hermite  (1822-1901)
Euler (1707-1783) Eisenstein (1823-1852)
Lagrange (1736-1813) Kronecker (1823-1891)
Legendre (1752-1833) Riemann (1826-1866)
Fourier  (1768-1830) Dedekind (1831-1916)

GauB (1777-1855) Bachmann (1837-1920)
Cauchy (1789-1857) Gordan (1837-1912)
Abel (1802-1829) H. Weber  (1842-1913)
Jacobi (1804-1851) G. Cantor (1845-1918)
Dirichlet  (1805-1859) Hurwitz  (1859-1919)
Liouville  (1809-1882) Minkowski (1864-1909)

Abgesehen von den beiden Griechen wird man alle hier aufgefiihrten bedeu-
tenden Vertreter der Zahlentheorie vor 1800 — also Fermat, Euler, Lagrange,
Legendre,Fourier — auch als bedeutende Physiker erkennen. Fiir die in der Zeittafel
aufgefiihrten Mathematiker nach 1800, also ab GauB, gilt das nur eingeschriinkt; eini-
ge dieser Mathematiker werden den meisten Physikern nicht einmal namentlich bekannt

sein.

Seit Beginn des 19. Jahrhunderts gehen Mathematik und Physik getrennte
Wege mit mehr oder weniger starken Beriihrungen.

Als eine der wesentlichen Ursachen dieser Trennung 148t sich der EinfluB der
Naturphilosophie auf die Physik ausmachen, wie sich zum Beispiel durch das folgende
Zitat beleacen 18Rt



4 1 Einfiihrung in Geometrie, Symmetrie und Physik

Als getrennt muB sich darstellen: Physik von Mathematik.
Jene muB in einer entschiedenen Unabhdngigkeit bestehen und milt
allen liebenden, verehrenden, frommen Krdften in der Natur und das
heilige Leben derselben einzudringen suchen, ganz unbekiimmert, was
die Mathematik von ihrer Seite leistet und tut. Diese muB sich dage-
gen unabhiéngig von allem AuBern erkliren, ihren eigenen groBen
Geistesgang gehen und sich selber reiner ausbilden als es geschehen
kann, wenn sie wie bisher sich mit dem Vorhandenen abgibt und die-

sem etwas abzugewinnen oder angupassen trachtet.

Johann Wolfgang von Goethe: Wilhelm Meisters Wan-
derjahre, Zweites Buch, Betrachtungen im Sinne der
Wanderer, Aphorismus 134 (verfaBt ca.1830).

Exponent fiir die damals erfolgreiche Physik ohne Mathematik ist M. Faraday
(1791-1867), der in den dreiBiger Jahren des letzten Jahrhunderts die Feldtheorie er-
findet, um elektrische und magnetische Wechselwirkungen darzustellen. Bei der Be-
schreibung seiner so erfolgreichen Theorie, die er unmittelbar aus seinen Experimenten
entwickelt, vermeidet er den Gebrauch von jeglicher Mathematik; mehr noch, er hilt
mathematisch formulierte physikalische Theorien fiir suspekt.

Es ist in diesem Zusammenhang bemerkenswert, daB diese zum Teil aus der
Naturphilosophie entstandene Feldtheorie - die nach Faradays Intention ganz ohne
Mathematik formuliert werden sollte — heute sehr mathematisch und geometrisch auf-
gefaBt wird (siehe zum Beispiel [FEL] oder [PER]): In der heute gebrduchlichen abstrak-
ten und geometrischen Formulierung ist die Feldtheorie als Eichfeldtheorie zu den we-
sentlichen Werkzeugen der modernen Theoretischen Physik zu zéhlen (vgl. Kapitel V).

Faradays intuitives Konzept eines Feldes im Raum mit den zugehdrigen Feld-
linien (oder Kraftlinien) erfahrt bereits einige Zeit nach seiner Entdeckung eine Mathe-
matisierung durch J.C. Maxwell (1831-1879), der zur Begriindung der Theorie der Elek-
trodynamik eine der bedeutendsten Errungenschaften der Theoretischen Physik entwik-
kelt: Die Maxwell-Gleichungen. Lassen wir Faraday zu Wort kommen durch eine Passage
aus einem 1857 geschriebenen Brief an Maxwell, in dem seine Zweifel zum Ausdruck

kommen, aber auch sein Respekt vor der Leistung Maxwells:

... My Dear Sir - I received your paper, and thank you very
much for it. I do not say I venture to thank you for what you have
said about "Lines of Force”, because I know you have done it for the
interests of philosophical truth; but you must suppose it is work grace-
ful to me, and gives me much encouragement (o think on. I was at
first frightened when I saw such mathematical force made to bear upon

the subject, and then wondered lo see that the subject stood so well.
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Auch auf mathematischer Seite lassen sich Ursachen flir die Auseinanderent-
wicklung von Physik und Mathematik angeben. In diesem Zusammenhang ist vor allem
die zunehmend abstraktere Auffassung der Mathematik zu nennen. Am deutlichsten 14Bt
sich diese Entwicklung mit dem Namen C.F. GauB verbinden, welcher in seinen zahlen-
theoretischen Untersuchungen (vor allem in seinen "Disquisitiones Arithmeticae"” ) neue
Wege erdffnet hat. Als Folge nicht nur seines Einflusses sind die Untersuchungsmetho-
den in der Mathematik im Laufe des letzten Jahrhunderts zunehmend abstrakter und die
Anforderungen an die Rigorositdt der Beweisfiihrungen immer héher geworden. Die
mathematischen Begriffe selber und damit die Gegensténde mathematischer Untersu-
chungen sind dabei ebenfalls abstrakter geworden. Das steht offensichtlich im Gegen-~
satz zu der oben erwihnten Entwicklung der Physik und hat daher die Mathematik Ffiir
viele Physiker jener Zeit immer weniger zugénglich gemacht (vgl. den zitierten Artikel
von Jost [1]).

DaB es dennoch immer gegenseitige EinfluBnahmen und starke Beziehungen
zwischen Mathematik und Physik gegeben hat und gerade heute wieder in besonderem
MaBe gibt, ist nicht zu bestreiten. Einen Beleg dafiir gibt Hermann Weyl (1885-1955),
den man als den gréBten Mathematiker dieses Jahrhunderts ansehen kann (wenn man
Hilbert und Poincaré dem letzten Jahrhundert zuordnet):

Ich kann es nun einmal nicht lassen, in diesem Drama von
Mathematik und Physik - die sich im Dunkeln befruchten, aber von
Angesicht zu Angesicht so gerne einander verkennen und verleugnen
- die Rolle des (wie ich geniigsam erfuhr, oft unerwiinschten) "Boten”
zu spielen.

Hermann Weyl im Vorwort des Buches: Gruppentheorie
und Quantenmechanik. Leipzig: Hirzel-Verlag, 1928,

Die folgenden Zitate dreier bedeutender Physiker dieses Jahrhunderts zeigen,
daB H. Weyl nicht allein steht mit seiner Einstellung, daB eine enge Beziehung zwischen
Mathematik und Physik nicht geleugnet werden kann. Alle drei bringen ihre Verwun-
derung tiber die Wirksamkeit der Mathematik in der Physik zum Ausdruck:

How 'is it possible that mathematics, a product of human
thought that is independent of experience, fits so excellently the ob-
Jects of physical reality ?

Albert Einstein
The enormous usefulness of mathematics in the natural

sciences is something bordering in the mysterious and there is no

rational explanation for it. It is not at all natural that "laws of nature”
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exist, much less that man is able to discover them. The miracle of the
language of mathematics for the formulation of the laws of physics is

a wonderful gift which we neither understand nor deserve.

Eugene Wigner In: The Unreasonable Effectiveness of
Mathematics. Commun. Pure Appl. Math. 13 (1969), 1-14.

It seems to be one of the fundamental features of nature
that fundamental physical laws are described in terms of great beauty
and power. ...

As time goes on il becomes increasingly evident that the
rules that the mathematician finds interesting are the same as those

that Nature has chosen.

P.A.M. Dirac

Der oben zitierten These Goethes, daB Mathematik und Physik sich als getrennt
darstellen sollen und die Physik ganz unabhingig von der Mathematik zu bestehen habe,
ist in den vorangehenden Zitaten bereits widersprochen worden. Aber auch Goethes
Vorstellung von der "reinen” Mathematik als ein eigener Geistesgang ganz unabhéngig
von der AuBenwelt, wie sie in dem zitierten Aphorismus zum Ausdruck kommt, kann
nicht so ohne weiteres hingenommen werden. So meint G.H. Hardy, einer der gréBSten
Zahlentheoretiker dieses Jahrhunderts, zur Frage der Realitdt mathematischer Objekte:

I believe that mathematical reality lies outside us, that our
function is to discover or observe it, and that the theorems we prove
and which we describe grandiloquently as our "creations” are simply

notes of our observations.

G.H. Hardy

Diese Auffassung von der Existenz von mathematischen Strukturen und
Theoremen unabhingig von der Entdeckung durch den Mathematiker kann helfen, eine
Erklirung fiir die oben so bewunderte Effektivitdt der Mathematik in den Naturwissen-
schaften zu finden; jedenfalls dann, wenn man sich diese Existenz eben doch als mit der
AuBenwelt, also letztlich mit der Natur gekoppelt vorstellt.

In dem nachfolgenden Zitat bringt B. Riemann, der wie kein zweiter Mathe-
matiker seiner Zeit durch seine visioniren Vorstellungen die Mathematik beeinfluBt hat
(vgl. [WE3]), unter anderem zum Ausdruck, daB Geometrie sehr wohl Aussagen iber

reale Probleme des Raumes macht:

Die Frage iiber die Giiltigkeit der Voraussetzungen der Geo-

g s ¥y sge g gy gt I . Fermrma nneamnbh Adass
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innern Grunde der Massverhilinisse des Raumes. Bei dieser Frage,
welche wohl noch zur Lehre vom Raume gerechnet werden darf,
kommt die obige Bemerkung zur Anwendung, dass bei einer discreten
Mannigfaltigkeit das Princip der Massverhiiltnisse schon in dem Be-
griffe dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber an-
ders woher hinzukommen muss. Es muss also entweder das dem Rau-
me zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bil-
den, oder der Grund der Massverhilinisse ausserhalb, in darauf wir-
kenden bindenden Kriften, gesucht werden.

Die Entscheidung dieser Fragen kann nur gefunden werden,
indem man von der bisherigen durch die Erfahrung bewdhrten Auf-
fassung der Erscheinungen, wozu Newton den Grund gelegt, ausgeht
und diese durch Thatsachen, die sich aus ihr nicht erkliren lassen,
gelrieben allmdhlich umarbeitet; solche Unlersuchungen, welche, wie
die hier gefiihrte, von allgemeinen Begriffen ausgehen, kénnen nur
dazu dienen, dass diese Arbeit nicht durch die Beschrénktheit der
Begriffe gehindert und der Fortschritt im Erkennen des Zusammen-
hangs der Dinge nicht durch iiberlieferte Vorurtheile gehemmt wird.

Es fiihrt dies hiniiber in das Gebiet einer andern Wissen-
schaft, in das Gebiet der Physik, welches wohl die Natur der heutigen
Veranlassung nicht zu betreten erlaubt.

Bernhard Riemann am SchluB seiner Antrittsvorlesung
(Géttingen 1854): "lber die Hypothesen, welche der

Geometrie zu Grunde liegen."

Gerade Riemanns Vision von der Entwicklung interessanter, neuer Strukturen
des Raumes, die er in dem oben zitierten SchluB seiner Antrittsvorlesung entwickelt,
ist heutzutage hochaktuell: Eine zufriedenstellende Strukturtheorie des "Raumes im
Kleinen" gibt es nicht, wird aber fiir die Formulierung einer Quantentheorie der Gravita-

tion dringend benétigt.

Die Wechselfélle der Beziehungen zwischen Mathematik und Physik in der
Zeit nach GauB und Faraday méchte ich hier nicht weiter vertiefen. Stattdessen gehe ich
zum AbschluB dieses Paragraphen nur auf zwei gegenldufige Entwicklungen ein, welche
in diesem Jahrhundert zu beobachten sind:

Eine verstirkte Trennung von Physik und Mathematik trat auf in den Jahren
zwischen 1930 und 1970. Auf mathematischer Seite ist in dieser Zeit eine weitere Ab-
straktion in den grundlegenden Methoden und Konzepten sowie eine Formalisierung der
mathematischen Untersuchungen zu verzeichnen, die es — nicht nur fiir den Physiker —
oft sehr erschweren, {iberhaupt noch Ideen oder gar Intuition in der Mathematik zu

erkennen. Wenn man diese Entwickliimo wicdor mwiit oimeamme N oo e bl o eg v
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sich N. Bourbaki an. Auf physikalischer Seite ist in den Griinderjahren der Quanten-
mechanik und Quantenfeldtheorie die Suche nach einer strukturierten Theorie zu kurz
gekommen. Stattdessen standen umfangreiche stérungstheoretische Rechnungen und
Abschitzungen im Vordergrund, die nétig waren, um der vielen neuen Phianomene (zum
Beispiel in Form von neu entdeckten Teilchen) Herr zu werden, die aber wenig Kenntnis

von allgemeineren mathematischen Strukturen verlangten.

Im Gegenzug zu diesen Tendenzen der Trennung von Mathematik und Physik
lassen sich aber fiir dieses Jahrhundert auch besonders erfolgreiche Verbindungen zwi-
schen Mathematik und Physik aufzeigen. Und es sind gerade diese Verbindungen, die
uns in diesem Buch interessieren:

1 A. Einstein formuliert 1915 die Allgemeine Relativitdtstheorie als neue
Theorie der Gravitation mit der Sprache der Riemannschen Geometrie, welche in der
zweiten Hialfte des 19. Jahrhunderts als abstrakte, rein mathematische Theorie zu einer
gewissen Bliite entwickelt wurde. Die Allgemeiné Relativitidtstheorie ist bis heute eine
sehr "geometrische" Theorie, und die Wissenschaftler, die in der Aligemeinen Relativi-
titstheorie arbeiten, werden von einigen Physikern gelegentlich eher als Mathematiker
denn als Physiker eingestuft.

2.1925 wird als weiterer groBer Umbruch in der Physik dieses Jahrhunderts
die Quantenmechanik von W. Heisenberg, E. Schrédinger und anderen aufgestellt, die
kurz danach unter Riickgriff auf die Theorie der linearen Operatoren im Hilbertraum
formuliert wird. Diese neue Physik hatte und hat groBen EinfluB auf die Entwicklung
wichtiger Bereiche der Mathematik wie zum Beispiel Operatortheorie, Funktionalanaly-
sis und Darstellungstheorie von Lie-Gruppen.

3. Seit etwa 1970 stellt sich eine neue enge Beziehung zwischen Mathematik
und Physik ein. In der Quantenfeldtheorie und auch in der klassischen Feldtheorie ge~
winnen Fichtheorien (auch Yang—Mills-Theorien genannt) zunehmend an Bedeutung
und damit auf mathematischer Seite die Geometrie der Faserbiindel, in der die Symme-
trie beziiglich einer Lie-Gruppe grundsitzlich von vornherein eine ausgezeichnete Rolle
spielt. Die Eichtheorien als wichtiges Werkzeug der Elementarteilchentheorie werden
von den Physikern Yang und Mills im Jahre 1954 [3] eingefiihrt in Form einer zunichst
wenig mathematisch strukturierten Theorie, in der allerdings (sogenannte interne) Sym-
metrien beziiglich der Gruppe SU(2) bereits eine entscheidende Rolle spielen.

Erst in den siebziger Jahren setzt sich die Erkenntnis durch, daB es sich bei
den physikalisch formulierten Eichtheorien um nichts anderes als um die Geometrie von
Faserbiindeln handelt. (Eine mathematische Behandlung der Eichtheorien unter dem
Aspekt der Anwendungen in der Theoretischen Physik findet man zum Beispiel in [CcOJ]

[3] YANG, C.N. / MILLS, R.L.: Conservation of Isotopic Spin and Isotopic Gauge In-

variance. Phys. Lett. 96 (1954), 191-195. ABERS, E.S. / LEE. B.W.: Gauge Theories
Dhuve Ronmrice G (1072 1-141
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und in [PER]. Eine Einfiihrung dazu geben wir im fiinften Kapitel.) Es stellt sich auBer-
dem heraus, daB bereits 1918 durch Hermann Weyl [4] eine Art Eichtheorie als Biindel-
theorie vorgeschlagen wurde, um die damals neue Allgemeine Relativititstheorie zusam-
men mit der Elektrodynamik in einer einheitlichen Theorie gemeinsam behandeln zu
kénnen,

Heutzutage werden drei der vier bekannten fundamentalen Wechselwirkun-
gen der Elementarteilchen, die elektrodynamische, die starke und die schwache Wech-
selwirkung, als Eichtheorien formuliert. Auch die vierte fundamentale Wechselwirkung,
die Gravitation, 1aBt sich als eine Eichtheorie auffassen.

Seit der Entdeckung, daB physikalische Eichtheorien mit der Geometrie von
Faserbiindeln gleichzusetzen sind, stehen neue Entwicklungen in der Quantenfeldtheorie
in enger Beziehung zu abstrakten Fragestellungen in Geometrie, Topologie und Darstel-
lungstheorie von Gruppen und Algebren. So lassen sich zum Beispiel verschiedene geo-
metrische, topologische und algebraische Invarianten physikalisch relevanter Raume in
einer geeigneten Theorie als Quantenzahlen interpretieren. (Eine elementare Darstellung
zu diesem Fragenkreis findet sich zum Beispiel in [MONL.) Es ist ganz offensichtlich,
daB auf diese Weise Resultate aus der sogenannten reinen Mathematik erfolgreich in der
Physik angewendet werden kénnen, und es verwundert nicht, daB durch physikalische
Motivationen mathematische Fragestellungen neu aufgeworfen oder aktualisiert werden.
Es wird damit ein wichtiger Teil der Mathematik durch die Physik entscheidend beein-
fluBt. Als Beispiele fiir solche Entwicklungen lassen sich unter vielen anderen nennen:
Die Knotentheorie (im letzten wie in diesem Jahrhundert, vgl. [AT2]), die Darstellungs-
theorie nichtkompakter Lie-Gruppen (wie etwa die Darstellungstheorie der Poincaré-
Gruppe nach E. Wigner und W. Mackey), gewisse Fortschritte in der Algebraischen
Geometrie zur Beschreibung von Instantonen (vgl. z.B. [AT11), die nichtkommutative
Differentialgeometrie (vgl. z.B. [CON]) und die Einfliisse auf die Theorie der Hopf-
Algebren durch die neuerlich in der Quantentheorie untersuchten Quantengruppen (vgl.
z.B. [MAN3]).

Der EinfluB der Physik auf die Mathematik geht aber in manchen Fillen noch
weiter: Neueste Entwicklungen basieren auf physikalische Anwendungen innerhalb der
Mathematik, das heiBt, es werden Ideen, Methoden und Eingebungen aus der Physik
erfolgreich auf wichtige mathematische Probleme angewendet, fiir die es in der Mathe-
matik bisher keine Lésung gibt. Wenn man bei dem oben dargelegten Bild der engen
Beziehung zwischen Quantenzahlen und Invarianten bleibt, so haben viele diese Anwen-
dungen ihren Ursprung und ihre Erklirung letztlich darin, daB man geeignete Quanten-
zahlen, von deren Existenz man aus physikalischer Einsicht itberzeugt ist, auffaBt als
Invarianten der jeweiligen geometrischen, topologischen oder algebraischen Struktur.

[4] WEYL, H.: Gesammelte Abhandlungen. Band 2. (1918) Seite 1 1ind Saita 20
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Als bekanntestes Beispiel fiir dieses Phinomen ist ein Resultat zu nennen, welches sei-
nerzeit sogar Schlagzeilen in der Presse gemacht hat. Es handelt sich um die Existenz
von exotischen Strukturen auf dem R"', also um die Tatsache, daB der R* (als topolo-
gischer Raum) in verschiedener Weise als differenzierbare Mannigfaltigkeit realisiert
werden kann [5]. Dieses Resultat wird mit eichtheoretischen Methoden erzielt. Es sei in
diesem Zusammenhang noch erwihnt, daB es fiir die Fille n + 4 auf dem R™ nur eine
einzige differenzierbare Struktur gibt, namlich die iibliche. Insofern spielt der vierdi-
mensionale Raum in der Mathematik ebenso wie in der Physik eine Sonderrolle. Ein
weiteres Beispiel fiir Anwendungen der Physik innerhalb der Mathematik ist die Weiter-
entwicklung der Morse-Theorie durch E. Witten in [6]. Ebenso beruhen verschiedenen
mathematische Fortschritte in der Darstellungstheorie von gewissen unendlichdimen-
sionalen Lie—Algebren auf Frkenntnissen iiber physikalische Modelle [7]. Ein weiteres
Beispiel liefert E. Wittens Anwendung seiner Topologischen Quantenfeldtheorie auf
neue Entwicklungen in der Knotentheorie [8], welche wiederum auf eine physikalisch
motivierte Entdeckung von neuen Invarianten der Knoten im R®, den sogenannten
Jones~Polynomen, durch V.F.R. Jones [9] beruhen. In Wittens Ansatz werden Invarianten
von Knoten und insbesondere die Jones-Polynome mit Ideen und Methoden aus der
Quantenfeldtheorie auf geometrische Art begriindet. Eine kurze Einfithrung zu diesen
neuen, noch langst nicht abgeschlossenen Entwicklungen der Knotentheorie wird in
[AT2] gegeben.

Es liegt in der Natur dieser "physikalischen Anwendungen" auf Probleme in
der Mathematik, daB Prinzipien der Physik, die nicht immer mathematisch rigoros sind,
an entscheidender Stelle benutzt werden. Aus diesem Grunde sind zum Teil erhebliche
Anstrengungen nétig, um aus den physikalisch motivierten, mathematischen "Ergebnis-
sen” vollstindig bewiesene mathematische Resultate zu machen. Das trifft insbesondere
zu fiir die Begriindung der oben erwihnten Knoteninvarianten nach Witten (8], bei der
Pfadintegrale verwendet werden, die mathematisch nicht wohldefiniert sind. Das trifft

ebenfalls zu fiir ein weiteres von Witten erzieltes Resultat iiber den Dirac-Operator auf

[5] Die Existenz von exotischen Strukturen kann aus den Ergebnissen von S. Donaldson
und M. Freedman gefolgert werden, wie in dem Buch [FRU] von Freed und Uhlen-
beck ausfiihrlich dargelegt wird. Vergleiche dazu: DONALDSON, S.K.: An Applica-
tion of Gauge Theory to the Topology of 4-Manifolds. J. Differential Geometry 18
(1983}, 279-315; FREEDMAN, M.: The Topology of Four-Dimensional Manifolds J.
Differential Geometry 17 (1982), 357-354; und [DOK].

{6] WITTEN, E.: Supersymmetry and Morse Theory. J. Differential Geom. 17 {1982),
661-692.

[7] FRENKEL, 1.B. / KAC, V.G.: Basic Representations of Affine Lie Algebras and
Dual Resonance Models. Inv. Math. 62 (1980), 23-67.

[8] WITTEN, E.: Quantum Field Theory and the Jones Polynomial. Commun. Math.
Physics 121 (1989), 351-399.

[9] JONES, V.F.R.: Hecke Algebra Representations of Braid Groups and Link Polyno-
iole Amm AMath 196 (1027} 591926
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dem Schleifenraum einer Mannigfaltigkeit {10]. Fiir ein wesentliches Teilergebnis dieses
Resultats, das letztlich zu einer neuen Kohomologietheorie - der elliptischen Kohomo-
logie - fiihrt, hat Taubes einen mathematisch vollstéandigen Beweis geliefert [i1].
SchlieBlich trifft dieser jetzt bereits mehrfach erwihnte Sachverhalt von physikalisch
begriindeten Ergebnissen, die mathematisch noch nicht vollstiandig verstanden sind, in
besonderem MaBe zu auf diverse Folgerungen aus der in [12] begriindeten Konformen
FeldtHeorie in 2 Dimensionen. Eine dieser Folgerungen sind die sogenannten "Fusions-
regeln”, die unter anderem zu einer Reihe von wichtigen Identit4ten in der Algebraischen
Geometrie (vgl. z.B. [13]) fiihren.

Im iibrigen hat die Anwendung von Physik auf die Mathematik gute Tradition.,
Zum Beispiel hat B. Riemann seinen Uniformisierungssatz fiir Riemannsche Fléichen
und auch die Giiltigkeit des Dirichletschen Prinzips physikalisch begriindet.

[10] WITTEN, E.: The Index of the Dirac Operator in Loop Space. In: Elliptic Curves
and Modular Forms in Algebraic Topology. Proceedings, Princeton 1986. (Ed.:
LANDWEBER, P.S.) Berlin: Springer-Verlag (1988), 161-181.

[11] TAUBES, C.: S! Actions and Elliptic Genera. Commun. Math. Phys. 122 (1989),
455-526.

{121 BELAVIN, A.A. / POLYAKOV, AM. / ZAMOLODCHIKOV, A.B.: Infinite Confor-
mal Symmetry in Two Dimensional Quantum Field Theory. Nucl. Phys. B 241 (1984),
333-380.

[18] BOTT, R.: On E. Verlinde's Formula in the Context of Stable Bundles. In; Trieste
Conference on Topological Methods in Quantum Field Theories, June 1990. (Eds.:
NAHM, W. et al.) Singapore: World Scientific (1991) 84-95
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2 GEOMETRIE

Um zu erldutern, was Geometrie ist, sei kurz auf drei wesentlichen Entwick-
lungsphasen der Geometrie eingegangen: Die erste Phase fiihrte zur synthetischen Geo-
metrie mit ihren Urspriingen in der Antike, die zweite Phase zur analytischen Geometrie
von Fermat und Descartes, und die dritte Phase schlieBlich zur Differentialgeometrie
von GauB, Monge, Riemann, E. Cartan u.a.

1. Die erste Phase betrifft die synthetische Sicht der Elementargeometrie, die
bereits im Altertum eine hohen Bliite erlangt hat, wie sich insbesondere in Euklids Wer-
ken zeigt. Die synthetische Geometrie ist bis heute von Interesse. Das driickt sich vor
allem in Hilberts Axiomatik der affinen und projektiven Geometrie sowie in den daran
anschlieBenden Untersuchungen aus.

2. In der analytischen Geometrie sind im Unterschied zur synthetischen Geo-
metrie die Punkte durch ihre Koordinaten und die geometrischen Figuren durch (zumeist
lineare oder quadratische) Gleichungen in den Koordinaten gegeben. Die Resultate der
Geometrie werden zuriickgefiihrt auf algebraisches Rechnen mit diesen Gleichungen. In
ihrer modernen Fortentwicklung ist die analytische Geometrie zu dem geworden, was
heute mit der Algebraischen Geometrie umschrieben wird.

3. Zur Beschreibung von Tangenten an Kurven und Fldchen sowie an allge-
meineren geometrischen Gebilden wie auch zur Definition der Kriimmung und weiteren
geometrischen GroBen sind differentielle Methoden vonnéten, und das ist der Ursprung
der Differentialgeometrie als Fortentwicklung der analytischen Geometrie in der dritten
Phase. Wesentliche neue Arbeitsmittel sind Ableitung und Integral. Die Resultate der
Differentialgeometrie werden einerseits wie in der analytischen Geometrie auf das alge-
braische Rechnen mit den einschligigen Gleichungen und andrerseits auf den Differen-
tialkalkiil zurlickgefiihrt. Ein Beispiel fiir das Zusammenwirken von algebraischen und
differentiellen Methoden als die fiir die Differentialgeometrie typische Argumentations-

weise stellt der Beweis des "theorema egregium” (vgl. Anhang G.10.10°/11°) dar.

Zur Formulierung physikalischer Theorien tragt die synthetische Geometrie
kaum etwas bei. Auch die analytischen Geometrie ohne den Differentialkalkiil ist als
geometrische Methode fiir die Physik nur eingeschrinkt einsetzbar, Erst die Differen-
tialgeometrie liefert die fiir die Physik addquate Sprache der Geometrie. Aus diesem
Grunde wird Geometrie im Sinne des Titels dieses Buches im folgenden meistens gleich-
gesetzt mit der Differentialgeometrie. Dabei ist unter der Differentialgeometrie nicht
nur die Geometrie der Kurven und Flichen (vgl. z.B. [DOC]) zu verstehen, sondern die

von Riemann projektierte Geometrie mit modernen Erweiterungen und unter Einbezug

o . ee .4
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Enzyklopddie [GEOM] umfassend dargestellt.) Wir sind damit bei dem zweiten Begriff
im Titel des Buches. Mehr iiber das Zusammenspiel von Geometrie und Symmetrie wird
im 4. Paragraphen dieses Kapitels durch die Behandiung von Beispielen dargelegt.

Eine ausfiihrliche und prézise Bestimmung des Begriffs Differentialgeome-
trie und damit des Begriffs Geometrie im Sinne des Buches wiirde eine grundlegende
Einfilhrung in diese Theorie etwa im Umfang der einschlégigen Lehrbiicher, wie z.B.
[DEN], [ONE], [KON1, [POO1, [WAR] oder der bereits erwihnten Enzyklop#die [GEOM]
erfordern. Statt einer solchen Einfiihrung sollen im folgenden einige Beispiele aufge-~
fiihrt werden, die zum Teil vertraut sein miiiten, die aber auch in spateren Teilen des
Buches zunehmend ausfiihrlicher dargestellt werden. Im iibrigen kann der Anhang G

einen ersten Eindruck tiber die Differentialgeometrie vermitteln.

(2.1) Euklidische Geometrie im R? und R®. Wesentliche geometrische Be-
standteile dieser Geometrie sind die Lédngenmessung und die Winkelmessung, die sich
mittels des euklidischen Skalarprodukts < , > auf R2 beschreiben lassen. Fiir Vek-
toren x = (x,x,) und y = (y,y,) des R® in kartesischen Koordinaten ist das Ska-
larprodunkt: <x,y> = X,¥; + X,¥,. Die Lidnge bzw. die Norm |x| des Vektors x ist
durch die Quadratwurzel aus <{x,xD> = xl2 + x22 gegeben. Der Abstand zweier Punkte
der euklidischen Ebene, die durch die Vektoren x und y reprdsentiert werden, ist die
Norm [x - y| des Differenzvektors. Der Winkel « zwischen zwei Richtungen, die durch
die Vektoren x und y gegeben sind, ist schlieBlich durch Ixllylcos « = <x,5> fest~
gelegt.

(2.2) Theorie der Kurven und Flichen im euklidischen R®. Zur Langen- und
Winkelmessung kommt als wesentliche geometrische GriBe die Kriimmung hinzu. In
diesem Sinne ist die in 2.1 vorgestellte Geometrie eine "flache” Geometrie, das hei3t eine
Geometrie, in der sdmtliche Kriimmungen Null sind. Eine Einfiihrung in die Differential-

geometrie der Flachen wird im Anhang G gegeben.

(2.3) Als Verallgemeinerung von 2.1 hat man die Euklidische Geometrie des
R™ als flache Geometrie in der Dimension n. Wie in 2.1 lassen sich die geometrischen
GroBen wie Lénge, Abstand und Winkel durch das euklidische Skalarprodukt "¢ , >"
ausdriicken: Fiil;lVektoren %,y € R™ mit den iiblichen kartesischen Koordinaten Xy ¥y,
ist <x,y> = Y x_y..Abstand, Linge und Winkel definiert man wie in 21 (Vel aharw
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I1.1 fiir eine koordinatenfreie Behandlung der euklidischen Geometrie.) Auch den diffe-

renzierbaren Kurven vy : [t,,t,] — R™ kommt eine Léange zu, nimlich die Bogenlédnge
ty . :
By) = [ ' /<3(),7(0)> at.
(]

Damit ist allerdings ein erster Schritt von der analytischen Geometrie zur

Differentialgeometrie im Rahmen der euklidischen Geometrie getan.

(2.4) Als entsprechende Verallgemeinerung von 2.2 ergibt sich die Geometrie
der k—-dimensionale Flichen (1 <k <n-1, auch k-dimensionale Untermannigfaltigkeiten
genannt, vgl. Anhang M) im euklidischen Raum R™. In der Klassischen Mechanik treten
Untermannigfaltigkeiten des R" zum Beispiel durch holonome Zwangsbedingungen
oder durch Bewegungskonstanten auf, wie im zweiten Kapitel erldutert wird. Typisches
und bereits interessantes Beispiel dazu ist die (n-1)-dimensionale Sphére Sn_l im [Rn,

das ist die Oberflache der n-dimensionalen euklidischen Vollkugel vom Radius 1:
sz {xe R™: x> =1},

wobei "¢ , >" wieder das euklidische Skalarprodukt ist.

Als Abstand zwischen zwei Punkten a und b auf Sn_l ist jetzt nicht
einfach der Abstand in R™ nach 2.3 zu nehmen, sondern er wird ganz und gar in der
Sphire gemessen. Das fiihrt dazu, daB der Abstand d(a,b) die Lange des kiirzeren der
zwei GroBkreisbigen ist, die die beiden Punkte verbindet. (Ein GroBkreis auf Sn—I ist
bekanntlich die Schnittkurve einer durch den Nullpunkt verlaufenden Ebene in R” mit
Sn—l.) ImFalle a +£ b und a + —-b gibt es genau einen GroBkreis durch a und b.
Im Falle a = —b gibt es unendlich viele GroBSkreise durch a und b= -a, und es ist
d{a,~a) = m. Aus der nachfolgenden Abbildung liest man d(a,b) = ¢ ab (im Falle
¢ € 10,71). Zum Vergleich: |a - bl = 2sin(d¢) < ¢.

s = sin{5¢)

In allgemeineren Untermannigfaltigkeiten M des R™ definiert man als
Analoga zu den Geraden des euklidischen R" und zu den GroBkreisen der Sphire Sk
die Geoditischen, das sind Kurven in M, die lokal die Bogenldnge in M minimieren

(vgl. Anhang G und I1.8). Ein wesentlicher Bestandteil des Studiums der Geometrie der

o N s = - e .ee . o 4 .
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solchen Untermannigfaltigkeit. Im Anhang G wird darauf ausfiihrlicher eingegangen,
hauptsichlich im Rahmen der 2-dimensionalen Untermannigfaltigkeiten des R°.

(2.5) Als Erweiterung des Vorangehenden untersucht man die zu 2.4 analoge
Geometrie auf abstrakten endlichdimensionalen Mannigfaltigkeiten. Beispiele von ab-
strakten Mannigfaltigkeiten sind die Lie— —~Gruppen, die projektiven Riume P AR, P_(C)
{vgl. M.9) und allgemeine Quotienten von Mannigfaltigkeiten (vgl. M.8), die auch in den
physikalischen Anwendungen ihre Bedeutung haben. Beispiele von Quotienten in der
Klassischen Mechanik sind die Bahnenrdume (z.B. zum harmonischen Oszillator, vgl. 1.6
oder zum Keplerproblem, vgl. 11.7.6) oder die Reduktion von Phasenrdumen nach Grup-
pensymmetrien (vgl. 11.9).

Die zugehdrige Geometrie nennt man die Riemannsche Geometrie. Im Anhang
G geben wir eine kurze Einfiihrung in die Riemannsche Geometrie. Die engen Beziehun-
gen zwischen Riemannscher Geometrie und Klassischer Mechanik sind Gegenstand der

Untersuchungen des achten Paragraphen im zweiten Kapitel.

(2.6) Eine ganz anders geartete Geometrie ist die Geometrie des Minkowski—

Raumes R®' mit der Lorentzmetrik, die durch das Minkowski-Skalarprodukt

{x,yD = XYyt XY, t Xg¥s — Xy, = nixy)
(oder auch durch <x,y> = XYy F XYyt Xg¥a t X,y
bzw. {xy> = xy, - Xp¥p = Xg¥3 ~ X4¥, )

anstelle des euklidischen Skalarprodukts gegeben ist.

(2.7) Als Verallgemeinerung von 2.6 untersucht man die Geometrie auf end-
lichdimensionalen abstrakten Mannigfaltigkeiten, die lokal wie in 2.6 gegeben ist. Die
Mannigfaltigkeiten mit einer solchen Geometrie nennt man Lorentz-Mannigfaltigkeiten,
oder semi-Riemannsche Mannigfaltigkeiten, und die zugehérige Theorie heiBt semi-Rie-
mannsche Geometrie. Vierdimensionale Lorentz—Mannigfaltigkeiten haben eine grundle-
gende Bedeutung bei der Formulierung der Allgemeinen Relativititstheorie. (Eine kurze
Beschreibung der semi-Riemannschen Mannigfaltigkeiten findet sich am Ende des An-
hangs G; fiir die allgemeine Theorie konsultiere man z.B. (BEE] oder [ONE]; mathema-
tisch orientierte Einfithrungen in die Theorie der semi-Riemannschen Rdume im Rahmen
der Allgemeinen Relativit4tstheorie werden auch in [HAE] oder in [ST2] gegeben.)

(2.8) SchlieBlich studiert man Parallelismus in Mannigfaltigkeiten und in
Faserbiindeln als Verallgemeinerung der vorher genannten Strukturen. Darauf gehe ich
im fiinften Kapitel im Rahmen der Beschreibung von Eichtheorien ein.

Hauptbegriff der Differentialgeometrie ist der Begriff der Kriimmung, der

schon in der Theorie der Kurven und Flichen eine hervorgehobene Rolle spielt. Aus
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physikalischer Sicht entspricht die Kriimmung der Feldstérke. Allgemein werden in der
modernen Differentialgeometrie die geometrischen Objekte wie Kriimmung, Metrik,
Tensoren, Paralleltransport, etc... beschrieben durch Schnitte in geeigneten Vektorbiin-
deln iiber dem Raum, dessen Struktur zur Untersuchung ansteht.

(2.9) In den Anwendungen in der Physik kommen zunehmend auch unendlich-
dimensionale Raume und unendlichdimensionale Mannigfaltigkeiten mit geometrischer
Struktur vor. (Der Begriff der unendlichdimensionalen Mannigfaltigkeit wird z.B. in
[ABM] ausfiihrlich dargestellt.) Wir werden in diesem Buch nur den Fall eines unend-
lichdimensionalen komplexen Hilbertraumes (im Rahmen der Quantenmechanik) und
keine allgemeinen unendlichdimensionalen Mannigfaltigkeiten bendtigen (obwohl sie
implizit in V.6 auftreten). Ein komplexer Hilbertraum stellt im Vergleich zu den eukli-
dischen Riumen in 2.3 eine Verallgemeinerung in zweierlei Hinsicht dar: Der Skalaren-
kérper R wird durch den Kérper € der komplexen Zahlen ersetzt, und anstelle des
n-dimensionalen Punkteraumes R™ tritt ein mit einem hermiteschen Skalarprodukt
versehener unendlichdimensionaler komplexer Vektorraum. Die Hilbertrdume, die im
Zusammenhang mit der Quantenmechanik von Interesse sind, haben bis auf unitdre Iso-

morphie alle die Form des folgenden Beispiels:
2 N x 2 .
2= (g ee™: TIE<w) mit
v=1
oy = L TL fiir {= () es® und U'= (C) e &%
V=1

iber das Skalarprodukt "< , >" fiihrt man dann wieder wie in 2.1 und 2.3 den
Abstand zwischen je zwei Punkten aus ¢%, den Winkel zwischen Vektoren aus 2% und
die Linge von Vektoren ein. Insbesondere ist die Lénge eines Vektors [ € 22 durch die

Norm ||ICll von [ gegeben:

Tl = y<go> .

(#% heiBt Raum der quadratsummierbaren komplexen Zahlenfolgen.)

Zur Geometrie wird man im allgemeinen auch die Topologie oder aber zumin-
dest Teile der Algebraischen Topologie und der Differentialtopologie zdhlen. Tatsachlich
kommt eine Reihe von topologischen Resultaten in verschiedenen Bereichen der Physik
zur Anwendung, so zum Beispiel bei Dynamischen Systemen (vgl. z.B. [ABM] oder
[ARN]) und in der Quantenfeldtheorie. Da in diesem Buch aber auf diese und andere
schéne Anwendungen der Topologie in der Physik nicht eingegangen werden kann, er-
scheint es gerechtfertigt, im Sinne des Buches die Topologie nicht der Geometrie zuzu-
rechnen. Als Literatur zu einer geometrisch orientierten Topologie sind [FO1] oder
[DFN, Band III] zu nennen; eine historisch motivierte Einfiihrung in Geometrie und

Topologie mit Anwendungen in der Physik findet sich in {MON].
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3 SYMMETRIE

Bei dem Thema "Symmetrie” liegt es nahe, historisch zu beginnen und die
Bedeutung der Symmetrie in fast allen Kulturleistungen der Menschheit aufzuspiiren
und darzulegen. Dieser Zugang zur "Symmetrie” wird hier nicht verfolgt, und zwar nicht
nur weil mir Wissen und Sachkenntnis fiir dieses Vorgehen fehlen, sondern auch um
moglichst direkt zu dem in der Mathematik und in der Physik gebrduchlichen Symme-
triebegriff zu kommen. Also wird hier nicht iiber die vielfdltigen Beziehungen und
Zusammenhinge zwischen Symmetrie einerseits und Kunst oder Technik oder Religion

oder Philosophie andrerseits gesprochen. H. Weyl schreibt dazu in [WE2]:

Symmetrie, ob man ihre Bedeutung weit oder eng faBt, ist
eine Idee, vermoge derer der Mensch durch Jahrtausende seiner
Geschichte versucht hat, Ordnung, Schionheit und Vollkommenheit u
begreifen und zu schaffen.

H. Weyl

Auch in Mathematik und Physik wird Symmetrie stets mit Schénheit und Har-
monie in Verbindung gebracht. Neben Diracs Zitat iiber die Bedeutung der Schénheit in

der Physik (vgl. Paragraph 1) méchte ich noch einmal Hermann Weyl zu diesem Thema
zu Wort kommen lassen:

My work always tried to unite the true with the beautiful, but
when I had to choose one over the other, I usually chose the beautiful.

H. Weyl

Diese Asthetik in Mathematik und Physik ist allerdings nicht leicht zu erken-
nen und wertzuschétzen, selbst fiir den Experten. Was ist zum Beispiel an der folgen-
den Formel schén, welche nach dem seit lingerem anerkannten Standardmodell die drei
fundamentalen Wechselwirkungen (ohne die gravitative Wechselwirkung) zwischen

Elementarteilchen bei niedrigen Energien beschreibt?
S = fd"x-/—g_'(iguBgYa( AXYAPY 4 TrB*YBRY 4 T C*YCPR) o

1 uv N 3 —_ TRy
72z 02 Tr BB + 0, Trc™ G ) + Zi=lgw(Qiy“D\’QQi + Ly*DYyL,) +

o TrDEBYHMVYEY — ViadY o N (A A~ 28 0 7 mil v xay =)
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Ein wesentlicher Aspekt von Asthetik und Harmonie in Mathematik und
Physik 1aBt sich jedenfalls durch Symmetrien ausdriicken. Etwas zu eng formuliert
konnte man sogar behaupten, daB eine mathematische oder auch eine physikalische
Theorie gerade so schén ist, wie sich in dieser Theorie (zum Teil sehr komplizierte oder

verborgene) Symmetrien auffinden lassen.

Neben dem #dsthetischen Aspekt sind Symmetrien in der Physik vor allem von
praktischer Bedeutung. Sowohl bei der Formulierung von physikalischen Theorien als
auch bei der Losung von vielen konkreten physikalischen Problemen werden haufig und
an entscheidender Stelle die offensichtlichen oder verborgenen Symmetrien des jeweili-
gen physikalischen Systems benutzt. In der Klassischen Mechanik hat man in diesem
Zusammenhang den Satz von Noether, der besagt, daB eine "l-Parameter—Symmetrie"
immer eine Bewegungskonstante liefert. (Vgl. dazu die Paragraphen 7-9 in Kapitel II.)
Eine Bewegungskonstante wiederum versetzt einen in der Regel in die Lage, die Anzahl
der Freiheitsgrade zu reduzieren. Allgemeiner liefert eine Lie-Gruppe von Symmetrien
die zugehérige Momentenabbildung, welche das vorgegebene Problem auf ein Problem
mit weniger Freiheitsgraden reduziert. In der Quantenmechanik fiihrt die Wirkung einer
Symmetriegruppe in den meisten Fillen zu einer unitdren Darstellung der Symmetrie-
gruppe (vgl. Kap. III); dabei kann die Symmetriegruppe als externe Symmetrie wirken,
wie zum Beispiel die Poincaré-Gruppe, oder als interne Symmetrie, wie zum Beispiel die
Isospingruppe SU(2). In der Allgemeinen Relativitdtstheorie und in der modernen Quan-
tenfeldtheorie werden die Symmetrien des Systems von Anfang an bei der Formulierung
der jeweiligen Theorie mitbenutzt und benétigt. Der allgemeine Rahmen, in derm sich
fast jede kontinuierliche Symmetrie der Physik darstellen und untersuchen la8t, ist die
Eichtheorie (vgl. Kapitel V).

Die Beschreibung und Untersuchung von Symmetrien sind daher von zentra-
ler Bedeutung in der Physik. Das geht sogar so weit, daB einige Theoretiker postulieren,
daB Teilchen, Raum, Zeit, Wechselwirkungen,... letztlich alles nur Manifestationen von
Symmetrien sind. Ein Teilchen ist nach dieser Vorstellung eine Darstellung einer geeig-
neten Symmetriegruppe, physikalische Gesetze sind Wirkungen der verschiedenen Sym-

metriegruppen, Bewegungen werden durch zugehérige Orbits beschrieben.

Vor dem eigentlichen, mathematisch gefaBten Begriff von Symmetrie sollen
einige bekannte Beispiele von Symmetrien dargestellt werden, um damit den abstrakten

Begriff vorzubereiten und nahezubringen:

(3.1) Zweiseitige Symmetrie, auch bilaterale Symmetrie oder Spiegelsymme-
trie genannt: Es handelt sich um die einfachste Symmetrie. Fiir den Nichtfachmann ist
die zweiseitige Symmetrie oft dasselbe wie Symmetrie iiberhaupt. Die zweiseitige Sym-
metrie wird zum Beispiel realisiert durch die Achsenspiegelung in der Ebene: Invariant

unter Achsenspiegeluneen sind unter anderem die foleenden ebenen Ficuren:
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(a) (d)

(b) (e)

M1

(c) (£

Dabei sind die in (a) und (b) abgebildeten Figuren rein spiegelsymmetrisch,
wahrend (c) nicht spiegelsymmetrisch beziiglich der eingezeichneten Achse ist. Die
in (c) abgebildete Figur ist aber bilateral symmetrisch beziiglich 180°-Drehungen
um den Schnittpunkt der Figur mit der Achse. Das Quadrat (d) gestattet mehr
Symmetrien als nur die Spiegelung an der eingezeichneten Achse, nimlich weitere
Spiegelungen an den Diagonalen sowie an einer horizontalen Achse, und auch Drehungen
um 900, 1800, 270°. Die Kreislinie in (e) hat eine kontinuierliche Schar von Symmetrien
neben der Spiegelungssymmetrie, nimlich Drehungen um beliebige Winkel. Die Figur
in (f) hat ebenfalls mehr Symmetrie als nur die Spiegelung an der vertikalen Achse,
ndmlich die Spiegelung an der horizontalen Achse und die Drehung um 180°. Diese
Figur ist aber weniger symmetrisch als das Quadrat, denn sie ist nicht spiegelsym-

metrisch beziiglich der Diagonalen.
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Manche bilaterale Sym-
metrien lassen sich nicht sofort er—
kennen und werden daher verborge-
ne Symmetrien genannt. Zum Bei-
spiel ist das nebenstehende Symbol
"I Ging" bilateral symmetrisch: Es
gilt zundchst, eine Symmetrieachse
ausfindig zu machen und dann nach
der Spiegelung der gesamten Figur

an dieser Achse, die "Dreier—Symbo-

le" zu invertieren, indem ein durch-
gezogener Balken durch einen un-
terbrochenen Balken ersetzt wird und umgekehrt.

Ein wichtiges Beispiel fiir eine bilaterale Symmetrie in der Physik ist die
Symmetrie der Zeitumkehr: Viele klassische und quantenmechanische Systeme bleiben

invariant unter der Ersetzung des Zeitparameters t durch -t.

(3.2) Aligemeine diskrete Symmetrien: Diskrete Symmetrien finden sich bei
den Symmetriebetrachtungen von regelméBigen Figuren im [Rz, wie zum Beispiel im Fal-
le des oben diskutierten Quadrats oder allgemeiner bei regelmiBigen Polygonen, bei
sternférmigen Figuren und bei vielen anderen geometrischen Konfigurationen. Analog
erhilt man fiir Tetraeder und andere regelmaBige Korper im R® interessante diskrete
Symmetrien. Ebenfalls in diese Rubrik passen Symmetrien, die durch ebene Ornamen-
te, Friese oder Parkettierungen gegeben sind (vgl. [GRS] oder {ART], siehe auch das Bild
zu 4.3 im nichsten Paragraphen) oder durch Kristalle (vgl. [KLE]), sowie die Symme-
trien, welche in den graphischen Werken von M.C. Escher verborgen sind (vgl. [coX]).

(3.3) Kontinuierliche und héhere Symmetrien: Ein einfaches Beispiel einer
kontinuierlichen Symmetrie liefert die oben bereits diskutierte Kreislinie. Andere konti-
nuierliche Symmetrien erhdlt man zum Beispiel bei der Betrachtung aller Kongruenz-
transformationen oder aller Ahnlichkeitstransformationen der euklidischen Ebene. Wei-
tere kontinuierliche Symmetrien ergeben sich beim Ubergang zu htheren Dimensionen,
also bei der Untersuchung aller "Drehungen” des euklidischen R" oder des unitiren
Raumes C™. Auch der in der Quantenmechanik so wichtige Begriff des "Spins” eines
Teilchens steht in enger Beziehung zu einer kontinuierlichen Symmetrie (vgl. II1.3). Wei-
terhin sind unendlichdimensionale kontinuierliche Symmetrien von Bedeutung, wie etwa
die Symmetrie unter beliebigen differenzierbaren Abbildungen (bzw. Parametrisierungen)
oder die Symmetrie der Winkelerhaltung in C, welche bekanntlich zu den holomorphen
Funktionen fiihrt; denn eine komplexwertige Funktion f auf einer offenen Menge U
der komplexen Ebene ist genau dann winkelerhaltend, wenn f oder f holomorph ist

mit nirgends verschwindender Funktionaldeterminante.
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Als geeignetes mathematisches Werkzeug zur Beschreibung von Symmetrien
erweist sich der Gruppenbegriff, an den wir wegen seiner Bedeutung flir unser Thema
in dem nachfolgenden Abschnitt 3.4 erinnern wollen, Der Zusammenhang zwischen dem
Gruppenbegriff und dem Begriff der Symmetrie ist der folgende: Symmetrie im mathe-
matischen Sinne wird zundchst durch Symmetrietransformationen beschrieben. Eine
Symmetrietransformation eines Objektes ist eine Transformation (das heiBt eine bijek~
tive Abbildung auf diesem Objekt), welche das Objekt im wesentlichen unverdndert 148t,
das bedeutet, daB3 eine vorher festgelegte Struktur nicht verdndert wird. Zum Beispiel
kann es sich um eine algebraische Struktur wie Gruppenstruktur, Ringstruktur oder
Vektorraumstruktur handeln. In diesem Fall heiBen solche strukturerhaltende Transfor-
mationen in der Regel Automorphismen. Es kann sich auch um eine topologische bzw.
eine differenzierbare Struktur handeln, dann heien die entsprechenden Transformatio-
nen Hom&omorphismen oder topologische Abbildungen bzw. Diffeomorphismen. In die-
sem Buch interessieren vor allem geometrische Strukturen. In den ebenen Figuren (a) -
(f) wird zum Beispiel der (euklidische) Abstand bei den Spiegelungen und bei den iibri-
gen erwihnten Symmetrietransformationen unverindert gelassen. (Auf Strukturen und
strukturerhaltende Transformationen gehen wir ausfiihrlicher in den Beispielen am Ende
dieses Paragraphen und im nichsten Paragraphen ein.)

Es ist eine sehr einfache aber wichtige Tatsache, daB die Symmetrietrans-
formationen eines Objekts mit vorgegebener Struktur eine Gruppe bilden; und zwar ist
diese Gruppe um so gréBer je symmetrischer das Objekt ist. Auf diese Weise wird der
Zusammenhang zwischen dem gerade geschilderten Konzept einer Symmetrie und dem
Gruppenbegriff hergestellt. DaB die Gesamtheit der Symmetrietransformationen eine
Gruppe bildet, ist nichts anderes als festzustellen, daB fiir je zwei Symmetrietransfor-
mationen die Komposition, also die Hintereinanderausfiihrung dieser zwei Symmetrie-
transformationen, wieder die Struktur erhilt, also eine Symmetrietransformation ist,
und daB die Umkehrtransformation einer Symmetrietransformation auch eine Symme-
trietransformation ist. In der Tat ist der Gruppenbegriff eine Abstrahierung einer Viel-
zahl von explizit untersuchten Symmetrien in der Natur, in der Physik, in der Mathema-
tik und insbesondere in der Geometrie. In dieser abstrakten Version des Symmetriebe-
griffs ist die Gesamtheit der jeweils betrachteten Symmetrietransformationen eines
Objekts gegeben durch die Wirkung einer Gruppe (der sogenannten "Symmetriegruppe")
auf dem Objekt, derart, daB die vorgegebene Struktur des Objekts unverindert bleibt.
Wir benotigen diesen abstrakten Begriff von Symmetrie, und wollen ihn daher im fol-
genden ausfiihrlich darstellen und durch Beispiele illustrieren. Wir beginnen damit,

indem wir an den Gruppenbegriff erinnern.

(3.4) Definition: Eine Menge G mit einer Abbildung ¢ : GXG —> G und
einem ausgezeichneten Element e € G ("neutrales Element" oder "Finselement") heiBt
Gruppe, wenn fiir alle x,y,z ¢ G gilt:

1° ulxuly,2) = plutxy) ),
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2° u(x,e) = ple,x) = x,
3° es gibt x'e G mit px,x') = ulx'x) = e.

(3.5) Notationen und Beispiele:

1° x' in3° ist eindeutig bestimmt und heiBt das zu x inverse Element,
welches hiufig als x"! geschrieben wird.

2° Abkiirzung: xy := w(x,y) oder auch xy = p(x,y). Dann wird aus den

Vo xlx =6

Gruppenaxiomen 1°—3°. x(yz) = (xy)z, xe = ex = x und xx
wird als Gruppenoperation oder auch als Multiplikation bezeichnet,
3° Eine Gruppe heiBt abelsch oder kommutativ, wenn xy = yx fiir alle x,
y € G gilt. In diesem Falle wird die Gruppenoperation ¢ meistens additiv geschrieben:
x +y = w(x,y) anstelle von xy. Das zu x inverse Element wird dann entsprechend
mit —x bezeichnet. Wohlbekannt ist die abelsche Gruppe der ganzen Zahlen 7Z mit
der iiblichen Addition als Gruppenoperation, oder die abelsche Gruppe R der reellen
Zahlen beziiglich der Addition. Beziiglich der Multiplikation von Zahlen ist R keine
Gruppe, denn 1 ist das neutrale Element, und 0 hat keine Inverse beziiglich der Mul-
tiplikation, das heiBt es gibt keine reelle Zahl r mit O-r = 1. Aber R\{0} ist eine
abelsche Gruppe beziiglich der Multiplikation.
4° Sei M eine nichtleere Menge. Dann ist die Menge S(M) der bijektiven
Abbildungen von M auf M, S(M) = {f:M—M:f bijektiv}, mit der Komposition
fg := fog fiir f,g e S(M) als Gruppenoperation eine Gruppe. S(M) wird die Permu-
tationsgruppe oder symmetrische Gruppe von M genannt. Neutrales Element ist die
Identitat idpg: idp{x) = x fiir alle x € M. Das inverse Element zu f¢ S(M) ist die
Umkehrabbildung. Wenn M mehr als 2 Elemente enthilt, ist S(M) nicht kommutativ.
5° Ein (Gruppen-) Homomorphismus von G nach H ist eine Abbildung
©: G — H mit ¢(xy) = o(x)ely) fiir alle x,y € G. Man beachte, daB auf der lin-
ken Seite der Gleichung die Gruppenoperation von G und auf der rechten Seite die von
H gemeint ist. In der nicht abgekiirzten Schreibweise mit g bzw. u,; als Gruppen-
operationen von G bzw. H ist diese Gleichung gleichbedeutend mit der Identitdt
olug(xy)) = uylex)e(y)). ¢: G —> H ist also genau dann ein Homomorphismus,
wenn @ols = Yolp x @) gilt. Dabei ist ¢x@:GxG —> HxH durch
(¢ x @)(x,y) = (p(x),p(y)) definiert. Fiir einen Homomorphismus ¢ gilt oleg) = ey,
wobei mit es das neutrale Element von G und mit ey das von H bezeichnet wird.
Fiir einen Homomorphismus ¢ : G —> H ist der Kern von ¢ definiert als
Kerg = {geG:¢9(g) = ey} CG unddas Bildvon ¢ als Img := {plg): g € G}, al-
so Kergp = <p—l(0) und Ime = ¢(G). Ein Isomorphismus ist ein bijektiver Homomor-
phismus, das heiBt ein Homomorphismus ¢ mit Ker¢ = {eG} und Imge = H. Zwei
Gruppen G und H heiBen isomorph, wenn es einen Isomorphismus zwischen ihnen gibt.
Fiir zwei Gruppen G und H ist die Produktgruppe (oder einfach das Pro-
dukt der Gruppen G und H) definiert durch die Menge G x H der Paare (g,h),ge G
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(g,h), (g'.)h') € G x H. (e ,eg) ist offenbar das neutrale Element der Produktgruppe.
Man hat sofort die natiirlichen Homomorphismen lc:G —> GxH, g —> (g, ey
fir geG,und n,:GxH —> G, (g,h) —> g fiir (g,h) e GxH.

6° Die Permutationsgruppe der n-elementigen Menge {1,2, ... ,n} wird auch
mit & bezeichnet: & := S$({1,2,.. n}). Es gilt: Jede Gruppe S(M) einer n—elemen-
tigen Menge M ist isomorph zu @, . Die Ordnung einer endlichen Gruppe ist die An-
zahl ihrer Elemente. Also hat &, die Ordnung n!.

7° Die zyklische Gruppe der Ordnung n ist die Gruppe

Z, = {el*: t=0, 21':[' 2—1;‘, . .z_;r= 2n }
mit der Multiplikation e'e!® = &l(t*s) i Gruppenoperation. Wegen 2™ = 1 = ¢°

ist die Multiplikation wohldefiniert. Z ist eine abelsche Gruppe der Ordnung n. Z,
enthilt ein ("erzeugendes”) Element z, nimlich z = e'* flir t = ;11-21r, mit z™ = 1
und der Eigenschaft, daB jedes Element aus Z,, von der Form z¥ mit einem geeigneten
keN ist. Z_ 14Bt sich auffassen als die Gruppe der Drehungen der euklidischen Ebene
um die Winkel 0,4 2;‘,2 21 veey Z_gr = 2n . Aus algebraischer Sicht ist Zn die Gruppe der
n—ten Einheitswurzeln, denn Z , ist gerade die Menge der komplexen Zahlen w mit
w® = 1. Zur zykllschen Gruppe Z_  gibt es den Homomorphismus ¢ : Z —> Z,
k —> exp(lk T}, filr den gilt: Kerp={ke Z: k ist ganzzahliges Vielfaches von n}
und Imep = 7.

8° Eine Untergruppe einer vorgegebenen Gruppe G ist eine Teilmenge H
von G, so daB die Einschréankung g = “IH x H von u auf die Menge H x H beziig-
lich der Teilmenge H die oben zitierten Gruppenaxiome 1° - 3° erfiillt. Eine Teilmen-
ge HC G mit ee H ist also Untergruppe von G, wenn wHx H) C H gilt und zu
ST liegt. Zum Beispiel kann ©, fiir alle k <n als
Untergruppe von &  aufgefaBt werden. Ahnlich ist Z, Untergruppe von Z, und

jedem x € H die Inverse x

allgemeiner 7 Untergruppe von Z, ,wenn k ein ganzzahliges Vielfaches von n ist.
Fiir jeden Homomorphismus ¢ : G —> H von Gruppen sind Kerp und Im¢ Unter-
gruppen von G bzw. H.

9° Von besonderer Bedeutung fiir dieses Buch sind die Matrixgruppen. Die
Matrixgruppen liefern viele wichtige Beispiele fiir Gruppen (und sogar fiir Lie~Gruppen,

vol Arharnoc I ) ZiunS~lh ot viremmedo €10 smmb ol b ™oLl e — v xs mtox £ P,
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der Vektorraum der nxn- Matrizen mit reellen (bzw. mit komplexen) Koeffizienten be-

zeichnet. Die allgemeine lineare Gruppe ist
GL(n,R) = {A e R(n):detA=+ 0}, bzw. GL(n,C) := {Ae C(n):detA+ 0},

wobei als Gruppenoperation jeweils die Matrixmultiplikation dient. Das ist gerade die
Gruppe der invertierbaren Matrizen und entspricht daher der Gruppe der bijektiven R-
linearen (bzw. C-linearen) Abbildungen von R™ nach R™ (bzw. von ¢” nach €M)
mit der Komposition als Gruppenoperation. GL(n,R) 14Bt sich also als Untergruppe
von S(R™) auffassen. Unter einer Matrixgruppe G versteht man eine abgeschlossene
Untergruppe G der allgemeinen linearen Gruppe. (Dabei heilt eine Teilmenge G in
GL(n,R), bzw. in GL(n,C), abgeschlossen, wenn fiir jede Folge (An) von Matrizen aus
G, die komponentenweise gegen eine Matrix A € GL(n,R), bzw. GL(n,C} konvergiert,
bereits A € G gilt.) Auf die Matrixgruppen gehen wir im Anhang L ausfiihrlicher ein.

Hier werden kurz einige der Matrixgruppen aufgelistet, die in der Geometrie
und auch in der Physik von Bedeutung sind:

a) SO(2), die Gruppe der Matrizen, welche die euklidischen Drehungen des
R? repridsentieren:

SO(2) = {AeR(2): A= (2_2) mit a? + ¢? = 1}.

b) 0O(2), die Gruppe der orthogonalen 2 x 2—Matrizen, welche diejenigen
linearen Abbildungen von R? nach K2 repriasentieren, die das euklidische Skalarpro-
dukt invariant lassen.

c)} SO(3), die Gruppe der euklidischen Drehungen des ®.

d) SO(n), die Gruppe der euklidischen "Drehungen” des R, und O(n), die
Gruppe der orthogonalen Matrizen:

O(n) == {AcR(n): Firalle xeR" ist <Ax,Ax> = <{x,x> },
wobei "C , >" das euklidische Skalarprodukt bezeichnet (vgl. Paragraph 2).

SO(n) == {A€O(n): detA = 1}. |
O(n) ist die orthogonale Gruppe, und SO(n) ist die spezielle orthogonale Gruppe.

e) SU(n), die speziellen unitdren Gruppen

SWn) == {A e C(n) : Fiiralle ze C" gilt {Az,Az> =<z,z> und detA =1}.
Dabei steht "< , >" jetzt aber fiir das hermitesche Skalarprodukt (vgl. 2.9)

n

z,wd = Lz w
v=1

v
anstelle des euklidischen Skalarproduktes.
f) U(1), die unitidre Gruppe der unitdren Transformationen von € nach C.
U(1) kann auch als die Kreislinie {z € € : [z] =1} mit der von € induzierten komple-
xen Multiplikation (z,w) ——> zw aufgefaBt werden. U(1) enthalt alle zyklischen
Gruppen Z_ (vgl. 7°) als Untergruppen. U(1) ist im iibrigen isomorph zu SO(2).
10° Weitere interessante Beispiele von Gruppen sind die Zopfgruppen, die

neuerdings auch in der Quantenfeldtheorie von Bedeutung sind. (Zur Definition kann man
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Der Hauptbegriff dieses Paragraphen ist der Begriff der Symmetriegruppe.
Um diesen Begriff einfilhren zu konnen, war es notig, zunichst an den Begriff der
Gruppe zu erinnern. Als weitere Vorbereitung dient der Begriff der Wirkung einer

Gruppe auf einer Menge, baw. der Begriff der Transformationsgruppe:

(3.6) Definition: G sei eine Gruppe und M sei eine nichtleere Menge. Eine
Wirkung von G auf M ist eine Abbildung

®:GxM — M,
mit den folgenden Eigenschaften: Fiir alle me M und alle x,ye G gilt

®(e,m) = m und

®(x,®(y,m)) = ®(xy,m).
G heiBt dann auch Transformationsgruppe auf M, und man sagt: G wirkt von links
auf M (durch ®).

(3.7) Folgerungen: Setze @ _(m) = ®(x,m). Dann ist die durch & gegebene
Abbildung & :M —> M fiir jedes x € G bijektiv, also ®_ € S(M). AuBerdem ist
die Abbildung x —> &_, welche mit & bezeichnet werde, ein Homomorphismus
.G —> S(IM) von Gruppen. Die Vorgabe einer Transformationsgruppe G auf M
mit der Wirkung @ ist daher gleichbedeutend mit der Festlegung eines Homomorphis-
mus von Gruppen ® : G —> S(M): Jeder Homomorphismus ¢ : G —> S(M) indu-

ziert durch ®(x,m) := @(x)(m) eine Wirkung & von G auf M.

(3.8) Definition: Wir kommen jetzt zur eigentlichen Definition der Symme-
triegruppe. Vorgegeben ist in dem Rahmen, in dem in diesem Buch der Begriff der Sym-
metriegruppe benutzt wird, immer eine Menge M mit einer festgelegten Struktur.
(Beispiele von dem jetzt undefinierten Strukturbegriff folgen gleich.) Man spricht von
einer Symmetrie oder einer Symmetriegruppe G, wenn G eine Trans formationsgruppe
auf M ist, derart daB die zugehdrige Wirkung & die vorgegebene, festgelegte Struktur
auf M nicht verdndert. (Oder, wie man in diesem Zusammenhang auch sagt: invariant
148t.) Das soll heiBen, daB fiir jedes Gruppenelement x e G die zugehérige bijektive
Abbildung & : M —> M die jeweilige Struktur auf M nicht verdndert.

Unter der vollen Symmetriegruppe Mor(M) einer vorgegebenen Struktur auf
der Menge M versteht man die Gruppe Mor(M) := {f: M —> M: f ist bijektiv
und 148t die vorgegebene Struktur auf M invariant} mit der Wirkung &(f,m) := f(m)
fiir fe Mor(M) und me M. Mor(M) ist eine Untergruppe von S(M) und steht fiir
die Gruppe der umkehrbaren "Morphismen"” der Struktur. Eine allgemeine Symmetrie-
gruppe ist daher nach 3.7 gegeben durch einen Homomorphismus ® : G —> Mor(M)
von G in die volle Symmetriegruppe Mor(M). Unter einer Struktur auf einer Menge
M kann man ganz abstrakt die Festlegung einer Untergruppe Mor(M) C S(M) verste-
hen, Wir sind aber mehr an konkret gegebenen Strukturen interessiert, wie in den fol-

genden Beispielen,
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(3.9) Beispiele. AbschlieBend zu diesem Paragraphen eine Reihe von Beispielen
zum Begriff Symmetriegruppe, die im folgenden Paragraphen noch ergidnzt wird durch
Symmetrien von geometrischen Strukturen:

1° Leere Struktur. Fiir jede Menge M=+ @ ist S(M) - die Permutationsgrup-
pevon M - eine Symmetriegruppe auf M, wenn auf M keine Struktur (das heiBt die
leere Struktur) festgelegt wird. Die Wirkung ist einfach die Auswertung

®:S(M) xM—> M, ®(f,m):= f(m),
fir fe S(M) und me M. S(M) ist die volle Symmetriegruppe der leeren Struktur.
Jede Untergruppe H C S(M) ist ebenfalls eine Symmetriegruppe auf M. Jede weitere
Symmetriegruppe G von M beziiglich der leeren Struktur ist gegeben durch einen
Homomorphismus von Gruppen ¢ : G —> S(M).

2° Lineare Struktur. Fiir einen Vektorraum V iiber R sei die festgelegte
Struktur die lineare Struktur von V, das heiBt die Vektorraumstruktur (vgl. z.B. [ART]
fiir die Grundbegriffe iiber Vektorraume). Eine Abbildung g : V —> V l&dBt die lineare
Struktur invariant, wenn g bijektiv und R-linear ist. Die volle Symmetriegruppe in
dieser Situation ist also die Gruppe der Vektorraumisomorphismen

GL(V) == {g: V—> V| g ist R-linear und bijektiv} c S(V)
mit der Wirkung ®(g,v) == g(v), veV, geG (analog zu 1°). Wie in 1° ist jede Un-
tergruppe G C GL(V) eine Symmetriegruppe. Insbesondere erhdlt man auf diese Weise
fiir endlichdimensionale Vektorrdume V 2 R" und abgeschlossene Untergruppen G
von GL(V) die Matrixgruppen, denn fiir V = R" l4Bt sich jede R-lineare Abbildung

g:R" —> R
durch eine zugehtrige Matrix Ay = (c1S)1su'\)Sn beziiglich der Standardbasis (e,)
(e := (0,..1,..0) der p—te Einheitsvektor) beschreiben: Die Koeffizienten (IS bestim-
men sich durch

n
- M
gle,) = Eiuv €y

n
und fiir jeden Vektor x = X x"ev € V gilt dann
v=1

<

i M
»
<
o
=
5]

n
glx) = gt x™ = X x'gle)) =
v=t

e

1v=1 Ve’

Unter Verwendung der Einsteinschen Summenkonvention lesen sich die Formeln wie
folgt: gle,) = a\‘feu, x = x’, und glx) = x"a\ﬁ‘eu. Analoge Uberlegungen kann
man fiir C anstelle von R durchfiihren, oder auch fiir beliebige Korper.

Ein schénes geometrisches Kriterium, zu entscheiden, wann eine bijektive
Abbildung eines reellen Vektorraumes bereits R-linear ist, liefert der Fundamentalsatz
der affinen Geometrie (vgl. [BER, I, S. 52 ff.]1):

Satz: Fiir einen endlichdimensionalen Vektorraum V iiber R der Dimension
d > 1 ist eine Bijektion f:V —> V mit f(0) = 0 bereits R-linear, wenn f stets
drei kollineare x,y,z € V in kollineare f(x),f(y),f(z) iiberfiihrt.

Dabei heiBen x,y,z € V kollinear, wenn sie auf einer Geraden liegen, und das
ist gleichbedeutend damit, daB es ein A € R mit x = y + Az - y) gibt.
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Wie die Vektorraumisomorphismen g e GL(V) haben auch die Translationen
T,: V—> V,x —> Tb(x) = x + b, die Eigenschaft, daB stets drei kollineare
%,¥,z € V in kollineare f(x),f(y),f(z) tiiberfiihrt werden. Der Fundamentalsatz besagt
eigentlich, daB eine beliebige Bijektion fe S(V) mit dieser Eigenschaft die Komposition
von einer Translation und einer Abbildung g aus GL(V) ist. Das ergibt sich leicht aus
dem oben zitierten Satz: Es sei b = £(0) und g(x) = f(x) - b. Dann ist g bijektiv
mit g(0) = 0, und g liberfithrt je drei kollineare X,¥,Z € V in kollineare g(x),g(y),
g(z). Nach Satz gilt also g e GL(V), und es folgt: f(x) = g(x) +b, also f = T,og.

Die Kompositionen f = Toog mit ge GL(V) und beV heiBen affine
Transformationen von V, und man bezeichnet die Gruppe aller affine Transformationen
von V als die affine Gruppe Aff(V) von V.Im Sinne des Fundamentalsatzes besteht
die affine Gruppe also genau aus denjenigen Transformationen, welche je drei kollineare
Punkte in kollineare Punkte liberfiihren, das heiBt welche die "Geradenstruktur" von \'
invariant lassen. (Vgl. mit der Struktur eines affinen Raumes in 1.1.)

3° Darstellungen von Gruppen. Eine Darstellung einer Gruppe G in einem
Vektorraum V iiber R ist ein Homomorphismus

¢ : G —> GL(V).
¢ realisiert also liber die Wirkung ®(g,v) = ol(g)(v) fir g€G und veV die Grup-
pe G als Symmetriegruppe von V beziiglich der Vektorraumstruktur. Die Klasse der
Symmetriegruppen von V beziiglich der R-linearen Struktur ist insofern gleichzu-
setzen mit der Klasse aller Darstellungen in V.

4° Gruppenstruktur. Sei M eine Gruppe. Eine Abbildung g: M —> M er-
hilt genau dann die Gruppenstruktur von M, wenn g ein bijektiver Homomorphismus
ist. Einen solchen bijektiven Homomorphismus nennt man auch Automorphismus. Die
Menge Aut(M) der Automorphismen von M ist eine Untergruppe von S(M). Sie heifit
die Automorphismengruppe von M. Auf M wirke jetzt eine weitere Gruppe G nach 3.6.
Wie in 3.7 induziert die Wirkung & einen Homomorphismus & : G —3 S(M). Offen-
sichtlich ist G mit der Wirkung & genau dann eine Symmetriegruppe der Gruppen-
struktur von M, wenn jedes CI) » 8 € G, ein Automorphismus ist, das heiBt, wenn
&(G) ¢ Aut(M) gilt. Insbesondere ist Aut(M) die volle Symmetriegruppe von M.

Im Falle von G = M ist zum Beispiel durch die Gruppenoperation ¢ in na-
tiirlicher Weise eine Wirkung & := y gegeben, welche G zur Symmetriegruppe von
sich selbst macht. Wegen (g,x) — gx = ulg,x) fir geG und xe M = G, heiBit
diese Wirkung von G auf sich selbst auch Linksmultiplikation. Ahnlich hat man die
Selbstwirkung durch die sogenannten inneren Automorphismen (g,x) +——> gxg_l. Der
zugehorige Homomorphismus & heiBt in diesem Falle die Adjungierte von G und wird
mit Ad bezeichnet: Ad: G —> Aut(G).

5° Topologische Struktur. M sei ein topologischer Raum. (Zum Beispiel:
M c R" mit der Topologie, die durch R™ auf M gegeben ist. Uiber Grundbegriffe zur
Topologie vgl. [0SS].) Die volle Symmetriegruppe von M beziiglich der topologischen
Struktur auf M ist die Gruppe Top(M) der topologischen Abbildungen f : M —> M



28 1 Einfilhrung in Geometrie, Symmetrie und Physik

mit der Komposition als Gruppenoperation. Dabei hei8t f topologisch, wenn f stetig
und bijektiv ist, und wenn auch die Umkehrabbildung £ stetig ist.

6° Metrische Struktur. Es sei d: MxM —> R eine Metrik auf einer
Menge M, also d{x,y) = d(y,x) 20 und d{x,z) < d(x,y) + d(y,z) fiir alle x,y,ze M,
sowie d(x,y) = 0 genau dann, wenn x = y. Beispiele: Euklidischer Abstand zwischen
Vektoren x,y aus R" = M (vgl. 2.3) oder der Abstand d(g,0') := g - {'ll zwischen
Vektoren im Hilbertraum ¢% = M.

Eine Metrik d definiert auf M eine metrische Struktur, und (M,d), also
M zusammen mit der Metrik d, heiBt metrischer Raum. Die volle Symmetriegruppe der
metrischen Struktur ist die Gruppe Is{M,d) der Isometrien. Dabei ist eine Isometrie
eine bijektive Abbildung f: M —> M mit d(x,y) = d(f(x),f(y)) fiir alle x,y e M.
Beispiele von Isometrien des euklidischen Raumes sind die Translationen x —> x +b
und die in (3.5.90d)) beschriebenen orthogonalen linearen Abbildungen (vgl. auch 4.4).

Eine Metrik d auf M definiert immer auch eine Topologie, die zugehdrige
metrische Topologie. Dabei ist eine Teilmenge U C M beziiglich der metrischen Topo-
logie genau dann offen, wenn es zu jedem x € U aus U ein r> 0 gibt, so daB die
"Kugei’ B(x,r) := {yeM:dlx,y) <r} ganzin U liegt. Eine Isometrie ist immer auch
eine topologische Abbildung beziiglich der zugehorigen metrischen Topologie. Daher ist
sin,d) eme Untergruppe von Top(M). Im allgemeinen gilt Is(M,d) * Top(M).

7o Differenzierbare Struktur. M sei offen in R™ (oder eine Flache in R3,
oder eine differenzierbare Mannigfaltigkeit, vgl. Anhang M). Die festgelegte Struktur
sei die differenzierbare Struktur auf M. Die volle Symmetriegruppe ist jetzt die Gruppe
Diff(M) der Diffeomorphismen, das sind alle bijektiven Abbildungen f: M —> M,
fiir die f und die Umkehrabbildung £ beliebig oft differenzierbar sind. Diff(M) ist
Untergruppe von Top(M).

8° Konforme Struktur. M sei eine offene, nichtleere Menge in der komple-
xen Zahlenebene C, und die festgelegte Struktur sei die konforme (oder auch holomor-
phe) Struktur. Die volle Symmetriegruppe Hol(M) ist dann die Gruppe aller biholomor-
phen Abbildungen, das heiBt aller injektiven und holomorphen Funktionen f: M — C
mit f(M) = M und holomorpher Umkehrabbildung £ 1. (Im iibrigen ist fiir eine injek-
tive, holomorphe Funktion f: M —> C mit f(M) = M die Umkehrabbildung £
immer holomorph.) Hol(M) ist eine Untergruppe von Diff(M) und damit auch eine
Untergruppe von Top(M]).

In den letzten fiinf Fillen ist eine Symmetriegruppe G der jeweiligen Struk-
tur gegeben durch einen Homomorphismus ®:G —> Mor(M), wobei Mor(M) die
Gruppe Aut(M), Top(M), Is(M,d), Diff(M) bzw. Hol(M) ist.

Fiir manche Symmetriebetrachtungen in der Physik sind die hier eingefiihrten
Symmetriegruppen nicht allgemein genug. Als Verallgemeinerungen von Gruppensym-
metrien werden daher auch Supersymmetrien (vgl. [FRE]) oder Quantengruppen (vgl.
[MAN31) studiert.
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4 SYMMETRIE UND GEOMETRIE

Dieser Paragraph handelt von Symmetrien geometrischer Strukturen. Dabei
ist Symmetrie natiirlich im Sinne des vorangehenden Paragraphen zu verstehen. Es wer-
den einige Beispiele bereitgestellt, um den Zusammenhang von Symmetrie und Geome-
trie zu erlautern. Dieser Zusammenhang kann hier nicht in voller Aligemeinheit be-
schrieben werden. Es sei aber darauf hingewiesen, daB durch die entsprechende Symme-
triegruppe einer geometrischen Struktur in vielen Fillen diese Struktur weitgehend fest-
gelegt, also klassifiziert wird. Dieser Gesichtspunkt entspricht dem Erlanger Programm
von Felix Klein [KLEI], auf das am SchluB dieses Paragraphen kurz eingegangen wird.

Flir die Entwicklung des Symmetriekonzepts im letzten Jahrhundert ist
[YAG] eine gute Quelle. Ein allgemeinverstindlicher Zugang zu einem wichtigen Teil-
aspekt wird durch [NIS] vermittelt. Ein elementares und ausfiihrliches Lehrbuch iiber
grundlegende Eigenschaften von Gruppen unter besonderer Beriicksichtigung von Sym-
metriegruppen geometrischer Strukturen ist [ARM]. Eine schéne und umfassende Dar-
stellung der synthetischen und der analytischen Geometrie unter Zugrundelegung von
Symmetriebetrachtungen wird in [BER] gegeben. SchlieBlich fiihrt die Untersuchung von
Symmetrien in der Differentialgeometrie zu symmetrischen Riumen und zur Geometrie
der Faserbiindel; vgl. [GEOM], [HEL], [KON] oder [POO] fiir mathematische Monogra-
phien zu diesem Gegenstand und [BLE], [COJ], [CUM], [GOS] oder [PER] fiir physika-
lisch orientierte Darstellungen.

(4.1) Euklidische Ebene. Ein wichtiges elementares Beispiel ist die euklidische
Ebene im Rahmen der analytischen Geometrie, also R2 mit dem Skalarprodukt

xy), (X' = xx' +yy'
fiir x,x',y,y' € R, der zugehédrigen euklidischen Linge (oder Norm)

Myl = /x%+ 32 = /<y, (xy)>
fiir (x,y) € R?, sowie dem euklidischen Abstand

dlv,w) = |v - w]|
fiir v,we RZ, (Siehe 2.1. Man vergleiche allerdings diesen Begriff der euklidischen Ebe-
ne mit dem allgemeineren Begriff der euklidischen affinen Ebene, wie er in I1.1 erliutert
wird.) Unter der euklidischen Struktur auf R? versteht man die durch den euklidischen
Abstand d gegebene metrische Struktur im Sinne von 3.9.6° (und man nimmt haufig
noch eine Orientierung (vgl. 4.7) dazu).

Zu den Abbildungen g: R® —> R?, welche den Abstand d invariant las-
sen, gehdren offenbar alle Translationen Ty : R? — R?

Vv v+b, ve [Rz,

P Y SR+ S TR T Y A R T U
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g, R —> R?
aus SO(2), reprasentiert durch den Winkel o € [0,2n]. Es ist dabei (unter Verwendung

der Abkiirzungen ¢ := coso und s := sina)
coso —sinoyyx
BulXy) = (sinoc coso()(y) = (cx - sy,sx +cy).

Zu den abstandserhaltenden Abbildungen der euklidischen Ebene gehéren auBerdem
noch die Spiegelungen wie z.B. (x,y) —— (y,x) oder (x,y) —> (-x,y)}.

Die euklidische Gruppe E(2) sei an dieser Stelle definiert als diejenige
Untergruppe von S$(IR?), die von den Translationen und den Rotationen aus SO(2) er-
zeugt wird, E(2) ist also eine Symmetriegruppe der euklidischen Struktur. Weiter un-
ten (in 4.4) werden wir sehen, daB die volle Symmetriegruppe der euklidischen Struktur
(also die Gruppe aller bijektiven Abbildungen, welche den euklidischen Abstand inva-
riant lassen) erzeugt wird von E(2) und den Spiegelungen, wihrend die Gruppe aller
Transformationen, welche den euklidischen Abstand und eine Orientierung von R? (vgl.
4.7) erhalten, gerade die Gruppe E(2) ist. Die Transformationen aus der euklidischen

Gruppe E(2) werden oft als ebene Bewegungen bezeichnet.

(4.2) Ebene Figuren. Fiir ebene Figuren F C R? ist es iiblich, die von der
euklidischen Ebene R® auf F iibertragene Struktur als die vorgegebene Struktur zu
betrachten. Die volle Symmetriegruppe GF ist dann die Gruppe aller bijektiven Abbil-
dungen g:F — F, zu denen es eine abstandserhaltende Abbildung A : RZ—> R2
gibt mit Alg = g.

Mit diesem Symmetriebegriff lassen sich jetzt die Beispiele (a)—(f) in 3.1 ge-
natter untersuchen: Neben der Identitit e hat das Beispiel (a) nur noch die Spiegelung
¢ als Symmetrie (oder die Drehung um 180°, die aber auf der Figur (a) dieselbe Abbil-
dung ist). Die volle Symmetriegruppe ist daher isomorph zur zyklischen Gruppe 7, mit
zwei Elementen (vgl. 3.5.7%% Z, = {e,0}, 1 = e+ 0, ec = ce = 6 und oo = e.
(b) und (c) haben ebenfalls Z, als Symmetriegruppe, bei (b) ist das von der Identitét
verschiedene Element die Spiegelung an der x-Achse und bei (¢) die Drehung um 180°.
Das Quadrat (d) hat als Untergruppe der vollen Symmetriegruppe sicherlich die zykli-
sche Gruppe Z, der Drehungen um 00, 900, 180° und 270°. Als weitere Symmetrie-
transformationen treten die Spiegelungen an den Diagonalen und an der x- sowie an
der y-Achse auf. Die volle Symmetriegruppe des Quadrats wird von diesen Drehungen
und Spiegelungen erzeugt und besteht aus 8 Elementen (ist als D, s.u.). Die Kreislinie
(e) hat als Symmetriegruppe die Gruppe U(1) & SO(2) (vgl. 3.5.9°)); weitere Symme-
trien sind die Spiegelungen an beliebigen Geraden durch 0. SchlieBlich hat die Figur (f)
die vierelementige Produktgruppe Z, x Z, als volle Symmetriegruppe, die in anderem
Zusammenhang auch als Kleinsche Vierergruppe bezeichnet wird.

EinigermaBen iibersichtlich ist die Struktur der Symmetriegruppe Gp fiir
die regelméBigen Polygone P C R® mit 0¢ R® als Mittelpunkt. Ein solches Polygon

f— T T . T R T . TN TR T TR T LTS - TUUTIE I SR DR TP . T T I T S



1.4  Symmetrie und Geometrie 3

Die volle Symmetriegruppe D, = GPn kann daher als Untergruppe von ©, aufgefaBt
werden. Im Falle n = 3 gilt dann D, = @&,, wihrend fir n>4 die sogenannte
Diedergruppen D,, nichttriviale Untergruppen von @,, sind. (n=4 ist das uns bereits
bekannte Beispiel (d) des Quadrates in 3.1.) Die Diedergruppe D, enthilt als Unter-
gruppe die zyklische Gruppe z, (3.5.7°) der Ordnung n der Drehungen um die Winkel
%360 °, ke Z, und auBerdem natiirlich die n Spiegelungen an den durch den Mittel-
punkt verlaufenden Geraden durch die Eckpunkte oder durch die Seitenhalbierenden des
regulédren Polygons. D, wird von diesen Transformationen erzeugt. Daraus ergibt sich,
daB D, eine nichtabelsche Gruppe mit 2n Elementen ist. D, ist aber nicht isomorph
zum Produkt 7, x Z,,, denn dieses Produkt ist immer abelsch. Allerdings ist D, iso-
morph zu einem semidirekten Produkt von Z, und Z _ (vgl. I.2 fiir den Begriff des
semidirekten Produktes). Die Symmetrietransformationen eines regelméBigen Polygons
P kann man sich auch vorstellen als die Drehungen im R®, welche ein leicht verdicktes
Polygon in sich iberfiihren. Fiir den Fall k = 7 erhilt man so die folgenden Veran-
schaulichung der Diedergruppe D,:

I

C/Eg,oc=7”

(4.3) Alhambragruppen. Ebene regelméBige Ornamente (auch als Parkettie-
rungen der Ebene bekannt) und Friese lassen sich klassifizieren, je nachdem welche

Bewegungen oder Spiegelungen das jeweilige Ornament invariant lassen. Zum Beispiel:

DX DG

TS
(k

s (RxNe (RARD (RERI NBEI (AN (RARE

Die Symmetriegruppen, die dabei auftreten, nennt man Alhambragruppen. Wenn man auf

diese Weise einen Uiberblick iiber die Reichhaltigkeit aller regelmiBRiven Ornarmentea
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gewinnen will, welche in der Kunst oder in mathematischen liberlegungen auftreten, so
stellt sich heraus, daB es genau siebzehn verschiedene Alhambragruppen gibt, und daB
zu allen diesen siebzehn Gruppen entsprechende Ornamente auch in der Alhambra vor-
zufinden sind. (Zu diesem Thema findet man elementare Einfiihrungen in [ARM], [KLE],
[ART] und [BER] und eine ausfiihrliche Darstellung unter anderem auch iiber nicht mehr

regelmiBige Ornamente und Muster mit vielen weiteren Problemen in [GRS].)

(4.4) Buklidischer Raum. Analog zu 4.1 ist fiir den n—dimensionalen Raum R”

die euklidische Struktur durch den euklidischen Abstand d(x,y) = |x - y| gegeben, in
der Regel wieder zusammen mit einer Orientierung von R™. (Jx! = ¥ <x,x>, wobei

<, > das euklidische Skalarprodukt bezeichnet, vgl. 2.1} Eine bijektive Abbildung
fe S(R™) 14Bt also die euklidische Struktur invariant, wenn fiir alle x,y € R™ stets
|f(x) -~ f{y)| = |x ~y| gilt. In der Terminologie von 3.9.6° ist eine solche Abbildung
eine Isometrie beziiglich der euklidischen Distanz.

Als Symmetriegruppen auf dem euklidischen R™ (also R" versehen mit der
euklidischen Struktur) kénnen wir sofort die orthogonale Gruppe O(n) (vgl. 3.5.9Od)),
die spezielle orthogonale Gruppe SO(n) der Rotationen und auch die Gruppe der Trans-
lationen angeben. Die euklidische Gruppe E(n) werde definiert als diejenige Untergrup~
pe von S(R™), welche von SO(n) und der Gruppe der Translationen, die im iibrigen
zu R° isomorph ist, erzeugt wird. Spater werden wir im Rahmen der Klassischen
Mechanik eine Beschreibung von E(n) als semidirektes Produkt von SO(n)} und der
Gruppe der Translationen kennenlernen (vgl. 11.2). E(n) kann im iibrigen auch aufge-
faBt werden als die Gruppe aller bijektiven Abbildungen von R™ nach R", welche den
euklidischen Abstand und eine Orientierung (vgl. 4.7) von R™ invariant lassen. Das
ergibt sich aus dem nachfolgenden Satz, der zugleich zeigt, daB die volle Symmetrie-

gruppe der euklidischen Struktur nicht viel gréBer als die euklidische Gruppe ist.

Satz: Jede bijektive Abbildung f € S(R™), welche den euklidischen Abstand
invariant 148t, ist von der Form f = T og mit ge O(n) und b e R™. Der Transla-
tionsvektor b € R" und die orthogonale Abbildung g sind bei dieser Darstellung ein-
deutig bestimmt. Die volle Symmetriegruppe der euklidischen Struktur ist also die von

O(n) und der Translationsgruppe erzeugte Untergruppe von S(R™.

Beweis: Dieser Satz laBt sich im Gegensatz zum Fundamentalsatz der affinen
Geometrie (vgl. 3.9.2°) ganz einfach beweisen: Zunichst sei f(0) = 0. Wir zeigen, daB
f linear ist. Nach Voraussetzung gilt |f(x)| = d(f(x},0) = d(x,0) = |x]| flir alle
x € R™. Weil zwischen dem euklidischen Skalarprodukt und der zugehdrigen euklidi-
schen Norm | | die Identitét

x -y = <x-yx-y> = IxP? + |yl - 2<x,9
besteht, gilt

0Tl 1S — 1EEoM2 1+ 1F1oMZ — 1o — FloM2 - v 12 2 1ol o v v]® = 9¢v vy
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also 148t f auch das euklidische Skalarprodukt invariant. Es sei (el,ez, ~,e,) eine
Orthonormalbasis von [Rn, also (ei,ej> = Sij, wobei Sij das Kronecker-Symbol
bezeichne: §;; = 1 und Sij = 0 fir i + j, 1<i,j<n.Da f das Skalarprodukt inva-
riant 148t, ist auch (f(el),f(ez), .‘.,f(en)) ein Orthonormalsystem. Fiir alle x € R" gibt

es eindeutig bestimmte reelle Koeffizienten x' € R mit

n . M
X = 2 xe = Xe,
i=1 1 1

Diese Koeffizienten haben die Form x' = {x,e;>, so daB folgt: X = {f(x),f(e;}> und
daher f(x) = xif(ei). Fiir einen weiteren Vektor y = yiei aus R" ergibt sich
flx +y) = (xi+yi) fle,) = xif(ei) + yif(ei) = f(x) + f(y). Ahnlich zeigt man fiir
reR und x e R™: f(Ax) = Af(x). f ist also linear und 14Bt das Skalarprodukt inva-
riant, und das bedeutet fe O(n) (oder genauer, die Matrix, welche die lineare Abbil-
dung f beziiglich der Basis (el,ez, ,en) reprasentiert, liegt in O(n) ).

Fiir den allgemeinen Fall sei b = f(0). Man setze g(x) = f(x) - b, x ¢ R™.
Man sieht sofort, daB auch die Abbildung g den Abstand invariant 148t. AuBerdem gilt
g(0) = 0.Nach dem Vorangehenden ist also g € O(n). SchlieBlich ist f(x) = g{x) - b,
das heilt f = T, ocg, und fiir jede andere solche Darstellung f = T_oh mit ce Rr™
und he O(n) folgt zundchst b = f(0) = ¢ und dann g(x) +b = f(x) = hix) + b,
also g = h. Damit ist der Satz bewiesen.

Der richtige Rahmen fiir die euklidische Geometrie und ihrer Symmetriegrup-
pen ist eigentlich erst durch den Begriff des euklidischen affinen Raumes gegeben, Wir

kommen darauf zu Beginn des nichsten Kapitels zuriick.

(4.5) Regulidre Kérper. Analog zu 4.2 untersucht man geometrische Gebilde
im R® mit der von R® induzierten euklidischen Struktur auf Symmetrie. Dabei ergeben
sich interessante Symmetriegruppen fiir allgemeine Polyeder und insbesondere fiir die
reguldren Koérper wie Tetraeder, Wiirfel, Oktaeder, Dodekaeder und Isokaeder. Entspre-
chend der Anzahl k der Ecken sind die vollen Symmetriegruppen der regelmiBigen Kor-
per als Untergruppen von ©, aufzufassen. Fiir das Tetraeder mit 4 Eckpunkten ist die
zugehdrige volle Symmetriegruppe zum Beispiel isomorph zur alternierenden Gruppe A .
in @4, die Symmetriegruppe des Wiirfels ist isomorph zu @4 und die Symmetriegruppe
des Dodekaeders ist isomorph zur alternierenden Gruppe A; in ©; mit bereits 60
Elementen (vgl. [ART]).

(4.6) Kristallographische Gruppen. Die Untersuchung von regelmiBigen Uliber-
deckungen des R® durch einen Korper aus R® und dessen Translationen und Drehun-
gen fiihrt in Analogie zu 4.3 zu den kristallographischen Gruppen, von denen es 230
verschiedene gibt. Es sei auf [KLE] und [BER] verwiesen sowie auf die weiterfiihrende
Literatur in [BER]. Physikalische Anwendungen findet man z.B. in [FAL]. Natiirlich hat

die Theorie wie auch 4.5 eine entsprechende Verallgemeinerung auf hthere Dimensionen.
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(4.7) Orientierung. Sei V ein reeller n-dimensionaler Vektorraum (n > 0).
Zwei Vektorraumbasen (vl,vz, ...,vn) und (u,,u,, ..,u,) von V heiBen gleichorien-
tiert, wenn die durch f(uj) =V, j=1,2, ...,n, definierte eindeutig bestimmte lineare
Abbildung f: V —> V eine positive Determinante det f > 0 hat. Offensichtlich gilt:
Es gibt immer zwei Basen v = (v,,v,, ..,v,)) und u = (u,u,, ..,u, ) mit der fol-
genden Eigenschaft: Die zugehérige lineare Abbildung f erfiillt detf < 0, und jede
weitere Basis w von V ist mit u oder mit v gleichorientiert. "Gleichorientierung”
definiert daher auf der Menge aller Basen von V eine Aquivalenzrelation, welche diese
Menge in zwei Aquivalenzklassen zerlegt. Jede dieser Aquivalenzklassen heiBt Orientie-
rung von V. V hat also zwei Orientierungen und jede dieser Orientierungen & wird
reprasentiert durch jede Basis v aus e. Ein orientierter Vektorraum ist ein endlichdi-
mensionaler reeller Vektorraum zusammen mit einer Orientierung ¢. Im Falle eines
orientierten Vektorraumes (V,e) nennt man jede Basis v aus & positiv orientiert.

Eine R-lineare und bijektive Abbildung f: V —— V eines orientierten Vek-
torraumes V auf sich heiBt orientierungstreu, wenn f eine (und dann jede) positiv
orientierte Basis in eine positiv orientierte Basis iiberfiihrt. Das ist genau dann der Fall,
wenn die Determinante von f positiv ist. Die volle Symmetriegruppe der linearen und
orientierten Struktur von V ist demnach GL, (V) := {fe GL(V) : detf > 0}.

Damit ist klar, daB fiir den euklidischen R" die volle Symmetriegruppe
beziiglich der linearen Struktur zusammen mit der euklidischen Struktur und einer
Orientierung gerade die spezielle orthogonale Gruppe SO(n) ist, und daB die volle
Symmetriegruppe der euklidischen Struktur zusammen mit einer Orientierung gerade

die in 4.4 definierte euklidische Gruppe E(n) ist.

(4.8) Volumen. Im R" sei eine Basis (vl,vz, ...,vn) ausgezeichnet. Das
Volumen (beziiglich dieser Basis) eines von n Vektoren Q,,0y, .0y aufgespannten
Parallelepipeds P := {tj g : 0< ¢ <1} ist definiert als

Vol(P} := ldetla,,a,, ..,a)| = |detal,
wobei (a,,qa,, ..,q,) = a die Matrix mit den a, als Spaltenvektoren beziiglich der

Basis (Vt’vz' ...,vn) ist (das heiBt es gilt a = (ot%), wobei q, = ottvu). Fiir linear
abhiéngige q,, gilt Vol(P) = 0, und fiir das von Vi Vg ooV aufgespannte Parallel-
epiped, also fiir a, = v, ist Vol(P) = 1. Die bijektiven Abbildungen f von R™ nach
R™, welche die lineare Struktur zusammen mit dem Volumen als geometrische Struktur
invariant lassen, sind wegen der Formel

det (f(a,),fla,), ...,fla )} = det(foa) = detf deta
gerade die Abbildungen f bzw. Matrizen aus GL(n,R) mit det(f) = 1. Damit ergibt
sich als geometrische Interpretation der speziellen linearen Gruppe

SL(n,R) = {fe GL(n,R) : det(f) = 1}:
SL(n,R) ist die volle Symmetriegruppe bezliglich der durch die lineare Struktur zusam-
men mit dem Volumen und einer Orientierung gegebenen Struktur. Fiir den Fall, da8 die

vorgegebene Basis v,,v,, ..,v. eine Orthonormalbasis zum euklidischen Skalarprodukt
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ist, folgt wegen SO(n) C SL(n,R) auBerdem noch, daB die Drehungen volumentreue
Abbildungen sind.

(4.9) Allgemeine Geometrien durch symmetrische Bilinearformen auf Rr".
Ganz andere Symmetriegruppen ergeben sich bei Zugrundelegung von anderen Geome-
trien auf R™ als der euklidischen, die ja in 4.1-4.6 vorausgesetzt wurde. Solche Geome-
trien werden zum Beispiel gegeben durch nichtausgeartete, symmetrische Bilinearfor-
men, die nicht positiv definit sind. Im Fall n= 2, also R* mit

GG Y'Y = xx' - yy' fiir %%y, 7y € R,
(vgl. 2.6) gehdren neben den Translationen die "hyperbolischen" Drehungen (oder
"Boosts"), die durch Matrizen der Form

(cosh s sinhs

sinhs coshs)’ seR,

gs =

gegeben sind, zur Symmetriegruppe dieses "Skalarprodukts"”, Die Gruppe dieser Drehun~
gen kann in natiirlicher Weise als eine Matrixgruppe aufgefaBt werden, namlich als die
Gruppe der 2x2-Matrizen, welche das gerade definierte Skalarprodukt invariant lassen
und deren Determinante 1 ist.

Im Falle der Dimension 4 kommt man auf analoge Weise unter Verwendung
der Lorentzmetrik (vgl. 2.6) zur Lorentzgruppe als Matrixgruppe und zur Poincaré-
Gruppe, zwei Gruppen, welche in der Elektrodynamik und in der Relativititstheorie von
groBer Bedeutung sind und auf die wir an geeigneter Stelle noch zuriickkommen werden
(vgl. Kapitel IV und Anhang L.4.4°).

Fiir allgemeine n und nichtausgeartete, symmetrische Bilinearformen B er-
hilt man die in L.4.5° beschriebenen Matrixgruppen O(p,q) und SO(p,q) als Symme-
triegruppen. Dabei ist p die Anzahl der positiven Eigenwerte der Bilinearform B und
q = n - p die Anzahl der negativen Eigenwerte.

(4.10) Konforme Struktur. Die zur euklidischen Struktur auf R™ gehorige
konforme Struktur ist die Menge C = {Xd: ) ¢ R, X >0} der positiven Vielfachen
des euklidischen Abstands d. Eine bijektive Abbildung f von R™ nach R™ 14Bt die
konforme Struktur invariant, wenn es eine geeignete positive Konstante X\ so gibt,
daB d(f(a),f(b)) = rd(a,b) fiir alle a,beR™ gilt, oder wenn, anders ausgedriickt,
do(f x f) € C erfiillt ist. Das bedeutend insbesondere, daB die Abbildung f differen-
zierbar ist und die Winkel invariant 14Bt. Transformationen des Rn, welche die konfor-
me Struktur invariant lassen, sind natiirlich die orthogonalen Abbildungen und die
Translationen. Dazu gehéren aber auch die Dilatationen, D, : R" —> [R{n, vV —> v,
fiir positive X\ € R, sowie spezielle konforme Inversionen, wenn man gewisse Singula-
rititen zuléBt. Die volle Symmetriegruppe der konformen Struktur — die konforme
Gruppe — wird von den gerade beschriebenen Transformationen erzeugt, und sie 148t
sich als die Matrixgruppe O(n+1,1} (vgl. Anhang L.4.5° fiir die Notation) darstellen.

Analog erhilt man fiir den Fall einer nichtausgearteten, symmetrischen

R : T
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O(p+1,q+1). ImFalle n = 2 und p = 1 enthilt die konforme Gruppe alle Diffeo-
morphismen der Form .f = ¢ X ), wobei ¢ und ¢ Restriktionen von Diffeomorphis-
men der Einpunktkor{p;ktifizier'ung %! von R sind. Damit ist die konforme Gruppe in
2 Dimensionen keine Matrixgruppe, und sie 148t sich auch nicht als endlichdimensionale
Lie-Gruppe auffassen. Tats#chlich ist sie eine unendlichdimensionale Lie-Gruppe, und
es ist gerade diese unendlichdimensionale Schar von Symmetrien, die das besondere an
der zweidimensionalen Konformen Feldtheorie ausmacht (vgl. Bemerkung am SchluB des

ersten Paragraphen).

(4.11) Geometrisch definierte Matrixgruppen. In den vorangehenden Beispie-
len 4.1, 4.4, 4.7-4.10 haben wir gesehen, wie geometrische Strukturen zu diversen spe-
ziellen Matrixgruppen fiihren. Damit wird die geometrische Natur dieser Matrixgruppen
herausgestellt.

Auch die in der Hamiltonschen Mechanik so wichtigen symplektische Gruppe
Sp(2n) paBt in dieses Schema. Sie 1Bt sich direkt als diejeAnige Untergruppe von
GL(2n,R) definieren, deren Matrizen die sogenannte symplektische Form auf R in-

variant lassen. Fiir Einzelheiten verweisen wir auf 1.9 und Anhang M.19.

(4.12) Unitire Rdume. SchlieBlich haben auch die unitdren Gruppen U(n) und
die speziellen unitdren Gruppen SU(n) eine direkte geometrische Interpretation als
Symmetriegruppen zum hermiteschen Skalarprodukt auf C” . Das 148t sich aus der ent-
sprechenden unendlichdimensionalen Situation ablesen:

Unter der unitéiren Struktur von ¢° versteht man in der Regel die C-lineare
Struktur zusammen mit der durch das hermitesche Skalarprodukt gegebenen Struktur
(vgl. 2.9). Die C-linearen und bijektiven Abbildungen f von 2% nach ¢%, welche die
unitdre Struktur erhalten, sind dementsprechend die C-linearen, bijektiven Abbildungen
mit <FO), B> = <G> Ffiir alle L0 € 2 (oder dquivalent dazu: mit [FQ] = gl
fiir alle e ¢%). Diese Abbildungen heiBen unitdre Abbildungen oder besser: unitére
Operatoren, weil man in der Hilbertraumtheorie die linearen Abbildungen Operatoren
nennt. Unitdre Operatoren sind automatisch stetig. Die volle Symmetriegruppe der uni-
taren Struktur ist die unitdre Gruppe

U = (Fe GLILY) : <RQLEC> = <L fir alle L, e 2],

(vgl. 3.5.9°f), Kapitel Il sowie L.4.3° fiir den endlichdimensionalen Fall).

(4.13) Isometriegruppen der Riemannschen Geometrie. Im Vorgriff auf den
erst in I1.8 und in G.12 definierten aber in 2.5 bereits erwdhnten Begriff einer Riemann-
schen Mannigfaltigkeit M sei hier nur festgestellt, daB auf einer Riemannschen Man-
nigfaltigkeit auf geometrische Weise ein Abstand d definiert ist (vgl. auch 2.4). Und
zwar ist fiir Punkte a,b € M der Abstand d(a,b) das Infimum iiber die Bogenldngen
aller die beiden Punkte verbindenden Kurven. Unter der Riemannschen Struktur von M

voarctaht man niin die difforen7iarhare Strultiur von M 7usammen mit der durch d
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gegebenen metrischen Struktur. Die bijektiven Abbildungen, welche diese beiden Struk-
turen invariant lassen, sind die Diffeomorphismen, welche den Abstand d erhalten. Sie
werden in der Regel Isometrien genannt. (Der Isometriebegriff ist hier etwas anders ge-
faBt als in 3.9.6°.) Riemannsche Mannigfaltigkeiten M mit viel Symmetrie haben ver-
gleichsweise groBe Isometriegruppen. M heiBt zum Beispiel homogen, wenn es zu je
zwei Punkten a,be M stets eine Isometrie f mit f(a) = b gibt. Zu den homogenen
Riemannschen Mannigfaltigkeiten gehren insbesondere die von E. Cartan eingefiihrten
und klassifizierten symmetrischen Riume, das sind Riemannsche Mannigfaltigkeiten mit
genligend vielen "Spiegelungen” (vgl. [ONE, S. 315 ff.1, [FO1, S. 179 ff.] oder das Stan-
dardlehrbuch [HEL] iiber symmetrische Raume).

Der in Paragraph 2 formulierten Vereinbarung, daB in diesem Buch unter Geo-
metrie im wesentlichen Differentialgeometrie verstanden werden soll, ist in den voran-
gehenden Beispielen wenig Beachtung geschenkt worden. Abgesehen von 4.13 sind die
Beispiele ohne Differentialrechnung formuliert worden. Das hat seinen Grund darin, daB
Symmetriebetrachtungen in der Differentialgeometrie komplizierter werden, und es
sollte in diesem Paragraphen zunichst einmal der Symmetriebegriff fiir geometrische
Strukturen an relativ einfachen Beispielen nahegebracht werden.

Ungeachtet der zusétzlichen Schwierigkeiten bei Symmetriebetrachtungen in
der Differentialgeometrie soll hier als Ausklang des Paragraphen doch kurz darauf ein-
gegangen werden, selbst wenn die Gefahr besteht, daB dhnlich wie in 4.10 und 4.13 vie-
les an dieser Stelle nicht vollstindig erklart werden kann. Selbstverstindlich kann der
Rest des Paragraphen bei einem ersten Lesen ausgelassen werden, was im iibrigen auch
fiir die meisten der vorher diskutierten Beispiele zutrifft. Fiir die nachfolgenden Kapitel
wird lediglich das grundsitzliche Konzept der Symmetriegruppe benétigt, das hier an
vielen Beispielen illustriert wurde, sowie einige Tatsachen iiber euklidische Riaume und
eine gewisse Vertrautheit mit Matrixgruppen.

Was die Symmetriebetrachtungen in der Differentialgeometrie so viel schwie-
riger erscheinen 1&Bt, ist die Verbindung von algebraischer und differentieller Struktur
bei den Symmetriegruppen. Das macht aber auch die Stirke der Theorie aus. Die auftre-
tenden Symmetriegruppen besitzen neben der Gruppenstruktur noch eine differenzierba—
re Struktur, derart daB die Multiplikation und die Inversenbildung differenzierbare Ab-
bildungen sind. Solche Gruppen mit differenzierbarer Struktur heiBen Lie-Gruppen (vgl.
Anhang L).

(4.14) Differenzierbare Wirkung. Bei der Definition der Transformationsgrup-
pe G auf einem Raum M mit differenzierbarer Struktur, also einer differenzierbaren
Mannigfaltigkeit M, kommt im Falle einer Lie-Gruppe G in Ergidnzung zu den Eigen-
schaften in 3.6 noch die folgende Bedingung hinzu: Die Gruppenwirkung

®:GxM — M
muB eine differenzierbare Abbildung sein.
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Wichtige Beispiele fiir Lie-Gruppen sind die bereits mehrfach erwihnten
Matrixgruppen; fiir viele Untersuchungen geniigt es, sich ganz auf Matrixgruppen zu
beschrianken. Die Ableitung als wesentliches zus#tzliches mathematisches Werkzeug in
der Differentialgeometrie fiihrt im Falle einer differenzierbaren Gruppenwirkung bei
einer einzelnen Symmetrietransformation f: M —> M aus der Symmetriegruppe G
zum Begriff des Vektorfeldes auf M, welches f infinitesimal erzeugt, und sie fiihrt
bei der Lie~Gruppe G zur zugehorigen Lie-Algebra von G. Die Lie-Algebrazu G als
lineares Modell von G erlaubt es, Untersuchungen iiber die Gruppe und liber ihre Wir-

kung auf M weitgehend auf Probleme der Linearen Algebra zuriickzufiihren.

(4.15) Homogene Riume. Eine typische Situation ist die einer differenzierba-
ren Wirkung ® : Gx M —— M, die auf M transitiv ist. Das heiit, es gibt zu jedem
Paar von Punkten a,be M ein ge G mit gla) = b. Eine solche transitive Wirkung
liegt zum Beispiel fiir den euklidischen Raum M = R™ mit der euklidischen Gruppe
E(n) als Symmetriegruppe vor oder fiir $” mit SO(n+1) als Symmetriegruppe.

Bei einer differenzierbaren Wirkung ist fiir jeden Punkt ae M die Stand-
gruppe G, = {geG: ®(g,a) = ga = a} (G, wird auch Isotropiegruppe genannt)
eine abgeschlossene Untergruppe von G. Fiir abgeschlossene Untergruppen HC G
einer Matrixgruppe (oder auch einer Lie-Gruppe) ist der Quotient G/H (beziiglich der
Aquivalenzrelation: g ~ g' ¢ ihe H: g = hg') nicht nur mit einer natiirlichen Topo-
logie versehen, sondern G/p hat eine wohldefinierte Mannigfaltigkeitsstrukur als
Quotientenmannigfaltigkeit. (Zu dem Problem der Existenz des Quotienten fiir allge-
meine Aquivalenzrelationen auf Mannigfaltigkeiten sei auf 8.7° in Anhang M verwiesen.)
Fiir den Fall einer differenzierbaren und transitiven Wirkung sind nun alle Standgruppen
G, konjugiert zueinander und der Quotient G/yy beziiglich irgendeiner dieser Stand-
gruppen G, = H ist in natiirlicher Weise diffeomorph zu der Ausgangsmannigfaltig-
keit M. Die gesamte Information iiber die Wirkung ist also auch durch die Symmetrie-
gruppe G und durch die Angabe einer geeigneten abgeschlossenen Untergruppe H ge-
geben. Man nennt solche Mannigfaltigkeiten M = G/y homogene Mannigfaltigkeiten
oder homogen Riume. Diese Bezeichnung paBt zu der weiter oben in 4.13 diskutierten
Homogenitit von Riemannschen Mannigfaltigkeiten, wenn die Symmetriegruppe der

Riemannschen Struktur eine Lie-Gruppe ist.

(4.16) Das Erlanger Programm. Im Rahmen der vorangehenden Erlduterungen
1dBt sich jetzt auf das von F. Klein im Jahre 1872 formulierte Erlanger Programm einge-
hen [KLEI]. Die Untersuchung einer geometrischen Theorie hat gem#dB dem Erlanger
Programm die folgende Aufgabe zum Gegenstand (nach F. Klein): "Es ist eine Mannig-
faltigkeit und eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit
angehtrigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die
Transformationen der Gruppe nicht geéndert werden.” Das soll heilen, daB die relevan-

ten geometrischen GréBen und damit die geometrische Struktur auf der Mannigfaltigkeit
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genau die sind, welche durch die Transformationsgruppe invariant gelassen werden. Ge-
geniiber der allgemeinen Definition 3.8 einer Symmetriegruppe beziiglich einer Struktur
hat sich hier der Blickpunkt folgendermaBen umgedreht: Gegeben ist nicht die Struktur
auf der Mannigfaltigkeit M, zu der dann die volle Symmetriegruppe gesucht wird, son-
dern vorgegeben ist eine Transformationsgruppe G, welche die einschldgige Struktur
auf M erst definiert als diejenige Struktur, welche durch G festgelassen wird und zu
der G dann natiirlich automatisch Symmetriegruppe ist. Nach dem Standpunkt von F.
Klein sind also nicht die geometrischen GréBen wie Abstand, Winkel etc. die Grundgrs-
Ben der Geometrie, sondern das fundamentale Objekt der Geometrie ist die Transforma-
tionsgruppe als Symmetriegruppe, und die geometrischen GréBen ergeben sich erst
daraus. In vielen wichtigen Fillen sind die auftretenden Gruppenwirkungen im Zusam-
menhang mit den auf diese Weise definierten geometrischen Strukturen transitiv, die
zugehorigen Mannigfaltigkeiten sind also homogene Mannigfaltigkeiten. Dazu einige
konkrete Beispiele:

(4.17) Standardgeometrien nach dem Erlanger Programm.

1° Euklidische Geometrie. Die fundamentale Gruppe dieser Geometrie ist die
euklidische Gruppe E(n). Standgruppe ist SO(n), und die homogene Mannigfaltigkeit
M = E(n)/so(n) liefert uns wegen 4.4 den Raum R"™ zuriick (allerdings ohne Fest-
legung des Nullpunktes, vgl. IL1): Es gibt eine (bis auf einen skalaren Faktor eindeutige)
invariante Riemannsche Metrik auf M, welche M zum n—-dimensionalen euklidischen
orientierten Raum und die vorgegebene Transformationsgruppe E(n) zur vollen Sym-
metriegruppe macht.

2° Affine Geometrie. Die fundamentale Gruppe ist die Gruppe aller affinen
Transformationen (vgl. 3.9.2°) mit GL(n,R) als Standgruppe. Der Quotient gibt uns
wieder den Raum R™ zuriick, aber in dieser Situation nicht mit einer invarianten Metrik,
sondern nur mit einem invarianten Zusammenhang (vgl. Kapitel V), welcher es aber er-
moglicht, "Geraden” und "Parallelitit von Geraden” zu definieren. Auf diese Weise erhilt
man den Begriff des affinen Raumes im Sinne des nichsten Kapitels (I1.1).

Ahnlich 148t sich der projektive Raum P (R) mit seiner Geometrie iiber die
projektive Gruppe einfiihren.

3° Konforme Geometrie. Die fundamentale Gruppe ist (im positiv definiten
Fall) die konforme Gruppe SO(n+1,1) und als Quotienten erhilt man den Raum Rn,
jetzt aber nicht mit einer invarianten Metrik, sondern mit einer invarianten konformen
Struktur versehen.

4° Sphirische Geometrie. (Vgl. auch 11.8.11.2° und Anhang G.2.3°.) Die fun-
damentale Gruppe ist SO(n+1) mit SO(n) als Standgruppe und $” als Quotienten.
Die iibliche Metrik auf der Sphire ist invariant und bestimmt daher die Geometrie zur
Gruppe SO(n+1}. Gut zu erkennen ist die Situation im Falle n= 2.

5° Hyperbolische Geometrie. (Vgl. auch 11.8.11.3° und Anhang G.2.6°.) Die

hyperbolische Geometrie wird in der Dimension 2, auf die wir uns hier beschrinken
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wollen, durch die Gruppe SL(2,R) gegeben mit Standgruppe SO(2). Der Quotient kann
in natiirlicher Weise mit der oberen Halbebene in C (oder der Kreisscheibe bzw. der
Pseudosphire) identifiziert werden. Es gibt wieder eine (bis auf einen skalaren Faktor
eindeutige) invariante Riemannsche Metrik, die sogenannte hyperbolische Metrik, wel-

che die Geometrie bestimmt und die Gruppe SL(2,R) zur Symmetriegruppe macht.

Der im Erlanger Programm vertretene Standpunkt ist auch dem Physiker ver-
traut. Thm geht es allerdings nicht nur um geometrische, sondern vor allem um physi-
kalische GroBen. Die relevanten physikalischen GréBen sind in der jeweiligen Theorie
invariant gegeniiber gewissen ausgezeichneten Transformationen. In der Klassischen
Mechanik sind das fiir freie Systeme zum Beispiel die Galilei-Transformationen (vgl.
11.2), fiir Zentralfelder die Rotationen (I1.7) und fiir allgemeine Hamiltonsche Systeme
die kanonischen Transformationen (I1.9). In der Elektrodynamik und in der Speziellen
Relativitdtstheorie liegt dagegen eine Invarianz gegeniiber Poincaré-Transformationen
vor, wihrend in den Eichtheorien #hnlich wie beim Erlanger Programm von vornherein

von einer (internen) Symmetriegruppe ausgegangen wird.

(4.18) Prinzipalfaserbiindel. Auch die Prinzipalfaserbiindel (anderswo Haupt-
faserbiindel genannt) lassen sich im Rahmen des Erlanger Programms beschreiben, ob-
wohl das nicht der iibliche Zugang zum Begriff des Prinzipalfaserbiindels ist. Als Aus-
gangssituation hat man in dieser Beschreibung auf einer Mannigfaltigkeit P eine diffe-
renzierbare Wirkung ®:PxG —> P einer Lie-Gruppe G (von rechts d.h.
®(®(h,a),g) = ®(a,hg) anstelle von &(g,®(h,a)} = d(gh,a) ), von der verlangt wird,
daB sie frei ist (d.h. aus ®(a,g) = a flir einen Punkt ae P folgt stets g=e). Es
folgt dann, daB jede Bahn (= Orbit) Gla) = {Pla,g): ge G} iber g —> &la,g)
in natiirlicher Weise diffeomorph zur Gruppe G ist.

AuBerdem sei der Graph {(aq,b) e PxP: aeP, be Gla)} der zugehbrigen
Aquivalenzrelation eine abgeschlossene Untermannigfaltigkeit von P x P. Dann besitzt
der Bahnenraum M = P/g = {G(a) : ae P} (also der Raum der Aquivalenzklassen)
die Struktur einer differenzierbaren Mannigfaltigkeit, fiir welche die kanonische Projek-
tion m : P —> M, a+——> G(a), eine differenzierbare Abbildung ist. (M ist der Quo-
tient von P beziiglich der Aquivalenzrelation auch als differenzierbare Mannigfaltig-
keit, vgl. M.8.7° und M.10.3°.) Die Fasern n '(b) = G(b), be M, sind alle diffeo-
morph zu G. Das ganze Gebilde (P,M,G,n) heiBt dann Prinzipalfaserbiindel mit dem
Totalraum P, der Basis M und der Strukturgruppe G. Ein Beispiel dazu: Das triviale
Prinzipalfaserbiindel P := M x G mit Wirkung ®((a,g),h) == (a,gh). Weitere Beispiele
werden durch die homogenen Riume M = G/i im Sinne von 4.15 gegeben. In diesen
Beispielen ist die Isotropiegruppe H die Strukturgruppe und G der Totalraum. Auf

die Geometrie solcher Biindel wird im Kapitel V eingegangen.
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In diesem Buch ist im wesentlichen von "fundamentaler” Physik die Rede. Da-
bei ist "fundamental” nicht im Sinne von dominant, wesentlich oder wichtiger als ande-
res zu verstehen, sondern im Sinne von elementar, grundsatzlich oder zugrundeliegend.
Gegenstand einer fundamentalen Physik sind demnach die fundamentalen Gesetze der
Physik, weiche sich nicht aus allgemeineren physikalischen Gesetzen durch Spezialisie-
rung ableiten lassen. Diese Vorstellung von fundamentaler Physik sollte nicht allzu
strikt aufgefaBt werden, sie hingt ja insbesondere auch von dem jeweiligen Wissens-
stand ab. Etwas genauer betrachtet kann man hdchstens von "relativ" fundamental spre-
chen, insofern als bei zwei physikalischen Theorien gelegentlich ganz klar festgestellt
werden kann, daB die eine fundamentaler als die andere ist, das heiBt, daB die eine die
andere durch Spezialisierung enthiit.

Zum Beispiel konnte man unter diesem Zugang zur Physik die Gesetze der
Hydromechanik sehen als klassisches System mit sehr vielen kleinen identischen Teil-
chen, also als Teil der Klassischen Mechanik; und die Systeme der Klassischen Mechanik
wiirde man verstehen als Approximation von nichtrelativistischer Quantenmechanik von
Atomen und Molekiilen. Atome wiederum miiBte man darstellen mit Hilfe der Quan-
tenmechanik oder Quantenfeldtheorie von Elektronen, welche mit den Atomkernen
wechselwirken; die Atomkerne schlieBlich wiirde man beschreiben mit der Quantenfeld-
theorie der Wechselwirkungen zwischen Quarks und Gluonen. Insgesamt sind wir so bei
dem heutzutage gut bestitigten Standardmodell der Elementarteilchen angelangt, wel-
ches die drei fundamentalen Wechselwirkungen abgesehen von der Gravitation bei nied-
rigen Energien beschreibt. Es wird von vielen Physikern vermutet, daB dieses Standard-
modell zusammen mit der Allgemeinen Relativititstheorie Bestandteil einer allgemeine-
ren fundamentalen Theorie ist. Das Aufstellen einer solchen fundamentalen Theorie ist
eines der groBen Probleme der Theoretischen Physik im ausgehenden 20. Jahrhundert.
Gesucht ist also die néchste Sprosse auf der Leiter, eine umfassende neue Theorie, von
der wir die heute bekannten und teilweise unvollstandigen Theorien als Spezialfille

oder als Approximation ableiten kénnen.

Zur Verdeutlichung dieses Programms, welches vielfdltige Beziehungen zu
Geometrie und Symmetrie aufweist, méchte ich kurz einige historische Entwicklungsli-
nien der Physik darlegen. Insbesondere soll auf Unvollstandigkeiten der bisher bekann-
ten Theorien hingewiesen werden, ohne Details der Theorien kennen zu miissen und
ohne physikalische oder mathematische Formeln zu studieren. Und es soll auBerdem be-
legt werden, daB die Struktur von Geometrie und Symmetrie ein wesentlicher Bestand-

toil der Fiimdariertaloan mboeilbat? ol mor L s &
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In diesem Jahrhundert haben sich bisher mindestens die folgenden zwei fun-

damentalen physikalischen Theorien durchgesetzt:

Erstens: Die Allgemeine Relativititstheorie. Einsteins Allgemeine Relativi-
tatstheorie (erstmals verdffentlicht von Einstein und Hilbert im Jahre 1915) ist eine rein
geometrisch formulierte Theorie, die sich auf den Begriff der Raumzeit stiitzt. Eine
Raumzeit ist eine vierdimensionale Mannigfaltigkeit mit einer geometrischen Struktur,
die durch eine Lorentzmetrik gegeben ist. Symmetrie ist iiber das Relativitdtsprinzip
bzw. iiber das Aquivalenzprinzip der Ausgangspunkt der gesamten Theorie. Weitere
Symmetriebetrachtungen kommen in der Kosmologie durch Isotropie und Homogenitét
ins Spiel und in der sonstigen Theorie zum Beispiel als konforme Symmetrie bei der

Untersuchung der Kausalstruktur in der Allgemeinen Relativititstheorie (vgl. V1.4).

Zweitens: Die Quantentheorie der Elementarteilchen. Die Quantentheorie der
Elementarteilchen, welche sich auf die ab 1925 entwickelte Quantenmechanik griindet,
hat sich als eine sehr geometrische Theorie mit viel Symmetrie erwiesen. Bereits in der
Quantenmechanik sind Symmetriebetrachtungen mit Hilfe der Darstellungstheorie von
Lie-Gruppen von groBer Bedeutung (vgl. III). In der Quantenfeldtheorie kommen Geo-
metrie und Symmetrie einerseits allgemein iiber den Feldbegriff ins Spiel und andrer-
seits durch die Tatsache, daB zur theoretischen Beschreibung der Elementarteilchen
maBgeblich die Fichtheorien (bzw. Yang— Mills-Gleichungen) verwendet werden, die in
enger Verbindung mit der Geometrie von Faserbiindeln mit Symmetriegruppe stehen.
(Vgl. Paragraph 1; in Kap. V gehen wir darauf ausfiihrlich ein.) Beispielweise hat man
bei dem gerade erwihnten Standardmodell die Produktgruppe SU(3) x SU(2) x U(1) als

interne Symmetriegruppe.

Auch in den Vorldufern dieser zwei fundamentalen Theorien, finden sich viele
Aspekte der Geometrie und Symmetrie, wie zum Beispiel in der Klassischen Mechanik,
Elektrodynamik, Hydrodynamik, Quantenmechanik, Elastizititstheorie, Thermodynamik,
Speziellen Relativitdtstheorie u.a.

Einige dieser geometrische Strukturen und Symmetrieprinzipien werden in
diesem Buch behandelt und durch Beispiele erldutert; und zwar im Rahmen der Klassi-
schen Mechanik, der Quantenmechanik, der Elektrodynamik, der Relativitdtstheorie und
der Quantenfeldtheorie.

Die beiden oben besprochenen fundamentalen Theorien passen nach dem
heutigen Kenntnisstand nicht zusammen und sind daher unvollsténdig: Die Allgemeine
Relativitdtstheorie ist giiltig nur im GroBen, die Quantenfeldtheorie nur im Kleinen; die
Allgemeine Relativititstheorie ist bisher nicht quantisierbar, und - was fast dasselbe
ist - die Quantenfeldtheorien lassen keine Beschreibung der Gravitation zu. Die oben
erwihnte angestrebte Vereinheitlichung der beiden Theorien ist also eine hypothetische

neue Theorie, die die beiden Theorien als Sonderfille umfaBt. In der Geschichte der
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Physik finden sich aufsehenerregende Beispiele fiir analoge Vereinheitlichungen von
physikalischen Theorien, die sich wie eine Erfolgsbilanz der eingangs des Abschnitts
beschriebenen fundamentalen Physik lesen:

1. Die Planetengesetze Keplers und die Fallgesetze Galileis wurden verein—
heitlicht zu Newtons Mechanik.

2. Die Theorien liber Elektrizitdt und Magnetismus wurden von Faraday und
Maxwell vereinheitlicht zur Elektrodynamik (Maxwell-Gleichungen).

3. Die Spezielle Relativitdtstheorie und die Gravitation wurden von Einstein
vereinheitlicht zur Allgemeinen Relativititstheorie.

4. Die Spezielle Relativititstheorie und die Quantenmechanik wurden zur
Quantenelektrodynamik vereinheitlicht. '

5. Die Elektrodynamik und die Theorie der schwachen Wechselwirkung wur-
den vereinheitlicht wur elektroschwachen Wechselwirkung durch das sogenannte Salam-
Weinberg—Modell.

6. Das Standardmodell der Elementarteilchentheorie (siehe oben) umfaBt
die elektroschwache und die starke Wechselwirkung.

Hier eine Liste einiger Ansitze aus neuerer Zeit, eine vereinheitlichte Theorie

aller vier Wechselwirkungen zu begriinden:

a) Grand Unification: Gesucht ist eine groBe Symmetriegruppe G, welche
die Gruppe SU(3) x SU(2) x U(1) des Standardmodells umfaBt, aber selbst nicht in ein
Produkt von Lie~Gruppen zerfillt, und welche als interne Symmetriegruppe der entspre-
chenden Eichtheorie dient. Auf das Standardmodell kommt man iiber die Symmetrie-
brechung.

b) Kaluza-Klein-Modelle: Statt einer vierdimensionalen Raumzeit M geht
man in diesem Ansatz von einem Produktraum M x K aus mit einem kompakten Raum
K, welcher noch eine Symmetriegruppe G zuléBt. Den Raum K stellt man sich so klein
vor, daB er bei den bisherigen Beobachtungen nicht von einem Punkt zu unterscheiden
ist. Genauer: Die von uns beobachteten Punkte werden aufgefaBt als {m}x K, me M.
Dieser Ansatz der Kaluza-Klein-Modelle umfaBt die "Grand Unification” mit G als in-
terner Symmetriegruppe.

c) Supersymmetrie: Statt einer Lie~Gruppe als Symmetriegruppe oder einer
Lie-Algebra als die zugehérige infinitesimale Version wird ein allgemeineres "Symme-
trie-Objekt", die Supersymmetrie-Algebra ¢ an den Anfang der Theorie gestellt. Diese
Algebra enthélt die zu SU(3) x SU(2) x U(1) gehorige Lie-Algebra und die Poincaré—
Algebra, sie umfaBt also die internen und die externen infinitesimalen Symmetrien einer
Elementarteilchentheorie. (Nach einem Satz von Coleman und Mandula reichen unter
bestimmten Hypothesen die klassischen Lie~Gruppen zur Beschreibung von Symmetrien

in der Elementarteilchentheorie nicht aus, vgl. z.B. [FRE]; dieses Resultat begriindet
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das Interesse an Symmetrieobjekten wie den Supersymmetrie-Algebren oder den Quan-
tengruppen (s.u.), die den Begriff der Lie-Gruppe verallgemeinern.) Auch die daraus
entwickelte Theorie der Supergravitation hat (bisher) nicht zum Ziel gefiihrt.

d) Stringtheorie: Die Stringtheorie ist eine geometrische Theorie mit viel
Symmetrie. In der klassischen Beschreibung der Stringtheorie sind die Grundobjekte der
Theorie keine Massenpunkte, sondern Kurven in RY oder in allgemeineren Raumen. Die
Bewegungen dieser Kurven definieren dann Flachen im &Y. Die Schwingungen der Kur-
ven entsprechen nach der Quantisierung den verschiedenen Elementarteilchen. Trotz
vielversprechender Ansitze hat auch die Stringtheorie bisher keinen Durchbruch erzielt.
Bei geeigneter Wahl der AusgangsgroBen umfaBt die Stringtheorie bzw. die Theorie der
Superstrings die drei oben erwdhnten Ansitze.

Schwierigkeiten treten bei all diesen Ansétzen unter anderem bei sehr klei-
nen Distanzen auf, wodurch eine Revision der Begriffe des geometrischen Raumes im
Kleinen erforderlich wird. Damit kommt also der von Riemann formulierten Aufgabe
(siehe Paragraph 1) eine neue, besondere Bedeutung zu.

e) Konforme Feldtheorie. Die Stringtheorie liefert Beispiele einer allgemeine-
ren Theorie, der Konformen Feldtheorie (in der Dimension 2). Beide Theorien zeichnen
sich aus durch eine unendlichdimensionale Symmetrie-Algebra, der Virasoro—Algebra.
Aus mathematischer Perspektive steht die Konforme Feldtheorie in enger Beziehung zur
Theorie der Riemannschen Flichen und zur Algebraischen Geometrie iiber C.

f) Quantengruppen. Hier handelt es sich um neuere Ansitze, die den Sym-
metriebegriff noch weiter als in c) abwandeln. Zur Beschreibung von Symmetrien wird
die Struktur einer Quantengruppe herangezogen, welche die Lie-Algebra-Struktur bzw.
Lie-Gruppen-Struktur noch umfassender verallgemeinert als die Struktur einer Super-—
Algebra. (Lie-Algebren und Super-Algebren sind spezielle Quantengruppen.) Quanten-
gruppen sind aus mathematischer Sicht Hopf-Algebren mit speziellen Eigenschaften.
Viele physikalisch relevante Quantengruppen entstehen durch Deformation von Matrix-

gruppen wie SU(2) oder SL(2,C) nach einem kontinuierlichen Parameter.

Angesichts der Aufgabe, eine vereinheitlichte Theorie der fundamentalen
Wechselwirkungen zu finden, kommt der Theorie in der Physik und der zugehdrigen
Mathematik eine neue Aufgabe zu: Die vereinheitlichte Theorie muB Aussagen machen
kénnen iiber Wechselwirkungen innerhalb duBerst kleiner Distanzen (ca. 1073 cm =
Planck-Liange). Fiir entsprechende Experimente wiren sehr hohe Energien nétig, welche
in heutigen Beschleunigern um etwa 13 Zehnerpotenzen zu klein sind. Als Leitlinien
kénnen also bis auf weiteres keine experimentellen Befunde erwartet werden. Die
Theorie muff daher den Experimenten weit vorangehen, und das ist neu fiir den Theore-
tiker. Geometrie und Symmetrie sind in diesem Zusammenhang von besonderer Bedeu-
tung fiir die Theorienbildung; denn als Rahmen, an den sich der Physiker bei der Ent-
wicklung neuer fundamentaler Theorien halten kann, bleibt ihm als wesentlicher Be-

zugspunkt und als Leitmotiv die Struktur von Geometrie und Symmetrie.
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Dieses Kapitel ist der These gewidmet, daB eine mathematische Formulie—
rung der Klassischen Mechanik im wesentlichen auf Geometrie und Symmetrie aufgebaut
ist. Eine erste Bestdtigung erhilt diese These bei der Einfithrung der physikalischen
Konzepte Raum und Zeit in der Klassischen Mechanik und mehr noch bei der prédzisen
Behandlung des Trigheitssatzes und des Relativitdtsprinzips von Galilei. Das wird in
den ersten zwei vorbereitenden Paragraphen dargelegt, indem im 1. Paragraphen zu-
néchst flir die physikalisch angepaBte Behandlung der Begriffe Raum und Zeit die eukli-
dische Geometrie aus affiner Sicht eingefiihrt wird und im 2. Paragraphen dann gezeigt
wird, daB eine addquate mathematische Formulierung des Relativitdtsprinzips zu einer
geometrischen Struktur fiihrt, nimlich zur Galilei-Raumzeit. Die Symmetriegruppe der
Galilei-Raumzeit ist die Galilei-Gruppe.

Der Rest des Kapitels ist dann folgendermaBen aufgebaut: Ausgehend von
einigen Beispielen bekannter Systeme der Klassischen Mechanik wie Pendel, harmoni-
scher Oszillator, Kreisel und Keplerproblem soll sukzessive die eigentliche Struktur der
Klassischen Mechanik als Symplektische Geometrie mit ihrer Dynamik und zugehériger
Symmetrie erarbeitet werden. Fiir die Beispiele benstigen wir als Ausgangsrahmen eine
einfache Formulierung der Struktur von klassischen Systemen (Paragraph 3), welche im
weiteren Verlauf dieses Kapitels dann verallgemeinert werden soll. Nach der Behand-
lung des Pendels (Paragraph 4), des Kreisels (Paragraph 5) und des harmonischen Oszil-
lators (Paragraph 6), bei der hauptsichlich die Geometrie der jeweiligen Phasenrdaume
ausfiihrlich diskutiert wird, kommen wir dann zu dem Hauptanliegen des Kapitels, ndm-
lich zu dem wichtigen Satz von Noether iiber den Zusammenhang von Symmetrie und
ErhaltungsgrBen in verschiedenen Varianten.

Den Noetherschen Sdtzen sind die restlichen drei vergleichsweise umfang-
reichen Paragraphen gewidmet. In den zugehérigen Fragenkreis wird im 7. Paragraphen
behutsam eingefiihrt, indem zunichst Zentralfelder und ihre ErhaltungsgroBen studiert
werden, um dann die an diesem Fall gewonnenen Erkenntnisse auf Lagrange—Systeme
mit Symmetrien zu verallgemeinern. Das Wesentliche an diesem ProzeB der Erzeugung
von ErhaltungsgréBen durch kontinuierliche Symmetrien 14Bt sich bereits fiir den Fall
einer offenen Menge Q des R™ als Konfigurationsraum verstehen, weshalb der Para-
graph vorwiegend fiir diesen Fall formuliert ist. Der Hauptteil des Paragraphen besteht
aus ausfiihrlich behandelten Beispielen.

Im 8. Paragraphen wird dieses Thema fortgefiihrt durch die Untersuchung

natiirlicher Lagrange—Systeme, das sind in unserer Terminologie Lagrange-Systeme,

" . . »n
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Energie schreiben 14Bt, derart daB die kinetische Energie von einer Riemannschen Metrik
kommt (das heiBt nichts anderes, als daB die kinetische Energie punktweise die quadra-
tische Form zu einer positiv-definiten, symmetrischen Bilinearform ist). Damit wird die
Klassische Mechanik von natiirlichen Lagrange—Systemen ein Teilgebiet der Riemann-
schen Geometrie und umgekehrt, Diese enge Beziehung zwischen natiirlichen Lagrange-
Systemen und Riemannscher Geometrie auf Mannigfaltigkeiten wird ausfiihrlich heraus-
gearbeitet, und die oben angegebenen Beispiele werden unter den neuen Gesichtspunk-
ten weiterbehandelt und teilweise verallgemeinert.

Der 9. Paragraph ist den Symmetriebetrachtungen in der Hamiltonschen
Mechanik gewidmet. An die Hamiltonsche Mechanik wird schrittweise herangefiihrt, be-
ginnend mit offenen Mengen des R™ als Konfigurationsraum, und weiterfithrend iiber
das Kotangentialbiindel einer Mannigfaltigkeit als Impulsphasenraum bis zu allgemeinen
symplektischen Mannigfaltigkeiten. Symmetriebetrachtungen in der Hamiltonschen
Mechanik fithren zu einer besonders ansprechenden Form des Satzes von Noether. Als
Ergebnis werden schlieBlich die ErhaltungsgréBen der Symmetriegruppe eines Hamil-
tonschen Systems durch die Momentenabbildung beschrieben. Die Momentenabbildung
ist die Grundlage, um auf abstrakter Ebene zu verstehen, was bei der Reduktion der
Freiheitsgrade eines klassischen Systems passiert und auf welche Probleme man bei
einer solchen Reduktion sté8t. AbschlieBend wird kurz auf die vollsténdig integrablen
Systeme eingegangen, die als Hamilton-Systeme mit einer hinreichend groBen abelschen
Symmetrie verstanden werden kdnnen.

Die Bedeutung der Noetherschen Sitze geht weit liber das hinaus, was in die-
sen drei Paragraphen dargelegt wird. Zum einen fiihren die physikalisch sinnvollen Sym-
metrien zu physikalischen GréBen wie Energie, Drehimpuls, etc., die sich aus der Masse
der Observablen herausheben. Zum anderen ist in vielen Fillen bei der Behandlung eines
physikalischen Problems keineswegs von vornherein klar, wie die Bewegungsgleichungen
aussehen. Aus der Kenntnis der Symmetrien aber zusammen mit einigen natiirlichen Zu-
satzannahmen lassen sich hdufig die Bewegungsgleichungen im Rahmen eines Lagrange—
Systems oder eines Hamilton-Systems bestimmen.

Diese beiden Aspekte des Nutzens von Symmetrien haben bereits in der Klas-
sischen Mechanik ihre Bedeutung, werden aber noch wichtiger in anderen Bereichen der
Theoretischen Physik, wie in der Quantenmechanik, der Elektrodynamik, der Relativi-
tatstheorie und der Quantenfeldtheorie: Symmetriebetrachtungen und Invariantentheorie
werden ausgedehnt auf neue Bereiche, in denen man sich viel weniger auf die direkte Er-
fahrung und Beobachtung stiitzen kann als bei den klassischen Raumzeit—Symmetrien.
Dort haben sie aber besondere Erfolge aufzuweisen in der theoretischen Beschreibung
und Durchdringung von Naturgesetzen. Als Riickwirkung auf die Klassische Mechanik
14Bt sich feststellen, daB seit der Entdeckung und Verwendung von Symmetrien in der
Elektrodynamik, Quantenmechanik und Relativitdtstheorie auch den Symmetrien in der
Klassischen Mechanik eine erhthte Aufmerksamkeit gewidmet wird.

Literatur zur Klassischen Mechanik: [ABM, ARN, GUS, LIM, MAR, ST1, WOO].
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I RAUM UND ZEIT

Der Begriff des Raumes in der Klassischen Mechanik ist untrennbar mit der
Geometrie verbunden. Aus Sicht des Physikers ist es gar nicht méglich, die Geometrie
von Raum und Zeit unabhingig von den iibrigen Gesetzen der Physik zu betrachten.
Denn die Struktur von Raum und Zeit wird festgelegt durch das Messen mit MaBst#ében
und Uhren, welche selbst wieder physikalischen Gesetzen unterliegen. Also kann die
Struktur von Raum und Zeit nur gemeinsam mit anderen physikalischen Gesetzen empi-
risch Uiberpriift werden. Bei H. Weyl liest sich dieser Gesichtspunkt zum Beispiel folgen-
dermaBen:

Gegen das Argument, daB in eine versuchte experimentelle
Priifung der Geometrie immer auch physikalische Aussagen iiber das
Verhalten von starren Kérpern und Lichtstrahlen hineinspielen, ist zu
sagen, daB die physikalischen Gesetze so wenig wie die geometrischen,
Jjedes fiir sich, eine Priifung in der Erfahrung zulassen, sondern die
"Wahrheit” einer konstruktiven Theorie nur im Ganzen gepriift werden
kann.

Hermann Weyl
in "Philosophie der Mathematik und Naturwissenschaft ", 8. 271,

Der Begriff des "physikalischen” Raumes wird durch den dreidimensionalen
euklidischen Raum reprisentiert. Das ist jedenfalls unumstritten in dem heute ge-
brauchlichen Modell der Klassischen Mechanik, welches seinen Ursprung in den Werken
von Galilei und Newton hat. Fiir Raum und Zeit ergibt sich damit zundchst die folgende
Struktur:

(1.1) Raum. Der Raum ist ein dreidimensionaler, orientierter euklidischer
Raum E.

(1.2) Zeit. Die Zeit wird durch einen eindimensionalen, orientierten eukli-
dischen Raum T beschrieben. Dabei 148t sich T durch das Kontinuum R der reellen
Zahlen reprédsentieren unter Verwendung der Ordnung < auf R als Orientierung
("frither” und "spiter”) und des iiblichen Abstands von Zahlen.

Eine mathematisch vollstindige Behandlung des euklidische Raumes verlangt
im Rahmen der Klassischen Mechanik den Begriff des affinen Raumes, welcher zugleich

- s e e e L
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ist es, den Begriff des affinen Raumes und den des (affinen) euklidischen Raumes be-
reitzustellen. {Mehr iiber affine Riume findet man z.B. in [BER] oder [DOP1.)

Ein affiner Raum ist eine Menge A zusammen mit einem Vektorraum V
iiber B und einer Abbildung ®: VX A —> A, so daB fiir alle a,be A und v,weV
die folgenden Eigenschaften erfiillt sind (unter Benutzung der naheliegenden Notation:
v+a = a+v:= ®v,a)):

1° (v+wl+a=v+(w+a) und O0+a = a. (Das heiBt @ ist eine
Gruppenwirkung im Sinne von 1.3.6 beziiglich der dem Vektorraum V unterliegenden
additiv geschriebenen abelschen Gruppe.)

2° v+a = a bedeutet schon: v = 0. (Man sagt: V wirkt frei)

3° Es gibt ze V mit z+ a = b. (Man sagt: V wirkt transitiv.)

Unter der Dimension des affinen Raumes A versteht man die Dimension von V.

Die Elemente aus A bezeichnet man als die Punkte des affinen Raumes, und
V in seiner Wirkung auf A wird auch die Translationsgruppe des affinen Raumes
genannt. Eine (affine) Gerade G in A wird durch zwei nicht zusammenfallende Punkte
a und b aus A bestimmt, sie schreibt sich deshalbals G = {tz+a | te R}, wobei
z der durch 3° definierte Vektor ist. Entsprechend sind (affine) Ebenen und hoherdi-
mensionale affine Teilrdume in A definiert.

Der nach 3° eindeutig bestimmte Vektor z zu beliebigen vorgegebenen
Punkten a,b mit z+ a = b wird mit a)) (oder mit b - a) bezeichnet. E)’ heiBt
der Verbindungsvektor (oder Verschiebungsvektor) von a nach b: a+ @b = b. Die
Gerade G durch a,b 14Bt sich dannals G = {a+ t{b—-a) |t e R} schreiben.

v+ G

Die beiden Grundbegriffe der affinen Geometrie sind Parallelverschiebung
und Inzidenz: Dabei ist die Parallelverschiebung einer Geraden G um den Vektor veV
gegebenals v+ G := {v+b| be G}, entsprechend fiir Ebenen, ... etc. Die Inzidenzre-
lationen zwischen verschiedenen geometrischen Gebilden wie Punkte, Geraden, Ebenen,
etc. sind einfach die entsprechenden Mengenrelationen. Sie geben an, ob z.B. ein Punkt
auf einer Geraden liegt oder nicht, ob sich zwei Geraden schneiden, ob eine Gerade in

einer Ebene liegt, usw,
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Es wird im folgenden vorausgesetzt, daB A (also V) endlichdimensional
ist. Unter dieser Voraussetzung 14Bt sich fiir den durch A, V und & gegebenen affi-
nen Raum stets ein affines Koordinatensystem einfiihren, das ist definitionsgemaB die
Festlegung einer Basis (vl,vz, ...,vn) des Vektorraums V als ein Satz von unabhingi-
gen, bevorzugten Richtungen des affinen Raumes und die Fixierung eines Punktes o ¢ A
als Ursprung des affinen Raumes. Fiir jeden Punkt b e A des affinen Raumes gibt es
einen eindeutig bestimmtem Vektor ve V mit v+o0 = o0+ v = b und deshalb auch
eindeutig bestimmte Zahlen q* ¢ R mit b = o + q\)vv. Dabei ist

n

av, = X a%,
nach der Einsteinschen Summenkonvention. Die q° sind die affinen Koordinaten des
Punktes b in bezug auf das Koordinatensystem (o,v,). Beziiglich eines anderen affinen
Koordinatensystems (o',v',) hat der Punkt dann die Koordinaten q'* = c* + tx\"fq“,
wobei ((xﬁ) eine nichtsinguldre nxn-Matrix ist, die den Basiswechsel beschreibt. Die
volle Symmetriegruppe des affinen Raumes A ist daher die affine Gruppe Aff(R™) (vgl.
1.3.9.2°). Als Modell fiir einen n-dimensionalen affinen Raum hat man A := R" als
Punkteraum, V := R"™ als Raum der Verschiebungsvektoren und ®(v,a) = v + a. Ge-
geniiber dem iiblichen Vektorraum R™ von Zahlentupeln hat sich bei dem Begriff des
affinen Raumes lediglich geéndert, daB es keinen ausgezeichneten Ursprung gibt und
keine bevorzugten Richtungen. Das entspricht den physikalischen Erfordernissen.

Die Struktur des affinen Raumes reicht allerdings nicht aus, um den physikali-
schen Raum zu beschreiben. Dazu fehlt es an Moglichkeiten, von Lingen und Winkeln
zu sprechen. Diese geometrischen Grundbegriffe haben ihren Platz im Rahmen der
euklidischen affinen Rdume. Ein euklidischer (affiner) Raum ist ein affiner Raum E mit
Vektorraum V und Wirkung ®: VxE —> E, fiir den noch ein euklidisches Skalar-
produkt auf dem Vektorraum V gegeben ist, das heiBt eine symmetrische Bilinearform
<L, 2:VXV —> R mit <v,v> >0 fiir alle veV, v £ 0. Dadurch 148t sich der
Abstand d(a,b) zweier Punkte a,b aus E als d(ab) = '(-ﬁ))l = Y<ab ab) defi-
nieren. Unter einem kartesischem Koordinatensystem eines euklidischen Raumes ver—
steht man die Fixierung eines Punktes o€ E als Ursprung und die Auswahl einer
Orthonormalbasis e,,1<v <n=dimV,von V beziglich des Skalarproduktes < , >
auf V. (ev ,eu) = ESW. Die kartesischen Koordinaten eines Punktes b e E beziiglich
des vorgegebenen kartesischen Koordinatensystems sind dann die eindeutig bestimmten
Koeffizienten (ql,qz, ,qn) mit ob = qvev, also b = o+ qvev‘ Zu je zwei verschie-
denen kartesischen Koordinatensystemen (o,e,) und (o',e!) gibt es eine eindeutig
bestimmte orthogonale Matrix R € O(n) und einen eindeutig bestimmten Vektor z € V,
so daB fiir die zugehorigen Koordinaten q' = Rq+ z gilt. Die euklidische Gruppe
E(n), die wir in Paragraph 4 des ersten Kapitels beschrieben haben, parametrisiert also
gerade die kartesischen Koordinatensysteme mit gleicher Orientierung. Anders ausge-
driickt: Die euklidische Gruppe E(n) ist eine Symmetriegruppe des euklidischen Rau-

mes E; die volle Symmetriegruppe von E ist die von E(n) und den Spiegelungen
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Gegeniiber der Beschreibung des euklidischen Raumes und der euklidischen
Gruppe im letzten Kapitel hat sich durch die Einfiihrung von affinen Rdumen im wesent-
lichen nur gedndert, daB die Wahl eines Ursprungs und die Wahl eines kartesischen Ko-
ordinatensystems in der neuen Version des Begriffs vom euklidischen Raum noch nicht
festgelegt ist. Diese vielleicht unwesentliche Prizisierung ist fiir die Einfilthrung des
euklidischen Raumes als Modell fiir den Raum in der Klassischen Mechanik allerdings
von entscheidender Bedeutung, da im physikalischen Raum weder Ursprung noch Koor-
dinaten ausgezeichnet sind. Insbesondere ist in der Formulierung 1.1 ein dreidimensiona-
ler, orientierter euklidischer Raum ohne festgelegtes kartesisches Koordinatensystem
gemeint. Die zugehorige Symmetriegruppe ist E(3). Analoges gilt fiir 1.2.

In einem physikalischen Bezugssystem, wie es zum Beispiel durch ein Labor
gegeben ist, wird die geometrische Struktur des euklidische Raumes realisiert durch
MaBstdbe und starre Kérper, mit denen man sich, jedenfalls im Kleinen, ein rechtwinkli-
ges, normiertes Koordinatensystem aufbauen kann. Die anschlieBend gemessenen Ab-
stinde zwischen Punkten a und b sollten in diesen Koordinaten mit der Formel
d(a,b) = |gf{a) - q(b)| iibereinstimmen, wobei g(a) die Koordinaten des Punktes a
bezeichne. Ob diese Formel zutrifft, ist auch eine Frage der Experimente und damit der
Physik. Insofern dreht sich der zu Beginn des Paragraphen geduBerte Standpunkt herum,
Geometrie 14Bt sich nicht trennen von Physik. Dieser Aspekt kommt auch in B. Riemanns
Antrittsvorlesung (siehe Auszug in Paragraph 1 des ersten Kapitels) deutlich zum Aus-

druck sowie in den folgenden Zitaten:

Insofern die Geometrie als die Lehre von den GesetzmdBig-
keiten der gegenseitigen Lagerung praktisch starrer Korper aufgefaBt

wird, ist sie als der dlteste Zweig der Physik anzusehen.

Albert Einstein

Die Geometrie hat demnach ihre Basis in der praktischen
Mechanik, und sie ist derjenige Teil der allgemeinen Mechanik, wel-

cher die Kunst, genau zu messen, aufstellt und beweist.

Isaac Newton in "Principia”

Natiirlich gehéren in der Physik Raum und Zeit ganz eng zusammen, es gibt
keine Beobachtung des Ortes ohne Zeit und keine Zeitmessung ohne Ort. Ein Teil dieser
engen Beziehung wird im nichsten Paragraphen erldutert, der sich insofern dem Thema
dieses Paragraphen unterordnet: Bei gemeinsamer Betrachtung von Raum und Zeit gilt
es, die zugehorige Raum-Zeit zu studieren. Diese hat eine grioBere Symmetriegruppe als

E(3), ndmlich die Galilei-Gruppe.
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2 RELATIVITATSPRINZIP VON GALILEI

Die Festlegung der Begriffe Raum und Zeit nach 1.1 und 1.2 hat fiir sich allein
wenig Inhalt, solange nicht geklart ist, wie Raum und Zeit zusammenwirken. Der naive
Standpunkt, daB sich die Bewegung (etwa eines idealisierten Punktteilchens) unmittel-
bar durch eine Kurve im Raum (mit der Zeit als Parameter) beschreiben lieBe, kann nicht
befriedigen, weil er die Existenz eines absoluten Raumes fordern wiirde. Stattdessen
kann man sich in einem ersten Schritt die Beziehung zwischen Raum und Zeit so vorstel-
len, daB es zu jedem Zeitpunkt t einen zeitabhingigen Raum E, mit 1.1 gibt. Diese
Rdume zu verschiedenen Zeitpunkten liegen allerdings nicht véllig amorph nebeneinan-
der, sondern sie werden durch Bezugssysteme miteinander in Verbindung gebracht. Ein
Bezugssystem, wie es auf der vorangehenden Seite beschrieben worden ist, liefert zu
einem Zeitpunkt t ein kartesisches Koordinatensystem von E, und kurz danach zum
Zeitpunkt t + h ein kartesisches Koordinatensystem von E,__, . Dabei wird die bemer-
kenswerte Annahme gemacht, daB die verwendeten MaBstdbe und starren Kérper ihre
Identitat bewahren und sich auch in ihrer Form nicht verdndern. Auf diese Weise werden
zwischen verschiedenen E, durch das Bezuéssystem bijektive Abbildungen gegeben,
die es erlauben, diese Rdume miteinander zu identifizieren.

Je zwei Bezugssysteme lassen sich vergleichen, da ja ihre jeweiligen karte-
sischen Koordinaten auf den E, nach Paragraph 1 in der Beziehung q' = R(t)q + z(t)
stehen, wobei z(t) der Verschiebungsvektor zwischen den beiden auftretenden Ur-
spriingen der Bezugssysteme ist und R(t) die relative Drehung der Orthonormalbasen.
Offensichtlich kann man davon sprechen, daB zwei Bezugssysteme relativ zueinander in
Ruhe sind, namlich wenn R und z konstant sind, oder daB sie relativ zueinander nicht
beschleunigt sind, ndmlich wenn R konstant ist und z nur linear von t abhingt:
z{t) = tv + w mit konstanten Verschiebungsvektoren v und w. Aber es gibt wenig
Sinn, bei einem einzigen Bezugssystem davon zu sprechen, daB es nicht beschleunigt sei.

Trotzdem ist man bei der Grundlegung der Mechanik daran interessiert, be~
stimmte Bezugssysteme auszuzeichnen, die dann als nichtbeschleunigt gelten kénnen
und in denen die Gesetze der Mechanik eine einfache Form haben. Diese Bezugssysteme

heiBen Inertialsysteme. Hier eine Definition, in der bereits ein Trigheitssatz eingeht:

(2.1) Inertialsystem. Ein Inertialsystem 148t sich kennzeichnen dadurch, daB
die Bahnen von drei vom gleichen Punkt des Raumes aus nach linear unabhingigen Rich-
tungen fortgeschleuderten und dann sich selbst liberlassenen (das heiBt "freien")
Massenpunkten geradlinig in diesem Bezugssystem verlaufen.

In dieser Festlegung des Grundbegriffs "Inertialsystem” werden weitere
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Begriff der Kraft — hier nicht weiter diskutiert werden sollen und stattdessen als be-
kannt vorausgesetzt werden. DaB auf die Grundbegriffe Raum und Zeit und ihr Zusam-
menwirken etwas ldnger zu Beginn dieses Kapitels eingegangen wird, hat seinen Sinn
darin, daB dadurch die geometrischen Grundlagen der Mechanik bereitgestellt werden
kdnnen. AuBerdem fiihrt der Begriff des Inertialsystems auf diese Weise in Verbindung
mit dem Relativitdtsprinzip von Galilei zu einer interessanten Symmetrie, ndmlich der
Symmetrie der Galilei-Gruppe.

Ein freier Massenpunkt ist im Sinne von 2.1 ein Massenpunkt, auf den keine
Krifte wirken; insbesondere werden bei der idealen Vorstellung in 2.1 die Gravitations-
krdfte zwischen den drei auftretenden Massenpunkten vernachldssigt.

Die Erfahrung zeigt, daB es Inertialsysteme gibt. Fiir die Theorie bedeutet
das, daB man die Existenz eines Inertialsystems zu fordern hat. Es gibt zum Beispiel
gute Griinde anzunehmen, daB die Fixsterne ein solches Inertialsystem liefern.

Eine weitere Erfahrungstatsache ist, daB auch jeder weitere freie Massen-

punkt in einem Inertialsystem eine geradlinige Bahn hat.

(2.2) Inertialzeitskala. Beziiglich der Zeit kann analog eine Inertialzeitskala
definiert werden als eine Zeitskala, nach der ein vorgegebener, in einem Inertialsystem

bewegter, freier Massenpunkt gleiche Strecken in gleichen Zeitabschnitten zuriicklegt.

Wieder wird aus der Erfahrung gefordert, daB es Inertialzeitskalen gibt und
daB alle freien Massenpunkte die in 2.2 formulierte Eigenschaft haben. Zusammen-

fassend erhilt man den

(2.3) Trigheitssatz von Galilei: In einem Inertialsystem bewegt sich ein
freier Massenpunkt geradlinig und gleichférmig. Anders ausgedriickt: In einem Inertial-
system hat ein Massenpunkt, der keinen Kraften ausgesetzt ist, eine konstante
Geschwindigkeit.,

Der Zusammenhang des Konzepts des Inertialsystems mit Geometrie und
Symmetrie ist tiefer, als daB zur Definition die geometrischen Terme "Raum”, "gerad-
linig", "Strecke” und "Zeitabschnitt" benétigt werden. So ld4Bt sich zum Beispiel die
Erkenntnis, daB dem Begriff der "absoluten” Geschwindigkeit keine Bedeutung gegeben

werden kann, in dem (speziellen) Relativititsprinzip von Galilei ausdriicken:

(2.4) Die grundlegenden physikalischen Gesetze der Klassischen Mechanik
sind (bei abgeschlossenen Systemen) identisch in allen Bezugssystemen, die sich mit

gleichférmiger Geschwindigkeit zueinander bewegen.

Ein abgeschlossenes System ist dabei ein System von Massenpunkten, das

keinen duBeren Kriften unterworfen ist, in dem allerdings die einzelnen Massenpunkte

.. o L - - . .
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Unter einer gleichférmigen Geschwindigkeit zwischen zwei Bezugssystemen
kann man nach den zu Beginn des Paragraphen durchgefiihrten {iberlegungen verstehen,
daB der Verschiebungsvektor der Urspriinge der beiden Bezugssysteme von der Form
z(t) = vt, mit veV = [Rs, ist und daB sie als Koordinatensysteme dieselben Ortho-
normalbasen haben. Daher bedeutet das spezielle Relativitatsprinzip 2.4, daB die soge-

nannten speziellen Galileitransformationen G, : RExR — R®x R, gegeben durch
(qt) —> (g +vtt) = G (qt), (qt) e R®* xR,

fir jedes ve V = R® die Gesetze der Physik invariant lassen und daher Symmetrien
des physikalischen Systems sind. AuBerdem werden durch G, Inertialsysteme in
Inertialsysteme iiberfiihrt.

Neben der Relativitit der Geschwindigkeit ist auch die Richtung im Raum
relativ ("Isotropie" des Raumes). Weiterhin sind die Fixierungen des Ursprungs im Raum
und in der Zeit relativ (siehe Paragraph 1, dafiir wurde ja gerade der Begriff des affinen
Raumes eingefiihrt). Das bedeutet, daB die physikalischen Gesetze abgeschlossener
Systeme auch invariant sind gegeniiber Rotationen A e SO(3), (qt) —> (Agt),
sowie gegeniiber Translationen in Raum- und Zeitkoordinaten: T (qt) = (q+wt),
Tﬁ(q,t) = (q,t + ). Die Gruppe von bijektiven Abbildungen R®xR —> R® x R, die
von all den gerade genannten Transformationen, also von den Gv, A € SO(3), T, und
TB’ erzeugt wird, heit die eigentliche, (orthochrone) Galilei-Gruppe und wird im

folgenden mit I' bezeichnet. Das erweiterte Relativititsprinzip von Galilei besagt:

(2.5) Relativititsprinzip: Alle Inertialsysteme sind in der Klassischen
Mechanik gleichberechtigt. Die grundlegenden physikalischen Gesetze abgeschlossener

Systeme sind invariant gegeniiber Transformationen der eigentlichen Galilei-Gruppe.

I' ist also eine Symmetriegruppe der Mechanik abgeschlossener Systeme. In
dieser Aussage steckt bereits sehr viel physikalischer Inhalt; denn durch Symmetrien
werden in der Regel, wie wir spdter sehen werden, ErhaltungsgréBen gegeben, welche
in den wesentlichen Fillen auch noch wichtigen physikalische GréBen entsprechen. Im
Falle der Galilei-Gruppe sind das die folgenden 10 ErhaltungsgréBen: Die drei Kompo-
nenten des Impulses, die Energie, die drei Komponenten des Drehimpulses und die drei
Geschwindigkeitskoordinaten des Massenschwerpunktes. (Fiir eine ausfiihrliche Dis-
kussion dieser ErhaltungsgréBen vgl. 7.10.)

In der uns bereits vertrauten Weise (vgl. Paragraph 4 in Kapitel 1) legt die
Gruppe T eine Geometrie fest, welche als die grundlegende Geometrie der Klassischen
Mechanik angesehen werden kann, und welche insbesondere auch eine zum SchluB des
ersten Paragraphen geforderte Verbindung zwischen Raum und Zeit herstellt. Es handelt
sich um die Galilei-Raumzeit, welche durch die folgende Daten gegeben ist:

(2.6) Definition: Eine Galilei-Raumzeit ist ein vierdimensionaler affiner

Ratityi M {119v Reacon fE "ol immmn Doatioa® ool T ooae Too4Y L Dt 1 Y. A e
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1° Auf dem zu M gehodrigen vierdimensionalen Vektorraum V ist eine
nichtverschwindende Linearform A:V —> R gegeben.

2° Auf dem Kern Vo= KerA = {veV : Alv) = 0} von A ist ein
euklidisches Skalarprodukt gegeben, das V, zu einem dreidimensionalen euklidischen
Vektorraum macht,

Erlduterung: M ist zu interpretieren als der Raum der Elementarereignisse.
Zu den Freignissen a,beM ist A(aB) der objektive Zeitunterschied. Die Fasern
V= A7'(t) beschreiben in V und damit in M Schichten gleicher Zeit, welche durch
die euklidische Metrik von Vo ebenfalls eine Metrik erhalten: Fiir Punkte a,be M aus
der gleichen Zeitschicht, also mit Alab) = 0, ist d(a,b) := |ab| wegen ab e \A
wohldefiniert. Durch diese Metrik auf V_ wird also der Abstand von Ereignissen in
einer Zeitschicht festgelegt. Punkten aus verschiedenen Zeitschichten ist kein Abstand
zugeordnet.

Als Standardmodell fiir eine Galilei-Raumzeit kann M = R* als affiner
Raum dienen, auf dem der Vektorraum V = R* als Gruppe von Translationen wirkt.
Die Zeitfunktion A:V — R wihle man durch die Zerlegung V = R® xR als die
Projektion auf die letzte Koordinate: Alq,t) := t fiir (q,t) € V, und als das Skalarpro-
dukt nehme man das iibliche Skalarprodukt auf K3, und iibertrage es direkt auf
v, = R®x{o}.

0 R R

Bild: Das Standardmodell einer Galilei-Raumzeit mit V = R* iiber der Zeit-

achse R und einer Bewegung ("Weltlinie") eines Massenpunktes (b(t),t), skizziert als
Kurve in R® x R.

Ein Isomorphismus zwischen zwei Galilei-Raumzeiten ist eine Abbildung,
welche die Zeitstruktur und die Absténde in den Schichten gleicher Zeit erhilt. Es ist
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leicht zu sehen, daB jede Galilei-Raumzeit in diesem Sinne zu dem Standardmodell iso-
morph ist. Wir sprechen daher von der Galilei-Raumzeit.

Jedes Element der Galilei-Gruppe definiert auf der Galilei-Raumzeit M
einen Isomorphismus M —— M. Die Galilei-Gruppe ist also eine Symmetriegruppe der
Raumzeit. Man kann — genau wie bei der euklidischen Gruppe und dem dazugehérigen
euklidischen Vektorraum der Dimension n, vgl. 1.4.4 — zeigen, daB die volle Symmetrie-
gruppe Mor(M) der Galilei-Raumzeit M, also die Gruppe aller Bijektionen des Rau-
mes der Translationen V auf sich, welche A auf V und < , > auf V, invariant
lassen, erzeugt wird von - T' zusammen mit den Raumspiegelungen (q,t) —> (-q,t)
und den Zeitspiegelungen {(q,t} —> (q,~t) Diese Gruppe Mor(M) wird ebenfalls
Galilei~Gruppe genannt, die oben definierte Gruppe TI' heit deshalb zur Unterschei-
dung gelegentlich die eigentliche, orthochrone Galilei-Gruppe.

Will man die Gruppe T als die volle Symmetriegruppe der Mechanik, also
als die volle Symmetriegruppe der Galilei-Raumzeit im Sinne von 1.3.8 erhalten, wie es
wohl den meisten physikalischen Situationen entspricht, so muB man bei der Definition
2.6 des Konzeptes der Galilei-Raumzeit noch die Orientierung (vgl. 1.4.7) in einem drit-

ten Axiom fordern:
2.6.3° Die Vektorrdume V und V, sind orientiert,

Diese Bedingung kann auch so verstanden werden, daB der "Raumanteil” V0
und die "Zeitachse" A(V) = R (vgl. 1.2) orientiert sind.

Wegen der Bedeutung der Galilei~-Gruppe als die Symmetriegruppe der
Klassischen Mechanik soll zum SchluB des Paragraphen ein Resultat zur Struktur der
Galilei-Gruppe dargelegt werden. Unter anderem erweist sich aufgrund dieser Beobach-
tungen die Galilei-Gruppe als eine Matrixgruppe und daher als eine Lie-Gruppe.

Ein wesentlicher Bestandteil der Galilei-Gruppe T ist die euklidische
Gruppe E(3) als Untergruppe von TI'. Deshalb werden wir uns erst einmal mit der
euklidischen Gruppe E(n) und ihrer Darstellung als semidirektes Produkt befassen.
Zugleich wird damit der Begriff des semidirekten Produktes motiviert.

Jede Transformation g e E(n) ist nach 1.4.4 zusammengesetzt aus der durch
v := g(0) gegebenen Translation T, : R" — R", q —> q + v, und der Rotation
A= g-veSO(n): glq) = Aq+v = T,oAlq). Die Komposition von zwei Transfor-
mationen g,h € E(n), die auf diese Weise durch (A,v) bzw. durch (B,w) dargestellt
werden, ist dann: goh(q) = g(Bg+ w) = A(Bq+ w)+v = ABq+ (Aw + v). Die
Komposition goh, also das Produkt von g und h in der Gruppe E(n) wird also
durch das Paar (AB,Aw + v) représentiert in dem Sinne, daB die zu goh gehorige
Translation Aw + v und die zugehtrige orthogonale Transformation AB ist:

goh =T AB.

Deshalb ist die euklidische Gruppe E(n) isomorph zu der Gruppe, die fol-

Aw+v®

gendermaBen definiert ist: Die Elemente der Gruppe seien die Paare (A,v) € SO(n) x R™
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und die Gruppenoperation fiir je zwei Paare (A,v),(B,w) sei (A,v)(B,w) = (AB,Aw+v).
Schreibt man diese Operation in Blockmatrizen und dem zugehdrigen Matrizenprodukt,
so hat die letzte Gleichung die folgende Form:

(A v) (B w) . (AB Aw+v)
otj\ot) — (o 1 ’
E(n) wird daher auch als eine Gruppe von (n+1) x(n+1)-Matrizen aufgefaBt.
Dieses Beispiel gibt AnlaB, die folgende Definition zu treffen: Zu zwei Grup-
pen G und H sei ein Homomorphismus ¢:G — Aut(H) von G in die Gruppe
Aut(H) der Automorphismen von H vorgegeben. Dabei sind die Automorphismen von
H gerade die bijektiven Homomorphismen von H nach H. (Nach 1.3.8 ist G vermige

¢ eine Symmetriegruppe auf H beziliglich der Gruppenstruktur von H, und jede
Symmetriegruppe ist von dieser Form.)

(2.7) Definition: Das semidirekte Produkt von G und H iiber ¢ ist folgen-
dermaBen definiert: Die Elemente der Gruppe sind die Paare (g,h) € G x H, und die
Gruppenoperation ist definiert als (g,h) (fk) = (gf, (c(g)k)h) fiir (gh),(fk) e G x H.

n
als

Bei dem Beispiel der euklidischen Gruppe gilt: G = SO(n), H = R
additive Gruppe der Translationen und o die natiirliche Injektion SO(n) C Aut(R™}.

Die Bezeichnung fiir das semidirekte Produkt ist G x H. Also fiir das Bei-
spiel der euklidischen Gruppe E(n) & SO(n) x R™. Der Nachweis der Gruppenaxiome
(vgl. 1.3.4) fiir G x H erfolgt durch einfaches Einsetzen. Als Uibung weise man das in
1.3.4.1° formulierte Assoziativgesetz fiir das semidirekte Produkt nach.

Als weitere Beispiele von Gruppen mit der Darstellung als ein semidirektes
Produkt lassen sich die affine Gruppe Aff(R™) 2 GL(n,R) x R™ und die Diedergrup-
pen D = Z,x Z, angeben. Auch die Galilei-Gruppe hat eine Beschreibung als semi~
direktes Produkt, und zwar von E(3), das ja selbst ein semidirektes Produkt ist, und
der Translationsgruppe V = R*. Die Wirkung o ist hier fiir g = (A,v) € SO(3) x Rr3
und (qt) e R®x R: olg)lqt) = (Aq+tv,t). T' = E(3) x R* 1aBt sich jetzt leicht
verifizieren. Entsprechend der Darstellung von I' als ineinandergeschachteltes semi-
direktes Produkt I' = (SO(3) x R®) x R* 148t sich die Gruppenmultiplikation von I'

als Multiplikation von 3x3- Blockmatrizen schreiben.

A v g B w p AB Aw+v Ap+sv+q
01 ¢t 01 s| = 0 1 t+s
0 01 0 0 1 0 0 1

Insbesondere 148t sich die Galilei-Gruppe auf diese Weise als eine abge-
schlossene Untergruppe der invertierbaren 5 x 5-Matrizen — also als Matrixgruppe —
auffassen. Daran erkennt man unmittelbar, daB die Gruppenwirkung I'xM — M
differenzierbar ist (vgl. 1.4.14 und L.4). Da I' transitiv wirkt, erhilt man die Galilei-

[a¥]

Raumvzeit zuriick als homogene Mannigfaltigkeit T/ = M mit geometrischer Struk-
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3 EINFACHE KL ASSISCHE SYSTEME

Nach der Erlduterung des Raumbegriffes in der Klassischen Mechanik zu
Beginn dieses Kapitels soll in diesem Paragraphen ein einfaches Modell vorgestellt
werden, welches erlaubt, die Wirkung von Kréaften der Klassischen Mechanik mathema-
tisch zu beschreiben. Es handelt sich dabei um das Modell eines einfachen klassischen
Systems, unter dem hier die folgende Struktur verstanden werden soll:

Konfigurationsraum. Zu einem einfachen klassischen System gehért zunichst
eine offene Menge Q C R™, die als der Raum der Ortskoordinaten q= (ql,qz, wq™,
q € Q, aufgefaBt wird. Q wird Ortsraum, Lageraum oder Konfigurationsraum des
klassischen Systems genannt und gibt die kinematisch méglichen Lagen des Systems
an. Unter der Anzahl der Freiheitsgrade des jeweiligen klassischen Systems versteht
man die Dimension n des Konfigurationsraumes Q ¢ R™. Bei einem System von k
Massenpunkten Pl'Pz’ e Pk werden zum Beispiel durch Zusammenfassung der karte—
sischen Raumkoordinaten der einzelnen Massenpunkte die Ortskoordinaten q = (ql,qz,
. ,q3k) gegeben, und als Konfigurationsraum wird man daher eine offene Teilmenge
von R” mit n=3k wihlen.

Phasenraum. Zur Beschreibung des jeweiligen klassischen Systems gehort ne-
ben dem Ortsraum Q auch noch der Raum R"™ der Geschwindigkeitsvektoren oder
Tangentialvektoren v = (vl,vz, v V™M e R”. (Auf eine alternative Formulierung von
klassischen Systemen mit Impulsvektoren anstelle von Geschwindigkeitsvektoren kom-
men wir am SchluB dieses Paragraphen zu sprechen.) Der Raum P = Q x R™ gibt dann
die kinematisch mdglichen Zusténde des klassischen Systems an und wird der Phasen-
raum des klassischen Systems genannt. Der Phasenraum 148t sich auch als das Tangen-
tialblindel TQ zu Q auffassen (vgl. M.7).

Bewegungsgleichungen. Zu dem klassischen System gehért schlieBlich noch
ganz wesentlich die Dynamik des Systems. Die Dynamik legt fest, welche unter den
kinematisch méglichen Kurven q(t) in Q (fiir t aus einem Intervall J c R ) als die
dynamisch zugelassenen Bewegungen anzusehen sind. Diese Festlegung geschieht fiir
klassische Systeme in der Regel durch ein System von gew&hnlichen Differentialglei-

chungen zweiter Ordnung, den sogenannten Bewegungsgleichungen des Systems,

pe

wobei & : P —> R" eine stetig differenzierbare Abbildung und g := C%q die Ablei-

tung von q:J —> Q nach dem Parameter t € ] ist. Eine solche vektorwertige, zwei-

(3.1) <q =<1> )ci,'q,t) , c = ‘b‘

mal stetig differenzierbare Funktion q auf einem Intervall ] c R ist bekanntlich

genau dann Lésung des Systems 3.1, wenn — ausfiihrlich geschrieben - fiir alle tel
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und alle v € {12, ... ,n} die Gleichungen
gl = (g (0),q%t), ... ,g™),q'(1),q%1), .. QMWL)

erfiillt sind. Eine Kurve q:1 —> Q ist genau dann eine (dynamisch zugelassene)
Bewegung des Systems, wenn sie der Differentialgleichung 3.1 geniigt.

Warum es ausreicht, als Bewegungsgleichungen nur Differentialgleichungen
zweiter Ordnung zuzulassen, 148t sich nur mit der Erfahrung begriinden. In der kon-
servativen Klassischen Mechanik hat sich dieser Ansatz bewihrt.

Ein zentrales Beispiel flir eine Differentialgleichung vom Typ 3.1 ist das
Newtonsche Kraftgesetz (zum Kraftfeld F)

(3.2) mg = F(q,q,t)

fiir einen Massenpunkt der Masse m mit den Koordinaten q = (ql,qz,qa)‘ Dadurch
ergibt sich also ein einfaches klassisches System mit drei Freiheitsgraden.

Viele einfache klassische Systeme werden gegeben als (einfache) Lagrange—
Systeme. Ein Lagrange—System (P,L) besteht aus dem Phasenraum Q X R = P, QcRrR"
offen, zusammen mit einer zweimal stetig differenzierbaren Funktion L:P — R,
welche die Lagrangefunktion genannt wird. Die Bewegungsgleichungen des Systems sind

die sogenannten Fuler-Lagrange-Gleichungen

d oL _
(3.3) diav =

Sl

Eine differenzierbare Kurve q : ] — Q mit Werten im Konfigurationsraum

QcC R™ ist also genau dann eine Bewegung des Systems, wenn fiir alle t e J gilt:

(85 awa®) = S (awam), 1<vsn.

Die Bedeutung von 3.3 ist die folgende: Die Lésungen von 3.3 auf abgeschlossenen, be-
schrinkten Intervallen ] = [to't1] sind genau die stationdren Kurven des Wirkungs-

funktionals

(34) S(q) = [ Lla(®)q(v)dt.
Dabei heiBt eine Kurve q = q(t) stationdr, wenn fiir alle stetig differenzierbaren
(Vergleichskurven) h:J] — R™ mit h(to) = h(tl) = 0 stets gilt:

dstqremy, = 0.

Es soll kurz gezeigt werden, daB stationdre Kurven q(t) die Gleichungen
3.3 erfiillen und umgekehrt: Aus h{t)) = h(t,) = 0 folgt

_ oL v
0= avVh

v - v v
= [ (G e f(dt( Se) B+ LR at,
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also
d(dLy,v _ _ L ¢v
fld—t(%,) hY = -f SRAY de.
Eingesetzt in
d
0=2sq+en),, = deEL(q+ehq+eh)]E Odt—f(aqv + 9L pvyae

erhélt man )
doL y,v 4 _
f (aq" arc'év\,)h dt =
fiir alle stetig differenzierbaren h mit h(t;) = h(t,) = 0. Deshalb ist 3.3 erfiillt. Die
Umkehrung 148t sich aus den gerade bereitgestellten Formeln ebenfalls ablesen.
Im iibrigen sind die Euler-Lagrange-Gleichungen 3.3 nur dann von der expli-

ziten Form 3.1, wenn sich die Gleichungen 3.3 nach den q auf]osen lassen. Das ist
zum Beispiel immer dann lokal méglich, wenn die Matrix (3 vav u) invertierbar ist.

Das Beispiel des Newtonschen Kraftgesetzes ordnet sich dem Begriff des
einfachen Lagrange-Systems unter, jedenfalls fiir den Fall eines konservativen Kraftfel-
des der Form F = - VU mit einer differenzierbaren Funktion U auf dem Konfigura-
tionsraum Q: Denn die Euler-Lagrange—Gleichungen fiir L := va - U als Lagrange-
funktion sind dann genau die Gleichungen des Newtonschen Kraftgesetzes 3.2, wie sich
sofort nachpriifen 148t. Denn es ist -g%\, =mv, und g—é\, 3;{, F, fir v=1,2,3,
wobei F = (F1'F2’F3)'

Zur Frage nach der allgemeinen Lésbarkeit des Systems 3.1 von Differential-
gleichungen steht das folgende Resultat der Mathematik als Antwort zur Verfiigung:
Zu vorgegebenen Anfangswerten (§,%) € P gibt es stets ein Intervall J = la,bl mit
@< 0<b -und eine (im wesentlichen eindeutige Losung) q:J —> Q von 31 auf J
mit (q(0),4(0)) = (§,%), wenn die Abbildung & geniigend gute Eigenschaften hat, zum
Beispiel, wenn sie stetig differenzierbar ist (vgl. [BRO], [ABM] oder [DYS 11). Damit ist
klar, daB der Phasenraum P sich in natiirlicher Weise in disjunkte Bahnen des klassi-
schen Systems zerlegt, und wir haben ein erstes geometrisches Bild eines klassischen
Systems vor uns.

Die Grundaufgabe der Klassischen Mechanik besteht jetzt einerseits darin,
fiir ein gegebenes mechanisches Problem den Phasenraum P aufzufinden und dazu @
aufzustellen, und andererseits darin, die Bewegungsgleichungen 3.1 zu l3sen. Mit der
prinzipiellen Losbarkeit, liber die im letzten Absatz berichtet wurde, kann sich der
Physiker allerdings nur selten zufrieden geben, er sucht nach expliziten Lésungen, die
sich durch bekannte Funktionen ausdriicken lassen. Wenn sich explizite Lésungen nicht
finden lassen, und auch Niherungslésungen kein zufriedenstellendes Bild des speziellen
klassischen Systems geben, wird anstelle des Lésens von 3.1 die Aufgabe gestellt, das
lokale und globale Verhalten der L&sungen moglichst detailliert zu analysieren und
qualitativ zu beschreiben. Die meisten Differentialgieichungen der Physik lassen sich
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nicht explizit 1&sen, so daB der zuletzt genannte Weg beschritten werden muB. Dieser
fiihrt dann haufig auf abstrakte Methoden meist geometrischer Art. Eine generelle Me-
thode, die in vielen Situationen erfolgversprechend ist und in diesem Buch wiederholt in
Beispielen besprochen wird, ist die Verringerung der Dimension 2n des Phasenraumes
auf eine Dimension 2k, also die Reduktion der n Freiheitsgrade auf ein System mit k
Freiheitsgraden. Das geschieht in der Regel durch Zwangsbedingungen, welche hidufig
einen geometrischen Ursprung haben, und durch ErhaltungsgriBen, welche immer durch
Symmetrien erzeugt werden.

In der oben erwihnten alternativen Formulierung eines einfachen klassischen
Systems gehort zu dem Raum Q der Ortskoordinaten der Raum der Impulsvektoren
p = (p;py .. ) € (R™*. ((R™” ist der Dualraum von R".) Entsprechend hat man
den (Impuls—)Phasenraum P = QX (R™*. Aus mathematischer Sicht 1&Bt sich der
Impulsphasenraum als das Kotangentialbiindel (vgl. M.1t und M.19) zu Q auffassen.
Die Dynamik des Systems wird jetzt gegeben durch ein System

(3.5) (q,p) = ¥lq,p}

von Differentialgleichungen erster Ordnung. Auf Beispiele gehen wir hier nicht ein, son-

dern verweisen auf Paragraph 9.

In beiden Formulierungen gilt es zu beachten, daB die Ortskoordinaten q
nicht die kartesischen Koordinaten unseres Anschauungsraumes sein miissen, sondern
daB eine weitreichende Allgemeinheit der Formulierung von vornherein dadurch erreicht
wird, daB die q fiir allgemeinere Koordinaten wie zum Beispiel Winkelvariable, Ab-

standsvariable u.a. stehen kénnen.

SchlieBlich ist noch eine Erklarung dafiir angebracht, daB die hier vorgestell-
ten klassischen Systeme als "einfach" bezeichnet werden. Der Hauptgrund dafiir ist in
der Tatsache zu sehen, daB es wichtige klassische Systeme gibt, die sich nur lokal, also
Stiick fiir Stiick, wie die hier einfach genannten Systeme beschreiben lassen. Der allge-
meinere Begriff eines klassischen Systems verwendet Mannigfaltigkeiten und lautet in
Kurzform: Ein klassisches System ist eine Mannigfaltigkeit P mit einer auf P definier-
ten geeigneten Differentialgleichung, die lokal von der Form 3.1 (oder 3.5) ist. Die ein-
fachen Systeme ergeben sich dann aus den allgemeinen durch Beschrdnkung der Unter-
suchung auf eine Karte (vgl. M.5 und M.8) der Mannigfaltigkeit. Solche allgemeinen
klassischen Systeme werden in den Paragraphen 8 und 9 studiert und kommen spora-
disch auch schon in den davorliegenden Paragraphen vor. Der Begriff des einfachen
klassischen Systems wird gerade fiir diese Paragraphen 4-7 und auch fiir die Anfénge
der Paragraphen 8 und 9 als vorlaufiger Hilfsbegriff bereitgestellt.



61

4 DAs PENDEL

Zunichst soll der Phasenraum des ebenen mathematischen Pendels ausfiihr-
lich behandelt werden. Das vorgegebene Pendel der festen Linge r > 0 denke man sich
an einem Ende festgehalten im Nullpunkt, wihrend die Koordinaten (x,y) € R? des
anderen Endes die Ortskoordinaten des Systems beschreiben. Der Ortsraum ist also
zunichst Q = Rz, der Phasenraum P= Q X R?. Ganz unabhéngig von der Dynamik des
Systems ist klar, daB8 sdmtliche Bewegungen q(t) = (x(t),y(t}) der Zwangsbedingung
la{t)] = ¢x(£)? + y(t)> = r unterliegen. Die moglichen Bewegungen verlaufen also
auf der Kreislinie

Sli= {x,y) e R?: x2+y2 = r2},

AW

2
a

X

Sie sind daher von der Form q(t) = r(cose(t),sing(t)) = relP(t) mit
einer Funktion ¢ : Ja,b[ —> R. Fiir den Geschwindigkeitsvektor g{t) aus R2 gilt
{q(t),q(t)> = 0, was man wegen |q(t)]® = r? aus Edglq(t:)l2 = 2<q,4> = 0 sofort
ablesen kann. Der urspriingliche Phasenraum des klassischen Systems ist daher ohne

Kenntnis der Dynamik bereits reduzierbar auf den einfacheren Raum
_ el
P' = § xR,

wie wir in Klirze genauer begriinden werden.

P' ist insofern einfacher als P, als nur noch 2 statt 4 Variable involviert
sind. Unter zwei Aspekten kann P' aber auch als komplizierter angesehen werden:
Einerseits ist der neue "Ortsraum” Q0 = S: keine offene Menge in R (= [Rl), Q,
ist stattdessen eine 1~dimensionale Untermannigfaltigkeit von RZ. Andererseits ist die
Bedeutung des Produkts S: xR in P' = Si xR sowie die Rolle von R in diesem
Produkt noch nicht ganz klar. Gemeint ist eigentlich, den urspriinglichen Phasenraum

P=Qx R’ mittels der Zwangsbedingung |q{t)| = r durch den reduzierten Phasenraum

Py, = {(q,v) € Q x R? | qce ES: und es gibt eine differenzierbare
Kurve v : ]-g,e[ — S: mit v(0) = q und ¥(0) = v}
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zu ersetzen. Wegen <y,y> = 0 (siehe oben) gilt:
(41 P, = {tgv) e R2xR?: |gq| = r und <q,v> = 0},

wobei < , > das euklidische Skalarprodukt in R® bezeichnet. P, wird im Raum
P = R* = R®* xR? offensichtlich von der euklidischen Struktur des R?® bestimmt.
Man stellt leicht fest, daB P, eine zweidimensionale Untermannigfaltigkeit (also Fla-
che) im R* ist, denn die stetig differenzierbaren Funktionen q — iq|2 = gl(q) und
(q,v) —> <q,v> = f(q,v) erfiillen fiir {(qv)eP;: Vg = gradg = (2q,0) und
Vf = gradf = (v,q) sind linear unabhingig wegen g * 0. AuBerdem l4Bt sich zeigen,
daB diese Fliche mit Sri x R identifiziert werden kann {das heiBt, es gibt einen Diffeo-

morphismus von Pj nach S: xR).

Bereits bei diesem einfachen Beispiel wird klar, daB es sinnvoll ist, als
Ortsrdaume und Phasenrdume auch Mannigfaltigkeiten zuzulassen; jedenfalls dann,
wenn man globale Fragen der Theorie beriicksichtigen und den Vorteil der Ver-
ringerung der Freiheitsgrade ausnutzen will. Wir erinnern an dieser Stelle an den
Begriff der Untermannigfaltigkeit im R™ (vgl. M.3): Eine Menge M C R™ ist nach De-
finition eine k-dimensionale Untermannigfaltigkeit des R™ (0<k< n, ke N), wenn
es zu jedem Punkt a € M eine offene Umgebung U C R™ von a sowie eine Abbildung
ge S(U,Rn‘k) (wobei &(U,V) = {f:U —> V| f ist beliebig oft differenzierbar})
gibt mit

(421°) UNM = g0) = {qe M| g(q) = 0}, sowie
(4.2.2°) fiir alle xe UNM sind die Gradientenvektoren vel(x), Vegi(x),
.. Vg™ K(x) linear unabhingig.

Wie in dem Beispiel des Pendels treten ganz allgemein im Rahmen der Klas-
sischen Mechanik Untermannigfaltigkeiten des R™ durch Zwangsbedingungen auf. Eine
Zwangsbedingung eines einfachen klassischen Systems (vgl. Paragraph 3) mit Konfigu-
rationsraum Q und Phasenraum P = Q x R™ ist zundchst einmal eine Funktion f
auf Q (oder auf einer offenen Menge V in Q ), derart daB alle Bewegungen q(t)
des Systems die Gleichung f(q(t)) = 0 erfiillen. Beim Pendel ist also f(q) = ig| -r
eine Zwangsbedingung. Eine solche Zwangsbedingung heit holonom, wenn f differen-
zierbar ist und in allen Punkten g mit f(q) = 0 der Gradient Vf(q) nicht verschwin-
det. f = 0 ist also genau dann eine holonome Zwangsbedingung, wenn die Menge
10 = {qe Q: fl@) = 0} der Nullstelien von f eine (n-1)-dimensionale Unter-

mannigfaltigkeit ist. Allgemeiner sei festgelegt:

(4.3) Definition. 1° Ein Satz von (lokalen) Zwangsbedingungen eines ein-

Foamtimim Irlaceloambhearm Cuoctmrac svald VambEloatinmbimrmamnmttirae M it fF Aaw ~FFarmarm Tatlrmaoraoos Vo
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von Q ist durch eine Abbildung f: V —> R® gegeben, derart daB Fiir jede Bewegung
q(t) des klassischen Systems mit q(t) e V die Gleichung f(q(t)) = 0, das heifit
a(t) € £7(0), erfillt ist.

2° Die (lokalen) Zwangsbedingungen heiBen holonom, wenn die Abbildung
f differenzierbar ist und wenn der Rang der Ableitung Df(q) auf der Nullstellenmenge
£7'(0) ¢ V konstant ist.

Es sei zum Beispiel der Rang konstant gleich n-k. Dann gibt es zu jedem
Punkt q €V eine offene Umgebung U von q, so daB fiir geeignete n-k der s Kom-
ponenten von f = (fl,fz, ...,fs), die wir mit gl, gz, ey gn_k bezeichnen, gerade die
Bedingung 4.2.2° erfiillt ist und auBerdem glonu =Y nu gilt (vgl. M.3,
Satz vom Rang). Daher ist durch holonome Zwangsbedingungen f = 0 eine Unterman-
nigfaltigkeit f-l(O) in V der Dimension k gegeben.

Holonome Zwangsbedingungen auf ganz Q sind zum Beispiel durch diffe-
renzierbare Funktionen auf ganz Q (also Q = V) gegeben oder nur lokal wie in der
obigen Definition mit geniigend vielen offenen V's, welche den Konfigurationsraum Q
tiberdecken, und fiir die der Rang der Funktionalmatrizen der lokalen Zwangsbedingun-
gen immer gleich ist. Statt diese Bedingungen prazise auszuformulieren, genligt es aber
aufgrund der vorangegangen Uberlegungen einfach festzustellen, daB ganz allgemein
holonome Zwangsbedingungen durch eine Untermannigfaltigkeit M im Konfigura-
tionsraum gegeben sind (vgl. SchluB von M.3).

Fiir den Fall, daB bei einem vorgegebenen klassischen System mit einer offe-
nen Menge Q aus R™ als Konfigurationsraum (globale) holonome Zwangsbedingun-
gen vorliegen, sind diese also durch eine Untermannigfaltigkeit M der Dimension k,
k < n, gegeben. Als der eigentliche Konfigurationsraum ist unter Beriicksichtigung der
holonomen Zwangsbedingungen daher die Mannigfaltigkeit M anzusehen. Aus diesem
Grunde wird M auch als der reduzierte Konfigurationsraum bezeichnet. Wie sieht nun
der zu M zugehérige Phasenraum aus? Ganz analog zu unserem Beispiel des Pendels:
In jedem Punkt ae M einer solchen Untermannigfaltigkeit 148t sich der Tangential-

raum T M von M in a als der folgende Untervektorraum von R™ definieren:
TM = {1(0) e R”: ye 6(1-eel,R™). y(I-ecl) < M, (0) = a}.

T_M 14Bt sich auffassen als der Vektorraum der Geschwindigkeitsvektoren von stetig
differenzierbaren Kurven durch a, die ganz in M verlaufen. Es gilt offenbar fiir Punk-
te aeMNU (mit U und g wie in 4.2):

(44) T M = {XeR"|<Vegl(a),X> = 0 firalle j = 12,.. ,n-k}
= {XeR”| Dgla)X = 0}

(vgl. 4.1), wobei Dg(a) die Jacobi-Matrix (Ableitung) von g bezeichnet und Dg(a).X
fiir die Auswertung von Dg(a)} an der Stelle X steht. T M ist daher ein k-dimen-

. n
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T,M an M anlegen und erhilt so das Tangentialbiindel von M (vgl. M.7 und allge-

meiner in M.10):
(4.5) ™ = {J {{ad} x T M| aeM}c MxR"

mit der natiirlichen Projektion 1 : TM — M, t(a,X) = a fiir X ¢ TuM.
Mit U und g wie in 4.2 hat das Tangentialbiindel TM lokal folgende Be-

schreibung:
TU=TMN(UXxR™) = {(,X) e UxR™ : gla) = 0 und Dgla).X = 0}.

Der Phasenraum zum reduzierten Konfigurationsraum M (beim Vorliegen
von holonomen Zwangsbedingungen, die durch M gegeben sind) ist in natiirlicher Wei-
se das Tangentialbiindel TM von M. In diesem Zusammenhang wird das Tangential-
bitndel TM auch als der reduzierte Phasenraum (zur holonomen Zwangsbedingung M}
bezeichnet. Das reduzierte System hat dann k = dimM Freiheitsgrade.

In der obigen Situation des ebenen Pendels mit der holonomen Zwangsbedin-
gung lql2 - 1% = 0 ist der reduzierte Konfigurationsraum die Kreislinie Q, = le, und
der reduzierte Phasenraum das Tangentialblindel P, = TS:. Im ilbrigen kann auch der
Phasenraum P = Q x R" aus den vorangehenden Paragraphen als Tangentialbiindel
TQ von Q aufgefaBt werden, weil TQ = Q X R” gilt (mit k=n in42und g=0).

TS; ist diffeomorph zum Produkt Si x R, wie wir weiter oben bereits fest-
gestellt haben. Einen expliziten Diffeomorphismus erhdlt man folgendermaBen: Fiir
q = (ql,qz) € Si bezeichne q* = (qz,—ql) den zu q orthogonalen Vektor. Fiir
(q,v) € TSi = P, gilt dann (vgl. 4.1) wegen <{q,v> = 0: v = Xlgv) q" mit einer ge-
eigneten Zahl X(q,v) e R, und zwar ist X = V—iz fiir q2 + 0 und entsprechend
A= —%Zr fiir q' # 0.Injedem Falle ist die Abbildung A : TSI{ —_> S: x R, definiert
durch Alq,v) := (q,xq,v)) fiir (q,v) € TS:, wohldefiniert und beliebig oft differen-
zierbar. A ist ein Diffeomorphismus, denn die inverse Abbildung zu A st
A sixR — TS! mit AT\ = (q.agY) fir (g,)) € S;xR. Im iibrigen gilt
1(q,v) = prjoAlq,v) (=q), und simtliche Restriktionen A|T(q,v)3: sind linear als Ab-
bildungen von T(q'v)S: nach {q} xR 2 R. Das bedeutet, daB A eine Trivialisierung
von TSi als Vektorbiindel ist (vgl. V.4).

Eine Identifizierung des Tangentialbiindels TM mit der entsprechenden
Produktmannigfaltigkeit M x Rk (wie zum Beispiel im Falle des ganzen Konfigura-
tionsraumes M = Q oder beim Pendel M = S‘f ) ist keinesfalls immer moglich, es
werden durch diese Eigenschaft gerade die sogenannten parallelisierbaren Mannigfaltig-
keiten charakterisiert. Als Beispiel einer recht einfachen Fldche im ®®, die nicht paral-
lelisierbar ist, sei die 2-Sphare Sf genannt. (Das folgt aus dem "Satz vom Igel” vgl.
z.B. [BRO, S. 314].)

Durch das Tangentialbiindel einer Mannigfaltigkeit haben wir das Beispiel
eines Vektorbiindels 1 : TM ——> M mit den Fasern
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4.6) 7Ha) = T M = R",

und damit ein spezielles Beispiel fiir ein Faserbiinde! mit Faser Rk und Strukturgrup-
pe GL(k,R) (vgl Kapitel V.5.4.1°). Dieses Biindel hat Symmetrie, ndmlich die Symmetrie
des Basiswechsels mit der Symmetriegruppe GL(k,R). AuBerdem erhalt dieses Biindel
{im Falle von Untermannigfaltigkeiten M ¢ R™ wie in unserem Beispiel) durch die
euklidische Struktur des R" eine geometrische Struktur, denn die Vektoren X € T_M
haben als Vektoren in R™ eine euklidische Liange. M mit dieser Struktur ist eine

Riemannsche Mannigfaltigkeit (vgl. Anhang G.12).

Nach diesem Ausflug ins Abstrakte zuriick zu unserem Pendel: Wenn man
nur an lokalen Fragen interessiert ist, zum Beispiel bei kleinen Auslenkungen, so hat es
natiirlich auch Sinn sich auf einen Teilraum T ¢ S; zu beschridnken, zu dem ein offenes
Intervall J C R gehért, so daB die Abbildung ¢:J —> T, ¢ —> rel?, ein Diffeo-
morphismus ist (z.B. J = J-e,e[ mit 0<¢g < in fiir kleine Auslenkungen aus der
Ruhelage x = r, y = 0). Als (lokalen) Phasenraum beziiglich der Winkelvariablen

¢ € ] hat man dann den einfachen Fall
(4.7) P, = JxR

mit nur einem Freiheitsgrad zu behandeln.

T
S Y
—sOe\r
¢ %

T

X

Bevor in diesem Paragraphen noch weitere zu Pendelbewegungen gehorige
Phasenrdume geometrisch beschrieben werden, gehen wir noch kurz auf die Dynamik
des ebenen Pendels ein: Je nachdem, welche Krifte auf das Pendel wirken, hat man na-~
tiirlich wesentlich verschiedene Bewegungsgleichungen zu erwarten. Ein vergleichsweise
einfacher Fall ist durch ein konstantes Schwerefeld gegeben. In diesem Fall kann man
die folgende Differentialgleichung als Bewegungsgleichung herleiten (vgl. 8.22.1°):
P = - % sing. Bei Beschrinkung auf kleine Auslenkungen aus der Ruhelage erhdlt man
daraus durch Linearisierung (wegen ¢ ~ sing) die lineare gewthnliche Differentialglei-

chung:

48y » — 8
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Dabeiist ¢ = ¢(t) wie oben der zeitabhingige Winkel, durch den die Bewe-
gung qft) = retet) gegeben wird. Die einfach zu 16sende Gleichung 4.7 ist zugleich
die Bewegungsgleichung des eindimensionalen harmonischen Oszillators und wird im

sechsten Paragraphen weiter besprochen.

Geometrisch von Interesse ist auch das ebene Doppelpendel. Ein Pendel der
Linge r = 1 sei fest aufgehdngt im Ursprung, ein weiteres Pendel der Lénge 1 seiam
freien Ende des ersten Pendels aufgehingt. Als Konfigurationsraum ergibt sich erst ein-
mal der R* als Raum der Koordinaten (xl,yl,xz,yz), wobei (xi,yl) die Koordinaten
des ersten und (x,,y,) die Koordinaten des zweiten Pendels sind, Dann hat man die

folgenden zwei holonomen Zwangsbedingungen mit Rang 2:
xl2 +ylz= 1 und (%, - xz)2 + ly, —yz)z = 1.

Diese Gleichungen beschreiben eine zweidimensionale Untermannigfaltigkeit im ®*, und
zwar den Torus T, welcher zu dem Produkt S: X Srl mit r = 1 diffeomorph ist. T
kann man sich im dreidimensionalen Raum unserer Anschauung vorstellen als die Ober-
flache eines "Vollreifens”. Ein einfacher Diffeomorphismus f: T —> s! x g! ist zum
Beispiel f(x,,y,,X,¥,} = ((x,y,),(x; — %5, ¥, = y,)). Als reduzierter Phasenraum mit
nur noch zwei Freiheitsgraden ergibt sich das Tangentialbiindel TT, das wieder diffeo-
morph zu dem Produkt T x R® ist.

Ein weiteres Beispiel fiir die Reduktion des Phasenraumes liefert das sphi-
rische Pendel der Lange r > 0. Im Unterschied zum ebenen Pendel ist das sphérische
Pendel nicht gezwungen, sich in der (x,y)-Ebene zu bewegen. Der Konfigurationsraum
ist zundchst Q = R® mit dem dazugehdrigen Phasenraum P = TQ £ QX R3. Die
Pendelldnge liefert x% + y2 + 2% = % als holonome Zwangsbedingung. Die moglichen

Bewegungen verlaufen also alle in der 2-Sphére

Srz = {(xy2) e R« X2+ yi+2? = rF).
Als reduzierten Lageraum erhalten wir Q, := Sf und als reduzierten Phasenraum
P, = TSf. Im Gegensatz zu den vorhergehenden Beispielen ist Sf nicht parallelisier-

bar, das bedeutet, da P, nicht zu dem Produkt Srz x R? diffeomorph ist (s.0.). P, ist
aber eine vierdimensionale Untermannigfaltigkeit des R® und ein Vektorbiindel mit

zweidimensionalen Fasern.

SchlieBlich kann man analog das sphédrische Doppelpendel studieren. Der
Phasenraum ist zundchst P = R® x R® und reduziert sich unter Beriicksichtigung der
Zwangsbedingungen zu der achtdimensionalen Untermannigfaltigkeit P, = TQ, des
R'Z, wobei Q, = 5?x &%, also zu Py 2 T5% x T5%.



67

5 DER STARRE KORPER UND DIE DREHGRUPPE

Das klassische System, welches durch einen starren Kérper gegeben wird,
kann in seiner komplizierten Dynamik eigentlich nicht als ein einfaches Beispiel angese-
hen werden. In diesem Paragraphen interessieren wir uns aber unter dem Aspekt von
Geometrie und Symmetrie in Phasenrdumen zunéchst nicht fiir die Dynamik, sondern nur
fiir die natiirliche Reduktion des Phasenraumes. Diese Reduktion hat wie schon beim
Pendel ihren Ursprung in holonomen Zwangsbedingungen.

Wie im ersten Teil dieses Paragraphen ausfiihrlich dargelegt wird, fiihrt diese
Reduktion zur Matrixgruppe SO(3) als Konfigurationsraum, wenn ein Punkt des Kor-
pers festgehalten wird. Damit gibt das Beispiel des starren Korpers die Gelegenheit, die
Drehgruppe SO(3) als Untermannigfaltigkeit von R(3) und als Lie~Gruppe zu be-
schreiben. Der zweite Teil des Paragraphen ist daher einer ausfiihrlichen Beschreibung
von SO(3) gewidmet sowie den engen Beziehungen zur Geometrie des dreidimensiona-
len, orientierten euklidischen Raumes. Im dritten Teil werden dann einige physikalische
GroBen zur Kinematik des Kreisels wie Winkelgeschwindigkeit, kinetische Energie,
Drehimpuls und Tragheitstensor eingefiihrt und als Funktionen auf dem Phasenraum
TSO(3) ausgedriickt.

1. SO(3) als Konfigurationsraum des Kreisels.

Definition. Ein starrer Korper ist ein System X einer groBen Anzahl N von
Massenpunkten im dreidimensionalen euklidischen Raum E, fiir das bei allen Bewegun-
gen sdmtliche Abstiande

(51) |P-Q| = rpge P, Qe X, konstant

bleiben. X ist vollstindig festgelegt durch diese Abstinde 'po und die Massen mp
der Massenpunkte.

DaB die Zwangsbedingungen 5.1 tiberhaupt erfiillt werden kénnen, ist eine
Annahme, die im folgenden wie ein Axiom behandelt wird. Genau genommen stellt diese
Annahme eine Erweiterung der Klassischen Mechanik dar.

Den (affinen) euklidischen Raum E haben wir im ersten Paragraphen einge-
fithrt. Als Standardmodell von E verwenden wir den R®, in dem aber weder Ursprung
noch Basis ausgezelchnet sind. Unter dieser Annahme macht es Sinn, mit der Differenz
P-Q (= QP vgl. Paragraph 1) von Punkten aus E zu arbeiten: Es handelt sich dabei

o -
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Der Konfigurationsraum fiir die Kinematik der N Punkte ist erst einmal
EN 2 R®N, Die Bedingungen 5.1 reduzieren den Konfigurationsraum aber sofort auf
E*. Obwohl das unmittelbar einsichtig ist, wollen wir der Vollstindigkeit halber dafiir
einen Beweis fiihren, der sich nur auf die bisher eingefiihrten Begriffe stiitzt. Wir setzen
voraus, daB es 4 Punkte Q,PI,PZ,P3 e X gibt, die nicht in einer affinen Ebene liegen
(das heiBt die Vektoren P, - Q, P, ~ Q, P,-Q sind linear unabhingig).

(5.2) Lemma. Jeder Punkt P e E ist durch die vier Absténde
|P_QI = roy IP_PJI = rjyj = 13 2v 31

bereits eindeutig festgelegt.

Beweis. Zu zeigen ist, daB es zu jedem Quadrupel (ro,rl,rz,ra), r; 2 0, von
Absténden hochstens ein P € E gibt mit [P - Q| = ry und |P - le = r,;. Dazu wiahle
man ein Koordinatensystem mit Q als Ursprung und vy = P,' -Q, j =123, als
Basis. Dann hat fiir P e E der Vektor P ~ Q die eindeutige Darstellung P - Q = q“vu

mit ¢“€R, u = 1,2,3. Aus dem System von vier Gleichungen |P - Q= rg und
|P - le2 =[P-Q- vjl2 = |P-Ql*+ le.I2 - 2<P - Q,vj> = rjz ergibt sich durch Ein-
setzen das lineare System von drei Gleichungen

2q“<v v =% -yl =123

Da ((v v >) eine invertierbare 3 x 3—Matrix ist (sonst wire (vl, 2,va) keine Basis),
hat dleses lineare Gleichungssystem in den Unbekannten q q q bei der Vorgabe von
rg:r Iy Xy genau eine LOsung (q ,q ,q %) e R®. Also gibt es hochstens einen Punkt P
mit den vorgegebenen Abstinden, ndmlich P := Q + q“vu . (Nur wenn diese Lsung

auch noch Iq“vul = r, erfiillt, gilt IP-Ql =1r, und |P - le = rj.)

0

Zur Reduktion: Eine Konfiguration des starren Kérpers X in E ist nach
Definition 5.1° eine Abbildung P :{1,2,3, ... ,N} —> E, Pj = P(j), mit |P, - le = Iy,
wobei die ry die zu X gehorigen festen Abstidnde sind. Die Numerierung der Punkte
sei so vorgenommen, daB die P, -P,, P, - P,, P

Bedingung ist gleichbedeutend mit einer Reihe von Ungleichungen zwischen den r

5 — P, linear unabhingig sind. Diese

1<i,j<4;zB muB Irij ral < S gelten, um zu garantieren, daB je ZW(JEI
dieser Verschiebungsvektoren linear unabhanglg sind, und es miissen zusitzlich noch
kompliziertere Ungleichungen erfiillt sein, die bedeuten, daB die vier Punkte nicht in
einer affinen Ebene liegen. In jedem Falle sind diese Bedingungen unabhdngig von der
jeweiligen Konfiguration P :{1,2,3, .. ,N} —> E von X immer erfiillt oder nie. Wenn
sie erfiillt sind, so sind die restlichen Punkte PS,P67 B aufgrund des Lemmas durch
die Lage der Punkte P,,P,,P,,P, vollstdndig bestimmt. Das bedeutet, daB sich der Kon-
figurationsraum direkt auf E* reduziert (vorlaufig noch ohne Beriicksichtigung der ver-
hoibandan ZTwanochadingtinaen 8 12 fiir die vier Punkte P P.. P. P ) (Es kann iibrigens
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gezelgt werden, daBl die Zwangsbedingungen g,,;(P) IP - P, |2 - r jr1<j<4<v, auf
Y holonom sind; und die Untermannigfaltigkeit M = {P e EY (P) = 0 fiir alle
1<j <4 < v} ist unmittelbar diffeomorph zu E* vermoge der Prolektlon Y — E*)

Sollten alle Punkte von X in einer affinen Ebene von E liegen, so redu-
ziert sich in analoger Weise der Konfigurationsraum sogar auf E3, weil dann jeder
Punkt in X festgelegt ist durch die Kenntnis der Abstinde zu drei geeigneten Punkten

aus X . Im allgemeinen kommt man jedoch nicht mit drei Punkten aus.

Eine kinematisch mégliche Bewegung des starren Korpers X setzt sich zu-
sammen aus einer Bewegung eines ausgezeichneten Punktes Q ¢ £ und der zu Q rela-
tiven Bewegung der iibrigen Punkte des starren Korpers. Als Q kann auch ein Punkt
"auBerhalb" des Kérpers festgelegt werden, der sich wie ein Punkt von & bewegt (d.h.

IP - QI bleibt konstant fiir alle P ¢ X ). Ein Beispiel dazu ist der Massenschwerpunkt
N

N -1

C = (El m, 2, mpP,
wobei mit m_ > 0 die jeweilige Masse des Punktes P, bezeichnet wird. Im krifte-
freien Fall bewegt sich C mit konstanter Geschwindigkeit, wie wir spiter noch sehen
werden.

Im folgenden sind wir nur an der zu Q relativen Bewegung des starren Kor-
pers interessiert, da sich Q wie ein einzelner Massenpunkt bewegt und solche Bewe-
gungen ein anderes Problem darstellen. Deshalb beziehen sich die nachfolgenden Uber-
legungen auf ein Bezugssystem, in dem Q in Ruhe ist, und das ist dasselbe, wie anzu-
nehmen, daB der Punkt Q festgehalten wird. Ein solcher starrer Korper mit einem fest-
gehaltenen Punkt wird hier auch Kreise! genannt, der zugehérige (reduzierte) Konfigura-
tionsraum ist dann vorerst E°. (Wir benutzen diese Festlegung des Begriffes "Kreisel”
zur Abkiirzung., Haufig wird von einem Kreisel in der einschldgigen Literatur auBerdem
noch verlangt, daB zwei seiner Haupttrigheitsmomente (siehe 5.13) iibereinstimmen.)

Wir beschreiben die kinematisch moglichen Lagen von X in E durch Ein-
fithrung eines kartesischen Koordinatensystems in E mit Q als Ursprung (vgl. Para-
graph 1). Es seien (b;, bjz,bjs), j=1,2,3, die Koordinaten der frither schon ausgewdhlten
Punkte Pl’Pz’Ps' Sie lassen sich auffassen als die Koordinaten

112 43 31 1273 41 .2 ,3
(bl’ bl’ bl’ b2’ b2’ b2’ b3' b3’ b(-l)

des Konfigurationsraumes R’ von drei Massenpunkten, den wir hier aber als den Raum
R(3) = R¥3 = R’ der 3x3- Matrizen verstehen wollen mit b (b;,bjz,b?)-r, j =1,
2,3, als Spaltenvektoren (A ist die Transponierte einer Matmx bzw. eines Vektors)
und B := (b,,b,b,) = (bj) als zugehtriger Matrix B e R(3). Es gilt:

(5.3) Satz. Die sechs Zwangsbedingungen

Ib).|=rj>0, Ib—bkl—r >0, j,kef1,2,3}, j<k,
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Um das einzusehen, setzt man fiir B = (bvbz’ba) :

._ 2 2 . _
gj(B) = ijl 1. i = 1,2,3
Birjey(B) = 1b; - b, |* - rjzk, 1<j<k<3.
Alle Funktionen g : R(3) —> R sind beliebig oft differenzierbar als Funktionen in
den Variablen (bji) . Die zugehorigen Gradienten ng,j =1, 2,...,6, sind auf der Menge
M= {BeR(3)]| gj(B) =0 fir j=1,..6}

linear unabhingig, wie man durch einige Rechnerei zeigt. Also sind die Zwangsbedingun-
gen g; = 0 holonom und definieren die dreidimensionale Untermannigfaltigkeit M
von R(3) (vgl. 4.3 und M.3).

Im Falle rjz =1 und rjzk = 2 gilt:

M = (BeR(3) | B = (b,byby) mit lb =1, Ibj~b,| = 0 fiir j + k)
{BeR(3) | B = (b,by,by) mit <by,b> = &y}
{BeR(3) | Fiir alle x,yeE ist <Bx,By> = <x,y>}

= {BeR(3) | BB" = idg}.

Il
It

Also gilt in diesem Fall: M ist gerade die Gruppe O(3) der orthogonalen 3x3-Matri-
zen {vgl. L.4.2°).

(5.4) Auch fiir allgemeine positive r; und Ty ist M in natiirlicher Weise
diffeomorph zu O(3).

Das sieht man zum Beispiel, wenn man die b,,b,,b; zu einem Orthonormal-
system ej,ey,e} in Bezug setzt mit konstanten Abstdnden ij - ei(l = Rjk und dann
5.2 anwendet, oder indem man auf E ein neues euklidisches Skalarprodukt <, >' mit
(bj,bk>‘ = Sjk einfiihrt. Ein unmittelbarer Diffeomorphismus ¢ : 0(3) —> M wird
auBerdem durch jedes A € O(3) definiert, wenn man ¢(B) := AoB setzt (siehe unten
5.6.57). .

Der Konfigurationsraum M = jO‘ g (0) kann noch weiter eingeschrinkt
werden, indem beriicksichtigt wird, daB bei aktuellen Bewegungen des Kreisels die
Orientierung (vgl. 1.4.7) erhalten bleibt. Das bedeutet, daB als eigentlicher Konfigura-

tionsraum des Kreisels die Teilmenge

(55.1°) S == {BeR(3): g{(B) = 0 fir j =1,...6 und det B > 0}

6
von jﬂ‘ gj—l(O) sinnvoll ist. Bei der Identifizierung von M mit O(3) entspricht der

neue Konfigurationsraum S gerade der Gruppe

(5.5.2°) SO(3) = {AcO(3):detA = 1}
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(5.6.) Zusammenfassung. Die ausfiihrlichen Voriiberlegungen zur Untersu-
chung des Kreisels und seines natiirlichen Konfigurationsraumes ergeben das folgende
Bild:

1° Der reduzierte Konfigurationsraum ist die dreidimensionale Untermannig-
faltigkeit S von R(3) (vgl. 5.5.1°).

2° Der reduzierte Phasenraum ist das zugehorige Tangentialbiindel TS (vgl.
4.5), eine 6-dimensionale Untermannigfaltigkeit von R(3) x R(3) = R!®. Der Tangen-
tialraum T,S an S im Punkte A€ S ist TpS = {¥0) | v:] — R(3) differen-
zierbare Kurve mit y(J) ¢S und +(0) = A}, und das Tangentialbiindel TS ist
TS := J{{A)x T,S: Ae S} cR(3) x R(3) & R'. Unter Verwendung der sechs defi-
nierenden Funktionen 8y:89:---,8¢ aus 5.3 und der zugehérigen Abbildung

g = (gl,gz,..‘,gé) : R(3) — R®
haben die Raume §, TAS und TS die folgende explizite Darstellung als Nullstellen-
mengen: S = g }0), TAS = Ker Dg(A) = {Be R(3) : Dg(A).B = 0} mit der Jacobi-
Matrix Dg(A) von g in A und TS = G_I(O),wobei G:R(3) x R(3) —> R? durch
G(A,B) = (g(A),Dg(A).B) fiir (A,B)e R(3) x R(3) definiert ist.

3° Die kinematisch mdoglichen Bewegungen des Kreisels sind Kurven
B:J — S,bzw. Kurven V:J —> TS mit V = (B,B). (] ist ein Intervall.)

4° S ist in natiirlicher Weise diffeomorph zur Drehgruppe SO(3) und kann
durch SO(3) ersetzt werden. Insbesondere ist SO(3) kompakt und zusammenhingend
als topologischer Raum (vgl. L.4.2°),

5° SO(3) wirkt auf S von links durch

®:50(3) xS —> S, ®(A,B) :== AoB = AB,
denn fiir A e SO(3) und Be S, B= (bvbz'ba) gilt AoB = (Abl,Abz,Ab3), also
gj(AOB) = gj(B) = 0,j=1,..6, und det(AcB) > 0. SO(3) ist also eine Transfor-
mationsgruppe auf S im Sinne von 1.3, und die Wirkung @ ist differenzierbar (vgl.
.4.14). Im iibrigen ist die Abbildung A+—> AoB fiir festes B e § ein Diffeomorphis-
mus von SO(3) nach S.

6° SO(3) als reduzierter Konfigurationsraum des Kreisels kann auch auf
die folgende Weise verstanden werden: Eine ausgezeichnete Lage von X wird fixjert
durch X C E mit dem festgehaltenen Punkt als Ursprung eines kartesischen Koordina-
tensystems. Alle iibrigen Lagen werden eindeutig festgelegt durch AX C E, wobei
A € SO(3). Daher wird der Konfigurationsraum des Kreisels durch SO(3) beschrieben.
Die obigen Uberlegungen zeigen nichts anderes, als daB in dieser Beschreibung des Kon-
figurationsraumes die Mannigfaltigkeitsstruktur von SO(3) mit der durch die holono-
men Zwangsbedingungen 5.1 gegebenen Mannigfaltigkeitsstruktur iibereinstimmt.

2. Geometrie von SO(3).
(5.7) Geometrie von SO(3) und &e(3). Ausgangspunkt zum Verstidndnis der

Drehgruppe SO(3) ist natiirlich die geometrische Bedeutung von SO(3) fiir den drei-
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kartesisches Koordinatensystem mit Orthonormalbasis e, e,,e, gegeben. Auf E wirkt

jede 3x3-Matrix A € R(3), (At)ls <3 mit AS € R, als lineare Abbildung

A:E — E, Alx%e)) = ASx"eu, L3P e R.

Diejenigen A € R(3), welche die euklidische Struktur und die Orientierung erhalten (das
heiBt, welche <Ax,Ay> = <x,y> fiiralle x,y € E und detA >0 erfiillen), sind genau

die speziellen orthogonalen Transformationen A € SO(3) :

1° s0(3)

I

[A e R(3) : <AX,Ay> = <x,y> fiir alle x,y ¢ Eund detA = 1}
= {AcR3) : ATA = 1= idgs und detA = 1}.

Von besonderem Interesse ist die zugehorige Lie—Algebra (vgl. Anhang L.6)
2° $0(3) = {XeR(B3): X+ X' = 0}

der schiefsymmetrischen Matrizen. Als Untervektorraum von R(3) ist 80(3) dreidi-
mensional, eine Basis wird zum Beispiel durch die infinitesimalen Drehungen M;,M,, M,
(vgl. L.6.9°%), gegeben.

Fiir jede Matrix X € R(3) konvergiert die Exponentialreihe X = i % v
mit dem Ergebnis e ¢ R(3) . Beispielsweise ergibt sich fiir X = tM, wegen i

0O 0 O
2
MoM, =M2 = [0 -1 0
0 0 -1
und der daraus folgenden Identitdten Ml\’+2 = - M, und Ml"+4 = M, (v>0),also
M® = ~(-1)"M,? und MZV+1 = (-1)M, zunichst
1 1 1
tMy — _ 2 \
e 1 2 (2 m M+ Z N +1)'( 1)*M, und deshalb
i 0 0
39 M1 _ g cost -sint
0 sint cos t

Also e™M1¢ 50(3). Allgemein gilt
4° X € S0(3) fiir alle X € 80(3).

Denn wegen XXT = -XX = XTX fir Xesgo(3) ist eXTeX = eXT+X also
(ex)TeX = eXTex = exT+x = e® = 1. AuBerdem deteX = &SPUrX — & = 1.
Also ist e e SO(3) nach 1°.

Wir wollen jetzt die Tangentialraume T,SO(3) fir Ace SO{3) und das
Tangentialbiindel TSO(3) explizit beschreiben.

Sei ve T,SO(3) ein Tangentialvektor an SO(3) im Punkte A e SO(3) ist
gegeben durch eine stetig differenzierbare Kurve v : 1-¢, e[ —> SO(3) mit ¥(0) =

und v = ¥(0) € R(3) (vgl. 5.6.2°). Fiir den nach T SO(3) "verschobenen" Tangen-
Ea) sl T o o .

o I of .



1.5 _Der starre Korper und die Drehgruppe 73

0 = d%(Y(t)Y(t)T)Itw = Y(O)AT + A*'{(O)T = X + XT. Andrerseits gilt fiir beliebige
X e$n(3): y(t) = et XA ist eine stetig differenzierbare Kurve in SO(3) nach 4° mit
¥(0) = A und ¥(0) = XA. Deshalb gilt fiir festes A e SO(3):

5° Die Abbildung j, : $0(3) —> T,SO(3),
X — XA = $ea) = 0

ist ein R-Vektorraumhomorphismus mit Umkehrabbildung jA'l : T,80(3) —> 28(3),

jA_l(V) = vAT. Insbesondere ist
6° 80(3) = T,SO(3)
wegen j(X) = X (1 = Einheitsmatrix). Weiterhin folgt:

7° Die Abbildung j: SO(3) x 80(3) —> TSO(3),

(A, X) — j(A,X) == (A,XA) = (A,jA(X))
ist ein Diffeomorphismus mit der Umkehrabbildung j_l(A,v) = (A,vAT) und mit
jl(A}xéo(a) = j, - Die Mannigfaltigkeit SO(3) ist also parallelisierbar (das heiBt das
Biindel TSO(3) ist diffeomorph zu dem Produkt SO(3) x R?%), ein Resultat welches fiir
alle Matrixgruppen Giiltigkeit hat (vgl. L.4.8°). Der reduzierte Phasenraum des Kreisels
1Bt sich also als SO(3) x R® auffassen.

5° - 7° haben ihre Ursache in der Rechtsmulitiplikation R,p:G—> G,
B ——> BA,von G = S0(3), also der Selbstwirkung & : G x G — G. Denn es gilt:

8° Die Tangentialabbildung

Ty R 5 : T, SO(3) —> T,S0(3) ;
(das heiBt die Ableitung von R 5 in 1) stimmt wegen TR A (X) = a(e txA)f teo= XA
mit j, liberein (man beachte dabei 80(3) = T,50(3)).

Eine analoge Trivialisierung j' des Tangentialbiindels TSO(3) erhilt man
durch die Linksmultiplikation:

9° ' : 50(3) x 80(3) —> TSO(3)
AY) = (AAY) = (A LA™, ,)

Die Verbindung zwischen den verwandten Abbildungen j und j' wird iiber die Identi-
tait j'(A,Y) = j(A,AYAT) = j(A,Ad,Y) hergestellt, wobei Ad, die "Adjungierte”
von A bezeichnet:

Ad, : 80(3) —> 80(3), Y —> Ad,Y = AYA!

10° Die Abbildung exp : 80(3) —> SO(3), X > e, ist differenzierbar.

Sie liefert lokale Parametrisierungen von SO(3).

Auch dieses Resultat ist fiir alle Lie-Gruppen richtig (vgl. z. B. [BRD], sowie

L.6.15°). Fiir den Kreisel wird oft eine verwandte Parametrisierung durch die Eulerwin-

1 1Y .. PR v . e
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11° 80(3) ist Lie—Algebra beziiglich der von R(3) induzierten Lie-Klammer
[X,Y] ;= XoY - YoX (vgl. L.5 fiir den Begriff Lie~Algebra). Dazu muB fiir beliebige
X,Y € 80(3) lediglich [X,Y] € 80(3) gezeigt werden:

(X, Y]+ [X,Y]T = XY - XTYT - yX + YTXT

= (XY + XTY) - (XTY + XTYT) - (¥X + YTX) - (YTX + Y'XT) = 0.

AuBerdem wird auf TISO = ¢p(3) iiber die Vektorfelder ’)V((A) = AX,
A € SO(3) fiir X € 89(3), eine weitere Lie-Algebra—Struktur [X,Y]' = [)ﬂé. Y’] fest-
gelegt, wobei jetzt [X,Y] die Lie-Klammer von Vektorfeldern auf SO(3) ist (vgl.
M.12 und L.6).

12° Es gilt [ , 1 =10, 1 auf 80(3) (vgl. Lemma L.6.13°).

Die bisher aufgelisteten Eigenschaften von SO(3) behalten im Wesentlichen
ihre Giiltigkeit fiir beliebige Matrixgruppen. Dagegen sind die folgenden geometrischen
Sachverhalte, die in enger Beziehung zum Kreuzprodukt des dreidimensionalen, orien-
tierten euklidischen Raumes E stehen, spezifisch fiir die Drehgruppe. Es sind gerade
diese geometrischen Sachverhalte mit den zugehérigen Formeln, welche fiir die Be-
schreibung des Kreisels von Bedeutung sind.

DaB es zu je zwei Vektoren a und b aus E eine eindeutige orthogonale,
orientierte Richtung gibt, wird algebraisch durch das Kreuzprodukt axbeE von a
und b ausgedriickt:

13° Es gibt genau eine bilineare Abbildung
x:EXE — E, (a,b) — axb
mit i) axb=-bxa

ii) e, Xe, = e, € Xe = e, eXe =g,

Denn unter Ausnutzung der in 13° aufgezeigten Eigenschaften muB "x" fiir

a= a“eu, b = b’e, die folgende Form haben

axb = (a®b® - a®bPe, + (a®b' - a'bdle, + (a'b® - bale,.
Diese Formel liefert zugleich die Existenz des Kreuzprodukts.

14° Rechenregeln fiir das Kreuzprodukt:
a) <axb,c> = det(a,b,c) = <a,bxc), wobei (a,b,c) wieder die Matrix

mit den Spaltenvektoren der Komponenten von q, b,c beziiglich der Orthonormalbasis

o o o L T I
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b) ax({bxc) = <a,c>b-<a,bdc.

c) GX(ch)+bX(cxa)ch(aXb) = 0, also ist E mit
fla,bIl == axb eine Lie-Algebra (vgl. L.5).

d) laxbl® = det(a,b,axb) = lal?[bl* - <a,b>Z.

e) laxbl| = |a||bllsing|, wobei ¢ der Winkel zwischen a und b ist.
f) laxb| = Flacheninhalt des von a,b aufgespannte Parallelogramms,
g) lexb| = dist(b,Re) (= min{[b-Xe|: X ¢ R}) fiir b,e ¢ E, mit |e| = 1.

h) Abx Ac = A(bxc) fir bce E und A ¢ SO(3).

Beweise. a) Die iiber dem Kérper R trilineare Abbildung o : E° — R,
pla,b,c) := <axb,c) erfiillt p(ei,ej,ek) = det(ei,ej,ek) nach 139 i), also p = det.
Die zweite Gleichung gilt wegen det(a,b,c) = det(b,c,a).

b) folgt analog mit o{a,b,c) = ax(bxc), o:E — E.

c) ergibt sich aus b).

d) sieht man nach Einsetzen von a x (b x a) nach b) in die nach a) giiltige
Identitdt |axbl*= <(axb)xa,bd.

e) folgt wegen |al®[bl®cos®p = <a,b)2.

f) ergibt sich aus e) in bezug auf eine Seitenlidnge |a|l des Parallelogramms
und die zugehérige Héhe [b||sino|.

g) folgt dann, weil in dem von e und b aufgespannten Parallelogramm die
Hohe |bllsing| = le x b] gerade die Distanz von b zur Geraden Re ist.

h) folgt aus a).

Die Struktur des orientierten euklidischen Raumes auf E liefert auch einen
interessanten Vektorraumisomorphismus © :80(3) —> E: Jedes X € 80(3) hat be-
ziiglich der Basis e,,e,e, wegen X + X' = 0 die Matrixdarstellung

o -x* x?
X = x 0o -x!
-x2 xt o

Setze w(X) := X“eu. Es gilt

15%) ©:80(3) — E st Vektorraumisomorphismus, welcher beztiglich
der Basen MI,MZ,M3 (vgl. L.6.9o), und e,,e,,8, durch die Einheitsmatrix dargestellt
wird: o(X'M,) = XY,.

b) Aus 13° i) folgt fiir alle aeE: M (a) = e, *a = o(M,) xa, daher
allgemein X{(a) = w(X) x a fiir X ¢ 0(3). Diese Identitit kann auch als Definition
von © dienen.

c) o ist Lie-Algebra-Isomorphismus (vgl. L.7), das heiBt es gilt noch

ol[X,Y]) = To(X),o(VT, X,Yed0(3).

Dazu muB nur o([X,Y]) = «{X) x w(Y) aus b) und der Kenntnis von [MU,MV] (vgl.
L69°) herceleitet werden
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Weiterhin ist ® &quivariant in folgendem Sinne:

16° o(AXAT) = Awo(X) gilt fiir alle X € 80(3) und A e SO{3), also mit
der Notation Ad, X := AXA™!: wodd, = Aocw.

Durch ® :80(3) —> E wird die euklidische Struktur von E auf 80(3)

iibertragen: Die Definition
X, YD = <o{X),0(Y)>, X,Y €80(3),

vermittelt ein euklidisches Skalarprodukt auf $0(3). SchlieBlich rechnet man leicht die
folgenden Identitdten nach:

17° «X,Y» = 1 Spur x'Y) = -4 Spur XY und € , » erweist sich als
ein Vielfaches der Killingform (vgl. L.10.8°). Deshalb auch:

18°  «IZ,YL,X» +<X,I[Z,Y]» = 0 also mit ad,X := [Z,X] fir
Ze80(3) (vgl. L9): <ad,X,Y» +< X,ad,Y» = 0.

19° €U, (X), Ad, (Y)Y = <X, YD fiir X,Y,Ze80(3) und A€ SO(3).
3. Kinematik des Kreisels

Nach dieser ausfiihrlichen Beschreibung von SO(3) und 80(3) soll jetzt auf
die Kinematik des Kreisels eingegangen werden. Der Konfigurationsraum ist nach 5.5 die
dreidimensionale Untermannigfaltigkeit S in R(3), die aufgrund von 5.4 oder 5.6.5°
mit SO(3) identifiziert werden kann: Im folgenden ist also S = SO(3).

Eine Bewegung des Kreisels (mit festgehaltenem Punkt) wird durch eine dif-
ferenzierbare Kurve A :] —> S gegeben, wobei J C R ein Intervall ist (vgl. 5.6). Zu
einem vorgegebenen Punkt des Kreisels sei P: ] —> E die zu dieser Bewegung geho-
rige Kurve, also die Bewegung des Punktes. Beziiglich des festen Koordinatensystems
des Raumes E mit Nullpunkt in dem festgehaltenen Punkt des Kreisels und mit (el,
ez,ea) als positiv orientierte Orthonormalbasis habe P(t) ¢ E die Koordinaten ql(t),
q%(t), % (t), also P(t) = “(t)eu. Fiir den Spaltenvektor q(t) = (q!(t), g®(t), ()T
sei qlty) = Alty)Q(t,) zu einem Zeitpunkt tg, also Qlty) = AT(to)q(to). Die Kor-
relation zwischen A(t) und P(t) ist durch q(t) = A(t)Q(t,) gegeben. Daher ist
Qlt,) = AT(t)q(t) = Q unabhingig von t;. Es sei A(t) = (AY(t)) beziiglich der
Basis (e,e, e,). Es folgt

P(t) = q“o(tle, = A(t)Q = Q"Aj(tle, = Q"E, (1),
mit E(t) = A%(tle, = AT(t)e,, v = 1,2,3. Die Gleichung P(t) = QVE,(t) bedeu-
tet daher, daB die Koordinaten Qi,QZ,Q3 von P(t) beziiglich des durch A(t) mitbe-
wegten, kdrpereigenen Koordinatensystem E,(t),E,(t),E;(t) konstant sind.

Aus qlt) = A(t)Q ergibt sich sofort

d%q(t) = 4t) = A(DQ = AA) 'glt) = X(tlq(t),
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wobei X(t) = A{AT(L) ¢ 80(3). Das bedeutet, daB der Tangentialvektor A(t) an
SO(3) im Punkte A(t) die Form A(t) = X(t)A(t) mit X(t) € 0(3) hat, vgl. 5.7.5°.
Mit der Definition o(t}) = o{X(t}) (vgl. 5.7.15°) folgt

(5.8) q(t) = wlt) xq(t).

olt) heiBt Winkelgeschwindigkeit des Kreisels in bezug auf das feste Koordinatensy-
stem e, e, e, des Raumes. Stellt man A(t) darals A(t) = A{t)Y(t) (vgl. 5.7.9°) mit
Y(t) = AT(DAW®) € 80(3), so gilt fiir Q(t) == w(Y(t)) wegen X =AYA*1=2[dAY
und nach 5.7.16%: AQ = Aw(Y) = o(Ad,Y) = o(X). Daraus folgen die Identititen
A(Q(t) x Q) = A(DQUL) x A(t)Q = wlt) x g(t) = g(t), also

(5.9) AT(t)g(t) = Q(t) x Q.

Da Q(t) := AT(t)('](t) die Geschwindigkeitskoordinaten beziiglich des kdrpereigenen
Systems E,(t),E,(t),E,(t) sind, ist 5.9 s0 zu verstehen, daB Q(t) die Winkelgeschwin-
digkeit des Kreisels in bezug auf das korpereigene Koordinatensystem ist.

Die kinetische Energie eines klassischen Systems von N Massenpunkten ist

ganz allgemein
1 ¥ . 2
T := 7 )(Z=:1 mxqu(t)l y

wenn q,(t) die Geschwindigkeit und m, > 0 die Masse des x-ten Massenpunktes
bezeichnet. Im Falle des Kreisels ergibt sich fiir eine Bewegung (A(t),A(t)) des
Systems im Phasenraum TS unter Verwendung von 5.8 und 5.9 fiir q=gq,x=1..
N, sowie 5.7.14°h):

N
T(AR), A(t)) = § % m, |o(t) x g (t)]? (5.8)
»o=1
N
=1 XZ=1 m, <olt) x q,(t),0(t) x q (t)>
N
=} <X mq(t) x (o(t) x q (1), 0(t)> (7.14%a))
n=1
N
= $< X mQ x(Q(t) x Q,),0t) (7.14°h),5.9.).
H=1

Q,, sind die beziiglich des kérpereigenen Systems El(t),Ez(t),Es(t) konstanten Ko-
ordinaten des x—ten Massenpunktes, und es gilt q,(t) = A(t)Q, . Mit der Abkiirzung

o) = 1§ Z:I:lmex x(bxQ,) fir beE gilt also:

(5.10) T(A(t),A(t)) = $<OQ(L),Q(L)>.

Um die kinetische Energie als Funktion T auf dem Phasenraum TS ohne
dynamischen Parameter t ausdriicken zu kdnnen, setzen wir fiir einen beliebigen kine-

matricchan Zitetarnd (A v e TC v r M © wib o A AN N A e
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(5.11) wgpv) -
o lv) =

o(vAT), das heiBt oglv) = X, sowie
o(ATv), das heiBt wplv) = Y.

In der oben dargestellten Situation ist also o(t) = wg(A(t)) und Q(t) = o (At)),
und es gilt allgemein Awg(v) = wg(v) wegen 5.7.16°. Entsprechend heiBt wg(v) die
Winkelgeschwindigkeit von (A,v) in rdumlichen Koordinaten und wK(v) die Winkel-

geschwindigkeit von (A,v) in kdrpereigenen Koordinaten.

(512) Satz. 1° © : E —> E ist symmetrische lineare Abbildung und posi-
tiv—definit.

2° Die Koeffizienten G)uv der Matrix von © in bezug auf die Basis e,e,,e,
sind

N

(:)uv = XZ” mx(lQMl2 Sw - Q)": Q;), (keine Summation iiber u,v!).
Dabei ist Q, = Q}e,.

3° Die kinetische Energie T auf dem Phasenraum TS ist

T(A,v) = §<OQu (v}, (v)>.

Beweis. 1° Fiir alle b,ce E ist
<oMb), > = <K§__\:I1 m,Q, x (bxQ,),c)>
=:§1 m <{bxQ ,cxQ >.
= <0(c),b> (vgl. 5.7.14° a)).
Also ist ©® symmetrisch. Ferner ist fiir be E\{0} stets
<O(b),b> = nzli m,lbxQ,I*>0,

das heiBt © ist positiv-definit.
2° folgt aus dem Ansatz < O(b),b> = @uvb“b" iiber

N 2 2 2
<O(b),b> = X m, (IbI*|QI* - <Q,,b>%).
H=1

3° Zum Tangentialvektor (A,v) € TS sei A:] —> S eine differenzierbare
Kurve mit (A,v) = (A(t),A(t)) fiir ein teJ. Wegen Q(t) = mK(A(t)) folgt aus 5.10
sofort: T(AV) = § <Ow(v),0 (V).

(5.13) Bemerkung. Durch die kinetische Energie T bzw. durch den Tensor
©® wird auf jedem Tangentialraum T,S, A€ S, eine symmetrische, positiv-definite

Bilinearform definiert:

galviw) == (Buv), o (w)>, v,weT,S.
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Eine solche Bilinearform ist eine Riemannsche Metrik (vgl. 8.20 in diesem Kapitel und
auch G.12).

Der Tensor ©: E —> E ist der Tridgheitstensor des Kreisels und hingt

nach Definition
N
o(b) = 3 m, Q x (bx Q,)
H=1

nur von der Massenverteilung ab. Da © symmetrisch und positiv—definit ist, kann ©
durch eine Hauptachsentransformation auf Diagonalform © = diag(1,1,,I;) mit posi-

tiven Eigenwerten I; > 0 gebracht werden. Es gibt also eine nur von e e, und der

11 eZY
Massenverteilung des Kreisels abhéngige Drehung D e SO(3), so daB beziiglich der ge~
;l. Die ei,
heiBen die Hauptachsen des Trigheitstensors und die 1,,1,,1, hieBen die zugehorigen

f [ — AT [ [ '
drehten Orthonormalbasis e, = Deu, = 12,3, gilt: @eu = Iue €y, €5

Haupttrdgheitsmomente.

(5.14) Das feste Koordinatensystem €,,€,,6; sei von nun an ohne Einschrin-

kung der Allgemeinheit so gew#hlt, daB e, = e;L gilt. T hat dann die einfache Form

TAW) = § 10 ")?, (AV) € TS,

Die Haupttrdgheitsmomente haben eine Verallgemeinung in bezug auf belie-
bige Einheitsvektoren in E.Ist e € E ein solcher Einheitsvektor, so ist A, = lex Q!
der Abstand des Punktes Q, von der Achse Re (vgl. 5.7.14 g)). Fiir eine Winkelge-
schwindigkeit @ = Xe, A € R, also (A,v) € TS mit welv) = w(ATv) = Q hat die

kinetische Energie den Wert
2, 2
T(AY) = 3<00,0> = $ 2% (X m 4A%)
H=1

N
Mit der Definition des Trdgheitsmomentes | o = L mKAi
n=t

in Richtung e folgt
(5.45) T = £ \%I_ fir © = Xe.

Fiir die Richtung der Hauptachsen e, e, e, folgt T = % A, , wobei I, mit dem
§

e
j
Eigenwert Ij von © liibereinstimmt.

© legt das sogenannte Trdgheitsellipsoid
&, = {QeE: <OQ,Q> =1} C E

fest. Die Hauptachsen von &, haben die Richtungen €.,€,,e; mit Langen Ij_é, j=1,
2,3.

Der Drehimpuls eines klassischen Systems von N Punkten ist ganz

allgemein:

N
2 =Y gt)xm g (t).
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Im Falle des Kreisels also:

N
(516) ¢ = ¥ m q(t) x {0lt) x q,(t)

x=1

Der Drehimpuls L im koérpereigenen Koordinatensystem ist L = ATé, also nach
5.7.14 h):

N
547) L =% m,Q x(Qt)xQ) = 0a().

H=1

Als Vektorfunktionen auf TS sind die Drehimpulse L: TS — R® bzw. ¢ gegeben
als

(5.18) L(A,v) = Qur(v), bzw. 2(A,v) = ABuwy(v).

Bei der Untersuchung eines starren Korpers mit unendlich vielen Punkten in
einem kompakten Bereich X C E mit Massendichte o : X —> [0, [ ergeben sich
folgende Verallgemeinerungen:

Konfigurationsraum ist wieder S = SO(3), wenn ein Punkt von X festge-
halten wird. Die Formel 5.12.2° fiir die Koeffizienten von © im diskreten Fall iibertragt

sich unmittelbar auf den kontinuierliche Fall, fiir den wir definieren:
i 2 _ atavygs
G196, = [_e@uals, - Q“Q"d Q

Der Tragheitstensor O = (G)uv) ist dann symmetrisch und positiv, wenn die Massen-

dichte o geeignet vorgegeben wird (z.B. p stetig und o > 0), und es ergeben sich

(5.20) T(A,v) = %(@wK(v),wK(vD als kinetische Energie, sowie
L(A,v) = Oug(v) als Drehimpuls im kérpereigenen System.

Analog zu I, im diskreten Fall ist I, == fx e(Q)le x QI?d3Q das Trig-
heitsmoment in Richtung e. Entsprechend ist
£, = {QcE:<OQ,0> = 1} = {2: (@ = 1)

das Trédgheitsellipsoid.
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6 DER HARMONISCHE OSZILLATOR

Der eindimensionale harmonische Oszillator ist gegeben durch den Konfi-

gurationsraum Q = R mit der Bewegungsgleichung
61) § = -kg

fiir eine Konstante k > 0. ( k ist die "Riickstellkonstante".) Dieses einfache klassische
System mit einer Bewegungsgleichung von der Form 3.1 steht in enger Beziehung zu
dem im vierten Paragraphen behandelten Beispiel des ebenen Pendels (vgl. 4.8). Mit
p = mq als Impulskoordinate (fir m> 0) erhilt man in der Formulierung 3.5 das

entsprechende System von Differentialgleichungen erster Ordnung:
62 g==%p, p = -mkq.

Bei geeigneter Skalierung der MaBeinheiten kann man k = m = 1 anneh-

men und erhilt so:

= -q bzw. 4=p, p = -q.

Natiirlich laBt sich in diesem Beispiel sofort eine explizite Lésung angeben.
Zur Lage G € R und zum Impuls p findet man die eindeutig bestimmte Lésung von
qQ = p, p = - q mit den Anfangsdaten q(0) = § und p(0)= P als

6.3) qlt) = (:1cost+ i;)s'mt,
p{t) = pcost - gsint, fiir teR.

Diesen einfachen Fall eines klassischen Systems mit Dynamik wollen wir
aber im Hinblick auf das Thema des Buches benutzen, um ein allgemeines geometri-
sches Prinzip der Reduktion des Phasenraumes exemplarisch kennenzulernen. Im
Gegensatz zu den Beispielen der letzten zwei Paragraphen haben wir jetzt keine von
aulen gegebene Zwangsbedingungen. Das System ist ja bereits reduziert, wenn es zum
Beispiel vom ebenen Pendel kommt (vgl. 4.8), und hat nur noch einen Freiheitsgrad.
Stattdessen liegt hier der Fall einer natiirlich gegebenen "Zwangsbedingung" durch die
Erhaltung der Energie vor.

Ganz allgemein sind neben den von auBen gegebenen Zwangsbedingungen
auch die inneren, physikalischen Zwangsbedingungen von Interesse, welche besser be-
kannt sind unter den folgenden Namen: ErhaltungsgréBe, Erhaltungssatz, 1. Integral,

} » T P » T
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(6.4) Definition. Eine Bewegungskonstante (bzw. ErhaltungsgrdBe, 1. Integral
etc.) eines klassischen Systems P = Q x R™, mit q = ®(q,q,t) ist eine differenzier-
bare Funktion F: P — R, die auf allen Bewegungen des Systems konstant ist.

F:P —> R ist also eine Bewegungskonstante des Systems, wenn fiir jede
Losung q:J —> Q von { = ®(q,q,t) auf einem Interval J CR die Funktion
t —> F(q(t),q(t)), te ], konstant ist. Damit gleichbedeutend ist

4 F(qt),4(t) = 0 bzw. <VE(q(),a®),(a(t), §(t))> = 0

fiir alle t € J. Man spricht von einer lokalen Bewegungskonstanten F, wenn F nur auf
V x R™ definiert ist, mit V C Q offen, und dort Bewegungskonstante ist.

Einen analogen Begriff von Bewegungskonstanten hat man fiir die am Ende
von Paragraph 3 eingefiihrten Impulsphasenrdaume P = Q x (R™* mit den entsprechen-
den Bewegungsgleichungen (g,p) = ¥(q,p,t).

Es ist klar, daB eine Bewegungskonstante F als Zwangsbedingung gewertet
werden kann: Ist g:J —> Q eine Bewegung des Systems und t, € J ein beliebiger
Punkt, so gilt F(q(t),q(t)) = Fla(ty),q(t,)) = ce R fiiralle te J. Also liegt flir die
zugehérige Kurve B des Phasenraumes (d. h. B(t) = (q(t),q(t)) fiir te J) die Menge
B(J) vollstandig in {(q,v) € P : F(q,v) = ¢} = F™ic). Analog hat man bei Impuls-
phasenrdumen und oft) = (q(t),p(t)), te]: al]) C F_l(cx(to)).

In vielen klassischen Systemen, namlich in den konservativen klassischen
Systemen, ist die Energie des Systems eine Bewegungskonstante ("Energieerhaltungs-
satz"). Im niachsten Paragraphen werden wir erldutern, in welchem Sinne dieser Erhal-
tungssatz die Folge einer Symmetrie ist.

In unserem Beispiel ist H(q,p) = 4 (p? + q%?) die Energie und tatsichlich
eine Bewegungskonstante: Fiir Bewegungen q:] — R des Systems gilt ja

LH(q(0),p(t) = pp+ aa = p(-a) +qp = 0.

Man beachte, daB8 zum Nachweis von %H = 0 nur die Bewegungsgleichungen 6.2 und
nicht etwa die Lésungen benutzt wurden. Mit H als "Zwangsbedingung" und Ee R

als "Energiewert” erhilt man jetzt die Energieniveaufldchen
HUE) = {(qp) eR’ | q>+p® = 2E}

mit der bereits oben allgemein formulierten Invarianzeigenschaft: Ist (q(t),p(t)) Bewe-
gung des Systems mit (q(t,),p(t,)) € H YEB), so verlauft (q(t),p(t)) ganz in H Y(E).
Ist also eine Lésung zum Energiewert E gesucht, so kann H YE) als ein neuer, redu-
zierter Phasenraum angesehen werden. In unserer speziellen Situation liefert dieses
Vorgehen: Fir E> 0 ist H '(E) = S! mit r = /2E, fir E=0 gilt H '(E) = {0},
und fiir E<0 hat man H Y(E)= #. Im interessanten Fall E > 0 beschreibt H '(E)
bereits die Punkte einer Bahn, chne den zeitlichen Verlauf innerhalb H UE) festzule-
gen. Dieser ergibt sich aus dem Ansatz q(t) = rcose¢(t), p(t) = rsing(t). Aus 6.2
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folgt & = -1 und daher ¢(t) = —t+a mit o ¢ R. Deshalb ist q(t) = rcos(-t + «),
p(t) = rsin(-t + «), fiir alle t aus dem Definitionsintervall J, in Ubereinstimmung
mit der Losung aus 6.3. (r und o errechnen sich aus den Anfangsdaten (&,p) € R?

durch r? = &%+ 3% und r(cos«, sina) = (q,p).)

Der n-dimensionale harmonische Oszillator ist gegeben durch den Konfigu-
rationsraum Q= R™ mit den Bewegungsgleichungen

1 n

65) 4= -q, q=I(q,..,9),

wobei die zum j~ten Freiheitsgrad gehérigen Riickstellkonstanten K bereits auf k=1
skaliert wurden. Mit den weiteren Normierungen m; = 1 fiir die j-ten Massen sind die
Impulse p; = d’. Daher ist das in 6.5 gegebene System 2. Ordnung unter Verwendung
der Notation p = (pys ... ,p,)} dquivalent zu dem folgenden System 1. Ordnung:

66) q=p, p=—-q.

Losungen von 6.6 ergeben sich ganz leicht aus den Lésungen von 6.3. Ohne

diese Losungen zu benutzen, ist wieder klar, daB die Gesamtenergie des Systems
L S 2
= 3UplP+1q), Ipl? = ¥ p2,
V=1

eine Bewegungsinvariante ist. Denn es gilt:

6.7 3 H(q(t),p(t)) = <p,p> +<q, 4> = <p,~q> + <q,p> = 0.
Als "Energieniveauflichen" hat man jetzt fiir E> 0 :

6.8) H'(E) ={(q,p) e R"xR™ | Iql? + |p2 = 2B} = ™!,

mit r = Y2E. Jede Bahn des Systems mit der Energie E verlauft ganz in der Hyper-
fliche H™YE). Will man eine Ubersicht iiber alle Bahnen zu einer festen Energie
E > 0 erhalten, so kann man auf H™WE) die folgende Aquivalenzrelation einfiihren:
Fiir a,be HY(E) sei a~ b, wenn es eine Bahn des Systems mit der Energie E gibt,
die a und b miteinander verbindet.

Der Quotient Bp := H™YE)/_ ist dann der Bahnenraum zur Energie E
und parametrisiert offenbar alle méglichen Bahnen des Systems mit Energie E.

In unserer Situation lassen sich die Bahnen mit Hilfe der komplexen Struktur
auf R°™ besonders einfach beschreiben: Fiir (q,p) schreibe man z:= p +iq und ver-
stehe die Komponenten z¥ von z als komplexe Koordinaten z° = p, + iq” e C. Auf
diese Weise ist R°™ mit c® identifiziert, und wir werden gleich zeigen: a ~b gilt
genat dann, wennes © € R mit d = elPh oiht Donm & — & a4 & — o u T Vg
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Wegen -q +ip = ilp +iq) = z lauten die Bewegungsgleichungen in der komplexen

Schreibweise einfach:

(69) 7z = iz.

In jeder Komponente ist 7¥ = iz¥. Die L3sung ist Z¥(t) = z¥(0)e'* nach
6.3, also z(t) = z(0)e'®. Sind a und b auf der Bahn zur Bewegung z(t) = z(0)e't,
so gilt z(to) = a und z(t,) = b filr geeignete tt . Es folgt z(t;)) = 2(0) e'®0, also

zlt,) = elto ) (0) et = ei(t""tl)z(tl). Daher ist a = e®b mit ¢ = to — ;.
Gilt umgekehrt a = e!®b Ffiir ein ¢ € R, so hat man fiir die Bahn z(t) = ae'™:
z(0) = a und z(-¢) = ael® = b.

An dieser Stelle sei an den komplex-projektiven Raum P, _,(C) erinnert (vgl.
Anhang M.9). £ __,(C):= E?>§“_1/m mit der folgenden Aquivalenzrelation: a ~ b, wenn
es AelUll) = {AeC:|x[=1} mit a= Ab gibt. Insgesamt ist damit gezeigt worden:

(6.10) Satz: Der Bahnenraum BE fiir den n-dimensionalen harmonischen
Oszillator zur Energie E > 0 ist der komplex-projektive Raum P __,(C), und die Quo-
tientenabbildung ¢ : H }{(B) —> BE = P__,(C) hat als Fasern zp'i(x) gerade die

Bahnen zur Energie E.

Im ilbrigen bezeichnet man ganz allgemein in konservativen Systemen die
Mengen I := HYE) als Energieniveaufldchen, wenn H die Energiefunktion ist.
Dabei impliziert diese Formulierung noch nicht, daB 3 wirklich immer eine Hyperfla-
che ist, im Sinne einer Untermannigfaltigkeit (vgl. Anhang M). In unserem Beispiel ist
% genau dann eine Untermannigfaltigkeit der Dimension 2n - 1, also eine Hyperflache
im Rzn, wenn E> 0 gilt.

DaB die Energie eine Bewegungskonstante ist, 1aBt sich ganz einfach bestati-
gen durch das Einsetzen der Bewegungsgleichungen (vgl. 6.7), kann aber auch als Folge
der natiirlichen SO(2)-Symmetrie des Systems verstanden werden: SO(2) wird reali-
siert durch die zu SO(2) isomorphe Gruppe U(1) = { A e C ] fx|l=11}, und fiir die zu
X e U(1) gehorige Transformation A :z —> z':= Xz gilt: 2'=\Z2= Niz=1Z'; die
Bewegungsgleichungen sind also invariant unter dieser Transformation. Diese Invarianz
filhrt zu H als Bewegungskonstante (vgl. 9.12.1°). Auf den Zusammenhang von Symme-
trie und ErhaltungsgréBen, das eigentliche Thema dieses Kapitels, komme ich in den
néchsten Paragraphenzu sprechen.

Der n—dimensionale harmonische Oszillator hat weit mehr Symmetrie als nur

k yon z unabhingig

die SO(2)-Symmetrie. Zum Beispiel kénnen die Komponenten z
voneinander "gedreht" werden, ohne die Bewegungsgleichungen 6.9 zu verdndern: Sei
N x) e U™ = SO(2)™ mit der zugehsrigen Transformation z —> z' = ()\121,

‘..,)\nzn). Aus z = iz folgt z' = iZ' und vice versa.
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(6.11) Als ErhaltungsgroBen erhilt man daraus die "partiellen Energien”
2 2 2
H_ = 3((g®" +p.) = §lz¥|

(Beweis wie im eindimensionalen Fall) und zu den Vektoren E = (EpEZ' . E )€ [Rn,

Ek > 0, gehoren die n-dimensionalen invarianten Untermannigfaltigkeiten
Mg:= {zeC": H(z) = E_ fir k = L,.n} = Sy, XX Sp

mit r, = -/ZEk‘ Jede Bahn, die Mg trifft, verlauft vollsténdig in Mg.
Eine andere Symmetrie des Systems ist durch die spezielle unitére Gruppe
SU(n) gegeben, wie man an den Bewegungsgleichungen 6.9 sofort sieht; denn SU(n)

kann als die folgende Gruppe von komplexen nxn-Matrizen definiert werden:
SUn) = {AeC(n) : Fiir alle zeC” gilt |Azl=|z| und detA = 1},

n
wobei |z| die euklidische Norm mit Izl2 = Z:llzvl2 ist. Im Falle n = 2 erhilt man
N=

zur dreidimensionalen Gruppe SU(2) die drei Bewegungskonstanten

(642) ¢'(2) = Re(#'z%) = q'q® + p,p,
9%(z) = Im(z'z%) = q'p, - o’p,
2
¢%2) = $(12'° - 122°) = H, - H,

Man priift leicht nach, daB !, ¢2, ¢* wirklich ErhaltungsgréBen sind (z.B.
dgtcpl(z) = Re(7'2z? + 7132) = Re(-iz!z? +i7'22) = 0). (In welchem Sinne diese Er-
haltungsgroBen von der SU(2)-Symmetrie stammen, wird spéter erldutert, vgl. 9.12.1°,
im Rahmen iiber des allgemeinen Zusammenhang von Symmetrien und Erhaltungsgré-
Ben.) Durch 6.12 ist eine Abbildung

(613) ¢:C* — R®, ¢ = (pl,9%¢%, P = C2,

des Phasenraumes P nach R® gegeben, welche spéter als die Momentenabbildung
erkannt werden wird (in 9.14.4°). Auf der Energieniveaufliche

H'0) = 3 = {zeP: (21 + 1227) = 1} = 8%, r = 47,

ist ¢ natiirlich als Restriktion ebenfalls definiert, und es gilt p(2,) C Sf = 52, Die
Einschrdnkung von ¢ auf I := %, werde wieder mit ¢ bezeichnet. Dann ist diese
Einschrankung ¢ : & —> 8% eine surjektive Abbildung, deren Fasern ¢ '(x), x ¢ 52,
jeweils Kreislinien in % sind. Und zwar sind diese Kreislinien gerade die Bahnen des
Systems zur Energie E = 1 und den speziellen Werten x e $% fiir @: Zu ae tp_i(x)
ist z(t) = ae' Lésung durch a mit Bahn {da: A e UM} = ¢ Yx). ¢ ist also
wegen 52 P,(C) die Projektionsabbildung der oben beschriebenen Aquivalenzrela-
tion (vgl. 6.10), und o(z) = $2 ist der Bahnenraum B, der Bewegungen zu Energie

E = 1. Im iibrigen wird die Projektionsabbildung ¢ : Sf — P0) = $2 in anderem
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7 ZENTRALFELDER UND SATZ VON NOETHER

Am Beispiel der Zentralfelder soll das Hauptthema dieses Kapitels, namlich
der Zusammenhang zwischen Symmetrien und Erhaltungssidtzen in der Klassischen
Mechanik, exemplarisch dargestellt werden. Danach werden Symmetrien in allgemeinen
Lagrange-Systemen studiert, und der Satz von Noether wird in verschiedenen Versio-
nen bewiesen. Dabei steht zunichst einmal der Fall einer offenen Menge des R™ als
Konfigurationsraum im Vordergrund. Der allgemeinere Fall einer Mannigfaltigkeit als
Konfigurationsraum wird hier nur kurz gestreift. (Mehr dariiber findet man im achten

Paragraphen.) Der Paragraph endet mit einer ausfiihrlichen Behandlung von Beispielen.

Ein Zentralfeld (oder Zentralkraftfeld) F: R°\{0} —> R® ist ein Vektor-
feld F auf dem Ortsraum Q= R°\{0} von der Form Flq) = <P(1Q|)1%]', qe R>\{0},
wobei ¢: 10,0 —> R eine geeignete Funktion ist.

Beispiele fiir Zentralkraftfelder: F(q) == -q, q¢€ RS, beim dreidimensiona-
len harmonischen Oszillator. F(q) := —kq(lql)'a, qe R3\{O}, beim Keplerproblem
(mit einer Konstanten k > 0, vgl. das ausfiihrlich behandelte Beispiel 7.12 am Ende die-
ses Paragraphen). Natlirlich ist auch F = 0 ein Zentralkraftfeld.

Ein stetiges Zentralfeld ist immer ein konservatives Vektorfeld. Dabei heiBt
ein stetiges Vektorfeld F: Q ~—> R" auf einer offenen Menge Q des R™ konserva-
tiv, wenn es Gradientenfeld ist, also von der Form F = — VU fiir eine differenzierbare

Funktion U auf Q, die dann Potential von F genannt wird. (Es ist im iibrigen leicht
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zu sehen, daB ein stetiges Vektorfeld F genau dann konservativ ist, wenn es wegunab-
héngig integrierbar ist.) Denn ein Zentralfeld F mit einer Funktion ¢ wie oben ist
genau dann stetig, wenn ¢ stetig ist; und fiir eine stetige Funktion ¢ mit Stammfunk-
tion ® wird durch UW(q) =~ &(|ql), qe IRS\{O}, ein Potential von F definiert: Es
gilt ja F=-gradU=-VU.

Fiir konservative Felder gilt stets der Energieerhaltungssatz. Das soll heiBen,
daB in dem einfachen klassischen System (vgl. Paragraph 3) mit dem Konfigurations—
raum Q C R3, dem Phasenraum Q x R® und den klassischen Newtonschen Bewegungs-
gleichungen m{ = F(qg) zum "Kraftfeld" F (vgl. 3.2) die Funktion "Energie"

E(q,v) = %mv2 + Ulq)
auf dem Phasenraum P = Q xR® eine Bewegungskonstante ist (vgl. Definition 6.4):
Fiir jede Bewegung q = q(t) des Systems ist E(q(t),q(t)) konstant beziiglich t, denn

§Eam.am) = SEat + BB = <mat,qw> + Vua) >

{mq(t), §(t)> - <F(q(t)),q(t)>
<mq(t),q(t)> - <mg(t),q(t)> = 0.

Il

I

Am Ende dieses Paragraphen (Beispiel 7.10.3°) werden wir sehen, daB der
Energieerhaltungssatz von einer Symmetrie des klassischen Systems kommt. Vorerst
wollen wir uns bei den Zentralfeldern aber der offensichtlichen Drehungssymmetrie des
Systems zuwenden, welche zur Erhaltung des Drehimpulses fiihrt.

Ein Zentralfeld F ist stets SO(3)-invariant: Fiir jede Rotation A € SO(3)
gilt wegen |Aql = |ql: AF(q) = F(Aq) fiir alle qe R\{0}. Aufgrund dieser Symme-
trie sind die Komponenten des Drehimpulsvektors 1:= qx mv Bewegungskonstanten
auf dem Phasenraum P = Q x R®, wie man durch einfache Rechnung zeigen kann: Fiir
jede Bewegung des Systems, also fiir jede Kurve q: ] —> R’ (J ¢ R ein Intervall} mit
mg = F(q) und daher mv = F(q) fir v == q gilt I(q{t),v(t)) = constans wegen

(7.1) %;I = gXmv + gXmv = vXmv + qx(p([ql)-[%—[= 0,

da ja fiir linear abhingige Vektoren ViV, im R® das Kreuzprodukt v, x v, verschwin-
det {vgl. 5.7.13°).

Mit diesem Resultat kann man zum Beispiel das Keplerproblem auf ein
System mit nur einem Freiheitsgrad reduzieren, welches sich dann einigermaBen einfach
behandeln und 16sen 148t (vgl. 7.12).

Was steht unter dem Aspekt allgemeiner Symmetriegruppen hinter diesem
Beispiel? Inwiefern ergibt sich die Erhaltung des Drehimpulses aus der Symmetrie?

SO(3) wird als Gruppe von den Matrizen der Form

1 0 0 coss —sins O

Ag= 0 coss -sins und Bg= | sins coss 0|,

n PR e v " ~ a
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s € R, erzeugt (vgl. Anhang L.4.2°). Wendet man die parameterabhiingige orthogonale
Transformation Ag : R® —> R® auf eine Losung qft), te], der Bewegungsglei-
chungen mq = F(q) an, so ist fiir festes s die Kurve qg4(t) = A (q(t)), t € J, wieder
eine Losung der Bewegungsgleichungen: mgg = A (mq) = AF(q) = F(A q) = Flqg).
Auch die Lagrangefunktion L auf P (vgl. Paragraph 3)

(72) L= {mv® - U(q), (g eR®, q+0,

die als Euler-Lagrange—Gleichungen gerade die Bewegungsgleichungen m{ = F hat,
ist SO(3)-invariant: Es gilt L(Aq,Av)=L{q,v) fiir alle A€ SO(3) und fiir alle
(q,v) € P. Insbesondere ist L(qg(t),q4(t)) unabhéngig von s e R: Differenziert man

nach dem Parameter s, so liefert das mit Hilfe der Kettenregel
(73) 0 = %L(qs(t),qs(t)) = {mgg(t), Xqglt)> + (Flgglt)),Xq4lt)>,

wobei X die eindeutig bestimmte Matrix mit Ag; = exp(sX) (Exponentialreihe, vgl.
L.6 und 5.7.3°) ist, also hier:

[
(=4
~ o
I
£

(7.4) X

Aus 7.3 18Bt sich nun noch einmal herleiten (vgl. 7.1), daB die erste Komponente
Iylq,v) = <mv,Xq> = m(qzv3 - g%
des Drehimpulses I = q x mv eine Bewegungskonstante ist:

L]

78 Flla®rd®) = $I(Aqat),Ag®) = $lmAg®, XAa®)>
= (mAL(t), XAa(L)> + <mAG(L), XAg(t)>
— <miglt), Xag()> + <Flagt)), Xqg(t)>

= 0 nach 7.3,

Natiirlich ist die gerade durchgefiihrte Rechnung iiber die Stationen 7.2 bis
7.5 mit der Schar (As) von Rotationen viel komplizierter als der Nachweis in 7.1, und
man erhalt zunichst nur Ix = Il, die erste Komponente des Drehimpulses I, als eine
Bewegungskonstante. Aber diese scheinbar so komplizierte Herleitung 14Bt erkennen,
in welcher Weise die Symmetrien As des Systems eine Bewegungskonstante erzeugen,
namlich durch 7.3, und diese Methode der Herleitung ist verallgemeinerungsfahig: Flir
Lagrange—Systeme mit einer Schar von linearen Symmetrien erhidlt man so eine erste

Version des Satzes von Noether.
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(7.6) Satz von Noether I. Sei Q C RrR" offen, und sei L Lagrangefunktion
auf dem Geschwindigkeitsphasenraum P := TQ=Q xR" . Es sei ferner X € R{(n)
eine (nxn)-Matrix, so daB L invariant ist beziiglich der 1-Parametergruppe esX,
s€ R, das heiBt es gilt L(qv) = L(e5%q,e*V) fiir alle s, qQ,v, wobei se€R und
(q,v) € Q x R™ . Dann ist Iy (qv) = < % (qv),Xq>, kurz: Iy = <52 aL X> = a% X,
eine Bewegungskonstante des Lagrange-Systems (P,L), also des emfachen klassischen

Systems mit dem Phasenraum P und den Bewegungsgleichungen 3.3.

Der Beweis verlduft wie in 7.3-7.5 : Statt 7.3 erhdlt man unter Verwendung
der Kettenregel mit Ag = X :

0=4 LA, A a0 =
SeAga®,Aa(0), 4 A0 + (T (agam,agam), Lajqw)
Analog zu 7.5 folgt:
&1ty =4 (& (agqw,Aqw), & Aga(®) D]
= (§{3aaw.Aa0) LA qw> + <—;(Asq(t),ASq(t)),T(%Asq(t)>l5=0

= (Ghaga.aga), Saam) + Gk agam, Agaw), A, =

Damit ist der Satz von Noether, der die Beziehung zwischen Erhaltungs-
groBen und Symmetrien herstellt, formuliert und bewiesen. Zur Behandlung und L&sung
eines klassischen Systems sollte man angesichts dieses Resultats folgendermaBen vor-
gehen: Man bestimme geniigend viele Symmetrien, berechne die zugehorigen Bewe-
gungskonstanten und reduziere das System, indem man die Bewegungskonstanten als
Zwangsbedingungen behandelt, auf ein System mit weniger Freiheitsgraden. Im Falle
des harmonischen Oszillators haben wir dieses Programm im vorangehenden Paragraph
durchgefiihrt, ohne allerdings die Bewegungskonstanten als GréBen wie im Satz 7.8 zu
erhalten. Fiir den Kreisel und das Keplerproblem wird auf diese Methode in den Beispie-
len 7.13 und 7.12 ausfiihrlich eingegangen.

Vor den Beispielen wollen wir noch auf fiinf wichtige Verallgemeinerungen

des in Satz 7.8 dargelegten Resultats eingehen:

1. Statt die Transformationen A  fiir jedes s € R als spezielle Exponen-
tialreihe zu einer infinitesimalen Matrix X und damit als lineare Transformationen zu

erhalten, kann man auch folgende allgemeinere Situation voraussetzen:

®) ¢.:Q —> Q ist Diffeomorphismus fiir jedes s ¢ R, und die Abbil-
dung (s,q) —> ¢_q = ¢, ist differenzierbar.
B) @ap = ogp, fiir alle steR.

WY Tln A Den (AYv) — Tl o) Fite alle o M 11ed (=% - D
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Eine Schar von Diffeomorphismen ¢_ mit o) und ) nennt man I-Parametergruppe. Sie
heiBt I-Parametergruppe von Symmetrien des Lagrange-Systems (TQ,L), wenn auch
noch y) gilt. In v) ist De_(q) die Ableitung (bzw. Jacobi~Matrix) von ¢_ im Punkte
q € Q als lineare Abbildung D¢ _(q) : R” —> R” und D¢ (q).v ist der Wert der
Abbildung D¢ _(q) in v. (Im Formalismus der Mannigfaltigkeiten ist D¢g(q) die Tan-
gentialabbildung Deglq) = qu:s : TqQ —_> T(Pqu, vgl. Anhang M.10). Im tibrigen
ist durch a)-v) tatsdchlich eine Symmetrie im Sinne von 1.3 gegeben: Die Symmetrie-
gruppe ist die additive Gruppe R, die Wirkung auf Q ist

®:RxQ — Q, (s,q9 —> ¢_q,
und die Struktur, die von der Wirkung invariant gelassen wird, ist durch die Lagrange-
funktion L und daher durch die Gesamtheit der Bewegungen von (TQ,L) gegeben.

Durch X(q) := adgcpsq s=o Wird dann ein Vektorfeld X: Q —> R" auf
Q definiert. X wird der infinitesimale Erzeuger der 1-Parametergruppe (p_) genannt

(vgl. M.14). Als nichtlineare Version von 7.6 erhilt man:

(7.7) Satz von Noether 1. Sei (p,) eine 1-Parametergruppe von Symmetrien

des Lagrange—Systems (TQ,L) mit dem infinitesimalen Erzeuger X.Dann ist die GréBe

= 9L
Iy = 5+ X

eine Bewegungskonstante des Systems.

Der Beweis dieses Satzes folgt dem Beweis des letzten Satzes; zu beachten
ist im Vergleich zur Situation in 7.6, daB dort die Transformationen As linear sind,
also DA, = A_ gilt.

2. Der infinitesimale Erzeuger X einer 1-Parametergruppe (ops) von Sym-
metrien eines Lagrange-Systems (TQ,L) erfiillt die Identitét

oLy , LIX, _

aq ov aq"“o-

Denn es ist

d oL d oL d
0 = gsLlay) = Llp,a,De @)V |5 o = 53 dsPss=0 * 3y dsDPs(DV]sco
_ oLy , 9L X
T oq X+ ov aq"-

Fiir solche X gilt die folgende infinitesimale Version von 7.7:

(7.8) Satz von Noether I': Es sei (TQ,L) ein Lagrange—System wie in 7.8 mit
einem Vektorfeld X : Q —> R”, welches die Invarianzbedingung

oL oLoX  _
aqX+avaqv_0

erfiillt. Dann ist 1,{q,v) = g‘lf X eine Bewegungskonstante.

Beweis. Finfach differenzieren und Bewecunesgleichuneen einsetzen:
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d 4) = 4 (oL oLdy _ oL oL X . _
de %@ = g GUIX + o X = 55X + fygha=o.
Man nennt ein Vektorfeld X mit %liX +%%v = 0 eine infinitesimale

Symmetrie von (TQ,L). Im iibrigen folgt 7.7 aus 7.8. Es gibt aber Vektorfelder X,
deren maximale Lésungsschar ¢, , das heiBit ad?ps(q) = Xlp,{q)) und 9ol@) = q,

nicht aus globalen Diffeomorphismen besteht. Insofern ist 7.8 allgemeiner als 7.7.

3. Das Resultat iibertrigt sich von offenen Mengen Q c R" als Konfigura-
tionsrdumen auf beliebige Mannigfaltigkeiten Q (Eine Mannigfaltigkeit ist in diesem
Buch stets eine differenzierbare Mannigfaltigkeit (vgl. Anhang M); Funktionen, Abbil-
dungen, Vektorfelder, etc. sind stets beliebig oft differenzierbar, wenn nicht ausdriick-

lich etwas anderes angegeben wird.):

(7.9) Satz von Noether II. Sei Q eine Mannigfaltigkeit, P := TQ das zuge-
hérige Tangentialbiindel (vgl. M.7 und M.10) und L: P — R eine Lagrangefunktion.
(P,L) ist dann ein Lagrange-System mit dem Konfigurationsraum Q, (Geschwindig-
keits—) Phasenraum P und der Dynamik, die lokal durch 3.3 gegeben ist. Eine !-Para-
metergruppe von Symmetrien des Systems (P,L) ist eine Schar von Diffeomorphismen

P5:Q — Q, seR,
mit den zu «) - v} analogen Eigenschaften. Eine solche Schar von Symmetrien erzeugt
iiber das Vektorfeld X gegeben durch X(q) := %@Sq’szo, g € Q, wieder eine Bewe-
gungskonstante I, welche in lokalen Koordinaten der Mannigfaltigkeit Q wie oben
durch 1y (q,v) = <% (@v),X(@)>, Iy = %X, gegeben ist.

Auf Lagrange-Systeme mit einer Mannigfaltigkeit Q als Konfigurations-
raum gehen wir ausfiihrlicher im nichsten Paragraphen ein, vgl. 8.14 ff. Analog zu dem
tbergang von 7.7 nach 7.8 hat man auch eine infinitesimale Version des Noetherschen

Satzes flir Mannigfaltigkeiten als Konfigurationsraume.

4. Infinitesimale Symmetrien und 1-Parametergruppen kommen hiufig von
der differenzierbaren Wirkung einer Matrixgruppe ®:Gx Q —> Q, welche das
Lagrange—System (TQ,L) in folgendem Sinne invariant l&Bt:

L{g,v) = L((Dg(q),Tq@g(v)) fiir alle ge G und alle (q,v) e TQ .

(In dem Beispiel von Zentralfeldern F zu einem Potential U mit der Lagrangefunktion
L= %mv2 - U(q) wiein 7.2 ist SO(3) eine solche Symmetriegruppe.) Der entsprechen-
de Noethersche Satz besagt dann, daB jedes Element X der Lie-Algebra von G eine
Bewegungskonstante 1y, erzeugt,und man erhilt auf diese Weise eine vektorwertige
Bewegungskonstante (wie zum Beispiel den Drehimpuls bei Zentralfeldern). Wir kom-
men auf solche Gruppensymmetrien in dem allgemeineren Rahmen von Hamilton—Syste-
men im neunten Paragraphen zuriick (vgl. 9.13/14).
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5. Die fiinfte angesprochene Verallgemeinerung betrifft solche klassischen
Systeme, die iiber den Impulsphasenraum als Hamilton—Systeme gegeben sind (vgl. 3.3).
Manche Symmetrien eines Hamilton—-Systems lassen sich nicht als Symmetrien des zu-
gehorigen Lagrange—Systems auffassen (vgl. das Beispiel des harmonischen Oszillators
7.11), insofern handelt es sich bei der Untersuchung von Symmetrien von Hamilton—
Systemen um ein echte Verallgemeinerung gegeniiber der in diesem Paragraphen be-
trachteten Situation. Statt den entsprechenden allgemeinen Satz hier zu erldutern, zu
dessen Formulierung man den Hamiltonformalismus bendtigt (vgl. Satz 9.17), wollen

wir uns jetzt den Beispielen zuwenden:

(7.10) Beispiel: Die klassischen Erhaltungssitze. Zunichst behandeln wir die

10 ErhaltungsgroBen, die bei freien Systemen aufgrund der Galilei-Invarianz vorliegen.

1° SO(3)-Invarianz. Beginnen wollen wir mit der SO(3)-Invarianz von
Lagrangefunktionen der Form 7.2 und nur noch einmal darauf hinweisen, daB die drei
Drehimpulskoordinaten tatsichlich als Bewegungskonstanten der Form I, X = M,,

M, ,M;, wie im Satz von Noether erhalten werden konnen.

2%  Translationsinvarianz. Fiir offene Q CR sei L: Q x RY — R" eine
Lagrangefunktion, welche fiir ein b e R™ gegeniiber allen Translationen der Form
q > q+sb, se]-ecel invariant ist. Dann definiert A_q = q+ sb eine 1-Para-
meterschar von Symmetrien. Das zugehorige Vektorfeld Xq = -(%(q +sbl|,_, erfiillt
X(q) = b, ist also ein konstantes Vektorfeld. Die gesuchte Bewegungskonstante ist

daher I, = <%,b> . Fiir den Fall von L = T - U als Differenz von kinetischer

Energie T := %mvZ und potentieller Energie U = Ulg) (U ist hier das Potential
zu einem konservative Kraftfeld; vgl. die Erlduterungen zu Beginn dieses Paragraphen
und die ausfiihrlichere Darstellung im nichsten Paragraphen) erweist sich I, = <mv,b>
als der (lineare) Impuls in Richtung b . Man nennt im Falle vom b = e, die Variable

q" eine zyklische Variable. Die zugehorige Bewegungskonstante ist %u.

3° Zeittranslationen. Der Fall der Energie als Bewegungskonstante ist in
dem gerade entwickelten Formalismus etwas komplizierter, weil die Zeit eine Sonder-
rolle spielt: Einerseits ist sie Komponente der Galilei-Raumzeit, andererseits wird sie
in diesem ganzen Paragraphen als der dynamische Parameter benutzt, nach dem sich alle
GroBen entwickeln.

Zunichst 148t sich durch einfaches Differenzieren und Ausnutzen der Euler—
Lagrange—Gleichungen leicht nachpriifen, da8 fiir eine Lagrangefunktion L: Q— R

die "Energie" E := %v — L stets eine Bewegungsinvariante ist:

d d oL oL d d oL ., OL .. d
aEE = a‘f('g‘T)V'Fa—vafv—aEL = -a‘aq‘*‘a—v-q “‘a{L = 0.

Um den Zusammenhang zwischen Erhaltung der Energie und Symmetrie bei
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zwei getrennte "Rollen” zu zerlegen. Es sei also wie oben in 3.3 ein Lagrange—~System
durch einen Konfigurationsraum Q ¢ R™ und eine Lagrangefunktion L:P —> R

vorgegeben. Wir erweitern Q zu dem neuen Konfigurationsraum Q' = QxR mit
Koordinaten (q,t) und P zu P' = Q' x ™! mit den Koordinaten (q,1,v,v). Die neue
Lagrangefunktion ist L'(q,v,v) := L(q,%)v, insbesondere ist L' unabhdngig von T,

genauso wie L von t unabhingig ist. Deshalb ist L' invariant gegeniiber Zeittransla-
tionen v ——> 1+ sb . Die zugehé&rigen Euler-Lagrange-Gleichungen von L' fiihren
unter Normierung von t = 1, also t(t) = t+c¢ und v(t) = ¢ = 1, zu den gleichen

Bewegungsgleichungen wie die von L, zuziiglich der Gleichung

1]
) FL AL e vy,

Die Schar von (Zeit-)Translationen A : Q' —> Q', (q1) — (q,1 + sb),
erfiillt offenbar L' (A (g,7),DA_(v,v}} = L' (qvv) wegen DA, = A, = id, so daB
sich nach dem Satz von Noether I' iiber X(q,1) = a—(q,t +sb) = (0,b) als Bewe-
gungskonstante I, folgende Funktion ergibt:

I (qv) = <— 0> + (qvl)b = b(L{q,v) - ( (qv) v>) = -bE.

Den Namen "Energie” verdient die Funktion E im iibrigen zu Recht. Zum Beispiel gilt
im Falle L = T - U mit kinetischer Energie T = %mv2 und potentieller Energie U

die Identitit (-——(q v),v> = 2T unddaher E = 2T-L = T+ U.

4° Spezielle Galilei-Transformationen. Die speziellen Galilei-Transforma-
tionen Gy, be R® , die wir im zweiten Paragraphen kennengelernt haben, und die eben-
falls zu den fundamentalen Symmetrien der Klassischen Mechanik gehoren, fiihren im
Lagrange-Formalismus &hnlich wie in 3° nicht ohne besondere Anstrengungen zu Bewe-
gungskonstanten. Der Grund dafiir ist die Zeitabhingigkeit der Transformationen, so
daB auf jeden Fall dem Konfigurationsraum die Zeit als weitere Koordinate hinzugefiigt
werden muB. Wir behandeln hier den Fall eines Lagrange-Systems mit k Massenpunk-
ten mit Massen m,, >0 und Konfigurationsraum Q RSk, dessen Koordinaten in
Dreiervektoren q, = (qi,qi,qi) e R? geschrieben werden, beziiglich der Lagrange-
Funktion

Law) = $ 5 mys = T V,nla, - g\,

wobei die V,, Funktionen in einer Variablen sind, die zugehorigen Potentiale also nur
von den Abstidnden der Massenpunkte abhingen.
Zu der 1-Parametergruppe s+——> Ggh» Ggplat) = (q + stb,t), (q,t) € RexR,
beR® fest, von Symmetrien der Galilei-Raumzeit gehdrt die Bewegungskonstante
= <b,A)>, wobei A := tP - MC mit

P = Zl,::lmxvx (Gesamtimpuls),
M= YK

re=1 10, (Gesamtmasse),

C = M—lyk wr A Co~brcrmermise £}
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Die Invarianz von A folgt direkt aus P = 0 (vgl. 2°)und MC = P.

Will man verstehen, wie die Bewegungskonstante A von den speziellen
Galilei-Transformationen iiber den Satz von Noether erzeugt wird, so kann man fol-
gendermaBen vorgehen:

Man erweitert den Konfigurationsraum Q C [RSk um die Zeitachse R zu
Q' = QxR und nimmt als zugehorige Lagrangefunktion

L'(q,t,v,v) == Llq,v) - Mv fiir (qt,v,v) e TQ" & Q'x Rakﬂ .

Als die zu Gy, gehorige Galilei-Transformation G, auf Q' definiert man sich
GL{(dyQgs e »Ggrt) = (Q+ bt, gy + bty g+ bt £,<b,C> + FIbI*(1)).

Man priift jetzt nach, daB G{) auf Q dieselbe Wirkung hat wie Gy, daB L' auf Q
dieselben Bewegungen erzeugt wie L, daB L' invariant ist beziiglich G{, und daB der
infinitesimale Erzeuger von (G'Sb) die Form

X(a,, Gy Qpot) = (bt, bt,... ,bt,<b,C>)
hat. Also ist nach dem Noetherschen Satz die folgende GriBe eine Bewegungskonstante:

Iy = <230 = (Zm,y, )bt - M<b,C> = <b,Pt — MC> = <b,A>.

Da dies fiir alle b e R® gilt, ist natiirlich auch der Vektor A bewegungsinvariant.

(7.11) Beispiel: Der harmonische Oszillator. Beim eindimensionalen harmoni-
schen Oszillator, der in Paragraph 6 behandelt wurde, hat man natiirlich die offensicht-
liche SO(2)-Symmetrie des Systems. Diese laBt sich aber im Lagrange-Formalismus
nicht iiber den Satz von Noether als eine Symmetrie des Systems einstufen, wie im
folgenden gezeigt wird: Eine Lagrange—Funktion des Systems, welche zu der in 6.1 be-
schriebenen Gleichung g = - q (flir m = k = 1) filhrt, ist Lzé(v2 - q?). Jede
Transformation ¢ : Q —> Q des Konfigurationsraumes Q= R, die L invariant
18Bt, erfiillt L{q,v) = Lr(cpq,Dlp(q).v) fiir alle (q,v) € R? , also insbesondere fiir v=0:
(pq)? = q® fiir alle qe R, und das bedeutet ¢q = q oder ¢q = -q. Man erhalt
daher nur triviale 1-Parametergruppen ¢  von Symmetrien des Lagrange—Systems, die
in Abhingigkeit von s konstant sind, und daher als zugehtrige Bewegungskonstante
des Lagrange-Systems nur die Funktion T = 0 haben.

Der n-dimensionale harmonische Oszillator mit n > 1 dagegen hat mit der
gerade eingefiihrten Lagrange-Funktion L = %(V2 - qz) , {q,v) e R” x R™ , immerhin
alle Drehungen A € SO(n) des Konfigurationsraumes Q = R®" als Symmetrien des
Lagrange-Systems. Infolgedessen ergeben sich iber den Noetherschen Satz zu den
1-Parametergruppen ¢_ = X , X eoln) (=Lie SO(n) , vgl. Anhang L.6), als zuge-
horige Bewegungskonstanten die Funktionen Iy = <v,Xq> . Diese Bewegungskonstan-
ten kann man als verallgemeinerte Drehimpulskomponenten ansehen. Im Falle n=3
erhilt man ja gerade die Komponenten des iiblichen Drehimpulsvektors, wie zu Beginn

dieses Paragraphen gezeigt wurde.
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Die Energie H wie auch die Energien H, oder die drei Bewegungskonstan-
ten ¢” des zweidimensionalen harmonischen Oszillators, die zum SchiuB des sechsten
Paragraphen vorgestellt wurden, kann man aber im Lagrange-Formalismus nicht auf die-
se Weise als von Symmetrien erzeugt erkennen. Dazu ist es giinstig, den Hamilton-For-
malismus heranzuziehen, wie das im iibernichsten Paragraphen geschehen soll. (Vgl.
9.12.1°)

(7.12) Beispiel: Das Keplerproblem. Ein spezielles Zentralkraftfeld soll hier
ausfiihrlich untersucht werden. Es handelt sich um das Kraftfeld

k q " 3
F(g) = ~k 3, = £, 4 ¢ e R®\{0} = Q,
V= KR = TgpTgr fir ae R0} = 0
wobei k > 0 eine positive Konstante ist. Es gilt also F = - VU mit dem Potential
U(q) = -—Ilcj—l. Die Bewegungsgleichungen mi = —k—lgl—3 beschreiben das Kepler-

problem, welches sich aus einfachen Idealisierungen des Zweikdrperproblems ergibt
und insbesondere auch fiir die quantenmechanische Beschreibung des Wasserstoffatoms
von Bedeutung ist. Eine zugehdrige Lagrange-Funktion ist

Ligv) = imv® + % fiir (q,v) € Q x R®,

und als Energie erhilt man in Abhéngigkeit von q und p:= mv

k
H(gp) = j-p? Tl

Die entsprechenden Bewegungsgleichungen sind
.. q
mg = -k
4 lal®
oder in kanonischer Form (vgl. 3.5 und Paragraph 9):
A 1 . q
= =p, = -k .
a=mp, D ToP

Wir wollen in diesem Abschnitt drei Aspekte des Keplerproblems darstellen:
In 1° zeigen wir, daB es neben dem Drehimpuls 1 weitere interessante Bewegungskon-
stanten gibt, ndmlich die Komponenten des Runge-Lenz-Vektors R. In 2° verwenden
wir die Bewegungskonstanten H, I und R, um sé@mtliche Bahnen des Keplerproblems
anzugeben. Und in 3° nutzen wir diese Informationen, um den Bahnenraum zu negativen
Energien zu beschreiben. SchlieBlich wird in 4° dieser Bahnenraum mit der Produkt-
mannigfaltigkeit $2 x $2 identifiziert.

1° Runge-Lenz—Vektor. Als Bewegungskonstanten hat man auf dem (Im~
puls-) Phasenraum P := Q x R® = {(a,p) e R x R® ; g * 0} neben H (nach 7.10.3°)
natiirlich auch die Komponenten des Drehimpulsvektors I= g x p aufgrund von 7.10.1°,
und alle vier Bewegungskonstanten werden von Symmetrien erzeugt. Als weitere Bewe-

gungskonstanten des Systems ergeben sich die Komponenten des Runge-Lenz-Vektors:

1
R:= L(Ixp) + k.
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Nachweis: i )
R = haxp) + k(i - _s_q%‘ﬂ))
- L 1. 4 kP _ a<gp>
& (L x quls)) + g Il AE )
kK 1

= migP (-Ixq + p<q,@ - algp>) = 0,

wegen I = gxp und (gxp)xq = p<qqa - a<q,p> (vgl 5.7.14°).

R ist ahnlich wie der Impuls I FrhaltungsgréBe zu einer Symmetrie. Es
handelt sich um eine weitere SO(3)-Symmetrie, die in diesem Fall eine verborgene
Symmetrie ist und sich mit der SO(3)}-Symmetrie des Drehimpulses I zu einer Symme-
trie der 6-dimensionalen Rotationsgruppe SO(4) erginzt (vgl. dazu 8.23.5°).

Die sieben Bewegungskonstanten 11’12’13'R1'R2'R3 und H sind nicht unab-
hingig. Es gelten die folgenden Identititen:

() <RI> =0 und m?RZ = m%? + 2Hm|IP.

Beweis von (¥). <R,I> = 0 ergibt sich sofort aus <q,I> = <{q,qxp> = 0
und <Ix p,I> = 0. Die andere Identitét folgt aus

m?|RI?2 = <mR,mR>
= |1xpl? + 2mk<Ixp, %} + mi? ¢34

lal *1al
= |1%p/* + 2mkl—;l—<l,qu> + m%k?
= m’® + [1* (Ipf® - omki) = m?k? + 2Hm]I|?.

lal

2° Bahngleichungen. Mit Hilfe der in 1° angegebenen Bewegungskonstanten
lassen sich jetzt samtliche Bahnen von Bewegungen des Keplerproblems genau angeben.
Seialso q(t) eine Bewegung des Lagrange—Systems, das heit die Kurve q:J —> Q,
] ein Intervall, erfiillt die Differentialgleichung mg = kL. Es sei p(t) == mqg(t).

lal®**
Die Konstanz des Drehimpulses

I(t) = qg(t) x plt) = qlty) x plty) = Hty) = 1

hat die geometrische Bedeutung, daB q(t) und p(t) stets senkrecht zu dem Vektor
I, stehen.

Fall I, # 0:Im Falle [, + 0 ist die Bewegung von q deshalb bereits auf

0

eine zweidimensionale Bewegung reduziert, sie verlduft ganz in der Ebene
Ay = {qeR®: <q,I> = 0}

(Das gilt tibrigens fiir alle Zentralfelder!) Es ist also qlt) e A, fiir alle te], sowie
(alt),p(t)) € Ay x Aq.
Zur genaueren Beschreibung der Bahn hat man auBer I noch den invarianten
Runge-Lenz-Vektor R(t) = Rlt;) = R, zur Verfligung.
1

Fall R, = 0:Esist I, + 0 wegen (*). AuBerdem folgt % = - ﬁ(l X p,
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= Sgq _ 1 - 1 I
rlt) = qu%ﬂ = "k <Ixp@> = - op<lpx g = 2 (LD,

Also verlauft die Bewegung von q{t) in einer Kreisbahn in der Ebene A, mit dem
Radius r(t) = -nlj( IIOIZ . Aufgrund der allgemeinen Bezichung (*) ist

IRyI? = k* + ZE )2,

und der Radius d := _r%—li IIOI2 der Kreisbahn kann in Abhéngigkeit von der (konstan-
ten) Energie E := H(q(t),p(t)) als d = —%A geschrieben werden. Insbesondere
folgt in der Situation I, # 0 = R, : Die Energie E ist negativ.

Fall I, + 0 % R, : In dem wesentlichen Fall I, = 0 + R, bilden die Ein-
heitsvektoren zu R0 , Io X R0 und I0 ein orientiertes Orthonormalsystem von R® ,
und die Bewegungsebene A, wird durch die ersten beiden Vektoren Ry, Iy xRy auf-

gespannt. Eine Bahngleichung erhilt man auf dhnliche Weise wie fiir R, = 0: Einer-

seits ist
€QU)RM> = Txp> + k 198 = Lapxqy + krw) =
= - 1Ellolz + kr(t)
fiir r(t) = [q(t)]. Andererseits gilt

<{qlt),R(t)> = la(t) IRy lcosplt) = r(t) R,lcosel(t) .

In bezug auf die Polarkoordinaten (r,p) zu der durch Ry und I, xRy
gegebenen Orthonormalbasis in der Ebene A, erfiillt die Bewegung daher

- Ll - ke(e) = rO R lcoselt) .

Also folgt mit ¢ := %lRol und mit d := ;nl—kllolz zunidchst

- d + r(t) = r(t)ecoso(t)

und daher schlieBlich
d

() r = 1 - ecoseo

Das ist die Gleichung eines Kegelschnitts in Polarkoordinaten mit Parameter

d und Exzentrizitdt ¢! (Vgl. z. B. [KLI, §. 193])

2 g4

Es gilt nach (*): ¢ ri}f(zllo 7.

Fir E> 0 ist daher &> 1, und (**) beschreibt einen Hyperbelast in der
Ebene A,.

Fir E = 0 ist & = 1, und (**) beschreibt eine Parabel.

In dem fiir das Folgende wichtigen Fall negativer Energie E< 0 istee [0,1[,
und es wird durch (**) eine Ellipse in der Ebene A, bestimmt. Fiir den Sonderfall
e = 0,also E = - %mk2 | IOI'Z, finden wir die oben hergeleitete Kreisbahn wieder. Fiir

0 <e <1 féllt einer der beiden Brennpunkte der Ellipse mit dem Nullpunkt zusammen.
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Die groBe Halbachse verlduft in Richtung R, und hat die Linge a := d -7, also
a = —jzl(}—a (unabhangig von I, und Ry, wennnur I, + 0 * R, 1), die beiden Brenn-
punkte haben den Abstand 2c¢ mit ¢ = ae = —éiRol und die kleine Halbachse hat

die Linge b = 'é'“ol' wobei ¢ := y-2Em. Tatséchlich gilt flir x = rcos¢ — ae und

y == rsineg:
Xy2 DAL
(X" + ()=,

genau dann, wenn (**) erfiillt ist.

A

’ I 4i\ I, xR, /

r{cos ¢, sing)

Fall I, = 0: Es bleibt noch der Fall I = 0 zu untersuchen. In dieser
Situation sind q(t) und mq(t) proportional wegen 0 = I = g x mq, und das bedeu-
tet, daB die Bahn von q(t), also q(J), ein Geradenstiick ist. Es gilt q(t) = X{t)JR, mit
einer differenzierbaren Funktion X : ] —> 10, [, und X erfiillt aufgrund der Be-
wegungsgleichungen fiir q die Differentialgleichung

5 = —(mk?2%)"! im Intervall J.

Im Falle negativer Energie E ergibt sich wegen k = IRy| (vgl. (¥)) aus der
Gleichung E = %qu ~—lé—: *»<-E! mit —E"!'>0, also ist Iq(t)l S—% mit
lq(t)] < —% fiir (t) + 0. q(t) kann sich deshalb vom Zentrum O nicht beliebig
weit entfernen. Eine griindliche Analyse der Differentialgleichung fiir A liefert bei der
Wahl eines maximalen Definitionsintervalls JCR die folgenden Resultate:
J=Ttg-t, o+t [ fir to,t eR, t >0, mit Aty = max{A(t):te]} = ~E7",
Mtg) = 0, Mtg+t) —> 0 fir t—> +t und fir t-—> -t
)'\(to +t) —> - (bzw. +o) fir t 2t {bzw. t \ - t;). Insbesondere ist das
Geradenstiick q(]) = {AR; | 2 €10,-E"'[} die Bahn von q in Q, und es ist
(q,9)()) = {()A\'(V)RO,VRO) eQxR® | veR} die Bahn im Phasenraum P, wobei

X = (%mkzv2 - EY"!. Es handelt sich also im Falle von I, = 0 und negativer

sowie

Energie um Kollisionsbahnen, bei denen die Kollision in "endlicher Zeit mit unendlich

groBer Geschwindigkeit" stattfindet.
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. . . (o]
Wir fassen die Ergebnisse von 2° zusammen:

Satz. Sei E < 0. Zu jedem Paar (I,R) von Vektoren aus R° mit
() <LR> = 0 und m?IRZ = m?k? - %12

(p = y-2Em wie oben) gibt es genau eine maximale Bahn I{I,R) c QxRS der Kep-
lerbewegung mit Energie E, Drehimpuls I und Runge-Lenz-Vektor R.Fiirl + 0 ist
I'(I,R) eine geschlossene Ellipsenbahn mit periodischer Bewegung in der zu 1 senk-
rechten Ebene mit Definitionsbereich J = R . Die Bahngleichung fiir die Ortskoordinaten
ist (#x). Im Falle I = 0 handelt es sich um eine Kollisionsbahn mit endlichen Defini-
tionsintervall J: I'(Q,R) = {()T(V)RO,VRO) €eQxR®| veR} mit A(v) wie oben.

3° Der Bahnenraum zu negativer Energie E . Der vorangehende Satz kann als
Grundlage zur Beschreibung des Bahnenraumes verwendet werden. Unter Beriicksichti-
gung von (*) kann aus dem Satz zun#chst herausgelesen werden, daB die Menge aller

Keplerbahnen mit Energie E < 0 durch die vierdimensionale Untermannigfaltigkeit
Cg={ULReR®| <LR> = 0 und m2RI+ o1 = m%? )

des R® parametrisiert wird. Diese Beobachtung hilft, die Struktur des Bahnenraumes
zu beschreiben als eine Mannigfaltigkeit, die zu Cp diffeomorph ist. Das soll in den
folgenden fiinf Schritten dargelegt werden.

1. Schritt: Die Definition des Bahnenraumes. Die Energieniveaufldche zur
Energie E< 0 ist

Zp = HUE) = lap) e Qx ks glp?- k= 5,

vgl. Definition im AnschluB von 6.8, Lg ist eine 5-dimensionale Untermannigfaltigkeit
von QxR,da VH(q,p) + 0 fiir alle (q,p) ¢ Y gilt. Zwei Punkte x,ye g heiBen
dquivalent (x ~ y), wenn es eine Bahn I' in Xg gibt, die beide Punkte x und y ent-
hilt (vgl. Paragraph 6 im AnschluB an 6.8; mit Bahn ist jetzt eine ({q,p)-Bahn in Zg
gemeint.) Nach den im Satz zusammengefaBten Ergebnissen gilt fiir x,y ¢ Iyt

x~y & J{LR)eCg: xyel(LR) & I{x) = ly) und R{x) = R(y).
Dabei ist I(x) = I(q,p) = gxp und Riqp) := 1171(1 X p) + kl%l— fiir x = (q,p).

Mit = : Ty —> Bg = 2g/~ werde die Quotientenabbildung bezeichnet, die
jedem Punkt x seine Aquivalenzklasse zuordnet, also seine maximale Bahn, der er an-
gehort, B erhilt zunéchst die Quotiententopologie: Eine Teilmenge W C B ist dem-
nach offen, wenn n (W) ¢ ZE in EE offen ist. Im allgemeinen ist ein solcher Quo-
tientenraum By einer Mannigfaltigkeit g nicht automatisch wieder eine Mannigfal-
tigkeit, mit der Eigenschaft, da die kanonische Projektion m eine differenzierbare Ab-
bildung ist. DaB dem in unserer Situation doch so ist {wie auch beim harmonischen Os-

zillator vgl. 6.10), und Bg dariiber hinaus die Struktur einer Quotientenmannigfaltigkeit
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(vgl. M.8) hat, soll im folgenden aus der genauen Kenntnis der Bahnen gefolgert wer-
den. Es wird sich dabei schlieBlich ergeben, daB B mit dieser Quotientenstruktur
diffeomorph zu Cg und zu Sf X Sf ist.

2. Schritt: Als erstes muB dafiir gezeigt werden, daB B mit der Quotien—
topologie ein Hausdorffraum ist (vgl. M.10}, denn jede Mannigfaltigkeit ist insbesondere
auch ein Hausdorffraum. Seien also ', und T, zwei verschiedene maximale Bahnen
aus Bg . Nach Satz gibt es eindeutig bestimmte (I,R,) und (I,Ry) aus Cg mit
r, = I'a,R) und T, = [(1,R,). Wegen der Voraussetzung Iy + T, gilt auch
(Ile) + (I,R,) . Seietwa I, % I,. (Der Fall R, + R, 148t sich analog behandeln.)
Setze §:= %Ill ~1I,l. Fir xeZg, x = (qp), und beliebige h=(u,v}e R® st
Ux+hl={(q+wx(p+v)=Ix) +uxp+qxv+uxv, Fiir lul<e und |vl<e folgt
daher {[(x) - H(x + h}| < lullpl + Igllvl + lullv] < elpl + elq] + €. Also ist I: Tg — R3
eine stetige Abbildung, und die Mengen

W, = {xeZgl M) -LI<8}, j=12,
sind offene Teilmengen von X . Es gilt nun n"l(n(Wj)) = WJ. , weil T als Abbildung
auf den Bahnen konstant ist. Also sind die Mengen U, := =(W,) und U, = n{W,)
offen in By nach Definition der Quotiententopologie. Wegen I'j e U, und T, e U,
ist nur noch U, N U, = # nachzupriifen: Aber Te UNU' wiirde I'= nlw,) = nlw,)
bedeuten mit w; € Wi, also auch I(w,) = I(w,). Das steht im Widerspruch zu

Mw) = Hwy)l = Mw) -1+ 1, -1, + 1, - Uwy)l 2 [T, - Izl -§-828>0.

Die vorangegangenen Uberlegungen zum Nachweis der Hausdorffeigenschaft
fiir den Quotientenraum Bg beruhen auf nichts anderem, als daB I und R stetige
Abbildungen auf X sind und die Aquivalenzrelation respektieren, das heiBt konstant
auf den Aquivalenzklassen sprich Bahnen sind. Daher ist nach Definition der Quotien-
tentopologie die Abbildung rt. By —> Cg , die jeder Bahn I' = I'{I,R) das eindeu-
tig bestimmte Paar (I,R) zuordnet, ebenfalls stetig. Da I''! die Punkte von By trennt,
ist Bg Hausdorffsch.

3. Schritt: Vergleich mit der Parametrisierung durch Cp . Wir benutzen fiir
den Nachweis der Existenz der Quotientenstruktur auf dem Bahnenraum Bg die zu w

verwandte Abbildung

P:3p — Cp, x= (qp) (I(x),R(x)) .

Es ist leicht einzusehen, daB Cg eine 4—dimensionale Untermannigfaltigkeit von R®
ist, indem man nachpriift, daB die beiden definierenden Funktionen g{(LLR) = <LR>
und h(LR) := m?R + p?11® -~ m?k® linear unabhingige Gradienten in allen Punkten
von Cg haben (vgl. M.3). Als abgeschlossene und beschrénkte Teilmenge (IRl <k,
[T} smTk)von R® ist im Cp kompakt. P ist differenzierbar, weil P als Abbildung in
den R® differenzierbar ist. Aus dem Satz (in 2°) ergibt sich, daB P : g — Cg sur-
jektiv ist, mit den maximalen Bahnen der Keplerbewegung als Fasern: Fiir alle Punkte

(q,p) € £ der Energieniveaufldche ist
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n ! (n(q,p)) = P '(P(p,q)) = I'(l(q,p),R(q,p)).

Die Abbildung T': Cg — Bg, die jedem Paar (I,R) aus Cg die zugehs-
rige maximale Bahn zur Energie E zuordnet, ist also bijektiv und erfiillt offensichtlich

= I'oP . Das heiBt das folgende Diagramm ist kommutativ:

T\

E_“>B

4. Schritt: P : X —> Cg ist Quotientenabbildung. Das soll heiBBen, daB
die auf Cp durch die Einbettung CpcC RS festgelegte Struktur als Mannigfaltigkeit
mit der Quotientenstruktur auf CE iibereinstimmt, welche sich bei der Beriicksichti~
gung der durch P gegebenen Aquivalenzrelation mit P"Y(I,R) , (I,R) e Cg , als Aquiva-
lenzklassen ergibt. (Dieser etwas knifflige Teil der Beschreibung des Bahnenraumes lie-
fert dann auch sofort das gewiinschte Ergebnis, wie gleich im fiinften Schritt gezeigt
wird.) Es gilt also zu beweisen, daB folgende universelle Eigenschaft gilt:

Fiir Abbildungen f : Cg— Y in Mannigfaltigkeiten Y ist f immer schon
dann differenzierbar, wenn die Komposition foP : X — Y differenzierbar ist {vgl.
M.8). Ferner muB die analoge Eigenschaft erfiillt sein, wenn Y topologischer Raum
ist und "differenzierbar” durch "stetig" ersetzt wird.

Die beiden universellen Eigenschaften sind offenbar bereits dann nachgewie-
sen, wenn man die Existenz von geniigend vielen lokalen Schnitten zu P zeigen kann.
Gibt es ndmlich zu jedem Punkt (I,R) ¢ Cg eine offene Umgebung U in Cg und eine
differenzierbare Abbildung ¢ : U —> Zg mit Poo = idy (d.h. o ist ein differenzier-
barer Schnitt zu P iiber U), so ist f differenzierbar (bzw. stetig): Auf U gilt ja
f}u = fo(Poo) = (foP)oo, also ist f u 2als Komposition der differenzierbaren (bzw.
stetigen) Abbildungen (foP) und ¢ differenzierbar (bzw. stetig).

-1
T2 P (W)

LN

Cgd U — Y
£

Solche Schnitte gibt es immer dann, wenn P eine Submersion ist, das heiBt,
wenn alle Tangentialabbildungen T T2 — Tp(x)Cg» X € 2 » surjektiv sind,
also den Rang 4 haben (vgl. SchluB von M.10). Statt die entsprechende 6x6-Matrix der
partiellen Ableitungen der Komponenten von P aufzustellen und die Rangbedingung
nachzupriifen, sollen hier unter Vermeidung des Rangsatzes direkt geeignete Schnitte
angegeben werden.
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Dazu sei erst einmal ein Punkt (I),R;) € Cp mit den Bedingungen I, * 0
und R, + 0 gegeben. Auf der Suche nach (q,p), welche I = I{q,p) und R = R(p,q)
in einer Umgebung von (I,Ry) beschreiben, kommt man durch das Auflésen von

R(p,q) = —(I x p) + k 1 ((q x p) X p) + k3 nach q und weiteres Einsetzen

M_
zum Beispiel zu folgendem Ansatz: o(LLR) := (g,p), mit
= - 12 R
a = allR) = T RY TR
_ _ m(k-{R[) IxR
P P(I»R) = lll m )

fiir alle (LR) aus W = {(LR)eR® : 1 # 0 % R, IRl < k}. Offensichtlich ist die
Abbildung 6: W —> R®, o(LR) := (q(L,R),p(I,R)) fiir (LR)e W, differenzierbar
und damit auch die Restriktion der Abbildung o auf die in Cg offene Umgebung
U = WnCg von (IO,RO), die wieder mit ¢ bezeichnet werden soll. Man rechnet
leicht nach, daB fiir die so definierten q,p gilt:

I

X = 1|1 = ,
qQxp ||III
wegen <R,J> = 0 und L IXR und weiter
& ' || “MxR ~ Il’
1 IxR R R
Ixp) + kit = 7 RN + k = [Rlypy = R,
Rxp) + kpd = im0k IRy X gy * kpgp) = RIggy
1 IxR _ _ R
WeBERTIT * Ix R| R]

Deshalb gilt Poo(I,R) = (IR} auf W, und damit auch auf U . SchlieBlich bleibt
o(U) € Ty zu zeigen: Fiir (LLR) € Zg ist

H(q,p) = %m((—lﬁ"&’) k m(k R0
- %ﬁ( - 2k[R| + |R|? - ZkZ + 2kIR|) = %lll"l—z(lRl2 - k%)
= %—nl(ﬁ 1% = E, wegen o> = -2Em .

—

Die Abbildung o: U — R® hat also ihre Werte alle in 2. Ein differenzierbarer
Schnitt ¢ auf einer Umgebung von (I4,R;) ist damit gefunden.

Im Falle R, = 0 ist der oben beschriebene Schnitt nicht in einer Umgebung
von ([;,R,) definiert, weil in den Ausdriicken fiir q und p der Betrag von R im Nen-
ner auftritt. Aus diesem Grunde 1&8t sich ein lokaler Schnitt nicht ohne weiteres als
Restriktion einer einfach gegebenen Abbildung auf einer offenen Menge W des R®
angeben, wie das oben moglich war. Mittels einer geeigneten Parametrisierung einer
Umgebung V von (I,Ry), die auch ein wenig die Gestalt von Cg erkennen laBt, wird
im folgenden ein lokaler Schnitt zu P auf V angegeben. Aufgrund allgemeiner Resul-
tate iiber Untermannigfaltigkeiten weil man, daB es viele Parametrisierungen von Cg
in einer Umgebung von (1,,0) gibt (vgl. Anhang M.5); es gilt aber, hier eine Parametri-
sierung zu finden, mit der man gut rechnen kann, um so zu einem lokalen Schnitt zu

kommen. Die vereinfachte Situation mit den Konstanten m = k = o = 1 zeigt, daB

- L D N . P .5 7y vy b w12 . mI2 4
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liegt, und zwar ist Cg der Durchschnitt s$%n Q mit der Quadrik Q = {(I,R) ¢ R®

<{LLR> = 0}. Diese Feststellung legt nahe, die iiblichen Winkelvariablen fiir $° auch
fiir CE zu verwenden. Sei zunichst (e es) ein orientiertes Orthonormalsystem von
R® mit I = IIOI €,. Zum Beispiel erhalt man ein solches Orthonormalsystem, indem
man von beliebigen (qq,py) mit Plqy.py) = (1,.0) ausgeht. Wegen R, = 0 gilt
{qg.pg> = 0, also liefern die Einheitsvektoren zu dg» Pound Iy = q, xp, ein sol-
ches Orthonormalsystem: q = Iqoiel, Py = IpOIe2 und I, = IIO|e3. Das Ortho-
normalsystem werde beziiglich der Variablen s und t auf folgende Weise gedreht:

E = E/(st) = coste, + coss sinte, + sins sint e,
E, = Ez(s,t) = —sinte + cosscost e, + sinscost e,
E; = Ej(s,t) = - sinse, + CoSs e,.

Setze
R = Rluv,s,t) == k(uE,(s,t) + vE,(s,t)),
= Huyvst) = [I,ly1 - (u2+V2)E3(s,t) und
cp(u,v,s,t) = (I(u,v,s,t),R(u,v,s,t,))

fiir (u,v,s,t) € R* aus einer offenen Umgebung V von 0 ¢ R*. Dann ist die Abbildung
$:V —> R® differenzierbar mit $(0) = (I;,Ry) = (I,.0), und man sieht unmittel-
bar {(V) C C: Denn es ist <ILR> = 0 sowie wegen p II 2 = mk?

m?R1Z + o III2 = m*k3(u? + v?) + m2k% (1 - (u? + v8)) = m%>®. Die partiellen Ablei-

tungen von ¢ in 0 haben die Werte

auch noch

d

(0.KE), S%| = (0,kE,), 52|y = (U1 ley0, (- 11y ley0).

o0y _
ot Io -
Also gilt rg DY(0) = 4. Daher liefert ¢ eine Parametrisierung von U = {(V) ¢ Cg
wenn nur die offene Umgebung V von 0 so klein gewdhlt wird, daB ¢ dort injektiv

St =

ist und den Rang 4 in allen Punkten aus V hat. Nach M.5 muf} dazu nur noch nachge-
priift werden, daB die Umkehrabbildung ¢ = rtru— v stetig ist. Aus der Defi-
nition von ¢ 4Bt sich ablesen, daB aus der Konvergenz von nb(un,vn,sn,tn) gegen
$lu,v,s,t) fiir (un,vn,sn,tn), (u,v,s,t) € V auch die Konvergenz von (un,vn,sn,tn) ge~
gen (u,v,s,t) folgt.

Nach diesen Vorbereitungen iiber eine geeignete Parametrisierung einer Um-
gebung U = {(V) von (1,,0) in Cp kann der gesuchte lokale Schnitt in Abhingig-

keit von den Variablen aus V definiert werden: o(LR) = (q,p) mit

a = La-uwrE s
und
p = |” (vE (5,t) + (1 - u)E,(s,t)).
Hier ist 1= I(u,v,s,t) natlirlich in Abhéngigkeit von den Parametern aus V zu verste-

hen. q und p und damit auch ¢ sind differenzierbar, Es gilt o(l) c 2g, denn
2 _ 2 _
Ipl kalql (m)(v +(1-w?) - (m)(l u) =

—(mky2e 22 oy 3
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da |11 = (—%5)2(1 — (u? + v?)) . SchlieBlich gilt Pooc = idy; wegen

2 -
axp = Hfa-w Q- WE xE, = 1

sowie

Ldxp) + kigr= LI VE X By + (L- wE; X B,) + KE,

= k(vE, - (1 - w)E,) + kKE, = R,

Also ist ¢: U —> Zg ein differenzierbarer Schnitt.

Anmerkung: Der Fall 1, = 0 , also |Rol = k? l4Bt sich ganz analog behan—
deln. Mit nur wenig mehr Aufwand l&Bt sich zeigen, daB es zu jedem x, € Ly eine
offene Umgebung U von Plx,) = (IgR,) und einen differenzierbaren Schnitt
6: U —> Xy mit o(l,,Ry) = x, gibt. Daraus folgt dann, daB die Quotientenabbil-
dung P eine offene Abbildung ist.

5. Schritt: Die Quotientenstruktur auf dem Bahnenraum. Beim zweiten Schritt
wurde bereits festgestellt, daB die Umkehrabbildung rt. By — Cg zu der natiirli-
chen Abbildung T': Cy —> Bg, welche jedem Paar (I,R) € C; die zugehorige Bahn
I'(1,R) € B zuordnet, eine stetige Abbildung ist. Aus der im 4. Schritt nachgewiesenen
Existenz von genligend vielen differenzierbaren lokalen Schnitten zu P folgt jetzt
auBerdem, daB atuch T' stetig ist. Denn es gilt ja lokal: I'|; = I'oPoc = moo, also ist
F\u stetig als Komposition von stetigen Abbildungen. (7 ist stetig nach Definition der
Quotiententopologie.) Insgesamt ist I' also eine topologische Abbildung, welche
erlaubt, die differenzierbare Struktur von Cp auf g zu iibertragen: Dazu sei
%A = {p: U —> V) irgendein Atlas, welcher die differenzierbare Struktur von Cg
bestimmt (vgl. M.8). Dann ist A' == {pol ':I"(U) —> V | ¢:U —> V Karte
aus A} ein Atlas auf dem Bahnenraum B , der die gewlinschte differenzierbare Struk-
tur definiert. Denn I {(U) € B ist offen, weil U offen und I' stetig ist, und @ol!
ist topologisch auf I (W) , weil ¢ und ! topologisch sind. Also sind die Abbildun-
gen aus A' topologisch und daher Karten. Diese sind differenzierbar vertriglich, weil
im Falle von zwei Karten zpoI‘—1 und Tp'o[‘—1 aus A' der Kartenwechsel

ol 'o (poI' )" = Bol toTop ! = Fog '
differenzierbar ist; nach Voraussetzung sind ja ¢ und ¢ differenzierbar vertrédglich
als Karten von U . DaB die so definierte differenzierbare Struktur auf dem Bahnenraum
diesen zu einer Quotientenmannigfaltigkeit macht, ist jetzt klar. Denn offensichtlich ist
r:Cg—> By beziiglich dieser differenzierbaren Struktur ein Diffeomorphismus, so
daB zunichst die kanonische Projektion m :Zg —> Bg als Komposition n = ToP
differenzierbarer Abbildungen differenzierbar ist. AuBerdem ist fiir jede Abbildung
f. By — Y in eine differenzierbare Mannigfaltigkeit Y, fiir die fom auf P3N

I — Cg

fon -1
n]{ \ lfol"

NN
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differenzierbar ist, wegen fon = fol'oI 'om = (foI"!)oP auch die Abbildung fol?
stets differenzierbar, wie weiter oben ausfiihrlich begriindet wurde. Also ist schlieBlich
auch f = foI'!oT' als Komposition differenzierbarer Abbildungen differenzierbar. Da-
mit ist die universelle Eigenschaft einer Quotientenstruktur fiir den Bahnenraum Bg
nachgewiesen.

Die Existenz der Quotientenstruktur auf Bg folgt im librigen auf ganz an-
dere Weise auch aus der Regularisierung des Keplerproblems, die im achten Paragraph
besprochen wird (vgl. 8.23.2°).

4°  Der Bahnenraum als Produkt von Sphéren. AbschlieBend zu diesem Ab-
schnitt 4.12 soll gezeigt werden, daB der Bahnenraum Bg diffeomorph zu dem Produkt
Sf X Srz von zwei Sphdren mit dem Radius r := mk ist. Dazu geniigt es nach dem
Vorangehenden zu zeigen, daB Cg diffeomorph zu Srz X 53 ist. Diese Diffeomorphie
wird ganz einfach durch die folgende lineare Transformation T:R® — R® vermit-
telt: T(LR) = (pl + mR,pl - mR) fiir (I,R) e R®. T hat die Umkehrabbildung

THEM = (G (E+m),z=(E- 1)), (Em e RS,
wie man sofort sieht. Fiir (I,R) ¢ Cp gilt <IR> = 0 und %112 + m?R)? = m’k?,
also lpl + mRIZ = p?/1/2 + 2om<I,R> + m?R|2 = m2k?. Ebenso folgt lol - mR| = mk
und damit T(Cg) c Srz X Srz. Umgekehrt ist (—2-1;(5 + n),gll;l(ﬁ - 1)) e Cg fiir alle

(En) e 87 x $?2, denn
GelEr Mg (E-m> = (e - 1y®) = 0 und
m?RI? + *117 = $(I1% - 2<Em> + 1?) + L(IE1% + 26> + Inl?) = m?K2,

Weil T als linearer Isomorphismus auch ein Diffeomorphismus ist und weil
/T(CE) = Sf X Srz gilt, liefert schlieBlich die Restriktion von T auf Cg einen Diffeo-
morphismus zwischen Cg und E‘urz X Srz.

(7.13) Beispiel. Der freie Kreisel. Der Konfigurationsraum des Kreisels (also
des starren Korpers mit einem festgehaltenen Punkt) ist die Drehgruppe S = SO(3),
wie in Paragraph 5 ausfiihrlich dargestellt wurde. Dort finden sich auch die Formeln Ffiir

die kinetische Energie T und den Drehimpuls L in kdrpereigenen Koordinaten:

TAY) = $<Ou(ATV),0(ATV)> = L<L(A W), 0(ATY) >
LAY) = Ou(ATY)

fiir (A,v)eTS, AcS, ve T,S. Dabei ist ® : E —> E eine feste R -lineare, sym-
metrische und positiv—definite Abbildung des dreidimensionalen euklidischen Raumes in
sich: © ist der Tragheitstensor des Kreisels. Die Abbildung o : 80(3) — E identifi-
ziert die Lie-Algebra 80(3) mit dem euklidischen Raum E {vgl. 5.7.15°),

Ein freier Kreisel ist ein Kreisel, auf den keine duBeren Krifte einwirken, der

cich daber nitir antenracrhond coiror Tebodioit boorrrm ot T 3% o 441 s s ae 1 e e o
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Energie T bereits die Gesamtenergie und kann als Lagrangefunktion L=T: TS — R
auf dem Phasenraum dienen.

Wir wollen hier vier Aspekte des freien Kreisels darstellen: In 1° zeigen wir
als Anwendung des Noetherschen Satzes fiir Mannigfaltigkeiten 7.9 die Erhaltung des
Drehimpulses ¢ in bezug auf das feste Koordinatensystem des Raumes. In 2° wird
dhnlich wie beim Keplerproblem der Verlauf der Bewegungen des Systems (TS, T) ohne
Kenntnis der Bewegungsgleichungen oder gar der Lésungen weitgehend qualitativ be-
stimmt. In 3° wird die Bestimmung der raumlichen Winkelgeschwindigkeit ©{t) einer
Bewegung des freien Kreisels auf ein geometrisches Problem zurlickgefiihrt und in 4°
werden aus ¢ = constans die Eulerschen Gleichungen hergeleitet. AuBerdem wird ein

Lésungsansatz vorgestellt.

1° SO(3)-Invarianz und Drehimpuls. Auf dem Konfigurationsraum § des
Kreisels wirkt die Drehgruppe SO{3) durch Linksmultiplikation (vgl. 5.6.5°, 5.7.9°)
.55’8 :§ —> S fiir jedes g e SO(3) mit Qg(A) = gA, AeS = SO(3).

Fiir jeden Punkt A € S und jeden Tangentialvektor AY € T,S, Y € 80(3), ist
TAZg(AY) = %(gAetY)luo = gAY. Daraus folgt unmittelbar die SO(3)-Invarianz
der kinetischen Energie T als Lagrangefunktion auf TS: Fiir alle Y € 80(3) gilt

T(LA ToL(AY)) = ;< 0u(Y),0(Y)> = T(AAY).

Nach dem Noetherschen Satz 7.9 gehért daher zu jedem Z € 80(3) iber die
1-Parametergruppe ¢_(A) = eSZA, seR, AeS, und dem zugehbdrigen infinitesima-
len Erzeuger X(A) = %tps(A)ls=° = ZA die Bewegungskonstante I, = -3—3 X.

Mit formalen Rechenschritten kommt man iiber

2L (A = 2 (400(ATV) = Bu(ATY) AT
zu

I, = 0u(ATVATZA = (Ou(ATV),(ATZA)>

= <AG(ATY),A0(ATZA)> = (ABW(ATY),w(Z)>

(SO(3)-Invarianz von < , > und 5.7.13°). Da also (A,V) —> < AB(ATY), w(Z))
fiir alle Z € 80{(3) eine Bewegungskonstante ist, folgt:

Satz: Der Drehimpuls £(A,v) = A®w(ATv) beziiglich des rdumlichen Koor-

dinatensystems ist eine vektorwertige Bewegungskonstante des freien Kreisels.

Wir begriinden den Satz noch einmal ausfiihrlich, um exemplarisch zu zeigen,
wie der Noethersche Satz 7.9 auf Mannigfaltigkeiten zu verstehen ist. Die Euler-
Lagrange-Gleichungen 3.3 sind invariant unter beliebigen Koordinatentransformationen.
Das sieht man direkt durch Einsetzen oder iiber die im AnschluB an 3.4 formulierte
koordinatenunabhingige Variationsbedingung. Deshalb liefert jedes differenzierbare
L: TQ —> R auch fiir Mannigfaltigkeiten Q Differentialgleichungen 2. Ordnung, die
in lokalen Koordinaten die Form 3.3 haben. Wie 3.3 ist auch die Formel Iy = —g% X

R T T T © 7 7 TC TR VRO 7 SN LS IIUE ¢ & 4 DU A A T amramoaan— Marcrbhanil a311fF
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Mannigfaltigkeiten und insbesondere die Koordinatenunabhingigkeit von 3.3 und Iy
im néchsten Paragraphen ausfiihrlich behandeln (vgl. 8.14 - 8.17) und leiten hier nur den
obigen Satz mittels beliebiger Koordinaten her: Sei also in einer offenen Umgebung
UCS von A€ S eine Parametrisierung

$:Q—> UcsS, QCcR® offen,
gegeben, das heiBt ¢ und die Karte $1: U —> Q sind differenzierbar. ¢ vermittelt
auf TU C TS Koordinaten iiber

(q,v) +—> (¢(q),DP(q).v), (q,v) € Q x RS,
Beziiglich dleser Koordinaten im Phasenraum TS hat die Energie T die Form

T(q,v) = T(P(q@),DP(q).v) = $<Ou($T(q) Dy(q).v), w(9T(q) DY(q).v)>.
Es sei B = ATDtb(q) mit A = ¢{(q) € §. Dann ist ?‘(q,v) = ${Ow(B.v),w(B.v)>. B
hat als lineare Abbildung von ®® nach g0(3) {vgl. 5.7.9°) die Darstellung durch eine
(Bs) (beziiglich der Basen wie in 5.7.15°). T ist daher von der Form

%(q,v) = L@) Bu jB" g
Also ist aw‘f(q,v) =0 B“v‘B" fiir j = 1,2,3. Sei ferner e3%¢(q) = B (e, (q).

uv i

Dann gilt
X@ = o @I, = L Zua,,

Dy M) Zy(q) = DY Hq). P(q) W) TZP(q)
BMATZA) fir ¢(g) =

I

Also I, = % X = <Ouw(Bv), o(ATZA)> = {ABw(Bv), w(Z)>. Daraus folgt wie

oben der Satz.

2° Reduktion mit Hilfe von Bewegungskonstanten. Zu vorgegebenen Werten
ceR® des Drehimpulsvektors ¢ betrachte man die Menge

o) = (AW | 2AV) = ¢} = ((AAY) | Y = (ABw) Y(o)].

27c) ist fiir jedes ¢ eine Untermannigfaltigkeit von TS und ¢ Y(c) ist diffeomorph
zu SO(3). Ein natiirlicher Diffeomorphismus ist zum Beispiel
A —— (AA0T'07'ATe) = 6(A), AeSO(3) =
(6:S —> TS entspricht einem Vektorfeld, o(S)= ¢ *(c) ist der "Schnitt" von ¢.)
AuBer den Komponenten von ¢ hat man noch die Gesamtenergie T des
Systems als Bewegungskonstante. DaB T Bewegungskonstante ist, sieht man wie in
7.10.3°, und eine weitere Begriindung im Rahmen der natlirlichen Systeme folgt im néch-
sten Paragraphen (vgl. 8.4). In den meisten Fillen ist zu einem Energiewert E> 0 die
Niveaumenge

2 = THE) n ¢ o)
eine zweidimensionale Untermannigfaltigkeit von TS, nﬁmlich immer wenn VT # 0

auf Zp gilt. (Weil T in o(A) € £7'(c) den Wert T(o(A)) = 1<a07'ATc,c> hat, gllt
VT £ 0 genattdann wenn ¢ £ 0 11nd Q 4 334 Flim alla A - Y O b s . R
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das heiBt, daB jede Bewegung des Systems (TS,T), die Ik trifft, vollstdndig in g
verlguft.

Mit Kenntnissen iiber die Klassifikation von kompakten Flichen (das sind
zweidimensionale, kompakte Mannigfaltigkeiten), 148t sich P qualitativ noch etwas
genauer beschreiben. Zu jedem Punkt a e Ly hat man die eindeutig bestimmte Bewe-
gung v :J —> Zg durch a, Yo(0) = a. Durch X(a) = Y4(0) € T B wird ein
differenzierbares Vektorfeld X auf Zp definiert. Es gilt X(a) + 0 fiir alle aelXg
wegen ¢ + 0. Unter den orientierbaren, kompakten und zusammenhéngenden zwei-
dimensionalen Mannigfaltigkeiten gibt es bis auf Diffeomorphie nur den Torus sl x5!,
der ein nichtverschwindendes, differenzierbares und globales Vektorfeld besitzt (vgl.
[SIT1). Da I orientierbar ist und kompakt (wegen S C o(S) & SO(3)), besteht Zp
daher aus einer endlichen disjunkten Vereinigung von Mannigfaltigkeiten, die alle zu
5! x ¢! diffeomorph sind.

3% Geometrische Beschreibung der Bewegung nach Poinsot. Fiir eine krafte-
freie Bewegung A(t) des Kreisels mit Drehimpuls ¢ + 0 verlduft die Winkelge-
schwindigkeit o(t) = (A(t)AT(t)) beziiglich der raumlichen Koordinaten in einer
raumfesten Ebene H : Es ist ja T(A(t),A(t)) = §<OQ(t),Q(t)> = E; konstant, also
folgt aus <OQ(t),Q(t)> = <ABQ(L),AQ(t)> = <{4,u(t)> die Bedingung

alt), 2> = 2E,

w(t) liegt also in der zu ¢ senkrechten affinen Ebene H (H ist die sogenannte inva-
riable Ebene), welche den Punkt o, = _IZTEIg_e enthdlt und beschreibt dort eine Kurve
w: ] — H. Diese Kurve wird auch bestimmt durch das zeitabhingige Energieellipsoid

5(t)

i

(AR E|<00,0> = 2E)
= {weE|<b6(t)o,0> = 2E,}.

Dabei ist 6(t) :

%{T-Z = 00 ist ©Q(t) = LQ(t) Normalenvektor in Q(t) an das Ellipsoid

1]

Alt) @AT(t) , der Tridgheitstensor in rdumlichen Koordinaten. Wegen

& ={Qe¢E|<OQ,0> = 2E,},

also ist ¢ = AOQ(t) Normale an &(t) = A(t)(§) im Punkte w(t). Das bedeutet,
daB das Ellipsoid &(t) die invariable Ebene H in dem Punkt w(t) tangential beriihrt.
Das Energieellipsoid rollt daher auf der Ebene H ab ohne zu gleiten.

Die Bestimmung der Bahn von w(t) ist damit auf das folgende geometrische
Problem zuriickgefilhrt: Zu vorgegebenen &(0) = {w e E|<6(0)o,0> = 2E;} und
©(0) € H mit tangentialer Berithrung von &(0) und H in ®(0) bestimme man die
Bahn von w(t) auf H, die durch das Abrollen des Ellipsoids auf H bei festgehalte-
nem Mittelpunkt O € E entsteht.

Fiir den Fall eines symmetrischen Kreisels, das heiBt I, = I, > I, ist

6 =1{Q] IU(Q“)2 = 2E,} mit den Halbachsen a, = %0_ also a, = a, < a,. Die
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Kurve w(t) beschreibt daher eine Kreisbahn auf H. Die Rotation von {t) um die
Achse ¢ ist konstant mit Winkelgeschwindigkeit 0, ; man nennt diese Bewegung von
ol(t) eine reguldre Prdzession.

4° Eulergleichungen. Die Bewegungskonstante ¢ = AL liefert fiir jede
Bewegung A(t) des Lagrange-Systems (TS, T) die Gleichung

d

~4d, _ i d Ay o ATAp — _ -
O—dté—AL+AdtL, also dtL_ A'AL = QxL =LxQ.

Mit L = 00,0 = diag(Il,IZ,Ia), (vgl. 5.13), schreibt sich das System ditL = LxQ
von Differentialgleichungen ausfiihrlich als :

d 1 2643
Il 'a—tQ = (12-13)0 Q
d 2 13
I2H_EQ = (13'—11)(29

L4 = @, -1)0e
Das sind die Eulerschen Gleichungen fiir den kriftefreien Kreisel. Es sind auch zugleich
die Bewegungsgleichungen des Systems (TS,T).

Es handelt sich bei den Eulerschen Gleichungen um ein nichtlineares System
von Differentialgleichungen. Hat der Kreisel Symmetrien, etwa I, = 1, oder gar
Il =1, = I;, vereinfachen sich die Gleichungen erheblich. Im letzteren Fall ist ©
konstant, bei I, = I, ist die dritte Komponente 0% von Q konstant und die Euler-

schen Gleichungen reduzieren sich auf das lineare System von nur noch zwei Gleichungen

d 4t 2

40 = k@ 3 3

¢ mit ko= £ 0,-1) und k= L -1).
5 & = k0 ! 2

Dieses Differentialgleichungssystem fiihrt zu einer reguldren Prdzession von
o(t) = A(t)Q(t)AT(t) (siehe oben).

Bei paarweise verschiedenen Haupttrigheitsmomenten, etwa L>L>1,
flihrt folgender Ansatz zu einer vollstandigen Losung der Eulerschen Gleichungen: Die
Bewegungskonstanten

L@ = 2B und (1,09% + (1,007 + (1,0%)% = |L?

der Eulerschen Gleichungen kénnen nach Q! und Q% so aufgelst werden, daB ihre
Quadrate linear in (2%)® sind. Mit z = ?® gilt fiir durch die GroBen I,» By und [L)?
bestimmte Konstante Bj, j=12,3,4:

Q' = g, - B,z Q% = B, - p,2% .
Fir z(t) erhdlt man auf diese Weise folgende Differentialgleichung 1. Ordnung:

L

-1
Iy : 1/Bl - B,2° W/Ba" Byz?.
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8 NATURLICHE SYSTEME UND RIEMANNSCHE GEOMETRIE

Zu den wichtigsten Lagrange-Systemen (TQ,L) gehoren die natiirlichen
Systeme, bei denen sich die Lagrangefunktion L als Differenz von kinetischer Energie
und potentieller Energie schreiben 1a8t: L = T - U. Der Spezialfall U= 0 ist im we-
sentlichen gleichzusetzen mit der Riemannschen Geometrie und ihren Geoditischen, wie
in diesem Paragraphen dargelegt wird. Die Riemannsche Geometrie hat ihre Bedeutung
vor allem fiir allgemeine Mannigfaltigkeiten und nicht nur fiir offene Q C R™ mit einer
geeigneten Metrik. Aus diesem Grunde und weil holonome Zwangsbedingungen auch fiir
klassische physikalische Systeme bei globalen Fragen zu allgemeinen Mannigfaltigkeiten
fithren, soll die Lagrange—Mechanik auf einer Mannigfaltigkeit als Konfigurationsraum
ausfiihrlicher als im letzten Paragraphen behandelt werden. Aber wie in den letzten
Paragraphen beginnen wir erst einmal mit einer offenen Menge Q C R" als Konfigura-
tionsraum. Die wesentlichen Aussagen der Theorie werden fiir diese spezielle Situation
dargestellt und iibertragen sich spiter ohne viel Mithe auf den Fall allgemeiner Mannig-
faltigkeiten. Diese Verallgemeinerung wird vor allem fiir die Beispiele am Ende des

Paragraphen bendotigt.

(8.1) Definition. Sei Q C R™ offen. Ein Lagrange-System (TQ,L) heiBt
natiirlich, wenn die Lagrangefunktion L : TQ —> R die folgende Gestalt hat:

L{gq,v) = T(q,v) - UW{q)
fiir (q,v) e Q x R” & TQ, wobei U:Q —> R eine differenzierbare Funktion ist
(das "Potential"), und wobei

T(q,v) = %gw(q)v“v"
gilt mit differenzierbaren Funktionen By ¢ Q —> R, fiir die noch By = B fiir

v
alle g,v, 1<y, v<n, sowie T(q,v) >0 fiir alle (q,v) € Qx R™, v + 0, erfiillt ist.

Diesem Begriff ordnen sich die Lagrange—Systeme zu konservativen Zentral-
kraftfeldern mit der Lagrangefunktion L = %mv2 — U(q) und allgemeine konservative
Systeme mit m§ = — VU unter. Auch das freie System von N Massenpunkten mit
gegenseitiger AbstoBung oder Anziehung (vgl. 7.10.4°) gehort dazu. Ein weiteres in-
teressantes Beispiel liefert der Kreisel in einem homogenen Schwerefeld; dazu benotigen
wir allerdings den Begriff des natiirlichen Systems fiir die Mannigfaltigkeit § = SO(3)
als Konfigurationsraum.

Bevor wir natiirliche Systeme eingehender untersuchen, soll noch eine un-
scheinbare aber fiir allgemeine Betrachtungen wichtige Eigenschaften der in 3.3 vor-
gestellten Euler-Lagrange—Gleichungen nachgetragen werden: Die Invarianz gegeniiber

Koordinatentransformation.
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Essei L: TQ —> R eine Lagrangefunktion, und es sei F : Q —> Q eine
Koordinatentransformation, das heiBt F ist differenzierbar mit einer differenzierbaren
Inversen F 1, Q —> Q. In den neuen Koordinaten (q,) € Q x R" = TQ hat dann
L die Form

(g, ™ = L(F(9),DF(@).¥), (q,7) e TQ.

Fiir eine differenzierbare Kurve v :] —> Q in dem Konfigurationsraum Q, definiert
auf einem Intervall JC R, ist T = FthY :J —> Q die zugehérige Transformierte.

(8.2) Satz. v ist genau dann Bewegung von (TQ,L) (vgl. 3.3), wenn
¥ = F oy Bewegung von (TQ,L) ist.

Diese Invar1anze1genschaft 148t sich damit begriinden, daB das Wirkungs-
funktional S(y) = f 'L{vy, ¥)dt (vgl. 3.4) koordinatenabhingig ist. Sie folgt aber auch
durch direktes Nachpriifen unter mehrfacher Anwendung der Kettenregel: Ist vy Loésung
der Euler-Lagrange-Gleichungen von L, so erfiillt ¥ eingesetzt in L

d oL d AL nrmy _ d oL 3L d (prew

d_t(ﬁ) = _d—f(WDF( ) = dt(a )DF(Y) + oy dt (DF(7))

oL _ aL & oL doL _ oL,
wegen 3% = 3y 3% (DF(Q).¥) = 3v DF(q); also, da dtav ~ aq’

d(dLy _ 9L 3F , AL 8 (priwy =) _ OL

atl5) = aq ag * ov 3g DEM-¥) = oo

(8.3) Invarianz natiirlicher Systeme. Auf natiirliche Systeme angewandt er-
gibt eine Koordinatentransformation F: Q —> Q:

L@ = T(g, - Wy
wobei W@ = UF@), TGV = T(E@DF(@.9), und T(q7 = $g, @7*"
fir (q,v)e TQ mit
@ = g (F«;))i(q) g‘i’v(q)
Also ist auch (TQ,L) ein naturhches System.

B,

Nach diesen zwei Invarianzeigenschaften kann erkldrt werden, warum in der
Definition 8.1 die Matrix (gw) nicht einfach als konstante Matrix angenommen wird,
obwohl die oben angefiihrten Beispiele mit Ausnahme des Kreisels konstante Diagonal-
matrizen als Buv haben: Man méchte beliebige Koordinatentransformationen zulassen,
die ja die Losungen nach 8.2 nicht verdndern, und dabei passiert es zwangsldufig, daB
die Euv von q abhingig werden (siehe 8.3), auch wenn die Euv bzgl. q konstant
sind. Anders ausgedriickt: Will man den Begriff der "Natilrlichkeit" eines Lagrange—
Systems (TQ,L) invariant gegeniiber Koordinatentransformationen definieren, so diir-

fen die Buy nicht konstant gew#hlt werden.
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In einem natiirlichen System mit Lagrangefunktion L = T — U ist die Funk-
tion E := T+ U als die Gesamtenergie aufzufassen. Im Hinblick auf den Hamiltonfor-
malismus wird gelegentlich auch H anstelle von E geschrieben, obwohl H genau
genommen nicht von den Variablen q und v, sondern von g und dem verallgemeiner-
ten Impuls p = —g—{‘,‘- abhiangt (vgl. 9.2). E ist Bewegungskonstante. Das folgt wie im
Beispiel 7.10.8°:

(8.4) Energicerhaltung. Fiir jedes Lagrange-System (TQ,L) ist die Funktion

E := :I;Lv“ L eine Bewegungskonstante. Im Falle L = T~ U gilt E = T - U,
v

Denn fiir Bewegungen qlt) ist

SEwaw) = $(8)q + &g - S =8Lqg+ Ly- 41 =0
(8.5) Die Euler-Lagrange-Gleichungen (vgl. 3.3) fiir ein natlirliches System
haben die Form

Lg% - b 2(g,) 88" = -%, p=1,..n

Eine Bewegung zu 8.5 148t sich daher auffassen als eine "freie Bewegung"”
(mit U = 0), welche aufgrund der durch U bestimmten Kraft - VU gestdrt wird. In
diesem Sinne sollen erst einmal natiirliche Systeme mit verschwindender potentieller
Energie U studiert werden.

Mit der Abk.i.irzung B,k = f(iigij sind die Euler-Lagrange-Gleichungen
von L =T = %gijviv‘

i _1 i -
g, 4 + (g, ;- 285,099 = 0,4 =12 ...n

Es sei (gk“) die zu (g, ) inverse Matrix. Dann ist &ik = gk“ Biy iji, und daher

k

gk + L gk¥(2g, i = 0.

iwj ~ Bij, u)q

)a'e = 2g, .4'¢ sind daher mit der Definition

Wegen (giu.J' it,j
)

85,1

k 1 ku _
I = e (835 + Bjui ™ Biju

die Euler-Lagrange—Gleichungen von natiirlichen Systemen L = T — U #quivalent zu

ok k.j.5 _ _ kg ol
(8.6)1° <+ ra'ed = -g 2 also

20 g€+ I‘I:Jq‘q’ =0, falls U = 0, jeweils fiir k = 1,2, ... ,n.

Die I‘l;}. heiBen die Christoffelsymbole zur Matrix (guv). Da die Funktionen
Euv und U differenzierbar sind, hat das System 8.6 zu beliebigen Anfangswerten
(§ V) € Q x R" eine eindeutige Losung gt} mit q(0) = §, 4(0) =¥ (vgl. die Bemer-

kungen zur Ldsbarkeit im AnschluB von 3.4 oder ausfiihrlicher z.B. [DYS I1). In der
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(8.7) Satz. Sei (TQ,T) natiirliches System (mit T wie in 8.1). Zu jedem
Energiewert E > 0, zu jedem Punkt § € Q und zu jeder Richtung ve R®, v + 0, gibt
es eine eindeutig bestimmte Bewegung q(t) des Systems (TQ,T) mit T(q(t),q(t)) = E,
q(0) = § und g(0) = Xv fiirein X > 0.

Denn es gibt eine eindeutig bestimmte Losung qft) mit q(0) = § und
q(0) = v := Av, wobei X\ >0 so gewihlt ist, daB A®T(4,v) = E. Wegen 8.4 ist
T(q(t),a(t)) = T(q(0),4(0)), und aus T(§,¥) = A*T(§,v) = E folgt die Behauptung.

Um jetzt die enge Beziehung der Bewegungen von natiirlichen Systemen zur

Riemannschen Geometrie erléutern zu kénnen, benétigen wir die folgenden Definitionen:

(8.8) Definition. Sei Q ¢ R"™ offen.

1° Fiir einen R-Vektorraum V bezeichne Sym%(V) den R-Vektorraum aller
bilinearen und symmetrischen Abbildungen VXV —> R.Ist V endlichdimensional,
so ist auch Sym%(V) endlichdimensional und beziiglich einer Basis (el,...en) von V
hat jedes B e Sym%(V) die Darstellung Blv,w) = Bwv“w", v = v”eu, w = we,,
fiir eine zugehdrige symmetrische (nxn)-Matrix (Buv). Mit Symz+(V) werde die offe~
ne Teilmenge der positiv definiten symmetrischen Bilinearformen bezeichnet. Dabei ist
Be Sym2+(V) positiv definit, wenn B(v,v) > 0 fiiralle ve V, v + 0. Jedes B liefert
also iiber

{v,w> == Blv,w) flir v,weV
ein euklidisches Skalarprodukt, und Sym2+(V) kann aufgefaBt werden als die Menge
aller euklidischen Skalarprodukte auf V.

2° Eine Riemannsche Metrik auf Q ist eine differenzierbare Abbildung
g:Q —> Sym2+([Rn). g vermittelt in jedem Punkt q € Q ein euklidisches Skalarpro-
dukt g(q) auf dem Tangentialraum TqQ = R™ (vgl. M.2). Beziiglich einer festen Basis
(e;,...e,)) von R” hat g die Darstellung

gla)lv,w) = g, (q) viwY

mit differenzierbaren By ! Q —> R. g ist also genau dann eine Riemannsche Metrik,
wenn die Koeffizienten uv die Koeffizienten einer kinetischen Energie im Sinne von
8.1. sind.

3° Die Bogenlinge einer differenzierbaren Kurve q: [to’ti] — Q beziig-
lich der Riemannschen Metrik g ist

t Ty 1 —
B(q) = fto gw(q)q“q" dt = fto glq, q) dt.
B ist also im Sinne von 3.4 die Wirkung zur Lagrangefunktion ygw(q)v“v" = {/2T.

Die Bogenldnge ist unabhingig von der speziellen Parametrisierung der Kurve

q, das heiBt invariant gegeniiber differenzierbaren und biiektiven Parameterwerhcal
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¢ : [s4,8,] —> [tg,t,]:Fiir § := qo¢ stimmen die Bahnen q(lsy,s,1) und q(lty,t1)
iiberein und es gilt mit der Bezeichnung "% ="'"

B(q)

t
ft‘ g, 4“4 dt—f Veulace(s)) @ @Y ¢'(s)ds (falls ¢' > 0)
[\]

t.
= ft; -/guv(a(S))q (P q ‘P' ds = J'to guv(q(s))aﬂlav\) ds = B(G) .

8

4° Fiir Kurven gq mit gw(q)q“q"=1 ist B(ql[to‘s]) = fto dt = s - tg,
und solche Kurven heiBen natiirlich parametrisiert. Eine natiirliche Parametrisierung ist
eindeutig bis auf Translationen ¢ : [ty,t,] — [ty.t,] + ¢, ¢(t) = ¢+t des Parame-
terintervalls oder Parameterinversionen ¢ :[t;t,] — [tgt) ], t > o+t -t
Jede Kurve q:[t),t,J —> Q mit §(t) + 0 firalle te [tovt1] besitzt eine Repara-
metrisierung o : [0,B] —> [t,,t,]1, B = B(q), so daB goo natiirlich parametrisiert
ist. o ist die Umkehrfunktion zu B(t) Blalp, ), teltyt].

o

5° Eine Geoditische von g ist eine natiirlich parametrisierte Kurve g, wel-

che zugleich stationdre Kurve beziiglich der Bogenlinge B als Wirkung ist (vgl. 3.4).

Geoditische sind also, naiv gesehen, natiirlich parametrisierte kiirzeste Verbindungen.

Der enge Zusammenhang zwischen der Klassischen Mechanik (natiirlicher
Systeme) und der Riemannschen Geometrie wird durch das folgende einfache Resultat

deutlich gemacht.

(8.9) Satz. Sei g eine Riemannsche Metrik auf Q C R™ mit der zugehdri-
gen kinetische Energie T(q,v) = % gw(q) vtyY . Dann gilt: Die Geoditischen der Riemann-
schen Metrik g sind genau die Bewegungen des Lagrange-Systems (TQ,T) mit

o 1
Energie 5.

Beweis. Die Lagrangefunktion zur Bogeniinge B als Wirkungsfunktional ist
= ¢2T, die zugehdrigen Euler—Lagrange—Gleichungen sind daher

— + 1
dt(av) ( ) T dt(av) L aq
Ist nun q(t) eine Bewegung von (TQ,T), so ist nach 8.4 die Energie T(q,q) konstant,

also auch L(q,q) = y2T(q,q) . Die Euler-Lagrange—-Gleichungen zu L reduzieren sich
daher fiir Bewegungen von (TQ,T) mit T(q,q) + 0 auf

dt( av) = _
und deshalb ist q Bewegung von (TQ,L). Gilt auBerdem noch T(q,q) = %, so ist
gwq“ 4" =1, das heiBt q ist Geodatische. Umgekehrt gilt eine analoge Argumentation.
Insbesondere folgt aus diesem Satz die Existenz einer Geodatischen durch
jeden Punkt g€ Q und zu jeder Richtung ve R™ (vgl. 8.7). Die Beziehung zwischen
allgemeinen Bewegungen von (TQ,L), L = 7g, und Geoddtischen kldrt die folgende
Bemerkung.
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(8.10) Bemerkung. Eine allgemeine Bewegung q von (TQ, Yg') bleibt Be-
wegung bei beliebigen Umparametrisierungen. Insbesondere gibt es zu jeder Bewegung
q: [to,t‘] —> Q im Falle q(t) & 0 fiir alle te [t()’ti] eine Parametrisierung
o: [s5,5,]—> [ty,t,] (nach der Bogenlinge), so daB G= qoo Geodétische von g ist.

Die Invarianz von Bewegungen gegeniiber Umparametrisierungen folgt aus
der entsprechenden Invarianz der Bogenldnge (vgl. 8.8.3°), 148t sich aber auch durch
Einsetzen in die im letzten Beweis benutzten Euler-Lagrange-Gleichungen nachpriifen.
DaB die Bahnen q([to,tl]) von reguldren Bewegungen (¢ # 0) dann die Bahnen von
Geoditischen sind, ergibt sich aus 8.8.4°,

Nachdem wir jetzt die Geoditischen in der Riemannschen Geometrie auf die
kriftefreie Bewegungen der klassischen Mechanik zuriickgefiihrt haben, sollen drei fun-

damentale geometrische Beispiele dargestellt werden.

(8.11) Beispiele.
1° Euklidische Geometrie. Es sei g konstant beziiglich kartesischer Koor-
dinaten des Rn, wie das in vielen klassischen Systemen der Fall ist, zum Beispiel

T(q,v) = §md v'v oder im Falle von N freien Massenpunkten:

N .
T(q,v) = 3 m_3§.v: v
q 2 xz=:1 X i) o r K

Dann reduzieren sich die Euler-Lagrange-Gleichungen 8.6.2° auf c’:ik =0, k = 1,..n,
weil I‘lfj = 0 gilt. Jede Lésung von q'k = 0 hat die Form q(t) = at + b mit Vekto-
ren a,b € R™ und die Bedingung mit gijq‘qk = 1 erzwingt gy a'ad = 1. Die Bahnen
der Geodétischen sind also genau die Geraden. Im iibrigen gilt bei geeigneter Koordina-
tenwahl g = Sij, so daB mit diesem Beispiel gerade der n-dimensionale euklidische
Raum und damit die euklidische Geometrie beschrieben wird.
2° Sphirische Geometrie. Zu jedem R > 0 wird auf Q = R" durch
4R *

(R2 + |q[2)?

eine Riemannsche Metrik definiert, wobei die Indizes sich auf die iiblichen kartesischen

g,lq) = 8y, aeR”,

Koordinaten des R beziehen. Wie in G.5.3° erldutert wird, sind samtliche Bahnen von
Geoditischen dieser Metrik Kreise (oder Geraden durch 0). Sie entstehen durch stereo-
graphische Projektion von den GroBkreisen der n-Sphire S; c R™ auf R™:

R

0,...xn) —

(x 5 (L x™ e [-RR [,

(vgl. auch 8.22.2°),
3° Hyperbolische Geometrie. Analog sei

4R s
(R2 - |qf2)2 ¥
wobei B, = {qe¢ R™: lg} <R} die offene euklidische Vollkugel vom Radius R ist.

gij(q) = , Q€ BR’

Die Bahnen der Geoditischen sind die Kreisbdgen in By, welche auf dem Rand oBg
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von Bp, 9Bp = Sﬁ_l, senkrecht stehen (vgl. G.5.6°). Fir n=2 und R=1 ergibt
das die Kreisscheibe D =B, ={(x,y) € R%:x®+y2 <1} mit g8y = 41 - x* - yz)_zﬁij
als Riemannscher Metrik: Das Poincaré ~Modell der hyperbolischen Ebene. Dazu ein Bild

des Poincaré-Modells mit einigen Bahnen von Geodétischen:

Die geometrische Bedeutung der vorangehenden Beispiele fiir das Paralle-
lenaxiom von Euklid ist die folgende: Die Bahnen der maximalen Geodétischen faBt man
als die "Geraden" der jeweiligen Riemannschen Geometrie auf. Fiir n= 2 definiert man:
Eine Parallele zu einer Geraden ist eine weitere Gerade, die die vorgegebene Gerade nicht
schneidet. Bei einer Vorgabe einer Geraden vy gilt jetzt:

Im Falle 1°: Durch jeden vorgegebenen Punkt auBerhalb von y verlduft ge-
nau eine Parallele zu y. (Das Parallelenaxiom von Euklid ist also in der euklidischen
Geometrie erfiillt.)

Im Falle 2°: ¥ hat keine Parallelen. Je zwei maximale Geod#tische haben
immer mindestens zwei Schnittpunkte (vgl. die Beschreibung der Geoditischen in G.5.3°
und 8.18.2°).

Im Falle 3°: Durch jeden Punkt auBerhalb von y verlaufen unendlich viele
Parallelen zu vy (s.o. Bild).

Viele geometrische und physikalische Beispiele erfordern die Ausdehnung der
Riemannschen Geometrie und der Lagrange-Mechanik auf Mannigfaltigkeiten. Bevor wir
diese Verallgemeinerung beschreiben und Beispiele dazu bringen, wollen wir aber noch
erldutern, daB der Zusammenhang zwischen Riemannscher Geometrie und Klassischer
Mechanik tiefer ist, als daB kraftefreie Bewegungen den Geodatischen entsprechen.
Denn auch allgemeine natiirliche Systeme lassen sich so verstehen, daB ihre Bewegun-
gen den Geoditischen einer geeigneten Metrik entsprechen.

Dazu sei L = T-U mit T(q,v) = %gw(q)v“v" ein natiirliches System
auf Q Cc R™. Es sei E € R ein Energiewert mit H(q,v) := T(q,v) + U(q) = E (vgl. 8.4)
flir geeignete (q,v) € Q x R™. Die moglichen Bewegungen q(t) von (TQ,L) mit Ener-
gie H{q,q) = E verlaufen ganz in Qg = {qe Q| U(q) <E} und solche mit Energie
E und nichtverschwindender kinetischer Energie in Qg\Ag, Ag:={qe Q| Ulq) = E}
(vgl. 8.4). Die Bewegungen mit ¢(t) + 0 und Energie E verlaufen also ganz in der
offenen Menge Q* = {qe Q : U(q) < E}.
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(8.12) Satz. Es sei q: [tg.t;] —> Q eine Kurve in dem natiirlichen System
(TQL), L = T-U, mit q(lt,t,)) c Q*. Dann gilt:
1° Ist q Bewegung von (TQ,L) mit Energie H(qg,q) = E, so ist q auch
eine Bewegung von (TQ¥*,Y4(E - UJT ). AuBerdem gibt es eine Umparametrisierung
o: [so,si] —> [to'tl]’ so daB = qoc Geoditische in Q¥ zur Riemannschen Metrik
= 2(E - U)gw ist. (g* heiBt die Jacobi-Metrik zur Energie E.)
2° Ist umgekehrt q* eine Geoddtische der Jacobi—Metrik g¥ in Q¥ so

*
Euv

gibt es eine Umparametrisierung B : [ty,t,d —> [sg,5,),50daB q = q¥op Bewegung
von (TQ,L) in Q* mit Energie E ist.

Beweis. Die Lagrangefunktion zu g* ist L¥ = Y4(E - WT . Es gilt

aL*¥ 2 3T JL* au
=i E-WS uwd =K Z(E- U)aq Erld)

Im Falle H(g,q) = E, also T = E- U und daher L* = 2T, reduzieren sich die
Euler-Lagrange—-Gleichungen

(aL*) _ d(ZTaT) aL* 2T(§1‘_a_ll)
= dt\T¥ oy d9q ~ L*\9q aq
von L* auf
Q(ﬂ) (a_T_ﬂ) oL
dti ov dq 9dq dq
Da q nach Voraussetzung die Euler-Lagrange-Gleichungen
d (aL) _ oL
dt av T dq

erfiillt und da 37 = %,I gilt, ist g also Bewegung von (TQ¥,L*). SchlieBlich 1Bt

sich q natlirlich parametrisieren wie in 8.8.4° und ist dann Geoditische nach 8.10, da
U(q(t)) < E und H(q,4(t)) = E,also g{t) + 0 fiirallete [to, t,].

Ist umgekehrt q* : [sg,8,] —> Q* Geoditische zu g*, so gilt unter ande-
rem g*(q%,4") = 1 = 4(E - W) T(4*,4%), also E - U(q*) > 0. Setze

als) = f:o %(E - U(q*(T)))—ldT firr s € [s4,8]1.

a ist differenzierbar und streng monoton wachsend. Die Umkehrfunktion p = o« ! von

[0,als,)] = [t;,t,] nach [sq.8,] erfiillt g2 = 4(E - U(q*oB(t)))z‘ Deshalb folgt fiir
q = q oB:

Hlq,q) = fg; a¥aYF + U = (2(E- Wg, ;a1 aY)(E-u)+u = E,
da 2(E - Wg,, q*‘q*J = gf g = 1 nach Voraussetzung. Nach 8.9 ist q* Bewe-

gung des Systems (TQ ,L*) und wegen H(q,q) = E sieht man wie oben, daB q Be-

wegung zu L ist.

(8.13) Beispiele.

1° Der harmonische Oszillator. Eine geeignete Lagrangefunktion, die zu den

Raviroeritrmocor ba il mre v
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4d=-gq

des n-dimensionalen harmonischen Oszillators (vgl. 6.5) fiihrt, ist L(q,v) = %vz -14?,
qeQ = R” und ve R, mit T = v als kinetischer und U = 4q% als potentieller
Energie (v = |v/? und analog fiir q). gq(t) = acost+bsint ist eine allgemeine
Losung mit a,b € R™, Es ist Hlq,q) = %(lal2 + [bl%2) = E. Der Satz besagt, daB die
durch g = acost + bsint, lal® + |b]®2 = 2E, gegebenen Ellipsenbahnen die Bahnen
von Geodétischen zur Metrik g;; = (2E - q2)8ij in der Vollkugel Q* = {|q}® < 2E} sind.

2° Keplerproblem. Wir setzen k = m = 1 und haben dann die Lagrange-
funktion (vgl. 7.12)

2

Liq,v) = §v "TaT' (V) e QxR°, Q = R®\{0).

Zu Ee R ist die Jacobi~-Metrik auf Q¥ = {—Tl(ﬂ< E} durch g;; = 2(E + 1t )Sij ge-
geben. Im Falle E< 0 ist Q* die punktierte Kugel Q¥ = {qe R*\{0}: |ql < ——IE}.
Die Bahnen der Bewegungen q mit Energie E < 0, die wir in 7.12 ausfiihrlich beschrie-
ben haben, sind also die Bahnen von Geoditischen in Q* zur Metrik 2(E + TIEI) 8y = gz
Die Energieniveaufliche I entspricht daher dem "Sphérenbiindel” $(Q*) tiber Q*:

$(Q%) = {(q,v) e Q* xR® | g*(q) (v,v) = 1}.

Die Metrik g* steht mit der sphirischen 3-dimensionalen Metrik in einer engen Bezie-
hung. Insbesondere entsprechen die Bahnen des Keplerproblems den geoditischen Bah-

nen der Sphire 5. Wir kommen darauf in 8.23 zuriick.

(8.14) Definition. Sei M eine (beliebig oft differenzierbare) Mannigfaltigkeit
mit Tangentialbiindel TM (vgl. Anhang M.10).

1° Eine Lagrangefunktion ist eine differenzierbare Funktion L : TM —> R.
(TM,L) heiBt dann Lagrange—-System mit M als Konfigurationsraum, TM als (Ge-
schwindigkeits—) Phasenraum und

S(y) = f:: L(7(1) dt

als zugehtﬁrige Wirkung auf Kurven vy : [t;,t,] —> M. Dabei ist y(t) ¢ TY(t)M der-
jenige Tangentialvektor an M in y(t) = a, der durch
(t) = [y(t + S)]a

definiert wird. Liegt die Bahn Y([tovt1]) von Y ganz in einer Karte ¢ : U — Q C R,
also y([tyt,]) C U, so wirddurch vy und ¢ eine Kurve q(t) = poy(t) € Q gegeben,
welche vy und ¥ {iiber die zu ¢ gehorige Parametrisierung ¢ = cp_i beschreibt: Es
ist y(t) = d(q(t)) und #(t) = Tq(t)tb(c'[(t)), wobei T die Tangentialabbildung
TO:R* = TQ— T
von TM gilt

M bezeichnet. In den durch ¢ gegebenen Koordinaten

9 __
aqun{(t) ’

wobei q(t) = (gl(t)...q™()) und %_ = [Y(ela) + te )] (vgl. M.7 und M.10). Mit

1(t) = c']“(t)—a— , oder genauer t(t) = g*(t)
og
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Ve 7 n
L{q,v) = L(Tq(b(v)) fir (q,v)e QxR
t A
ist dann S(y) = ftl L{q(t),q(t)) dt wie in 3.4.
(+]

2° Eine Bewegung des Lagrange-Systems (TM,L) ist eine Kurve v, fiir die
die Wirkung S stationdr wird. Das bedeutet fiir Mannigfaltigkeiten das folgende: Un-
ter einer Variation von ¥ :[t,,t,] —> M wollen wir eine differenzierbare Abbildung
I ftg,t I x1-1,+1 — M mit I'(t,0) = y(t) fiiralle te [ty,t,] und F(tj,z-:) = Y(tj)
fiir alle €€ J-1,+1[ und j = 0,1 verstehen. Wir schreiben auch v (t) fiir T(t,e). v
ist stationdr fiir S, also Bewegung von (TM,L), wenn

d
de S(Ye)’s=o =0.

fiir alle Variationen Y. von .
(8.15) Satz. Sei (TM,L) Lagrange-System. Eine Kurve ¥ : [ty t,] — M
ist genau denn Bewegung, wenn v fiir alle Karten die Euler-Lagrange-Gleichungen
48h - &
q
erfiillt (mit I/:(q,v) = L(TquJ(v)) wie in 8.14.1°). Die Euler-Lagrange-Gleichungen hei-
Ben deshalb auch die Bewegungsgleichungen des Systems.

Beweis. Wir wollen diesen Satz ausfiihrlich erldutern. Aus der Invarianz der
Euler-Lagrange~Gleichungen 8.2 ergibt sich die Aussage ziemlich einfach, wenn die Kur-
ve vy ihre Bahn Y([tovtl]) ganz in einer Koordinatenumgebung U beziiglich einer
Karte ¢ : U —> Q hat. Der allgemeine Fall kann auf verschiedene Weise auf diese
spezielle Situation zurlickgefiihrt werden. Im folgenden geschieht das durch Einfiihrung
von koordinatenunabhingigen Euler-Lagrange-Gleichungen o; zu L und durch die
Herleitung einer wichtigen Variationsformel.

Sei also vy :[ty,t,] —> M =zundchst irgendeine Kurve in M. Fiir eine
Karte ¢ : U —> Q betrachtete man den Ausdruck

o A
chia(g‘vli (a(t),a(t))) - g—é‘(q(t),(ﬂt))

langs q{t) = ¢oxy(t) fiir solche te [ty.t,] fiir die y(t) e U.Sei $: U —> Q eine
weitere Karte (mit derselben Koordinatenumgebung U) und sei F :== ¢of: Q —> Q
der zugehdrige Kartenwechsel ({ := 215-1). Dann gilt

LG = LTg¥M) = LTy #(TgFM)) = L(F(@),DF@) 7).

Die Rechnung im Beweis der Invarianz der Euler-Lagrange-Gleichungen 8.2 zeigt, daB
fiir den obigen Ausdruck das folgende Transformationsverhalten vorliegt:
— — ~ ey
d oLy oL _ rd(aLly _ aL G
&(5%) - 55 = (&(§) - 55)oF@e).

Fiir einen Tangentialvektor X e T M mit den Darstellungen

~(t)
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) wk_d
X = X% bzw. X = X°=%
aqk Y o~
bezliglich der Karten ¢ bzw. § folgt wegen xi = Xk gﬁk’ = (F,..FY .
d(aLy _ oL afyaF* ok _ (d oLy _ of
d(ak, _ oL jxk - LYo vk = (S(2h) - 2y,
(d ( Vk) aak) (a?_(avu. aqu)aq (d ( u.) aqu)
Wir haben damit ausfiihrlich gezeigt, daB der Ausdruck
= n
o (DX == (dt(avu) aqu)x fiir XeT, (M
unabhingig von der Wahl der speziellen Karte ist und damit Linearformen
oy (t) T'r(t)M —> R
auf den Tangentialrdumen lings vy(t) definiert. Sei t, = s, < s, <...< s = t, eine

Zerlegung des Intervalls mit Y([sj_l,sj]) C Uj fiir geeignete Karten ?j UJ. — Qj.

Dann ist
k sj
Sly) = L{q,q)dt
Y jgi fsjq (q,q)

wobei L (statt etwa I/:j) die zu ; gehorige Lagrangefunktion auf Qj x R™ bezeichne.
Entsprechend seien q_,q_, die Koordinaten bzgl. ? fiir eine Variation I'(t,e) = y_(t)

von v. Dann ist

d X d ([ .
ES(YE)|E=0 = JZ & (J‘Sj-—lL(qs’ qs)dt) E=0

=1

und

- fsj (@‘a—%%ﬁ(t) + OL 9 ) 4|

di (f L(qE, qe)dt)

Sj aL AL 8qg |53

= fsj_‘(w $(&EN ] d + =5 (t)[sj_l
Sei jetzt W das durch Wi(t) := é—i—[‘(t,s)'E=0 € TY(‘__)M definierte Vektorfeld ldngs
der Kurve v. Dann ist W(tj) = 0 fiir j = 0,1 wegen I‘(tj,e) = Y(f—j) fiir alle €. Es
folgt insgesamt durch Aufsummieren die folgende Variationsformel, die unabhéngig von

den speziellen Koordinaten ist:

&
Hstv)l, = Ji, e eY(WiED) de.

e 'e=0

Ist nun vy Bewegung des Lagrange-Systems, so gilt o (t) (W(t)) = 0 fiir alle Varia-
tionen von v, also o (t) = 0,daeszu )edem vorgegebenen We T (t)M te ]t Wty [,
eine Variation I' von +y gibt mit d T'(t,0) = W(t) = W. Umgekehrt garantiert
o (t) = 0, daB y Bewegung des Systems ist.

Wir haben gezeigt: v ist genau dann Bewegung, wenn o; {t) = 0 fiir alle
telt,t] gilt, und das ist wiederum &quivalent dazu, da y(t) in allen Koordinaten

die Euler-Lagrange-Gleichungen erfiillt. Damit ist der Satz bewiesen.
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Bemerkung: Die Lagrangefunktion L definiert also eine Differentialform o
langs der Kurve y mit der Eigenschaft: v ist genau dann Bewegung des Lagrange-—
Systems (TM,L), wenn o () = 0 gilt. Die Differentiaiform o entspricht der in der
physikalischen Literatur benutzten Variationsableitung von L, und zwar gilt in lokalen
Koordinaten:

%dq = -o.

Wir kommen jetzt auf den in 7.9 formulierten Satz von Noether fiir Mannig-
faltigkeiten zuriick. Um Iy koordinatenfrei fiir allgemeine Vektorfelder X auf M
und Funktionen L auf TM definieren zu kénnen, kann man wie im letzten Beweis vor-
gehen: Fiir Karten ¢ : U —> Q c R" mit Parametrisierung ¢ = <p'1 hat das Vektor-
feld X die Darstellung X(a) = Xk(a)é—a—, ael, g = ¢(a), und L die Form
Lqv = LT $(), (qv) € Q x R™. Es sei fir Ye T,M mit Y = T b(w)

A
oL
In(Y) = Fietq, W)X (a).

Dann ist dieser Ausdruck unabhingig von der speziellen Wahl der Karten. Eine direkte
Definition von Ix ohne Karten benutzt die Faserableitung F1. von L: Fiir X,Ye TGM
setze

FLNX = SLy+ 1.

Dann gilt mit L_ := LITGM‘ Die Abbildung ZL(Y) = TyL,=DL_(Y) : TM— R
ist die iibliche Ableitung von L:T,M— R in Y. (FL:TM — T*M ist im
iibrigen ein Vektorbiindelhomomorphismus.) In lokalen Koordinaten ist

A
FLIY)X = %(q,w)xk,

daher gilt fiir Vektorfelder X: M —> TM auf M stets I (Y) = ZLY) X(t(Y)),
wobei 7: TM ~—— M die iibliche Projektion ist.

Sei jetzt X infinitesimaler Erzeuger einer lokalen 1-Parametergruppe von
Symmetrien des Lagrange-Systems (TM,L). X ist also ein Vektorfeld, zu dem es
Diffeomorphismen ¢, : M, —> M_,, M, ¢ M offen, fiir kleine |t| gibt, so daB gilt:
Py = idyg, sowie @op, = ¢_ . (soweit definiert) und X(a) = EdE(np da))]|e-o (vel.
M.14). Alle ¢, sind Symmetrien, das heiBt sie erfiillen Lo Te,= L auf TM, . Diese
Symmetriebedingung hat zur Folge, daB in lokalen Koordinaten fiir alle Y ¢ T™, gilt:

ol . oL s
(8.16) ‘a—aX'f“a—v'EY =0

N A
. d )
wie man aus 0 = ;%:(LOTcpt(Y))]t:o: %&%t]thr g—b%(Tm(Y))lt:o abliest. Im

tibrigen hat jedes Vektorfeld X eine zugehorige lokale 1~Parametergruppe (¢,) . Ob
aber alle ¢, Symmetrien sind, ist gerade gleichbedeutend damit, ob X die Bedingung
8.16 erfiillt. Ein Vektorfeld X mit 8.16 heiBt deshalb infinitesimale Symmetrie des
Systems (TM,L) (vegl. auch 7.8).
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Genauso leicht wie der Satz von Noether I' in 7.8 14Bt sich nach diesen Vor-
bereitungen der folgende Satz beweisen, aus dem insbesondere die in 7.9 formulierte
Version I des Noetherschen Satzes unmittelbar folgt:

(8.17) Satz von Noether I1'. Sei X infinitesimale Symmetrie des Lagrange—
Systems (TM,L) . Dann ist die Funktion Iy : TM —> R, L (Y) = FL(Y) X(a) fiir
Y e T_M, eine Bewegungskonstante.

(8.18) Beispiele.

1° Energie. Die Energie eines allgemeinen Lagrange—Systems (TM,L) ist
definiert durch E(Y) = JFL{Y)Y - L(Y), Y € TM, mit der oben eingefiihrten Faser-
ableitung FL(Y) (vgl. 8.4). In lokalen Koordinaten also ﬁ(q,v) = g—vf.\(q,v)v - I/:(q,v),
(q,v) € Q x R™ . Wie in 8.4 sieht man sofort, daB E Bewegungskonstante ist, ohne 8.17
heranziehen zu miissen (vgl. aber 7.10.3°).

2° Sphirisches Pendel. Das kréftefreie sphirische Pendel hat Sli als Konfi-
gurationsraum {vgl. Paragraph 4) und als Lagrangefunktion die kinetische Energie
%mlvlz = L.Flir m = 1 hat L beziiglich der Parametrisierung

$(8,9) = R(sinBcos¢,sinBsing,cosb),
6,90) € 10,7 [x]1-m,n[ (vgl. G.2.4°), die Form f(e,w) = %Rz(é2 + $% 5in?0) wie man
direkt nachrechnet. Die Bewegungsgleichungen in den Koordinaten 6,¢ ergeben sich
aus I/:é = 8, I:b = Rzipsinze, Qp = 0, sowie fe = RZ sinb cosH (3)2 als

b = 4:2 sinb cos9,

iésinze + 2o 0 cosh sind = 0.

(Die Bewegungsgleichungen sind damit dquivalent zu den in G.53.3° hergeleiteten Glei-
chungen fiir die Geodétischen auf Sf . Nach dem fiir diesen Paragraphen zentralen Satz
8.9 liber die Aquivalenz von kriftefreien Bewegungen und Geoditischen ist dieser Sach-
verhalt nicht iiberraschend, zumal 8.9 eine Verallgemeinerung auf Mannigfaltigkeiten
hat, iiber die wir gleich berichten werden.)

Diese nichtlinearen Bewegungsgleichungen lassen sich jetzt mit Hilfe von
Bewegungskonstanten leicht 16sen: L ist invariant gegeniiber beliebigen Drehungen
A € SO(3), deshalb erhilt man wie erwartet den Drehimpulsvektor gxv (m=1) als
vektorielle Bewegungskonstante. Abgesehen von der Ruhelage (v=0) liegt also jede
Bahn einer Bewegung in der zu q x v senkrechten Ebene. Jede solche Bahn verldauft
also in einem GroBkreis von $% . (Wir haben damit auch nachgewiesen, daB die Geoda-
tischen von $° die natiirlich parametrisierten GroBkreise sind (vgl. G.5.39).)

3° Der freie Kreisel. Hier soll nur auf das Beispiel des freien Kreisels hinge-
wiesen werden, der ein natiirliches System ohne potentielle Energie darstellt und fiir
den ebenfalls eine SO(3) - Symmetrie vorliegt. Man erhilt den Drehimpuls als bewe-
gungsinvarianten Vektor (siehe 7.13).
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Weitere Beispiele folgen im AnschluB an die Ausdehnung der Begriffe "Rie-
mannsche Metrik” und "natiirliches System" auf Mannigfaltigkeiten.

(8.19) Definition. Sei M wieder eine Mannigfaltigkeit und TM das zugehd-
rige Tangentialbiindel mit Projektion 1: TM —> M.

1° Eine Riemannsche Metrik auf M ist in Verallgemeinerung zur Definition
8.8.2° eine Abbildung

g: M —> U{sym’ (T M) | aeM)}

mit gla) € Sym2+(TuM) fiir alle a € M, so daB fiir alle differenzierbaren Vektorfelder
X, YeB(U) auf offenen Mengen UCM die Funktion g(X,Y): U — R,
a — gla)(X(a),Y(a)) fiir ae U, differenzierbar ist. (M,g) mit Riemannscher
Metrik g wird auch Riemannscher Raum oder Riemannsche Mannigfaltigkeit genannt.

Fiir jedes ae M ist g(a) also auf T M ein euklidisches Skalarprodukt
gla) : T M x T,M —> R und wird als solches auch mit g abgekiirzt. Auf dem
Faserprodukt TM X, TM = {(X,Y) € TM x TM | «{X) = 1(Y)} ergibt sich somit die
Abbildung g: TM'x. TM — R, (X,Y) > gla)(X,Y) fir X,Y e T M, aeM,
und die zugehdrige Lagrangefunktion ¥yg : TM —> R, Y —> Yg(Y,Y) fir Y € TM.

In lokalen Koordinaten beziiglich einer Karte (p U —> Qc R™ mit der

—1

zugehdrigen Parametrisierung ¢ = und der Basis (—— ‘ w=1,..n) der Tangen-

tialrdume T M, ae U (vgl. M.10), hat g die Darstellung

g(X,Y) = g, (@ XY,

: B 2 T N
wobei gw = g(d)(q)) (aq“‘aq) gilt fiir Vektoren X = X g =Y 3q0 aus
TM, <p(a) q. Fiir eine weitere Karte ¢: U —> Q c R" smd die Koeffizienten
Eij(ﬁ) g(m(q))(é? é—q—J) mit gw(q) durch die in 8.3 bewiesene Relation verkniipft:
— oF¢ aF ag* aqV
g5(d = g, JSF@) £5 35! 95 kurz g, = g, BJ%“I éﬁi'

wobei F := ¢o0: Q —> Q den Kartenwechsel bezeichnet.

(Kiirzer ausgedriickt, aber mit entsprechend mehr Vorwissen belastet, ist g
ein symmetrisches, positiv definites Tensorfeld 2. Stufe, oder — damit gleichbedeutend -
ein differenzierbarer Schnitt in dem entsprechenden Biindel Symz+(M) iiber M.)

2° Die Bogenlinge einer Kurve Y :[ty,t,] — M beziiglich g ist analog
zu 8.8.3° definiert durch

t
B(Y = [t /ey, ¥ dt.

Die Aussagen und Definitionen von 8.8.3° und 4° (iber Invarianz der Bogenlinge in be-
zug auf Parametrisierungen, tiber natiirliche Parameter und iiber Geoditische iibertra-
gen sich unmittelbar. Insbesondere ist eine Geoditische des Riemannschen Raumes eine

natiirlich parametrisierte Kurve v die zugleich stationir (siche 8.14.2°) bezliglich der

xxre 1 .- 1 — » o o Y



124 I Klassische Mechanik

3° Fin natiirliches System (TM,L) ist eine Lagrange-System auf einem Rie-
mannschen Raum (M,g), zu dem es eine differenzierbare Funktion U: M —> R
("potentielle Energie”) gibt, so daB mit T(Y) = %g(Y,Y), Y € TM, ("kinetische Ener-
gie") die Lagrangefunktion L die Form

L(Y) = T(Y) — U(«(Y)), YeTM,

hat (vgl. auch 8.1 und 8.3).
Eine Reihe von Beispielen Riemannscher Mannigfaltigkeiten finden sich im

Anhang G. Wir wollen hier nur auf Matrixgruppen mit Riemannscher Metrik eingehen.

(8.20) Beispiel. Sei G eine Matrixgruppe. Zu jedem euklidischen Skalarpro-
dukt

g T;GXT,G6 — R

auf dem Tangentialraum T,G in der Eins 1€ G gibt es eine zugehorige linksinvarian-
te Riemannsche Metrik g auf G, die wie folgt konstruiert wird.

Matrixgruppen haben wir als Untermannigfaltigkeiten G C C(n} kennenge-
lernt (sieche Anhang L.4), fiir die das Tangentialbiinde]l TG als Untermannigfaltigkeit
TG c €(n) x €C(n) direkt angegeben werden kann:

TG = {(A,v) e C(n) xC(n) | AeG und A"veTlG}
= {(AAX) | A€G und XeT,G)

(siche auch 5.7 im Falle der Drehgruppe SO(3)). Fiir Tangentialvektoren £ = (A,v)
und 1 = (A,w) aus T,G wird jetzt gesetzt:

galtim) = gl(A_iv,A_lw), also auch
gA(AX,AY) = g(X,Y) fir X,YeT,G.

Die Riemannsche Metrik g: G —> U {Symz.,,(T 4G} | A€ G} ist dann linksinvariant
in folgendem Sinne: Fiir die Linksmultiplikation &g : G —> G, A——> BA, gilt stets

BpalTAZp(E), T,LEM) = guE&n) fiir E neT,G,

wie man durch Einsetzen sofort erkennt.

Ein Beispiel fiir eine solche allgemeine linksinvariante Metrik ist uns durch
die Beschreibung der kinetischen Energie T beim Kreisel im Prinzip bekannt: Mit Hilfe
des Tragheitstensors © des Kreisels (vgl. 5.13 und 5.19), der nichts anderes als eine
positiv definite, symmetrische lineare Abbildung des euklidischen Raumes E auf sich
ist, wird uber die Identifizierung © : 88(3) —> E (vgl. 5.7.15°) ein euklidisches Ska-
larprodukt

g{X,Y) = <Ow(X),u(Y)>, X,Y € 80(3),

auf 80(3) definiert. ("¢ . >" ist das euklidische Skalarprodukt auf E.) Wegen



I1.8 Natiirliche Systeme und Riemannsche Geometrie 125

T,SO(3) = ¢0(3) erhilt man so eine durch © induzierte linksinvariante Riemannsche
Metrik g=g, auf G = SO(3): 8o(AX,AY) = g, (X,Y) = <Ouw(X),w(Y)>. Nach 5.12
ist die kinetische Energie T des Kreisels fiir n = AYe T 'AG deshalb gerade durch
T(A,AY) = }gg(n,n) gegeben, denn es ist go(n,n) = g,(Y,Y) = (©w(Y),0(Y)).

Es ist klar, wie man jetzt eine abstrakte Kreiseltheorie auf Matrixgruppen
formulieren kann. Bevor wir das in 8.24.3° tun und noch weitere physikalische Beispiele
zum AbschluB dieses Paragraphen darstellen, sollen erst einmal die bisher erzielten
Ergebnisse fiir natiirliche Systeme (TQ,L), Q c R" offen, auf allgemeine natiirliche
Systeme (TM,L) iibertragen werden.

Dazu sei {M,g) eine Riemannsche Mannigfaltigkeit. In lokalen Koordinaten
beziiglich einer Karte ¢ : U —> Q c R™ habe gla) fiir ae U die Matrixdarstellung
g{X,Y) = ng“X" mitag = g(a) und 8y = gy(a) = g(u)(g?—]n,a—z;) (vgl. 8.19.19),
Die Basisvektorfelder Py haben auch die Bedeutung einer speziellen Richtungsablei-

tung von differenzierbaren Funktionen f: U — R :

af d —1
W(a) = a(fo@ )(Y(a) +teu)

fiir aelU und ¢ = 1,...n, wobei (el,ez...en) die iibliche Basis von R™ bezeichne.
Abkiirzend: f’ w = é@q—u Die Christoffelsymbole beziiglich ¢ werden jetzt wie oben

definiert:

k _ 1 _ku —
Ty = 28 (85 * 8ui— By )

jeweils in Abhéngigkeit von q € Q. Bei einem Kartenwechsel F : Q— Q, = F“‘oq)
transformiert sich I‘§ nicht wie ein Tensor (vgl. M.16), es gilt stattdessen

wk,— — —k —_—
Tj@ = rg, (F@) o a 35 +q%ay,
wobei FY(@ = q* und (F )" = §¥. Mit den T laBt sich fiir Y e T M und Vek-

torfelder X in einer Umgebung von a die kovariante Ableitung (von X ldngs Y)
ausdriicken durch

ok k ik 2]
DYX = (X +Fij Y'X )3&]{

als eine von den jeweiligen Koordinaten unabhingige Abbildung. XX ist dabei die Ab-
leitung von Xk(Y(t)) nach t, wobei v:1-g,e[—> U, &> 0, eine Kurve ist, welche
Y reprisentiert: y(0) = a und 4{0) = Y. Man sieht, daB X nur auf dem Kurven-
stiick y(1-g,el) ¢ U definiert sein muB. (Siehe auch G.8 und G.13.3°.)

Es sei schlieBlich noch der geometrische Gradient gradgf fiir differen-
zierbare f: W —— R, W c M offen, definiert: gradgf ist das Vektorfeld auf W,
welches fiir alle weiteren Vektorfelder X auf W die Gleichung

g(X,gradgf) = Lyf

erfiillt. Dabei ist Ly die Lie-Ableitung von f nach X, also Lyf = X f'). in lokalen

Koordinaten. Daher gilt in lokalen Koordinaten grad gf = gij f,j_a%l"
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Wir haben damit die nétigen Bezeichnungen zusammengetragen, um den fol-
genden Satz zu formulieren, der aus den entsprechenden Resultaten fiir offene Q C RrR®

anstelle von Mannigfaltigkeiten M unmittelbar folgt:

(8.21) Satz. Sei (TM,L) ein natiirliches System auf der Riemannschen Man-
nigfaltigkeit (M,g) mit potentieller Energie U: M ——> R und kinetischer Energie
T=4g: L=T-U.

1° Fiir Kurven vy :] —> M sind die Bewegungsgleichungen des Systems
(TM,L) &quivalent zu

DYY = - gradgu(y) (vgl. 8.6).

2° Zu jedem Punkt a € M und jedem Tangentialvektor ve T, gibt es lokal
genau eine Bewegung y mit v(0) = a und ¥(0) = v. Es gilt auch der zu 8.7 analoge
Satz.

3° Die Geoditischen von (M,g) sind genau die Bewegungen y von (TM,T)
mit Energie T(Y¥) = % Insbesondere gilt fiir natiirlich parametrisierte y: DYY =0
& v ist Geoditische.

49 Sei M' = {aeMl U{a) < E} fiirein E€R mit M + @. Eine Kurve
¥ [tgt,] —> M mit y([ty,t,1) ¢ M' ist genau dann Bewegung von (TM,L) mit Ge-
samtenergie T(¥) + U(y) = E, wenn y nach einer geeigneten Umparametrisierung

Geoditische des Riemannschen Raumes (M*,g*) mit g* = 2(E - Wg ist.

(8.22) Beispiele.
1° Das ebene Pendel. Das bereits im vierten Paragraphen diskutierte Beispiel
des ebenen Pendels hat als Phasenraum TSi (r = Pendellénge). Die kinetische Energie
= 4mlv|? ist von der Form T(Y)=£g(Y,Y), Y € TS., mit der Riemannschen Metrik
g(X,Y) = m<X,Y> auf S:, (m > 0).Im kréftefreien Fall ist T die Lagrangefunktion.
Der Fall eines konstanten homogenen Schwerefeldes mit Schwerkraft F(x,y) = (mg,0)
wird ebenfalls durch ein natiirliches System L = T - U mit Potential U= -mgx be-
schrieben. In den lokalen Koordinaten ¢(8) = r(cos9,sin8), 6 € J-n,n [, um die Ruhe-
lage ¢(0) = (r,0) (vgl. Abbildung in Paragraph 4) hat die Lagrangefunktion die Form

f 1242 Brn Ay _ L. 242 _ .
= $mr®6° + mgrcosd, wegen T(6,8) = zmr"6” und W) = mg(rcos8). Die
zugehorige Bewegungsgleichung in diesen lokalen Koordinaten ist daher 6 = —% sinf.

Fiir kleine 6] entspricht die letzte Gleichung wegen sin® ~ 0 der Differentialglei-
chung des harmonischen Oszillators & = - k8, k > 0 (vgl. Paragraph 4 und 6).

2° Das sphirische Pendel. Der kriftefreie Fall des sphirischen Pendels im
®® wurde in 8.18.2° behandelt. Phasenraum ist TS; (R = Pendelldnge) und kinetische
Energie ist T=%m|v|2. Im konstanten homogenen Schwerefeld F(x,y,z)= (mg,0,0)
ergibt sich analog zu 1° ein natiirliches System: L = T + mgx. In den lokalen Koordi-
naten (anders als is 8.18.2°)

$(0,9) = R{cosbcosqp,cos0sing,sinb), (B,p) € —%ﬂ:,%n[ x1-n,nl,
ist I/,\ = %mRz(é2 + zbz cos?9) + mgRcos® mit den entsprechenden Euler-Lagrange—
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6 = —tbzsine cosf —%sine,

<'p'cosze -2¢6cosBsind = 0,

3° Das freie sphirische Pendel in beliebiger Dimension. In Verallgemeinerung
zu 2° betrachten wir ein abstraktes Pendel im [R™! mit der holonomen Zwangsbedin-
gung |g?-R? = 0, R> 0, und mit der Masse m = 1. Der Konfigurationsraum ist
die n-Sphire Sp = {qe R™! | <q,q> = R®} und der Phasenraum ist das zugehorige
Tangentialbiindel TSR ={(q,v) e R""' | qe Sk und <q,v> = 0}. Die kriftefreie
Bewegung wird durch die kinetische Energie T(q,v) = %lvl2 = Iv,v> = tetvyv)
beschrieben, wobei g die iibliche (vom euklidischen Skalarprodukt < , > des R™!
induzierten) Riemannsche Metrik auf der Sphire S;{ ist. T ist invariant gegenliber
Drehungen A€ SO(n+1): T{Aq,Av) = Tl(q,v). Wegen FT(Y)X) = <Y,X> hat das
Lagrange-System (TSR, T) nach dem Satz von Noether (8.17 bzw. 7.8) die Bewegungs-
konstanten I, (q,v) = (v,Xq) Ffiir X e 8o(n+1). Beziiglich der iiblichen kartesischen
Koordinaten q = (qo,ql,...qn) in R™! erhilt man auf diese Weise insbesondere die
Bewegungskonstanten 1"V(q,v) = q*v’' — q"v*, u<v, die von den infinitesimalen
Drehungen des R™! erzeugt werden.

Mit Hilfe dieser Bewegungskonstanten lassen sich die Bewegungsgleichungen
auf einfache Weise 18sen: Zu a ¢ Sgp und ve T, Sp\M 0} bestimme man ein Orthonor-
malsystem (e, e,,..e ) mit a = Rey und v = |vle,. Fiir die Bewegung vy mit
Y(0)=a und 9(0) = v gilt I°'(y,¥) = [VIR + 0 und I*“(y,%) =0 fiir alle anderen
I*Y, u < v. Daher verlauft die Bewegung y ganz in der von e, und e, aufgespannten
Ebene. Daraus folgt v(t) = cos(leR)a + ]—[sm(lle)v wegen I'Y(t)l2 = {v/* und
lv(t)] = R. Wir haben damit nach Satz 8.21.3° auch gezeigt: Die Geoditischen von
(SR,g) sind die natiirlich parametrisierten GroBkreise: cos(—-)a + sm( )b, teR, mit
a,be S , <a,b> =

4° Das freie Doppelpendel Ein ebenes Doppelpendel hat den Torus S1 X Sl
als Konfigurationsraum, wie im vierten Paragraphen erldutert wurde. Ohne die Bahnen
der freien Bewegungen, also der Geodatischen, explizit zu kennen, 14Bt sich zeigen, daB
eszu nmeN, n>0, m> 0, stets eine periodische Geoditische v(t) = {alt),p(t))
auf S: X SBll1 gibt, so daB innerhalb einer Periode die Kreislinie S: von o« n-mal
durchlaufen wird und die Kreislinie Sé{ von B m-mal. Entsprechend gibt es eine
Bewegung, bei der innerhalb einer Periode das erste Pendel n volle Rotationen und das
zweite Pendel m volle Rotationen macht. Wie zuvor ergibt sich im Falle eines konstan—

ten homogenen Schwerefeldes ebenfalls ein natiirliches System.

(8.23) Beispiel: Keplerbewegung als geoditischer FluB der 3-Sphire. Im Bei-
spiel 8.13.2° wurden die Bahnen der Bewegungen des Keplerproblems zu einer festen
Energie E <0 als die Bahnen der Geoditischen zur Jacobi-Metrik g* =2(E + ﬁ)&
erkannt. Im folgenden wird gezeigt, daB diese Bahnen bis auf Isometrie und eine Para-

metertransformation den Bahnen der Geoditischen auf der 3-Sphire §° entsprechen
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(1°-3°). Als Konsequenzen aus diesem Resultat ergeben sich in 4° eine Regularisie-
rung der Kollisionsbahnen und in 5° eine Erkldrung des Runge-Lenz-Vektors als
Bewegungskonstante zur natiirlichen SO(4) - Symmetrie von %3, SchlieBlich werden in
6° und 7° Verallgemeinerungen auf beliebige Dimensionen und beliebige Energien E
angesprochen.

1° Zeittransformation. Sei (q,p) eine Keplerbewegung zur Energie E <0
(mit k = m = 1, vgl. 712), also q: [ty,t,] —> Q = R*\{0} Kurve mit 4 = p,
p= ‘ig und %Iplz— Tlif = E. Um zu erkennen, welche Geometrie sich hinter der
Jacobi-Metrik verbirgt, ist es giinstig eine Zeittransformation t = 1(s) durchzufiihren
mit $(s) = FOUS) (oo YTTE und #(®) = lg@). 00,51 — [igt,] er-
hilt man als Umkehrfunktion von

o) = [ o la)iTde' , s = olt).

44

Py viZ, (x,v) e TR®2 R®x R® und

Fiir T(x,v) = } (o
x(s) == q(x(s)), x' = —(%Sx(s) etc.

rechnet man jetzt leicht nach:

2 2 _ 2 2 _ 2
o+ IxI® = -2E+pl" = gy = 1+

d 5 s | \ i
x =4y =q = q—a£= q;‘é: —————p%rzq, sowie

T(x,x') = § (denn T(x,x') = Lo*?x'? und Ix'® = o % 2).
Wegen g%(x,x')=-pzq, %(x,x'):—rx und d—(i(—pzq) = -p%q1" = -rg = -rx
erfiillt (x,x') also die Euler-Lagrange-Gleichungen zu T. Damit ist eine Richtung der
folgenden Aquivalenz bewiesen.

Satz. Sei g:[t;,t,] — Q Kurve. (q,q) ist genau dann Bewegung von

2 .
(TQ,L), L = 414" + T%ﬂ’ mit Energie E < 0, wenn x(s) := go1(s) Bewegung von
(TR®,T) mit Energie T(x,x') = § ist (t und T wie oben).

Um die Umkehrung des Satzes zu zeigen, sei x = x(s) Bewegung von
(TRa,T) mit Energie % Sei s = o(t) die Umkehrfunktion von
_ -2 2 o2y
ws) = [, 207 (Ix(s)I” + %) ds’

auf dem Intervall [0,t,], t, = t(s,). Dann ist

qlt) = —4p? (Ixoo(t)? + 0%) 7% x'(a(t))

Lésung von § = —-—1—3—13- mit Energie E: Denn wegen T(x,x') = 1 ist zundchst
o% + Ixl? = % , r = lql, also
alt) = —e%r¥x'oo(t) und t' = ro 2.
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Aus

4 9T _ 8T

ds ov — 9x

4

fiir (x,x') ergibt sich wegen g}: p""l;-]x|2 B x'=p*x' = -p%q' und entsprechend
g;{ = -rx: pzq’ = rx. Wegen q'= qT = qrp folgt rx= p q'=r4q, das heiBt
g = x. SchlieBlich folgt daraus %lql2 ~r = E und q=-¢’r*x'=- 0%r2g' = -13 4,
das heit §= - ?qa—- Damit ist der Satz bewiesen.

2° Interpretation des Satzes. Sei jetzt Zg = {(q,p): %]plz-]—l(ﬂ = E} die
Energieniveaufldche zur Energie E < 0. Der in 1° bewiesene Satz gibt AnlaB, die fol-
gende differenzierbare Abbildung

F:3g — TR® = ®®xR®

einzufiihren: F(q,p) = (p,—;lz—lﬂﬁ). Durch F werden im wesentlichen nur die Rollen
von q und p vertauscht. Die Bildmenge F(Xg) liegt im "Sphérenbiindel”

S(Ra,gp) = {(x,v) € TRS | g,(v,v) = 1}
zur sphirischen (vgl. 8.11.2°) Metrik

gp(v, w) = <v,w),

_ Aot
(p2 +|x|2)?
wie man durch Einsetzen unter Verwendung von %lplz -lg™t =& nachpriift. Die Ab-
bildung F: Zgp —> S(R® 18 ) ist sogar Diffeomorphlsmus, die Umkehrabbildung
G := F! la.Bt sich direkt angeben G{x,v) = (- = pz —!—]—z,x) Mit dem Resultat des
Satzes gilt daher:

Folgerung: F : g — S(Ra,gp) ist ein Diffeomorphismus, der die Bahnen
der Keplerbewegung genau auf die Bahnen der Geoditischen von (R%,g p) abbildet. Die
Kollisionsbahnen (vgl. 7.12.2°) werden dabei auf die Geraden durch 0 € R® abgebildet:
F('(O,R)) = {(aR, -4(a® + 0®)p™?R) : e R} C TR®, wobei R e R® , [R| =

3° Vergleich mit dem geoditischen FluB von $°. Der Geoditische FluB einer
Riemannschen Mannigfaltigkeit (M,g) ist die Gesamtheit aller Kurven ¥ in TM, fiir
die y eine maximale Geoditische von (M,g) ist. Wegen () e $(M,g) == {YeTM |
g(Y,Y) = 1} fiir Geoddtische v liefert der geoditische FluB eine Zerlegung des
"Sphérenbiindels” $(M,g) in die Bahnen der Geod#tischen.

Die Abbildung F: g — S(IRS,g ) liefert laut Folgerung einen Isomor-
phismus zwischen den Keplerbahnen auf Zg und dem geoditischen FluB auf (IRs,g ).

Die Geometrie von (R® ,gp) ist iiber die stereographische PI‘OJektIOI'l
9 : SN} — R®, N:= (p,0,0,0),

o(x0,x!,%2,x3) := p_-pW(X x2,%3), xeSa\{N}
mit der Geometrie der 3-Sphire (S ,8) verbunden: Fiir die Parametrisierung ¢ = ¢!,
)R — 53\{N}

P, x%,x%) = (olixl® - ), 202x1, 26257, 20%x%),

N S
|x|2 + p2
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gilt gy = <9,94> = WE(WS (vgl. G.2.3°).

Also ist ¢ eine Isometrie von (Ra,gp) nach (Sg,g). Die Komposition
® = TYoF:Z,; —> S(ng ) — S(Ss,g) =: § bildet daher die Keplerbahnen von
g auf die Geoditischen von (s® ,g) ab, welche in ®(Zg) liegen. Die Konstruktion
von F und Ty zeigt: o(2g) = S\T—I(N) wobei T : T83 —_ 53 die iibliche Projek-
tion des Tangentialbiindels TSg ist.

4° Regularisierung. Damit lassen sich die Kollisionsbahnen in Zg regulari-
sieren: Zu jeder Kollisionsbahn ['(0,R} in I (mit Drehimpuls I = 0 und mit dem
Runge-Lenz—-Vektor R e R®, |R| = 1, vgl. 7.12.2°) gibt es einen natiirlich parametri-
sierten GroBkreis yg (festgelegt durch die Bedingungen Nevyg und (0,pR) € YR), 50
daB fiir die Projektion t®(I'(0,R)) von ®(I'(O,R)) gilt: t®(I'(0,R)) C yx(R} und
Yr(B®\1@(I'(0,R)) = {N}. vg(R) C Sg bzw. {g(R) C § kann daher als die natiirliche
Fortsetzung der Kollisionsbahn ®(I'(O,R)) in den Kollisionspunkt N angesehen wer-
den: Denn es gilt fiir jede Folge (q,,p,) € I'(0,R) mit q, —> 0: Ip,l —> = sowie
®(q,,p,) — Tr(0), wenn vr(0) = N. (Eine naheliegende Parametrisierung von Yg
ist yplt) = (cos %)N + (sin%)(O,pR)).

5° Symmetrien und Runge-Lenz—Vektor. Eine Symmetrie, die fiir die Bewe-
gungsinvarianz des Runge-Lenz—Vektors verantwortlich ist, kann jetzt in natiirlicher
Weise explizit angegeben werden: Die 3-Sphare Sg ist mit ihrer Metrik g invariant
gegeniiber Drehungen des R*, also gegeniiber allen A ¢ SO(4). Es ergeben sich die Be-
wegungskonstanten I*¥(x,v) = v*x" - v'x¥, u < v, aufgrund des Satzes von Noether
{vgl. 8.22.3°). Deshalb sind insbesondere auch die GrBen

R¥(q,p) = '16 °Vod(g,p), v = 1,2,3,

Bewegungskonstanten auf . Eine kurze Rechnung zeigt: Diese RY sind die Kompo-
nenten des in 7.12 definierten Runge-Lenz-Vektors R. Die —1—2—1“\’, 0<u<v, sind im
iibrigen bis auf Vorzeichen die Komponenten des Drehimpulsvektors.

6° n—dimensionale Version. Statt im IR3 kann analog das n—-dimensionale
Keplerproblem mit Lagrangefunktion L = 3 Liv)? + T——I qgeQ=~R "\ {0} untersucht wer-
den. Fiir n > 2 libertragen sich alle Resultate 1° —5° ohne nennenswerte Anderungen.

7° Nichtnegative Energiewerte. Fir E = 0 erhélt man analog einen Isomor-
phismus der Keplerbahnen in X, mit dem geoditischen FluB auf einem n-dimensiona-
len Paraboloid im R™", Fiir E > 0 erhalt man einen Isomorphismus der Keplerbahnen

in g mit dem geoditischen FluB einer n- dimensionalen Pseudosphére im R

(8.24) Beispiel: Der schwere Kreisel. Auch der Kreisel in einem konstanten,
homogenen Schwerefeld 148t sich als natiirliches System auffassen, wie wir in1° zeigen.
Neben der Gesamtenergie hat man aber im allgemeinen nur eine weitere Bewegungskon-—
stante. Fiir einen symmetrischen Kreisel ergibt sich in 2° noch eine Bewegungskonstan-

te, so daB die Bewegungsgleichungen sich auf ein eindimensionales Problem reduzieren
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lassen. AbschlieBend wird in 3° kurz auf einen allgemeinen freien Kreisel mit beliebiger
Matrixgruppe eingegangen.

1° Der schwere Kreisel als natiirliches System. Bereits in 8.20 haben wir
festgestellt, daB die kinetische Energie T des Kreisels nach 5.13 von einer linksinvarij-
anten Riemannschen Metrik auf dem Lageraum $ 2 SO(3) des Kreisels herriihrt. Die
potentielle Energie des Kreisels in einem homogenen und konstanten Schwerefeld be-
schreibt sich wie folgt: Das feste Koordinatensystem e,,e,,e; des Raumes E sei so
gewshlt, daB das Schwerefeld die Form (0,0,-g) hat, und natiirlich der Ursprung
0 ¢ E der festgehaltene Punkt des Kreisels ist. 1 = idy € SO(3) im Konfigurations-
raum S = SO(3) seiso gewdhlt, daB der Schwerpunkt C des Kreisels (vgl. Paragraph
5) in der Lage A =1 beziiglich €,,€,,€, die Koordinaten (0,0,z) mit z >0 hat.
Dann hat die potentielle Energie folgende Form

U(A) = Mgz(ea,ATe3> = Mgz cos¥, AeS,

Dabei ist M die Masse des Kreisels und & der Winkel zwischen der raumfesten Achse
e; und der korpereigenen Achse E, = ATea. Im Falle z = 0 liegt eine kriftefreie
Bewegung vor.

Das natiirliche System (TS, T - U) beschreibt also den schweren Kreisel.
Dabei ist L = T - U offensichtlich invariant gegeniiber Drehungen um die e, —Achse.
Nach dem Satz von Noether ist also die Komponente ¢, des rdumlichen Drehimpulses
(vgl. 5.18) neben der Gesamtenergie eine Bewegungskonstante.

2° Der symmetrische schwere Kreisel. Unter einem symmetrischen schweren
Kreisel versteht man einen in einem Punkte festgehaltenen starren Korper, fiir den zwei
der drei Haupttrdgheitsmomente iibereinstimmen (vgl. 5.14) und bei dem der Schwer-
punkt C auf der (Symmetrie-) Achse E,= ATe3 des jeweiligen korpereigenen Koordi-
natensystems liegt. (Vielfach wird nur der symmetrische schwere Kreisel als "Kreisel”
bezeichnet.) Es sei jetzt €,,€,,€; ein raumfestes Koordinatensystem, fiir das der Trag-
heitstensor © die Diagonalform © = diag (I,L,,1;) mit I, = I, hat, und es sei
1€ S = SO(3) sogewahlt, daB C in der Position A = te S die Koordinaten (0,0,z),
z 2 0, beziiglich e,e,e, hat. Wie in 1° ist L = T~ U eine Lagrangefunktion des
Systems mit potientieller Energie U(A) = Mgz cos$. Neben ¢, erwartet man wegen
der Symmetrie des Systems bzgl. der Rotationen um die kdrpereigene Achse E, = ATe3
auch L, (vgl. 5.18) als Bewegungskonstante.

Beziiglich der Eulerwinkel als lokale Koordinaten lassen sich diese Bewe-
gungskonstanten direkt aus der Form der Lagrangefunktion ablesen. Es sei

Ri(t) = eMi teR, j =1,2,3,

wobei die Mj die drei infinitesimalen Drehungen um die drei Hauptachsen sind (vgl.
L.6 i) und 5.7.3°). Dann liefert

R: [0,2n] x 10,n[ x J0,2n[ = Q —> SO(3)

RfiaY — Dl.rn 0 Y o D IAD fAYD £.0.1%
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eine Parametrisierung {(eines offenen Teils) von SO(3). Die Berechnung der kinetischen
Energie ?(q,v) = T(TqR(v)) fiir (q,v) e QX R® beziiglich dieser Parametrisierung:

T(a,v) = $<Ou(TRW), 0 (TR(V)>, wobei

o (TRM) = 0RMTTRKV) (vgl. 5.12).
Aus TqR(v) = —adTR(q+ t:v)|t=° ergibt sich mit der Notation q = (¢,9,§) und
v = (V¢’V9’V¢) wegen aR3(<p +tvq,)|(P=D = v(PM3R3(cp) etc.:

T R(v) = v¢M3R3(@)R1(&)R3(¢) + Ryl@)vg M R (S) Ry ()

+ R3(<P)Rl(5)V¢M3R3(4)), also
R(q)TT RV = Ry(-$)R,(~8) Ry(~@) TR(V)
= v, Ry(-$)R (- 8) M, R, (BIR, () + VoR (W) MRy (&) + v, M.

Es folgt wegen © = diag (I,,1,,I,}) und o = diag (1,1,1) :

Tlq,v) = AN (v, sin® sin¢ + vy cos )2
+ 50 (v, sin® cos - vy sing)?
+ 3 I (v, cosd + Vg )2

Diese Herleitung ist gliltig fiir den allgemeinen Kreisel. Im symmetrischen Fall (I, = 1,)

haben wir die Vereinfachung

%(q,v) = %Iz(vé + vfo sin®9) + § I(v,, cosd + vw)z.

Mit ﬁ(q,v) = WR(q)) = Mgz(ea,R(q)Te3> = Mgzcos$ ldBt sich aus der Lagrange-

funktion f(q,v) = /'I\‘(q,v) - ﬁ(q) unmittelbar ablesen, daB L translationsinvariant ist

gegeniiber ¢ —> @ + ¢, und § —> p+ 1, (¢ und ¢ sind zyklische Koordinaten
N

bezliglich L). Daher sind

oL .2 2
k(q,v) = ———avcp (q,v) = V(P(I1 sin“9 + I, cos™ ) + V¢I3 cos %
und

K(q,v) = —(—% (q,v) = v¢13 cosd + v(‘bI3

Bewegungskonstante. Ein Vergleich mit 5.18 und den obigen Rechnungen zeigt:
k = ?3(q,v), K = fs(q,v).

Mit Hilfe der drei Bewegungskonstanten T + U, ¢; und L; lassen sich
die Bewegungsgleichungen fiir den symmetrischen Kreisel auf ein 1-dimensionales
Problem reduzieren und dann 18sen. Wir verweisen dazu auf [ARN, S. 152 ff.] und [STi,
S. 338 ff.] sowie auf 9.20 ff.

Bemerkung: Aus dem Ausdruck &'\(q,v) fiir die kinetische Energie 148t sich
auch folgern: Die Euler-Lagrange—Gleichungen fiir den kréftefreien Kreisel sind genau
die in 5.13.4° hergeleiteten Eulerschen Gleichungen.

3° Der allgemeine freie Kreisel. Es sei G eine Matrixgruppe mit ihrer Lie—
Algebra g = LieG. Das Tangentialbiindel ist

TG = {(Av) |AeGund Alveg) = {(Av) |AeG und vA™' € g)
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(vgl. L.4.8°). Wie in 8.20 gezeigt wurde, wird zu jedem euklidischen Skalarprodukt
g1:8%g —> Rauf g = T,;G eine linksinvariante Riemannsche Metrik g durch
galv,w) = g (A7, A" w) fiir (A,v), (A, w) ¢ TG
definiert. g, wird eindeutig bestimmt durch eine symmetrische bilineare Abbildung
Aig —> ¢* mit M(X)Y) = g,(X,Y). Entsprechend hat man symmetrische Iso-
morphismen
Aa i TAG = TG, X (0(w) = g, (v,w).

G kann man in Analogie zu SO(3) auffassen als den Konfigurationsraum
eines verallgemeinerten Kreisels. Als Winkelgeschwindigkeit in (A,v) e T AG dienen
entsprechend der Beschreibung in 5.8 und 5.11 die Vektoren

w (A V) == ATy und wg(A,v) = vATl,
wobei w, die Winkelgeschwindigkeit in kérpereigenen Koordinaten ist und wg die
Winkelgeschwindigkeit in rdumlichen Koordinaten. Die kinetische Energie ist

T(A,v) = %gA(v,v)
mit der linksinvarianten Metrik g. Die Bahnen der Bewegungen des Systems (TG,T)
sind die Geoditischen zu g (vgl. 8.21). Die Operatoren A, sind dann als Trigheitsten-
sor aufzufassen. Diese XA erlauben es, verallgemeinerte Drehimpulse zu definieren.
Der kérpereigene Drehimpuls ist die Abbildung L : TG —> g", wobei L(A,v) e g” als
Y = Xa(v,AY) = gl(A"‘v, Y) wirkt. Der rdumliche Drehimpuls ist die Abbildung
£: TG —> g%, wobei 2(A,v) durch X A, (v, XA) = gl(A_lv, A™tXA) gegeben
ist. Fiir den aus dem fiinften Paragraph bekannten Fall G = SO(3) stimmen diese De-
finitionen mit den dortigen iiberein, abgesehen von geeigneten Identifikationen von R®
mit 80(3) bzw. é0(3)*. Der in 7.13.1° hergeleitete Erhaltungssatz hat folgende unmittel-

bare Verallgemeinerung:
Satz. Das System (TG, T) hat ¢ als Bewegungskonstante.

Der Satz ist wie in 7.13.1° eine Anwendung des Satzes von Noether, zu dem
wir jetzt durch 8.17 einen glatteren Formalismus zur Verfiigung haben. Die Faserablei-
tung von T ist

FTANAW = $T0+ W, = g, vw).

Fiir jeden Vektor X e g laBt A > eS¥A die Lagrangefunktion invariant, weil ja g
linksinvariant ist. Der infinitesimale Erzeuger von A —> e5%A ist das Fundamental-
feld A —> XA = X(A). Also ist

Ix(Av) = FTAMX(A) = g,(v,XA) = £(A,v)(X)
die zugehdrige Bewegungskonstante.

Natiirlich ist auch T (nach 8.4) eine Bewegungskonstante. Wie in 7.13.4°
fiihrt die Ausnutzung von %é = 0 zu verallgemeinerten Eulergleichungen zwischen
L und wy, die zugleich die Bewegungsgleichungen sind. Mehr zu diesem Thema findet
man zum Beispiel in [ARN, S. 325 ff.].
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9 SYMMETRIE IN DER HAMILTONSCHEN MECHANIK

Unter verschiedenen Gesichtspunkten ist die Hamiltonsche Formulierung der
Klassischen Mechanik vorteilhafter als die Formulierung im Rahmen von Lagrange-
Systemen. In den vorangehenden Paragraphen haben wir bereits den harmonischen Oszil-
lator wie auch das Keplerproblem in Hamiltonscher Form dargestellt und allgemein die
Hamilton—Systeme in 3.5 vorbereitet. Dieser neunte Paragraph des Kapitels liber Geome-
trie und Symmetrie in der Mechanik zielt darauf ab, die Hamiltonsche Formulierung der
Klassischen Mechanik vorzustellen, Noethersche Sitze fiir Hamilton—Systeme zu bewei-
sen, und dazu die Momentenabbildung einzufiihren. An den bereits bekannten Beispielen
werden die neuen Begriffe erlautert. Der Paragraph schlieBt ab mit einer kurzen Abhand-
lung iiber vollsténdig integrable Systeme.

Sei Q ¢ R™ zunichst wieder offen und P = Q x (R™* der Impulsphasen-
raum mit Koordinaten {q,p), a= (q, ...,a™, p= (p;; Py, ..., P,) - Ein Hamilton-System
ist ein einfaches klassisches System im Sinne des 3. Paragraphen, in dem die Bewegungs-
gleichungen in der Form 3.5 mittels einer einmal stetig differenzierbaren Funktion

H:P — R, der sogenannten Hamiltonfunktion, auf die folgende Art gegeben sind:

o3

8H . _ _9H
dgp’ P77 8q

91 q-=

Eine Kurve y:] — P im Phasenraum P ist also genau dann eine Bewe-
gung des Hamilton-Systems (P,H), wenn fiir y(t) = (qft),p(t)), te], und fiir alle
kel .. n} gilt:

ke, . OH . _ _dH
g = Fo-(a,p®), B lt) = -5 k(alt),p(t)).

Man nennt 9.1 die kanonischen Gleichungen des Hamilton-Systems (P,H).

An Beispielen kennen wir bereits den harmonischen Oszillator mit P ~ 2" ,
Hig,p) = & (pl?+ |g?), sowie allgemeiner die Bewegungsgleichungen

) 1 .

4=3p, P= -Vl(q),
fiir konservative Zentralkraftfelder F = ~VU mit der zugehdrigen Hamiltonfunktion

2
H(qg,p) = %% + U(q), insbesondere als spezielles Beispiel das Keplerproblem mit
p? 1

Hlg,p) = 35 -k
(@p) = 2w ~*1q

Den Ubergang von einem Lagrange-System (Q X ®",L) mit Lagrangefunk-
tion L = L(q,v) zu einem #quivalenten Hamilton—System mit Hamiltonfunktion H er-
L ele e Potle Blinnlimiied Atk Eiihehar it Hilfe der Tesendretransformation. Man
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macht den Ansatz p := %, versteht diese p als einen verallgemeinerten Impulsvek-
tor und 16st die Gleichung p = %(q,v) nach v = &(q,p) auf. Das ist nach dem Satz
liber implizite Funktionen {vgl. M.3.5°) jedenfalls dann lokal méglich, wenn die Matrix
der zweiten Ableitungen von L nach den Variablen v, also

(afla%ﬂ @),
invertierbar ist. Eine Lagrangefunktion, die dieser Bedingung geniigt, heiBt regulir. Fiir

solche reguldre L ist die transformierte Funktion
(9.2) H(q,p) = p®(q,p) - L(q,d(q,p))

lokal eine geeignete Hamiltonfunktion. {p®(q,p) steht abkiirzend fiir Z P, ®V(q,p);
noch kiirzer wird H anderswo gelegentlich als H(q,p) = pv - L(q,v} geschrxeben )

Im Falle eines natiirlichen Systems L = T ~ U mit T(qv) = 3 gw(q)vu v
(vgl. 8.1) ergibt sich: L ist reguldr und die verallgemeinerten Impulse Py = Eul@v’
lassen sich auflésen nach v’ = &V(q,p) = g““(q)p , wenn (g"¥(q)) die zu (g Ja)
inverse Matrix bezeichnet, und daher H(q,p) = (q)pup\, U(q).

Die Gleichwertigkeit der Bewegungen des Lagrange-Systems (TQ,L) mit den
Bewegungen des Hamilton-Systems (P,H) mit H wie in 9.2 sieht man folgendermaBen:

Sei q(t) Losung des Lagrange-Systems und setze pl(t) = %%(q(t),(;(t)).
Dann ist q(t) = &(q(t),p(t)) und es gilt:

®(qlt),p(t) + p(t)%g - 8L 32 _ (qie),plt) = a(t),

I

%g—(q(t).p(t))

v
oL

oL _ oL
av

ap
e taw.pe) = pt1%2(a0)p(e)) - &

aq
=-Shaw,am) = - &

Liqw,at) = - pw.
Dabei gilt die vorletzte Gleichung aufgrund der Bewegungsgleichungen 3.3.

Umgekehrt sei (q,p) Lésung des Hamilton-Systems mit H wie in 9.2. Dann
ist p = av (q,CIJ(q p}) nach Definition von &, und die kanonischen Gleichungen liefern

4= $av),p(e) = gt p(®) + P32 - Saoiap) §2
= ®(q(t),p(t))
b= —-‘m(q(t),p(t)) - pfg‘f; + %(q@(q,p)) + g%(q,fb(q,p))%g

= (q ®(qp)) = a—L( 1a).
. . _ _ . G, QQ_I; 0y - o _ oL .
Also sind die Euler-Lagrange-Gleichungen 3.3 erfiillt: diav(@d) = p = aq(q,q).

Die wichtigsten Vorteile der Formulierung eines klassischen Systems als

Hamilt orn—Svetarm <ind v Dalescamae 30 Be. 1. 4. o1
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Erstens ist H im Gegensatz zu L eindeutig bestimmt bis auf eine additive
Konstante. Das ist jedenfalls richtig fiir zusammenhéngende Phasenrdume P und es
ist keine Einschrinkung an physikalische Gesetze, wenn P immer als zusammenhéan-
gend angenommen wird. Daher kommt H im Gegensatz zu L eine physikalische Bedeu-
tung zu, H ist nimlich die "Energie" des Systems (vgl. 7.10.3° und 8.4).

Zweitens lassen sich die Bewegungskonstanten iiber einen entsprechenden
Satz von Noether fiir Hamilton—-Systeme immer als von Symmetrien erzeugt auffassen
(vgl. 9.19).

Drittens hat ein Hamilton—System, welches iiber die Legendretransformation
von einem Lagrange—-System stammt, in der Regel mehr Symmetrien als das Lagrange-
System. Wie wir weiter unten zeigen werden, 14Bt sich das schon an so einem einfachen
Beispiel wie dem harmonischen Oszillator erkennen.

Viertens ist es bei der Quantisierung von klassischen Systemen giinstig, von
Hamilton-Systemen auszugehen, die man direkt quantisieren kann (in der sogenannten
"Kanonischen Quantisierung"; vgl. Paragraph 2 in Kapitel III).

Fiinftens hat der Phasenraum P eine geometrische Zusatzstruktur, ndmlich
die symplektische Struktur, welche den Ubergang von H zu den Bewegungsgleichungen
bewirkt und vyelche bei Symmetrien erhalten sein muB. Diese Zusatzstruktur hat daher
Konsequenzen fiir die Formulierung der Bewegungsgleichungen und fiir das Studium von
FrhaltungsgroBen. Will man abstraktere Konzepte, wie zum Beispiel Differentialformen
und symplektische Mannigfaltigkeiten (vgl. M.19), bei der Erlauterung dieser Zusatz-
struktur zundchst vermeiden, so bietet sich die Poissonklammer (vgl. die nachfolgende

Definition) als das wesentliche rechnerische Werkzeug der symplektischen Struktur an.

Definition. Flir je zwei differenzierbare Funktionen F,G:P —> R auf dem

Phasenraum P & Q x R™ ist die Poissonklammer definiert als

(.G} = EIG _ 9EIG _ 9F 3G _ oF G

dqdp dp dq _ 9q”dp, Ip, oq*’
wobei wieder iiber die Indizes y,v€{1,2,... n} summiert wird.
Mit "differenzierbar” ist hier beliebig oft differenzierbar gemeint, und mit
&(P) wird die Menge aller beliebig oft differenzierbaren Funktionen auf P bezeichnet.
£(P) ist in natiirlicher Weise ein R—-Vektorraum, und es gilt stets {F,G}e 6(P) fiir
alle F,G ¢ &(P). Die Elemente Fe &(P) sind als die "Observablen" des klassischen
Phasenraumes P aufzufassen.

(9.3) Satz von Poisson. Sei (P,H) ein Hamilton-System mit einer Kurve
{(q,p) = v:J —> P im Phasenraum. (q,p) ist genau dann Bewegung des Hamilton~
Systems (P,H), wenn fiir alle differenzierbaren F: P —> R gilt

F = {F,H}.

(Dies ist die Kurzschreibweise fiir: ditF(Y(t)) = {F(y(t)),H(y(t))} fir alle te].)
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Denn fir F(t) = F(y(t)) gilt, falls 9.1 vorausgesetzt werden kann:

f = 9E . OF . 9FOH J9FoH _
F=123q9"3pP = 3qap ~apaq — FH)

Andererseits folgt 9.1 aus F = {F,H} fiir alle F, denn filr F = qk und F =

P _ 2qkH _ 3qk 9H _ , oH
o = @ = 5 5, apv aq” lapk’

Wegen der Aussage in 9.3 nennt man F = {F,H} die Bewegungsgleichungen
in Poissonform.

(9.4) Folgerung. Eine differenzierbare Funktion F: P —> R ist genau dann
Bewegungskonstante des Hamilton-Systems (P,H), wenn {F,H} = 0 gilt.

Fir die Poissonklammer stellen wir die folgenden Eigenschaften fest, die
man direkt nachrechnen kann.

(9.5) Satz. Fiir alle F,G,1¢ 8(P) und ceR gilt:

1° {cF,G} = c¢fF,G}, {F+G,1} = {F,1} + {G,1} (Linearitiit)

2° {F,G} = - {G,F} (Antisymmetrie)
3° {r{c,1} + {c.0L,A} + {LiRGI} = o (Jacobi-Identitét)
4° {F,GI} = G{FR,1} + {F,G}I (Produktregel)
5° G ist konstant, wenn {F,G} = 0 fiir alle F (Vollstindigkeit).

Die Eigenschaft 1°~3° bedeuten, daB &(P) mit { , } eine Lie-Algebra ist
(vgl. Anhang L.5), die sogenannte Poisson-Algebra der Observablen auf dem Phasen-
raum P.

Fiir das Aufspiiren von Bewegungskonstanten benstigen wir Vektorfelder wie
im Paragraphen 7 als Kandidaten fiir infinitesimale Symmetrien, aber hier nicht gegeben
als Vektorfelder auf dem Ortsraum Q, sondern als Vektorfelder auf dem ganzen Pha-
senraum P = Q x ([Rn)* = Qx R™. Sei X ein Vektorfeld auf P, also eine beliebig
oft differenzierbare Abbildung X : P — RZ™, Beziiglich der konstanten (Einheits-)
Felder £, 1" :P —> R™, £, (ap) = (0, .. 1, ..,00,..,00 bzw. n°(qp) = (0,
,0,0, ... 1, ... ,0) mit der 1 nur an der y-ten bzw. an der (n + v)-ten Stelle fiir 1< U,
v <n, hat X die eindeutige Darstellung X = X“E +Y n mit X", Y, € 6(P). (An-
merkung: E entspricht :9717“ n” entspricht 8_ in dem iiblichen Formalismus auf
Manmgfaltlgkelten vgl. Anhang M.6.) Als w1cht1gen Begriff benétigen wir:

(9.6) Definition. Ein Vektorfeld X : P — R®™ heiBt Hamiltonsches Vek-
torfeld, wenn es eine Funktion 1€ &(P) gibt mit
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2] ol
Xu=—;u und Y, = " agv
Kurz: X = oVI = (g—rl),—a—é), wobei die symplektische Involution o : R — R

durch o(q,p) = (p,—q) definiert ist. In Abhidngigkeit von I wird ein solches Hamil-
tonsches Vektorfeld mit X; bezeichnet und auch symplektischer Gradient von 1 ge-
nannt. X heiBt lokal Hamiltonsches Vektorfeld, wenn es zu jedem Punkt a € P eine
offene Umgebung U von a und Ie &(U) mit X|; = oVI gibt.

Bei dieser Definition wird die symplektische Struktur des Phasenraumes P
wesentlich herangezogen, welche an dieser Stelle durch die symplektische Involution
o: R*™ — R in natiirlicher Weise auf P gegeben ist. (s heiBt Involution, weil
6% = coo = - id py ist.) Ein direkter Zusammenhang zwischen o und dem Hamilton—
Formalismus ergibt sich durch die Beschreibung der kanonischen Gleichungen 9.1, die

jetzt die Form
{4,p) = Xgxla,p) oder v = Xgly)

fiir v = (q,p) haben. Ein weiterer Zusammenhang besteht zwischen ¢ und der Pois-
sonklammer, der sich sich mit Hilfe der symplektischen Form © auf dem Tangential-
raum von P beschreiben 14Bt. o ist folgendermaBen definiert:
—_ —— n —-— —
o(X,X) = <X, XD, = X X"Yv - X'y,
v=1
fiir Vektorfelder X = XVE\) + Yunu und X = )—(va + —Yun“ auf dem Phasenraum P
und kann auch einfach als XTo X = o)(X,i) geschrieben werden. (Als Differential-
form ist © die Form dq’a dp,, auf dem Phasenraum P (vgl. M.16). Auf R x R2"
ist ® alternierende Bilinearform. "T" bezeichnet die Transposition einer Matrix.} Der

angesprochene Zusammenhang ergibt sich iiber 9.3 durch

(9.7) Satz. Fiir Observable F,G ¢ &(P) gilt

{F,G} = o(Xg,Xg).

. _ (8 _3 3G Gy _ (oF _9F) [_9G _aG
Denn es ist m(XF,XG) = (—8p’ 3q c(——ap, _aq) (_ap’ _aq)( a’ p)
_ 9F 9G  OF oG
op aq * aqap = G}

Die bisher auf verschiedene Art eingefiihrte "symplektische Struktur” von
P x R™ 4Bt sich also wahlweise beschreiben durch die Poissonklammer, durch die
symplektische Involution ¢ oder durch die symplektische Form . Denn { , } be-
stimmt die Komponenten von ¢ iiber {F,G} fiir F,G ¢ {q“,pv}, o definiert ©w wie oben
und o liefert { , } nach Satz 9.7. Zur symplektischen Struktur gehoren schlieBlich
alle drei Objekte: { , }, 6 und w; und alle drei kénnen zur Formulierung der kanoni-
schen Gleichungen dienen. (Vgl. auch M.19.)

Weitere niitzliche Identitidten beziiglich der Poissonklammer, die aus 9.7 un-
mittalthar FAaloan cind ABIY )Y — (¥ Y ) 1ind AFIYY — (Y VY Fiir Valbtarfoidaor
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Y. Dabeiist dF das totale Differential dF := g—%dqv + %dpuL (vgl. M.15). Mit Hilfe
der Lie-Ableitung L., definiert durch L F = dF(X), alsou

v OF oF
oqv * Yu 5@

fur X = XYE, + anu (vgl. M.12) gilt auBerdem: LXGF = {F,G}.
Der wichtigste Zusammenhang zwischen der symplektischen Struktur ¢ und

LXF = X

der Poissonklammer im Hinblick auf die Suche nach Bewegungskonstanten ist die fol-

gende Charakterisierung:

(9.8) Satz. Ein Vektorfeld X:P — R®™ auf P ist genau dann lokal
Hamiltonsch, wenn fiir alle F,G e §(P) gilt

L, {F,G} = {L,F.G} + {FL,G}.

Beweis. Sei etwa X = X  in einer offenen Menge U C P. Dann folgt aus
L {EGt = {{F.GLI} und {L FG}+{FL, G} = {{F,1,G} + {F{G,1}} zusammen mit
der Jacobi-Identitit 9.5.3° die erforderliche Identitit LX{F,G} = {LXF,G} + {F,LXG}.
"Es sei umgekehrt LX{F,G} = {LXF,G} + {F,LXG} fiir alle F,G e §(P).
Angewandt auf F = q", G = q°, folgt wegen Lyq" = X*:
X X

BV, oX =
auf q%,q”: aqv oqt = 0
oY, aY,
. oly _ 91y _ ¢,
ebenso auf PP, ¢ ErN b, 0;
u
ebenso auf q“, p_: %ﬁv + ‘g—gi =
Fiir das Vektorfeld Z = -¢X mit Z; = =X, und Zoes = X! als Komponenten folgt
daher beziiglich der Koordinaten x = (¥) = (q,p):
9 7 _ O
w4 = 504

fiir i,je{l,...2n}. Das ist die Integrabilititsbedingung (auch oft rot Z = 0 geschrie-
ben und im Formalismus der Differentialformen fiir o := Zjdxj zu da = 0 dquiva-
lent), welche nach dem Lemma von Poincaré garantiert, daB Z auf konvexen (oder
sternftrmigen, oder einfach zusammenhéngenden) offenen Mengen U C P ein Gradien-
tenfeld ist (vgl. M.17), das heiBt es gibt l¢ &(U) mit Z u= V1. Zuriickgerechnet
folgt wegen X|u = oZ|u: X|u =o(VI) = X,, was gezeigt werden sollte.

Jetzt endlich der Zusammenhang zu den Bewegungskonstanten durch den

folgenden Satz (anders als im 7. Paragraphen kommt die infinitesimale Version zuerst):

(9.9) Satz von Noether III'. Sei (P,H) ein Hamilton-System mit einem Vek-
torfeld X : P —> R®", 5o daB:

1°X 1a8t {, } invariant, dh. L. {F,G} = {L_F,G} + {F,L G} fiir alle
F,Ge &(P).
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2° X laBt H invariant, dh. L .H = 0.
Dann ist X lokal Hamiltonsches Vektorfeld, und es gilt fiir jede Funktion 1¢ &(U)
mit X u = X;: I ist eine (lokale) Bewegungskonstante des Hamilton-Systems.

Denn nach 9.8 ist X wegen 1° ein lokal Hamiltonsches Vektorfeld; zu jedem
Punkt a e P gibt es daher eine Umgebung U von a und eine Funktion Ie€ §(U) mit
Xlu = X,. Wegen 2° st L H = {H,1} = 0. Also ist I eine Bewegungskonstante
auf U nach 9.4.

Ein Vektorfeld X mit 1° und 2° nennt man infinitesimale Symmetrie von
(P,H). Satz 9.9 entspricht der in 7.8 bewiesenen infinitesimalen Version des Satzes von
Noether fiir Lagrange—Systeme. Es sei zum Beispiel das Hamilton—-System (P,H) aus
einem Lagrange-System mit einer Lagrangefunktion L nach 9.2 entstanden. Ist dann
X :Q —> R™ eine infinitesimale Symmetrie des Lagrange-Systems im Sinne von 7.8,
so ist das Hamiltonsche Vektorfeld X;: P —> R®™ zu I(q,p) = pX(q) eine infinite-
simale Symmetrie des Hamilton-Systems (P,H): Natiirlich gilt 9.9.1°, da X, als Hamil-
tonsches Vektorfeld definiert ist, und es gilt 9.9.2°. Wegen LXIH = {H,I} und weil I
ja nach 7.8 eine Bewegungskonstante ist, folgt LXIH = 0 nach 9.4. {H,I} = 0 ergibt
sich natiirlich auch direkt durch Einsetzen der zur Verfiigung stehenden Identitéten.

DaB eine solche infinitesimale Symmetrie X auf P mit Symmetrie mehr ge-
meinsam hat als nur den Namen, wird nach Einfiihrung des folgenden Konzepts klar:

Wir erinnern zunichst an die symplektische Gruppe (vgl. L.4.6°%)

Sp(2n) = {A ¢ R(2n) | fiir alle x,y € R®™ gilt CAX, Ay 4 = <x, 74}
={AeR@n) | ATocoA = o},
wobel wie oben <x,y>, = xToy.

Definition. Ein Diffeomorphismus ¢ : P — P heiBt kanonische Transfor-
mation oder Symplektomorphismus, wenn fiir alle ae P gilt: De(a) € Sp(2n).

Das bedeutet, daB ¢ die Form w invariant 4Bt im folgenden Sinne: Fiir
alle aeP und X,Y:P —> R*™ gilt w(Dp(a).X,Do(a).Y) = o(X,Y) (ie. o*0 = o,
vgl. M.16).

Wir wollen jetzt zeigen, daB kanonische Transformationen ¢ : P — P die
kanonischen Bewegungsgleichungen invariant lassen: Setze (Q,P) := ¢(q,p) und sei
$= <p_1 : P —— P die Umkehrabbildung von ¢. Die Bedingung De¢(a) € Sp(2n) kann
mittels der Darstellung von De(a) als Blockmatrix

A B 2Q 2Q
oq Jp

D¢la) = =
C D 9P 9F

Pa Ao
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T T
genauer analysiert werden: Aus Dq:(cl)T = <BT DT> und Dtp(G)TOGOD(p(G) =0

folgt fiir b = ¢(a):

o - 0 -1\[AT cT\[o 1 pT -gT
D{(b) = (De(a)) ™" = ¢ 'oDpla) OG:(I 0><BT p'/\-1 o)~ \-cT AT/

Daher gelten fiir eine kanonische Transformation die folgenden Gleichungen, aus denen
sich alles Wesentliche ableiten [48t:

OPY (py — 29K v, _ _de¥ dg _ 9P 29 _ _2Q
e = 557w, G — -9 6= 5 =5
o M\Zb)“-a n+(k) Qﬂf?%).. i‘&k( ) o o9p _ 9P 3dp _ 2Q
9Q TR M P Q T 73q’ 9P T 5q

Fiir die transformierte Hamiltonfunktion K(Q,P) := Ho¢(Q,P) folgt

oK _ 9H 8¢® , oH ™ _ oH a¢™*  aH ag™k
9QF T 3q” QK T Bp, 9Qk = 3a” dp, dpy, 3q°

= ~{e™ H = - {p_H},

sowie analog

k k
oK _ 9H (_2¢" 9H 99~ _ rqk
P, = aqv( apv) + op, aqv = {Q*.H}.
2] N oH
aq

Sei jetzt (q(t),p(t)) eine Losung von 9., also g = Tp P ="
(Q(t).P(t) = @(q(t),p(t)):

. Dann gilt fiir

QK = {QXH} also  QF = %

k,

und
; _ s _ _ oK
P, = {Pk,H} also P = SOk

Insgesamt ist 9.1 also Aquivalent zum System der kanonischen Gleichungen:

5= 2K p __9K
Q—aP,P—-a.

Das ist gemeint, wenn festgestellt wird, daB die kanonischen Transformatio-
nen die kanonischen Bewegungsgleichungen invariant lassen.

Mit den Gleichungen (K) kann man auch zeigen, daB die Poissonklammer
insofern invariant bleibt bei kanonischen Transformationen, als

{F,Glop = {Foe,Gop}
fiir alle F,G € §(P) gilt. Insgesamt erhilt man:

(9.10) Satz. Fiir einen Diffeomorphismus ¢ : P —> P sind die folgenden
Aussagen dquivalent:

1° o ist kanonisch.

2° {F,Glop = {Fo¢,Gop} fiir alle F, Ge &(P).
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39 Fiir alle He 6§(P) 148t ¢ die kanonischen Bewegungsgleichungen
invariant.

4° o*o = w.

Der Zusammenhang zwischen infinitesimalen Symmetrien und eigentlichen
Symmetrien von P stellt sich zunichst einmal iiber 1-Parametergruppen ein, die uns ja
auch schon im 7. Paragraphen begegnet sind. Ist jetzt (p_) eine I-Parametergruppe
von kanonischen Transformationen — d.h. alle ¢_: P — P sind kanonisch, die Wir-
kung RxP — P, (s,a) > ¢_(a), ist differenzierbar, und es gilt ¢ o, = ¢,
fiir alle s,t € R — so ist der infinitesimale Erzeuger X,

d
X(a) = oo la|,,,
der 1-Parametergruppe ein lokal Hamiltonsches Vektorfeld: Es gilt ja
LyFl@) = $£F(e (@), ("FluBgleichung”, vgl. Anhang M.14)

aufgrund der Definition von X und daher:

Il

LX{F,G} dis{F,G}o @Sl = dis{Fo ‘Ps’GO‘Ps}‘sm nach 9.10, also

8=0

{dispocps.c}ls=0 + {F,;jigco«os}]m = {LyF.G} + {FL,G}.

Deshalb ist X nach 9.8 ein lokal Hamiltonsches Vektorfeld.

(9.11) Definition. Sei (P,H) ein Hamilton-System. Eine 1-Parametergruppe
von Symmetrien des Systems (P,H) ist eine 1-Parametergruppe von kanonischen Trans-
formationen ¢_:P — P, welche H invariant 4Bt in folgendem Sinne: Hoop_ = H
fiir alle s € R.

Der infinitesimale Erzeuger X einer solchen 1-Parametergruppe von Sym-
metrien ist eine infinitesimale Symmetrie des Systems (P,H), denn es gilt ja 9.9.1°, wie
gerade gezeigt wurde, und es ist wegen L, H = dis Ho (pslsw = 0 offenbar auch 9.9.2°
erfiillt. Damit haben wir einen weiteren Noetherschen Satz bewiesen, dessen infinitesi-

male Version in Satz 9.9 bereits vorweggenommen wurde:

(9.12) Satz von Noether IIL. Sei (p_) eine 1-Parametergruppe von Symmetrien
des Hamilton-Systems (P,H) mit infinitesimalen Erzeuger X. Dann gibt es zu jedem
Punkt a e P eine offene Umgebung U von a und eine Bewegungskonstante [ € &(U),
die mit der infinitesimalen Symmetrie X iiber X|; = X; in Beziehung steht.

Im Vergleich mit den Noetherschen Sdtzen des 7. Paragraphen ist es angemes-
sen, diese Funktion 1€ &(U), die ja fiir zusammenhingende U bis auf eine additive
Konstante eindeutig bestimmt ist, mit I, zu bezeichnen. Wenn Q konvex oder einfach

zusammenhingend ist {oder eanz allgemein Hin(Q.R) = 0 erfiillt. vel. M.17). so gibt
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es unter den Voraussetzungen von 9.12 immer eine globale Bewegungskonstante 1€ §(P)
auf ganz P mit X; = X.(Zum Beispiel ist Q = R*\{0}, der iibliche Konfigurations-
raum von Zentralfeldern, einfach zusammenhéngend.) Fiir allgemeine Konfigurations-
rdume Q existiert die Bewegungskonstante immer dann als globale Funktion auf P,
wenn die ¢_ als die Ableitungen von Diffeomorphismen ¢, von Q auftreten, wenn
also o, = (DY) gilt, wie das in den Noethersitzen fiir Lagrange-Systeme des 7.
Paragraphen der Fall ist. Man vergleiche dazu die Diskussion im AnschluB von Satz 9.9.

Beispiele.

1° Der Zusammenhang zwischen den Symmetrien und Bewegungskonstanten
beim harmonischen Oszillator ist jetzt besser als in 6 zu verstehen. Die Hamiltonfunk-
tion H = 4(p|® + |q/®) hat die folgende 1~Parametergruppe von Symmetrien:

¢,(q,p) = (cossq + sinsp,-sinsq + cossp),
mit der infinitesimalen Symmetrie X(q,p) = %cps(q,p) s=a = (p,—q) = olq,p) und
der zugehérigen Bewegungskonstanten 1: X = oVI bedeutet % = p und gé- = q,
also I = H+c fir eine Konstante ¢ e R. Analog hat man die Symmetrie beziiglich
der k-ten Koordinaten

(qk,pk) — (cossqk + sinspy, —sinsqk + cossp,)
und die zugehdrigen "Energien” H, als Bewegungskonstanten.

SchlieBlich der 2-dimensionale harmonische Oszillator in komplexer Schreib-

weise mit SU(2)-Symmetrie: Die drei 1-Parametergruppen

cos § isin s
Ps = |. . , s € R,
isin s cos s
CcoSs 8 sin s
bs = . . s € R,
~sin 8 cos s
is
e 0
Ys=< _is>, seR,
0 e

sind Symmetrien des Systems (C%H), H(z) = %[le, wegen SU(2) C Sp(4) (man be-
achte o(z) = iz). Diese erzeugen auf die oben dargelegte Weise die drei Bewegungs-
konstanten, die wir aus 6.12 bereits kennen: Zum Beispiel ist fiir Pq
X(z) = %xps(zl,zz) lseo = itz%zh) o (pz,pl,—qz,-ql)
also in Matrixschreibweise X = —-1, (vgl. L.2). Fiir 1 = Re(Z'2z%) ist der Gradient in
®*: VI = (a%.a',p,p) & (z%2"), also X,(z) = iVI = X .Deshalbist I = Re(z'z?)
die zugehérige Bewegungskonstante. Analoges gilt fir Im(z!z%) und %(Izll2 - 1223
Mit den Noetherschen Sdtzen des 7. Paragraphen kann man diese wichtigen Bewegungs-
konstanten, die ja die Bahnen vollstiandig beschreiben (vgl. Paragraph 6), nicht erhalten.
2° Beim Keplerproblem kann man umgekehrt vorgehen. Zu den drei Kompo-
nenten des Runge-Lenz-Vektors R = (R1’R2'R3) {vgl. 7.121°) erhalt man die Hamil-

tonschen Vektorfelder X. = X_, j = 1,2.3. Die Relationen der Lie—=Klammern fiir die
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Vektorfelder (vgl. Anhang L) zeigen nach aufwendigen Rechnungen, daB die X, X, X,
eine zur Lie-Algebra 80(3) isomorphe Lie-Algebra erzeugen und daB deshalb R von
einer weiteren SO(3)-Symmetrie oder SU(2)-Symmetrie herkommt (vgl. auch 8.23.5°).

Insgesamt hat man so eine SO(4)-Symmetrie.

In konkreten Anwendungen wie auch in abstrakten Formulierungen treten
1-Parametersymmetrien meistens als Bestandteile von Gruppensymmetrien auf, wie wir
das zum Beispiel als Drehungen A_ mit einen Winkel s beim Zentralfeld gesehen
haben mit {As : s € R} als Untergruppe von SO(3). Es ist daher von Interesse, den
gerade vorgestellten Symmetriebegriff von 1-Parametergruppen (das sind ja nichts an-
deres als Wirkungen der additiven Gruppe R als Transformationsgruppe) zu iibertragen
auf Wirkungen von allgemeineren Lie-Gruppen. Wir beschrinken uns dabei auf die
Matrixgruppen, also auf abgeschlossene Untergruppen G von der allgemeinen linearen

Gruppe
GL(n,C) = {A e C(n) | detA + 0} c C(n) = ¢"°

fiir ein ne N (vgl. Anhang L und 1.4.11). Eine solche Matrixgruppe G ist eine differen-
zierbare Untermannigfaltigkeit von an = IR§4n2. Daher steht die Differentialrechnung
auf G zur Verfligung (vgl. Anhdnge L und M ). Insbesondere ist klar, was differen-
zierbare Abbildungen f: G —> R oder ®: G xP —> P fiir Phasenrdume P sind.

{9.13) Definition. Eine Matrixgruppe G heiBt symplektische Symmetriegrup-
pe auf dem Phasenraum P = Q x [Rin, wenn G auf P differenzierbar und kanonisch
wirkt. Das heiBt es gibt eine Wirkung

d:GxP — P (vgl. 1.3.6 und 1.4.14),
so daB (neben den Bedingungen &®(f,®(g,a)) = &(fg.a) und Ple,a) = a)

1° @ beliebig oft differenzierbar ist, und

20 <I>g : P — P fiir jedes g € G kanonisch ist.

Im Sinne von 1.3.8 1dBt eine symplektische Symmetriegruppe also die sym-
plektische und die differenzierbare Struktur des Phasenraumes invariant. Dariiber hinaus
ist die Gruppenwirkung selbst eine differenzierbare Abbildung. Sei Symp (P) die Gruppe
aller kanonischen Transformationen auf P. Symp(P) € S(P) ist dann die volle Symme-
triegruppe der symplektischen Struktur von P (vgl. 1.3.8 und 9.10) und hat Sp(2n) als
Untergruppe im Falle P = ®&*™. Eine symplektische Symmetriegruppe G nach Defini~
tion 9.13 liefert dann einen Gruppenhomomorphismus ¢ : G —> Symp (P).

Sei G symplektische Symmetriegruppe und g = Lie G die zugehérige Lie-
Algebra. (Also ¢ = {X € C(n) : fiir alle te R ist e*eal, vgl. Anhang L.6.) Jedes
X € g erzeugt dann eine 1-Parametergruppe ¢ (a) = @(esx,a) , s€R, aeP, von ka-

nonischen Diffeomorphismen. Fiir den infinitesimalen Erzeuger

N Y
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gilt
L F(a) = 4 Flp ().,

fiir beliebige F ¢ §(P) (diese FluBgleichung gilt allgemein fiir 1-Parametergruppen und
ihren Erzeugern, vgl. M.14). Es folgt insbesondere

LARG) = £ ({R.Glow,) |, = 4{Fop,, Gop}|,., nach 9.10

= {£Fop, |40 G} + (Rl Gop,|,..} = {LF.G} + {F,L,G}.

|s=o
Daher ist Z nach 9.8 lokal Hamiltonsch, und wir finden zu jedem a€P eine offene
Umgebung U C P von a und eine Funktion [ e &(P) mit Zly = X;.

Um die Herkunft des infinitesimalen Erzeugers Z von o, = fb(esx, ) zu
dokumentieren, wird )ﬂf statt Z geschrieben, und man nennt )'\f wird das Fundamen-
talfeld zu X € g. Es ist also X(a) = d—(i<ps(cl)[s=o wie in dem folgenden Bild veran-
schaulicht (@,(g) = ®(g,a), also ¢ (a) = &_(e*X));

g MX
\ ey

exp

Wir nehmen der Einfachheit halber an, daB es stets eine globale Funktion
Ie &(P) mit X = X, gibt (das z.B., wenn Q einfach zusammenhingend ist). Dann
gibt es zu jedem X ein I, € §(P) mit X = Xlx' Die Zuordnung X+— I, kann so
gewdhlt werden, daB fiir alle a€P die Abbildungen X —> Ix(a) R-linear sind.
(Dazu bestimme man die Funktionen IXK, » €{1,2, ... k}, fiir eine Vektorraumbasis
(X, Xy oo X)) von g und setze Iy = XXIXK fir X=X*X,.) X > Iy(a) ist
dann eine Linearform auf ¢, also ein Element des Dualraums g* von ¢. Man erhilt

so0 eine

(9.14) Momentenabbildung. Eine Momentenabbildung einer symplektischen
Symmetriegruppe G auf P ist eine differenzierbare Abbildung

m:P —> g*
mit der folgenden Eigenschaft: Ist I die durch I{a) = m{a) (X) fiir aeP gegebene

~
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einer symplektischen Symmetriegruppe ist entsprechend eine differenzierbare Abbildung
m: U —> g* auf einer offenen Teilmenge U CP mit )Nqu = Xy, wenn Ie &(U)
wie oben als {a) := m(a)(X), ae U, definiert wird.

Wir haben gerade gezeigt, daB es eine Momentenabbildung zu einer symplek-
tischen Symmetriegruppe immer lokal gibt: Zu jedem Punkt q € Q gibt es eine konvexe
Umgebung V C Q. Auf der konvexen offenen Menge U := V x R™ hat dann nach dem
Lemma von Poincaré (vgl. M.17) jedes lokal Hamiltonsche Vektorfeld die Form X; mit
I € 6(U). Daher existiert eine lokale Momentenabbildung m : U —> g*. Eine lokale
Momentenabbildung ist fiir zusammenhingende U eindeutig bestimmt bis auf eine
konstante Form m, € a*, das heiBt fiir je zwei Momentenabbildungen m,m' auf U ist
die Differenz m,=m - m' konstant.

Beispiele: 1° Sei Q = R™ und P = R" x R". Die Translationen auf dem
Ortsraum Q,alsodie T,: Q —> Q, q —> q+ v, fiir ve ®R", lassen sich liften zu
Transformationen T : P —> P, (q,p) —> (g+v,p), auf P, die wegen DT, = idg2n
kanonische Transformationen sind. Das bedeutet, daB8 die additive Gruppe G = R™ der
Translationen als eine symplektische Symmetriegruppe auf P wirkt. Die Lie-Algebra
g von R™ ist wieder R” (mit der trivialen Lie-Klammer [X,Y] = 0 fiir alle g). Fiir
X € g ist das Fundamentalfeld )Né(q,p) = %(q + tX,p) = (X,0), und daher ist durch
m{q,p)(X) == pX = p\)XV eine Momentenabbildung gegeben. Denn fiir die Funktion
I = pX gilt X; = (X,0), das heiBt X = X;. Insgesamt ist m = p eine Momenten-
abbildung bezliglich der Translationsgruppe, und das ist gerade der lineare Impuls (bzw.
das lineare "Moment").

2° Bei einem Zentralfeld F e §(Q,R%) (vgl. Paragraph 7) mit dem Konfigu-
rationsraum Q = R® \{0} wird aus dem urspriinglichen Phasenraum Q X R® mit den
Koordinaten (q,v) beim Ubergang zur Hamiltonschen Formulierung zunichst der Im-
pulsphasenraum P & Q x (R%)* = Q x R* mit den Koordinaten {q,p) . Die Drehgrup-
pe SO(3) wirkt auf P durch ®(A,(q,p)) = ¢(A)(q,p) = (Aq,Ap), wobei A e SO(3)
und (q,p) € P. Offenbar ist ¢(A) ¢ Sp(6): @(A)Tocofb(A) = ¢ folgt wegen ATA = id
aus cp(A)Tooocp(A)(q,p) = @(A)T(Ap,—Aq) = (ATAp,—ATAq). Weil Dol(A) = ¢(A)
gilt, wie stets fiir lineare Abbildungen, ist SO(3) also eine symplektische Symmetrie-
gruppe. Fiir X € 80(3) ergibt sich 31((q,p) = (Xq,Xp) als das Fundamentalfeld, und
mit I{q,p) = <p,Xq> = pVX:q“ folgt (X = (X;)):

X;=oVI= (%Ig,—%) = (x,a% x2a", X3 a" -0, X|,~p, X5, -p, X;)

= (Xq,—XTp) = (Xq,Xp) = )ﬂf(q,p),

X+ X' = 0. Also ist m(q,p)(X) = <p,Xq> Momentenabbildung. Mit der tiblichen
Identifizierung von 80(3) mit R® (vel. 5.7.15°b)) kann Xq als Kreuzprodukt X x g
geschrieben werden. Wegen <p,X x @> = <q % p,X> ist die gefundene Momentenabbil-

diino alen nirhte anderace ale der Drebhimniile 1 — A X 0
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3° Auf dem Phasenraum P = R xR gibt es auch die "diagonale" Wirkung
von U): (6,q,p) —> ¢4la,p) == (cosBq,sinBp), wenn die Elemente z = ¢® von
U(1) durch ihren Winkel 0 repridsentiert werden. So einfach diese Wirkung auch ist, im
Gegensatz zu den vorangehenden Beispielen entsteht sie nicht durch die Liftung einer
Wirkung auf dem Ortsraum, hier R (vgl. 7.11). ¢4 ist wegen Dy, = ¢4 € SO(2) und
SO(2) c Sp(2) eine kanonische Transformation. Eine natlirliche Momentenabbildung ist
m(qg,p) = % (p% + qz), also die Energie des harmonischen Oszillators (vgl. Paragraph 6).
Etwas allgemeiner kann man die Torusgruppe T := (I_I(l))k auf den ersten k Koordi-
natenpaaren von P := R™ x R™ diagonal wirken lassen und erhilt so die Momentenab-
bildung m = (H,H,, .. ,H,) auf P, wobei Hlq,p) = §(p] + (¢)?) wie in 6.11.

4° Ein weiteres Beispiel liefert die Untersuchung des 2-dimensionalen har-
monischen Oszillators in komplexer Notation (vgl. Paragraph 6 und 9.121°%). SU(2) ist
symplektische Symmetriegruppe, wie weiter oben bereits festgestellt wurde. Jede Ma-

trix X € 8u(2) = Lie SU(2) hat die Form
X = (g5 PIaT) mit wpyeR (vgl 1.63%).

Der Ansatz X; = ¢ VI = X (= X) fiihrt nach einiger Rechnerei zu

Iz', 2% = - (%ot(lzll2 ~ 1237 ) + B Im(z'2?) + v Re (2122))
Eine Momentenabbildung ist also
m(z!,2%) (X) = - (%ot(]zll2 - Izzlz) + B Im(zt2%) + Y Re (ilzz)),
wobei X = (_é‘iw BEY) € 8u(2) . Das ist die Abbildung, die am SchluB des 6. Para-

graphen als vektorwertige Bewegungsinvariante bestimmt wurde (Hopf-Faserung).

Den Beispielen ist gemeinsam, daB die auftretenden Funktionen I, welche
die Hamiltonschen Vektorfelder X = X erzeugen, bereits Bewegungskonstanten fiir
eine geeignete Dynamik sind. Das liegt daran, daB die Symmetriegruppen auch die Hamil-

tonfunktion H des Systems respektieren. Das fiihrt uns zu der folgenden Definition:

Definition. Eine Symmetriegruppe eines Hamilton-Systems (P,H) ist eine
symplektische Symmetriegruppe G von P mit Wirkung &, welche H invariant 148t,
d.h. es gilt HoCIJg = H fiir alle geG.

Aus dem Satz von Noether 9.12 folgt mit diesen Begriffsbildungen sofort:

(9.15) Satz von Noether IV, Sei G Symmetriegruppe des Hamilton—Systems
(P,H). Dann gilt:

1° Eine Momentenabbildung existiert immer lokal.

20

invariant; alle Komponenten von m sind Bewegungskonstanten des Systems.

Ist m:P —> g* eine Momentenabbildung, dann ist m bewegungs—

(9.16) Reduktion. Eine wichtige Methode zur Lésung der Bewegungsgleichun-
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Hilfe von einer oder mehrerer Bewegungskonstanten. Das ist bereits in verschiedenen
Beispielen angesprochen worden (vgl. 7.13.2° und 8.24.2°) und kann fiir die Momenten-
abbildung systematisch behandelt werden. Dariiber soll im folgenden kurz berichtete
werden; weitergehende Untersuchungen zur Reduktion mit Hilfe Momentenabbildung
findet man zum Beispiel in [ABM], [GUS], (MAR], [MSSV].

Will man den Satz 9.15 zum Auffinden von Lésungen des jeweiligen Hamil-
ton-Systems nutzen, so muB man bei der Vorgabe einer Symmetrie G von (P,H) erst
einmal priifen, ob es m als globale (das heiBt auf ganz P definierte) Abbildung gibt.
Hat man sich dessen vergewissert oder gegebenenfalls P verkleinert, so wird man zur
Verringerung der Freiheitsgrade die Komponenten der Abbildung m als Zwangsbedin-
gungen auffassen: Zu c € g* betrachte man

mc) = {aeP| mla) = ¢} = =_.

% ist eine verallgemeinerte Energieniveaufliache (vgl. Paragraph 6) und invariant, das
heiBt: Trifft eine Bewegung des Systems auf %_ zu irgendeinem Zeitpunkt, so verlauft
die Bewegung vollkommen in 3. In vielen Fallen ist %_ eine k-dimensionale Unter-
mannigfaltigkeit von~ P. (Auch das muB gepriift werden. Als hinreichendes Kriterium
hat man: X_ ist immer dann eine k-dimensionale Untermannigfaltigkeit, wenn die
Jacobi-Matrix Dm(a) von m in allen Punkten a e %, den Rang d:= 2n - k hat (vgl.
M.3).) Im Beispiel 1° gilt m™'(c) = R™ x {c} Ffiir ce g* & R", im Beispiel 2°ergibt
sich m™Y(c) = {(q.p) e B® x R® ; q und p sind senkrecht zu ¢ und det(q,p,c) = lci?)
und im Beispiel 3° ist %, im Falle k=1 und n=2 eine Art "Zylinder" iiber RZ?:
mc) = {(qp) e B: x R?: p12 +(gh? = 2¢).

Unter der Voraussetzung, daB die invariante Menge 3 := 2, = m Yc) eine
Untermannigfaltigkeit von P ist, betrachte man in a € ¥ diejenigen Tangentialvekto-
ren Z e T_ 3, welche 276X = o(Z,X) = 0 fiir alle X ¢ T Z erfiillen. Zusammenge~
faBt bilden diese Z einen d-dimensionalen Unterraum F, von T_Z. Zu diesen Teil-
rdaumen F_ von T X gibt es (lokal) d-dimensionale Untermannigfaltigkeiten N C T
mit T N = F_ fiiralle aeN. (F = (F,) C TY heiBt Distribution und N ist die zu-
gehorige Integralmannigfaltigkeit oder Blitterung; im Falle d =1 sind das die Inte-
gralkurven y zu einem Vektorfeld X, ¥ = X(y), mit F, = RX(a). Im d-dimensio-
nalen Fall ist die Existenz der Integralmannigfaltigkeiten zu F durch den Satz von Fro-
benius gewdhrleistet (vgl. z.B. [ABM, $.93] oder [WAR]), weil die hier konstruierte
Distribution F involutiv ist.) Damit ergibt sich eine Aquivalenzrelation auf =, welche
zwei Punkte a,b € als dquivalent erkldrt, wenn es eine solche zusammenhingende
Untermannigfaltigkeit N mit a,be N gibt.

Der Quotient P, = 3/ beziiglich dieser Aquivalenzrelation steht in Analo-
gie zum Bahnenraum, den wir in Paragraph 6 eingefiihrt und beim Keplerproblem (vgl.
712.3°%) eingehend studiert haben. Wieder gilt es zu iiberpriifen, ob P, als Quotient
iiberhaupt eine Mannigfaltigkeit ist und die Quotientenstruktur tragt (vgl. M.8). Wenn
das zutrifft, dann hat Po die Dimension 2n — 2d und erhilt von P eine natiirliche

symplektische Struktur (ein Begriff, der fiir diese allgemeinere Situation noch definiert
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werden muB, siche unten). P, mit dieser symplektischen Struktur heiBt der Marsden—
Weinstein—Quotient von P beziiglich m (und c¢), und die in diesem Abschnitt vorge-
stellte Reduktion der Freiheitsgrade heiBt Marsden-Weinstein—Reduktion, Das urspriing-

liche Problem ist um d Freiheitsgrade reduziert worden, P, ist ein 2(n-d)-dimensio-

0
naler Phasenraum, und die ganze Prozedur kann von vorne beginnen mit der Suche nach
Symmetrien auf P,.

Abgesehen von mehreren technischen Schwierigkeiten dieses Programms der
Reduktion muB in jedem Falle der Begriff des Phasenraumes verallgemeinert werden von
P 2 Qx(R™M" & QxR™c R, also offenen Teilrdumen von B2™ mit der zugehori-
gen symplektischen Struktur, auf allgemeine differenzierbare (Unter-) Mannigfaltigkei-
ten mit symplektischer Struktur.

Der erste Schritt einer Verallgemeinerung ist, statt von einer offenen Menge
Qc R" als Konfigurationsraum, von einer differenzierbaren Untermannigfaltigkeit
M c R™ als Konfigurationsraum auszugehen. Diese Situation tritt ja stets bei holono-
men Zwangsbedingungen auf und ist uns bekannt von den Beispielen Pendel und starrer
Korper (Paragraph 4 und 5). Als Phasenraum der Hamiltonschen Mechanik hat man dann
nicht das Tangentialblindel TM zu nehmen, wie es fiir die Lagrange-Systeme ange-

messen ist, sondern das Kotangentialbiindel T*M. T*M ist als Menge einfach
T'M = J{{a) x (T,M)* : ae M},

mit (TGM)* = {a: T,M —> R |o ist R-linear} als Dualraum des Tangentialraumes
TM an M in a. T*M ist in natiirlicher Weise eine differenzierbare Mannigfaltigkeit,
die fir Untermannigfaltigkeiten M c R™ als Untermannigfaltigkeit von R™ x (R™)¥
aufgefaBt werden kann (vgl. M.7). Auch fiir beliebige Mannigfaltigkeiten M ist T*M
eine Mannigfaltigkeit, deren Struktur durch die Biindelkarten gegeben wird. Dabei ge-
hort zu einer Karte ¢ : U —> V ¢ R™ der Mannigfaltigkeit M die Biindelkarte

$:T"U — Vx(R™M* (vgl. Anhang M.11),

welche T*U mit kanonischen Koordinaten (q,p) = Pla), «e T*U, versieht. Bezlig-
lich dieser kanonischen Koordinaten 148t sich fiir F,G ¢ §(T*U) die Poissonklammer
{F,G} = %g—g: - g—;g%
einfiihren, und es ergibt sich, daB {F,G}(«), « ¢ T*M, fiir alle kanonischen Koordinaten
den gleichen Wert liefert. Eine Erkldrung flir diesen Umstand ist zum Beispiel, daB die
lokalen Ausdriicke dqu/\ dpu in den speziellen Biindelkarten $ eine globale 2-Form
o auf T¥M definieren (die symplektische Form auf dem Kotangentialbiindel), welche
die Poissonklammer { , } analog zu 9.7 bestimmt (vgl. M.19). Auf diese Weise wird
{ . Yauf 6(T*M) x 6(T*M) global definiert.
Mit dem Kotangentialbiindel P = T*M als Phasenraum 148t sich das ge-
samte Programm dieses Paragraphen durchfiihren, um insbesondere auch die Noether-

schen Sdtze 9.9, 9.12 und 9.15 fiir die allgemeinere Situation zu erhalten.
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Es ist jetzt nicht schwer zu erraten, wie der nichste Schritt der Verallgemei-
nerung auszusehen hat. Bei der im AnschluB an 9.15 vorgestellten Reduktion kann man
nicht erwarten, daB die reduzierte Mannigfaltigkeit Po ein Kotangentialbiindel ist. Bei-
spielsweise ist der Bahnenraum BE beim harmonischem Oszillator, der ja eine solche
Reduktion darstellt, kein Kotangentialbiindel. By wurde in Paragraph 6 als komplex—~
projektiver Raum beschrieben. PP (C) ist immer kompakt, wihrend Kotangentialbiindel
der Dimension > 0 nie kompakt sind. Der Bahnenraum beim Keplerproblem ist eben-
falls kompakt (7.12.3°).

Als weitere Verallgemeinerung fiir die Beschreibung von Phasenrdumen der
Hamiltonschen Mechanik benttigt man daher den Begriff der symplektischen Mannig-
faltigkeit. Eine symplektische Mannigfaltigkeit P ist eine 2n—dimensionale abstrakte
Mannigfaltigkeit (vgl. M.8), auf der ein ausgezeichneter Atlas & gegeben ist mit den
folgenden Eigenschaften:

1° Jede Karte aus & ist von der Form p: U —> VxW,mit VcR™ und
W < (R™* offen, sowie U C M offen.

2° Je zwei Karten ¢ und ¢ aus §& sind kanonisch vertrédglich, das heiBt,
Boe " ist nicht nur Diffeomorphismus, sondern es gilt stets D(go9 !)(g,p) € Sp(2Zn).

Anders ausgedriickt (mit Hilfe von 9.10): Die Poissonklammern auf U n U
beziiglich der Koordinaten (q,p) = ¢(a) und (§,p) = $la), a e Un U, sind diesel-
ben. Auf einer symplektischen Mannigfaltigkeit P hat man daher wie auf einem Kotan-
gentialbiindel stets eine global definierte Poissonklammer, die &(P) zu einer Lie-Alge-
bra macht, und fiir die alle in 9.3 ~ 9.10 bewiesenen Aussagen gelten. Die Karten ¢ aus
& heiBen kanonische Karten und entsprechend heiBen die durch ¢ gegebenen Koordi-
naten (g,p) = ¢la) kanonische Koordinaten. Symplektische Mannigfaltigkeiten P
haben eine durch den Atlas & festgelegt symplektische 2-Form o, welche in den ka-
nonischen Koordinaten durch wly = dqu/\ dpu gegeben ist (vgl. M.19). Neben den
Kotangentijalbiindeln sind beispielsweise auch die Bahnenrdume P _,(€) (harmonischer
Oszillator) und &2 x &2 (Keplerproblem) in natiirlicher Weise symplektische Mannig-
faltigkeiten; die symplektische Form ist jeweils die 2-Form, die durch die Projektion von
der symplektischen Form auf der Ausgangsmannigfaltigkeit kommt.

Im Anhang M.19 gehen wir ausfiihrlicher auf den Begriff einer symplektischen
Mannigfaltigkeit ein. Weitergehende Informationen iiber symplektische Mannigfaltig-
keiten findet man in verschiedenen Monographien insbesondere bei der Beschreibung des
Satzes von Darboux (zum Beispiel in [ABM], {ARN], [GUS], [LIM]).

Fiir die neu eingefiihrte, allgemeine Situation wollen wir noch einen weiteren
Noetherschen Satz formulieren. Gegeniiber 9.12 und 9.15 #ndert sich nichts auBer, daB
jetzt allgemeinere Phasenrdume zugelassen sind, ndmlich symplektische Mannigfaltig-
keiten (P,w). Ein (allgemeines) Hamilton-System (P,H) ist eine symplektische Man-
nigfaltigkeit (P,w} mit einer Hamiltonfunktion H € £(P). Die Bewegungen des Systems
sind die L6sungen von

F = {F,H},
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das heiBt die differenzierbaren Kurven y:J] —> P mit H%FOY = {Foy,Hov}. Aqui-
valent dazu ist die autonome Differentialgleichung ¥ = X {v), wobei das Hamilton-
sche Vektorfeld X mit Hilfe der Poissonklammer oder der symplektischen Form o
definiert wird. In kanonischen Koordinaten ¢ = (q,p) ist diese Differentialgleichung

auch aquivalent zu den kanonischen Gleichungen

3H . 3H

4 =3 P="35q

Die kanonischen Transformationen der symplektischen Mannigfaltigkeit P
sind die Diffeomorphismen ¢ : P — P, welche die symplektische Form invariant las-
sen: ¢*w = o; und eine symplektische Symmetriegruppe G ist durch eine differen-
zierbare Wirkung @ : GxP —> P einer Lie-Gruppe G gegeben, fiir die samtliche
CI>'g : P —> P, g € G, kanonisch sind. Die Noetherschen Sitze 9.9, 9.12 und 9.15 (und die
aus Paragraph 7) haben die folgenden Verallgemeinerungen auf den Fall von symplek-

tischen Mannigfaltigkeiten als Phasenrdume. Die Beweise lassen sich direkt iibertragen.

(9.17) Satz von Noether. Sei (P,H) ein Hamilton-System auf einer symplek-
tischen Mannigfaltigkeit (P,w).

1° Sei X eine infinitesimale Symmetrie von (P,H), also ein Vektorfeld X
auf P mit L {F,G} = {LXF,G} +{F,L G} fir alle F,Ge §(P) und LyH = 0 (vgl.
9.9). Dann gibt es lokal stets eine Bewegungskonstante ¢ §(U) mit Xy = X;- (Da-
bei ist X; in kanonischen Koordinaten durch Xp = g—;ué%l - g_éuai% definiert.)

2° Sei (p,) eine 1-Parametergruppe von Symmetrien von (P,H), das heiBt
¢, laBt { , } und H invariant. Dann ist der infinitesimale Erzeuger X = gfq’tluo
von (p.) eine infinitesimale Symmetrie und 1° kommt zur Anwendung.

3° Sei G Symmetriegruppe von {(P,H), d. h. G ist symplektische Symme-
triegruppe und laBt die Hamiltonfunktion invariant. Dann gibt es lokal immer eine Mo-
mentenabbildung m : M —> g¢*. Die Komponenten einer Momentenabbildung m sind

Bewegungskonstanten.

(9.18) Satz. (Zur Existenz von globalen Bewegungskonstanten) Unter den je-
weiligen Voraussetzungen des vorangehenden Satzes existieren 1 bzw. m jedenfalls
dann global, d.h. auf ganz P, wenn eine der folgenden Bedingungen erfiillt ist:

1° P ist Kotangentialbiindel P = T*M und ¢, wird durch eine 1-Para-
metergruppe ¢ : M —> M von sogenannten Punkttransformationen als die zugeht-
rige (geliftete) Schar ¢_ = T{¢_ von Tangentialabbildungen gegeben. (Das ist die Situ-
ation im Falle von Lagrange—Systemen.)

2° P ist eine einfach zusammenhingende Mannigfaltigkeit (oder erfiillt zu~
mindest HilR(P,IR) = 0, vgl. M.17).

3° G ist perfekt, das heiBt es gilt ¢ = {[X,Y]: X,Y € g} fiir die Lie-Al-
gebra g = LieG. Insbesondere sind die einfachen Lie-Gruppen wie S§O(n), SU(n),
Sp(2n) perfekte Matrixgruppen (vgl. L.10.8°).
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Beweis. 1° und 2° sind klar. Um 3° einzusehen, sei Xeg mit X = [Y,Z]
fiir Y,Z e g¢. Man muB nur nachrechnen, daB mit der globalen Funktion I := m(?,z)
die Identitit X = X, gilt.

Zum AbschluB dieses Paragraphen noch zwei Resultate: Die Umkehrung der
Noetherschen Sitze und der Satz von Liouville-Arnold tiber vollstindig integrable
Systeme.

Als Umkehrung der Noetherschen Sitze hat man die Aussage, daB jeder
Bewegungskonstanten I eines Hamilton-Systems (P,H) eine Symmetrie entspricht,
welche 1 erzeugt. Um das zu erkldren und zu prazisieren, bendtigen wir die Losungs-
schar zu einem beliebigen Vektorfeld als lokale 1-Parametergruppe (vgl. M.14). Zu je-
dem Vektorfeld X auf P gibt es eindeutig bestimmte, maximale Lésungen zu dem
Anfangswertproblem

¥ = Xly), ¥(0) = qa,
auf einem Intervall ]tq,sa[ und man schreibt y = vy_ in Abhingigkeit von dem An-
fangswert a. Bei Vertauschung von a und t in vo(t) erhdlt man ¢ (a):= v (t)eP
fir teR und aeP, wobei P, == {aeP|telt s, [}. P, ist offen in P und
¢, : P, —> P__ ist Diffeomorphismus. Fiir t,se R gilt ¢ o0¢ (a) = 9, (a), falls
aeP, NP, NP_.Damitist (p.) eine Jokale 1-Parametergruppe von Diffeomorphis~
men mit dem infinitesimalen Erzeuger X, und man schreibt auch cpi( anstelle von ¢_,

wenn die Abhingigkeit von X betont werden soll.

(9.19) Satz. Sei I eine Bewegungskonstante des Hamiltonschen Systems
(P,H) mit Hamiltonschen Vektorfeld X := X;. Dann sind alle ((pi_() kanonische Trans-
formationen und es ist Hop, = H, denn es gilt %(Hoq:t) = LXIH = {ILH} = 0.
Also hat man zur Bewegungskonstanten 1 die gesuchte lokale Symmetrie von (P,H)
als (<p:() gefunden.

Bei einem vorgegebenen Hamilton-System wird man versuchen, so viel an
Symmetrie ausfindig zu machen, daB die Reduktion nur noch einen Freiheitsgrad hat,
also gerade die gesuchte Bahn ist. Ein solcher Fall bei den vollstindig integrablen
Systemen vor: Ein Hamilton-System (P,H) mit dimP = 2n heiBt vollstindig integra-
bel, wenn es n Bewegungskonstante F = H,F, F,, .. JF, in Involution (das heiBt
{Fu'Fv} = 0 fiir alle y,ve{1,2, ...,n}) gibt, die unabhingig sind (das heiBt die zuge-
horige Abbildung F := (F,F,, .. ,F ) : P — R™ hat Maximalrang rgTF = n).

(9.20) Satz von Liouville-Arnold. Sei (P,H) ein vollstdndig integrables
Hamilton-System mit F = (F,F,, ... ,F ) :P —> R™ als den zugehdrigen unabhingi~
gen Bewegungskonstanten in Involution. Es sei auBerdem H als eine Linearkombination
der Fu darstellbar. Dann gilt fiir ¢ € F(P) :
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2° Ist P_ kompakt, so ist P_ diffeomorph zu einer disjunkten Vereinigung
von n-dimensionalen Tori T, = (Y™, Es gibt Winkelkoordinaten ¢ = (PsPgr v s0p)
auf T, = {pmod2r : ¢ ¢ R™} und einen Vektor = w(c) € R”, so daB die Bewegun-
gen des Systems in T durch die Differentialgleichungen gi,é = o gegeben sind. Diese
Koordinaten erhélt man durch Integration von elementaren Funktionen (" Quadraturen’).

3° Sind alle Vektorfelder XFi P vollstindig auf. P_ (das heiBt, es gilt
stets (PC)t = P_ in der oben verwendeten Notation), so ist P_ diffeomorph zu einer

disjunkten Vereinigung von Untermannigfaltigkeiten der Form Ty x Rn—k. 0<k<n.

Einen Beweis dieses Satzes findet man zum Beispiel in [ARN], Seite 271 ff. Ein
enger Zusammenhang dieses Resultates mit der Theorie der Momentenabbildung und
der weiter oben besprochenen Reduktion ergibt sich durch den folgenden Vergleich: Ist
G eine abelsche Symmetriegruppe des Hamilton-Systems (P,H), und gibt es eine glo-
bale Momentenabbildung m : P —> g%, so sind die Komponenten von m in Involu-
tion. Also ist das System vollsténdig integrabel, wenn dimG = {dimP gilt, wenn m
liberall Maximalrang hat und wenn H Linearkombination der Komponenten von m ist.
Umgekehrt ist ein vollsténdig integrables System ein System mit der abelschen Symme-
triegruppe R fiir den Fall, daB die Hamiltonschen Vektorfelder zu den Funktionen Fu
vollstindig sind.

Mehrere Beispiele von vollstédndig integrablen Systemen sind uns bereits be-
kannt. Dazu gehéren die translationsinvarianten H(q,p) = H(p) auf P = R™ x R™ mit
der Momentenabbildung m(q,p) = p (vgl.9.14.1° und 7.10.2° und 7.10.4°). Mit F = m
ist Flc) = P_=R"x{c} ® R". Ahnlich einfach ist das System des n-dimensiona-
len harmonischen Oszillators mit F = (Hszv .. »H_) (vgl. 6.11). Auch hier hat F die
Interpretation als Momentenabbildung (vgl. 9.14.3°). Die Rangbedingung ist allerdings
nicht auf dem ganzen Phasenraum R” x R", sondern nur auf P = {(q,p): Hu(q,p) >0
fiir alle =12, ..,n} erfiillt. Fir ce R™ ist P, = {(q,p): H (q,p) = cu} =
falls ¢, > 0. Auf dem Torus P_ hat man die Winkelvariablen 6 = (6,,8,, ... ,6,,) und
einen festen Vektor @ = w(c) € R", und mit diesen Daten sind die Bewegungsgleichun-
gen durch 6 = o gegeben. DaB alle vollsténdig integrablen Systeme mit kompakten
Fasern von F im wesentlichen gerade so aussehen, ist Teil der Aussagen des Satzes
9.20.

Weitere Beispiele von vollstindig integrablen Systemen:

1° Systeme mit einem Freiheitsgrad sind vollstandig integrabel auf dem Teil-
raum des Phasenraums, wo der Gradient der Hamilton-Funktion H nicht verschwindet.
Denn H ist ja eine Konstante der Bewegung. Neben dem harmonische Oszillator ist
also auch das mathematische Pendel im konstanten Schwerefeld (vgl. Paragraph 4) voll-
stdndig integrabel. In diesem Fall hat man beziiglich der Winkelkoordinate 6 und einer
geeigneten Konstanten k> 0: H = %k pé + cos0,

2° Zentralkraftfelder (vgl. Paragraph 7) sind vollsténdig integrabel. Die Ha-
milton-Funktion ist H = 1p®+ U(q) mit SO(3)-invariantem Potential U. Tvpische
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Bewegungskonstante in Involution sind F,=H, F, = 112 und F, = I;. Dazu muB
{|I|2,13} = 0 nachgerechnet werden. AuBerdem gilt es, die Rangbedingung zu priifen,
die je nach Hamilton-Funktion zu verschiedenen Phasenridumen fiihrt. Die n-dimensio-
nale Version des Keplerproblems (vgl. 8.23.6°) fiihrt ebenfalls zu einem vollstédndig
integrablen System.

3% Der kriftefreie Kreisel mit P = T'SO(3) = SO(3) x R® & TSO(3)
(vgl. Paragraph 5) und mit der kinetischen Energie H = T als Hamilton-Funktion ist
vollsténdig integrabel. Die benétigten Bewegungskonstanten sind dhnlich wie beim
Zentralkraftfeld H, 4> und 2, (vgl, 7.13.1°). Entsprechendes gilt fiir den abstrakten
kriftefreien Kreisel auf einer Matrixgruppe (vgl. 8.24.3°).

4° Der schwere Kreisel (in einem konstanten, homogenen Schwerefeld, vgl.
8.24) ist nur in einigen Sonderfillen vollstindig integrabel. Der Phasenraum ist P wie
in 3°, und die Hamilton-Funktion ist H = T + U. Als Bewegungskonstante in Involu-
tion hat man immer H und 44, wie wir in 8.24.1° gezeigt haben. Im Falle eines sym-
metrischen Kreisels (oder Lagrange-Kreisels) ist die dritte Komponente L, des kor-
pereigenen Drehimpulses eine weitere Bewegungskonstante (vgl. 8.24.2°), und es gilt
{éa,Ls} = 0. Weitere vollstindig integrable Systeme liegen vor im Falle des sogenann-
ten Euler-Kreisels mit festgehaltenem Massenschwerpunkt, bei dem der totale Drehim-
puls |L|? eine weitere Bewegungskonstante in Involution liefert, und im Falle des
Kowalewski—Kreisels (siehe z.B. [FOM]).

Diejenigen klassischen mechanischen Systeme, die sich vollstindig und global
integrieren lassen, sind die Ausnahmen in der groBen Vielfalt aller dynamischen Syste-
me. DaB die vollstdndig integrablen Systeme trotzdem so wichtig sind in der Klassischen
Mechanik, liegt nicht so sehr daran, daB einige besonders interessante und naheliegende
Systeme dazu gehtren, sondern vor allem daran, daB bei einer kleinen Stérung eines
vollsténdig integrablen Systems wesentliche qualitative Eigenschaften erhalten bleiben.
Die entsprechende Theorie ("KAM~-Theorie") findet man z.B. in [ARN], [LAZ], (GUT].
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Il QUANTENMECHANIK

Nachdem im zweiten Kapitel die Klassische Mechanik als eine geometrische
Theorie dargestellt worden ist, sollen jetzt auch in der Quantenmechanik Aspekte von
Geometrie und Symmetrie herausgearbeitet werden. Tatsichlich haben Symmetriebe-
trachtungen in der Quantenmechanik, die mit Hilfe der Darstellungen von Lie-Gruppen
Eingang in die Theorie finden, eine noch bedeutendere Stellung als die Symmetriebe-

trachtungen in der Klassischen Mechanik.

Um aber Geometrie und Symmetrie in der Quantenmechanik iiberhaupt mit
einiger Tiefe behandeln zu kénnen, ist es nétig, erst einmal die Struktur der Quanten-
mechanik mathematisch zu beschreiben. Das geschieht im ersten Paragraphen dieses
Kapitels, in dem ein System von vier Axiomen als die mathematische Grundlage der
Quantenmechanik an den Anfang gestellt wird. Zur eigentlichen Physik kommt man im
Rahmen der dargelegten Theorie erst durch eine geeignete Interpretation, die insbeson-
dere eine Erklarung des quantenmechanischen MeBprozesses einschlieBt. Diesen inter—
essanten und noch nicht vollsténdig gekldrten Aspekt der Quantenmechanik lassen wir
hier v6llig auBer acht (vgl. dazu z.B. die Lehrbiicher [BOH, GAP, SUD] und auch [PEN,
chapter 6] sowie [DAB2]).

Die Axiome der Quantenmechanik machen deutlich, daB die Quantenmechanik
in ihren grundlegenden Konzepten eine geometrische Theorie ist: Die fundamentalen
Objekte der Theorie sind der komplexe Hilbertraum H mit seiner unitiren Struktur
und dem zugehdrigen Raum [P(H) der Geraden (welcher der Raum der quantenmecha-
nischen Zusténde ist) sowie die Menge (0 der selbstadjungierten Operatoren auf H
(in der die quantenmechanischen Observablen enthalten sind). Die unitire Struktur des
Hilbertraumes H, welche durch das hermitesche Skalarprodukt gegeben ist, ist ein
rein geometrisches Konzept. Sie erlaubt Lingen, Winkel, Orthogonalitit, Inhalt etc.
einzufiihren und 148t sich umgekehrt auch durch diese geometrischen GréBen definie-
ren. Die volle Symmetriegruppe der unitdren Struktur im Sinne der Paragraphen 3 und 4
im ersten Kapitel ist die Gruppe %(H) der unitiren Transformationen auf dem Hilbert-
raum M, welche zwar im unendlichdimensionalen Fall (also dimH = o) nicht als
Lie-Gruppe aufgefaBt werden kann, die aber immerhin noch eine topologische Gruppe
beziiglich der starken Topologie ist. Die selbstadjungierten Operatoren sind ebenfalls
geometrischer Natur, da sie als die infinitesimalen Erzeuger der 1-Parametergruppen
von unitdren Transformationen U st H — H aufgefaBt werden konnen, und die uni-

tiaren Transformationen ia perade die unitire Struktur von M widercenieoaln



156 III Quantenmechanik

Zu physikalisch relevanten quantenmechanischen Systemen, wie sie im ersten
Paragraphen vorgestellt werden, kommt man in der Regel durch eine Quantisierung von
klassischen mechanischen Systemen. Im zweiten Paragraphen werden Beispiele von
quantenmechanischen Systemen anhand der kanonischen Quantisierung erldutert, und es
wird auch kurz auf das Programm der Geometrischen Quantisierung eingegangen.

Bei der Quantisierung von klassischen Systemen bleiben die klassischen
Symmetrien im groBen und ganzen erhalten. Sie manifestieren sich nach der Quanti-
sierung als unitdre oder als projektive Darstellungen der entsprechenden klassischen
Symmetriegruppe. Die Darstellungstheorie ist ein duBerst effizientes Werkzeug der ele-
mentaren Quantenmechanik, erlaubt sie doch viele Beziehungen und Quantenzahlen ex-
plizit auszurechnen. Um davon einen ersten Eindruck zu vermitteln, wird die Darstel-
lungstheorie der Drehgruppe SO(3) und der "Isospingruppe" SU(2) in Paragraph 3
ausfiihrlich behandelt. Eine einfache Anwendung der vorgestellten SO(3)-Theorie (auf
die wir im Rahmen des Buches leider nicht eingehen k&nnen) ist zum Beispiel die
Behandlung von Mehrteilchensystemen, wo es zundchst darum geht, Tensorprodukte
R®R' von irreduziblen Darstellungen von SO(3) oder von SU(2) in ihre irreduziblen
Bestandteile zu zerlegen (vgl. Clebsch-Gordan-Koeffizienten und Satz von Wigner—
Eckart, z.B. in [BOH] oder {SUD]).

Der vierte Paragraph handelt von dem Problem, daB es nicht ausreichend ist,
nur unitdre Darstellungen der klassischen Symmetriegruppen G zu betrachten, und daf
man stattdessen auch projektive Darstellungen zulassen muB. Haufig vernachldssigt
wird der mathematisch interessante {ibergang von projektiven zu unitéren Darstellun-
gen, der gegebenenfalls bei der Quantisierung eine leichte Verdnderung der Symmetrie-
gruppe verlangt. Auf diese Weise erkldrt sich zum Beispiel, daB in der Quantenmechanik
SU(2) die "richtige” Drehgruppe und in der relativistischen Quantenmechanik SL{2,C)
die "richtige” eigentliche Lorentzgruppe ist. Insbesondere findet man damit auch eine
mathematische Erklarung dafiir, daB Teilchen mit halbzahligen Spin auftreten k&nnen.
Ganz allgemein besagen die Satze von Bargmann und Wigner, dafl es bei den Symmetrie-
betrachtungen der Quantenmechanik ausreicht, nur die unitaren Darstellungen zu unter—
suchen, wenn die klassische Symmetriegruppe G durch eine geeignete quantenmecha-
nische Symmetriegruppe 6 ersetzt wird. Diese quantenmechanische Symmetriegruppe
8 ist eine zentrale Erweiterung der universellen Uberlagerung von G.

Der Ubergang von projektiven zu unitdren Darstellungen hat beispielhaften
Charakter fiir die Quantenfeldtheorie, in der die klassischen Symmetrien bei der Quanti-
sierung sich ebenfalls als projektive Darstellungen manifestieren und dann zu zentralen
Erweiterungen der Symmetriegruppen und -algebren fiihren. Ein Beispiel dafiir ist die
Virasoro-Algebra in der Stringtheorie, die eine zentrale Erweiterung der unendlichdi-

mensionalen Lie—Algebra aller polynomialen Vektorfelder auf g! ist.
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| AXIOME DER QUANTENMECHANIK

Fiir den Fortgang des Buches wird eigentlich kaum mehr benstigt als die
Feststellung, daB die Zusténde eines quantenmechanischen Systems durch die komple-
xen Geraden eines fest vorgegebenen Hilbertraumes H gegeben sind. Symmetrien des
Systems sind daher in erster Linie Transformationen auf dem System aller Geraden
oder auf dem Hilbertraum selbst.

Um diese Aussagen ein wenig in einen Gesamtzusammenhang zu stellen, wird
in diesem Paragraphen ein gebriuchliches Modell der Quantenmechanik durch ein Axio-
mensystem eingefiihrt, das aus vier Axiomen (bzw. Postulaten) besteht. Dabei liegt fiir
die Belange der Darstellung in diesem Buch der Schwerpunkt auf dem Axiom 1. AuBer-
dem wird Axjom 3 benétigt, wihrend die vom mathematischen Standpunkt komplizier-
teren Axiome 2 und 4 nur fiir weitergehende Untersuchungen von Bedeutung sind.

Inwiefern durch die angegebenen Axiome tatsichlich ein Teil der Quanten-
physik beschrieben wird, kann hier nicht weiter erértert werden. Wir verweisen dazu auf
die einschlédgigen Lehrbiicher, z. B. [SUD, BOH, GAP]. Die nitigen Begriffe und Resulta-
te aus der Theorie der linearen Operatoren auf einem Hilbertraum kann man z. B. dem
Lehrbuch [TRI] entnehmen,

Definition: Ein quantenmechanisches System ist durch ein Paar (H,#) ge-
geben, welches den folgenden vier Axiomen geniigt:

Axiom 1. H ist ein separabler Hilbertraum iiber dem Korper C der
komplexen Zahlen mit dem Skalarprodukt < , »>. Die Zustinde des
quanienmechanischen Systems sind die komplexen Geraden in H,
die den Nullvektor von H enthalten.

Bemerkungen und Erlduterungen zum Axiom 1:

1° Ein komplexer Hilbertraum H ist ein komplexer Vektorraum zusammen
mit einem (hermiteschen) Skalarprodukt < , >, so daB H beziiglich der durch < , >
gegebenen Norm vollstindig ist. Dabei ist ein Skalarprodukt eine Abbildung

<,>:HxH — C,
mit den folgenden Eigenschaften: Fiir alle f,gheH und X € C gilt:

i) <f+gh>=<Kfh> + {g,h> und <fg+h> = <F,g> + {£hD, sowie
OMg> = X<fg> und (f,agd = A<f,g> ;das heiBt: < , > ist R-bilinear, komplex—
linear im zweiten und komplex—antilinear im ersten Argument.

i) <fg> = {gp.

iii) <f,f> > 0, falls f + 0.
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Ein solches Skalarprodukt definiert durch |f| = V<f.f> eine Norm auf
dem Vektorraum H, und H heiBt vollstidndig, wenn H beziiglich dieser Norm voll-
stiindig ist, das heilt, wenn jede Cauchyfolge (f)) aus H in H konvergiert.

2° Zu den wichtigsten komplexen Hilbertrdumen gehéren natiirlich erst
einmal die endlichdimensionalen komplexen Hilbertriume, die man auch unitdre Riume

nennt, und die man bis auf Isomorphie durch H = C™ mit dem Skalarprodukt
n

w) =Y 7w
v=1

angeben kann. Analog lassen sich unendlichdimensionale komplexe Hilbertrdume als

Rdume von quadratsummierbaren Folgen darstellen (vgl. 2.9 in Kapitel I). In der Quan-

tenmechanik treten unendlichdimensionale Hilbertraume konkret auf als die Raume von

quadratintegrierbaren Funktionen auf einem geeigneten Konfigurationsraum: Zum Bei-
N . v n

spiel ist fiir offene Q C R

Q) = {f:Q — ¢: [ If@ldg < o}

ein solcher Hilbertraum, wenn als Skalarprodukt <f,g> = J'QT(q)g(q)dq definjert
wird. Dabei ist fh(q)dq als das Lebesgue-Integral aufzufassen, und Funktionen, die
sich nur auf einer Nullmenge unterscheiden, sind zu identifizieren. Ohne Benutzung des

Lebesgﬁe—lntegrals gelangt man zu LZ(Q), indem man zunichst mit dem Raum
2 . . 2
R(Q) = {f: Q —> C: f ist stetig und lef(q)i dq < 00}

beginnt, wobei jetzt fh(q)dq als das tibliche Riemannsche Integral aufzufassen ist.
Dann definiert man < , > wie oben mit dem Unterschied, daB jetzt das Skalarprodukt
<f.g> = fQ?(q)g(q)dq das Riemann-Integral ist. SchlieBlich vervollstindigt man den
noch nicht vollstindigen Raum RZ(Q) zZu LZ(Q) analog zur Vervollstindigung des
Raumes @ der rationalen Zahlen zum Raum R der reellen Zahlen.

3° Der Raum der Zustinde ist also der zu H gehorige projektive Raum
P(H): Auf H hat man die Aquivalenzrelation f~ g & I) e C: f= Ag, welche die
Vektoren, die auf einer durch 0 verlaufenden komplexen Geraden liegen, miteinander
identifiziert. Bezeichnet man fiir fe H mit y(f) die jeweilige Aquivalenzklasse, so ist
der projektive Raum als der Quotientenraum

P(H):= H\{0)/.. = {v(F): feHN{O}}
definiert. Der Raum P(H) der Zustéinde des quantenmechanischen Systems erhilt durch
die kanonische Quotientenabbildung v: H\{0} —> P(H) eine natiirliche Topologie,
nédmlich die Quotiententopologie: Eine Teilmenge U C P(H) heiBt offen, wenn die Ur-
bildmenge v '(U) in H offen ist. Die Abbildung vy ist dann stetig und offen.

4° Im Vergleich zur Klassischen Mechanik auf einem Phasenraum P mit
einer symplektischen Struktur, die durch ¢ bzw. © gegeben ist (vgl. 11.9), tibernimmt
jetzt P(H) die Rolle des klassischen Phasenraumes P, und die Rolle der symplekti-

schen Form ® wird in gewisser Weise von der von <, > erzeugten "Pseudometrik”

LoD = |<-—f,———§—>| Fiir © = v(FH und &= ~v(e) aus H
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iibernommen. <, > auf P(H) x P(H) ist offenbar unabhéngig von der speziellen Wahl
der Reprisentanten f und g und damit wohldefiniert.

5° Die Pseudometrik (aus 4°) hat die folgende Bedeutung im Rahmen der
physikalischen Interpretation der 4 Axiome, auf die wir hier ansonsten nicht weiter ein-
gehen koénnen (vgl. z.B. [SUD, S. 36 ff. und S. 117 ££.]): Die GriBe (<p,¢>2 e [01] fiir
zwei Zustdnde ¢,¢ ist die Ubergangswahrscheinlichkeit von ¢ nach ¢. Das heif3t,
wenn das System sich im Zustand ¢ befindet, ist ((p,d))z die Wahrscheinlichkeit dafiir,
daB sich bei einer Messung herausstellt, daB sich das System im Zustand ¢ befinden
wird. Fiir die Darstellung in den néchsten Paragraphen ist in diesem Zusammenhang nur
wichtig, daB die Pseudometrik bei der Beschreibung von Symmetrien eines quantenme-—
chanischen Systems zu beriicksichtigen ist als eine GréBe, die bei Symmetrietransforma-
tionen invariant ist.

6° Beispiel (nichtrelativistisches Teilchen in Q C lR(a): Qc R® sei offen.
M= LZ(IR{S) ist der Hilbertraum der quadratintegrierbaren Funktionen auf Q, die Ele-
mente f von H sind die Wellenfunktionen, und die ¢ = y(f) reprisentieren die Zu-
stinde des Systems. Im Falle |[f| =1 hat man noch die folgende Interpretation fiir
eine meBbare Teilmenge B C Q : Die GréBe fBlf(x)Izdx <1 ist die Wahrscheinlichkeit
dafiir, daB sich das Teilchen im Zustand ¢ in der Menge B befindet.

Axiom 2. Die Observablen des Systems werden durch die selbstadjun-
gierten Operatoren im Hilberiraum représentiert. Anders ausgedriickt:
Die Menge O aller moglichen Observablen ist

O = {T:D(T) —> H: D(T) CH dichtund T selbstadjungiert}.

Bemerkungen und Erlduterungen zum Axiom 2.

7° Ein selbstadjungierter Operator T in H ist eine C-lineare Abbildung
T:D(T) —> H von einem (zu T gehorigen) linearen Unterraum D(T) € H mit den
folgenden Eigenschaften:

i) D(T) ist dicht in H.

it) T ist abgeschlossen, das heiBt fiir f,eD(T) mit f,—> feH und
Tf,—> g gilt stets: fe D(T) und Tf=g.

iii) Flir alle f,g e D(T) gilt <Tf,g> = {f,Tgd.

8° Im Falle H= C” und dem iiblichen Skalarprodukt auf ¢" (vgl. 29) gilt:
Jeder dichte lineare Teilraum von C" stimmt bereits mit C" iberein, und jede C-line-
are Abbildung T:C" — €™ ist automatisch stetig und damit insbesondere auch
abgeschlossen; T ist genau dann selbstadjungiert, wenn fiir die darstellende Matrix
Mt = M von T beziiglich einer Orthonormalbasis von C" gilt: MT = M. (Man sagt
auch: M bzw. T ist symmetrisch in bezug auf das hermitesche Skalarprodukt.)

9° Fiir den Fall, daB der Hilbertraum H unendlichdimensional ist, gilt
zundchst, daB ein Operator T mit D(T)=H genau dann abgeschlossen ist, wenn er

stetig (oder dquivalent dazu: beschrankt) ist. Es gibt aber viele unbeschrinkte und
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abgeschlossene Operatoren T auf H mit D(T) & H. Insbesondere sind die fiir die
Quantenmechanik wichtigen Operatoren meistens unbeschrinkte, selbstadjungierte
Operatoren.

10° Dazu das Beispiel eines Teilchens auf der reellen Achse: H= LAR).
Typische Observable ist der Ortsoperator Q mit D(Q) := {fe H: fqu(q)lqu <o}
und Qf(q) := gf(q) fiir g€ R und fe D(Q). Man sieht leicht, daB Q selbstadjungiert
ist. Q ist aber nicht beschrénkt, denn fiir die Folge f _:= Xfnn+i] der Indikatorfunk-
tionen der Intervalle [nn+1] gilt [If Il =1, aber |Qf |l > n. Eine weitere Observable
ist der Impulsoperator P mit D(P) = {fe H: Es gibt Df ¢ H mit <Df,g> = -<f,g">
fiir alle 9*-Funktionen g auf R mit kompakten Trager} und Pf:= —iDf fiir
f e D(P). Dabei ist g' die libliche Ableitung der differenzierbaren Funktion g, wihrend
Df die "schwache" Ableitung von f darstellt,

11° Eine mathematisch befriedigende und auch fiir die Quantenmechanik
sinnvolle Beschreibung der selbstadjungierten Operatoren erfolgt mittels der Spektral-
schar (siehe auch Axiom 4 weiter unten). Diesen recht komplizierten Begriff wollen wir
vorerst noch vermeiden. In Analogie zu unseren bisherigen Symmetriebetrachtungen,
insbesondere im Paragraphen 9 des Kapitels II, und zur Vorbereitung des nachfolgenden
dritten Axioms soll stattdessen ein selbstadjungierter Operator als der infinitesimale
Erzeuger einer 1-Parametergruppe von unitdren Operatoren beschrieben werden. Dabei

ist ein unitdrer Operator eine surjektive C-lineare Abbildung
Uu: H — H,

welche das Skalarprodukt invariant 148t, das heiBt, es gilt <Uf,Ug) = <f,g> fiir alle
f,g € H. Ein unitdrer Operator U ist automatisch beschrinkt (und deshalb auch stetig,
s.ut.), denn es gilt ja |Ufll = <Uf,U> = <F,
lall = sup{tUufli : Ifll =1} = sup{lIfll : Ifll =1} 1. Dabei ist allgemein fiir
C-lineare Abbildungen L: H — M, die auf ganz H definiert sind, die Operator-
norm |ILIl definiert als |IL]l = sup{|Lfll : Ifll = 1}, und es ist leicht zu zeigen, daB
die beschrdnkten Operatoren L (d.h. |IL|| < =) genau die stetigen Operatoren sind.

Ifll wegen der Invarianz, also

I

Ein unitdrer Operator ist auBerdem injektiv, denn fiir Vektoren f,g e H mit Uf= Ug
gilt U(f-g) = 0, also |If-gll = [UW(f-g)|l = 0, und es folgt f-g = 0, das
heiBt f = g. Insgesamt hat sich also ergeben, daB jeder unitire Operator U stetig
und bijektiv ist. Daher ist auch der Umkehroperator U als linearer Operator auf
ganz H definiert, und man sieht sofort, daB U™! ein unitirer Operator ist.

Da auBerdem fiir zwei unitdre Operatoren U und V auf H auch die Kom-
position UoV: H —— H unitdr ist, bildet die Gesamtheit aller unitdren Operatoren
auf H eine Gruppe, die unitidre Gruppe, welche im folgenden mit %(H) bezeichnet
werde. Mit den bereits eingefiihrten Bezeichnungen gilt #%(C™) = U(n), wenn mit C"
der in Punkt 2° beschriebene Hilbertraum ist {und die C-linearen Abbildungen von c”
nach C”, die ja alle automatisch stetig sind, mit den zugehdrigen Matrizen, die sie

darstellen, gleichgesetzt werden).
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12° FEine 1-Parametergruppe von unitiren Operatoren ist eine mit sée R
indizierte Schar (U s) seim» wWelche durch eine Wirkung (vgl. Paragraph 3 in Kapitel 1)

P: RxH — H
der Gruppe R auf H gegeben ist, also Uf = ®(s,f) fiir (s,f) e R x H, mit den fol-
genden Eigenschaften:

i) Esist U_ e %(H) fiir alle seR.

ii) Die Abbildung s —— U (f}, s e R, ist fiir alle feH stetig.
Insbesondere folgt aus der Eigenschaft von & als Wirkung, daB fiir alle s,t € R stets
U,elU, = U_ , gilt. In der Terminologie des iibernschsten Paragraphen ist die Abbil-
dung s —> U,, seR, von R nach %(H) eine unitére Darstellung der additiven
Gruppe R der reellen Zahlen.

13° Zu einer 1-Parametergruppe von unitdren Operatoren (U s) gehort im-~
mer der infinitesimale Erzeuger T, der wie folgt definiert ist:

D(T) == {f eH : limséoi(usf— f) existiert}

T(f) = i(lims_>o —;—(Usf - f)), feD(M.

Es gilt jetzt der folgende

Satz (von Stone): 1. Der infinitesimale Erzeuger einer 1-Parametergruppe von
unitédren Transformationen ist selbstadjungiert.

2. Zu jedem selbstadjungierten Operator T auf H gibt es eine eindeutig
bestimmte 1-Parametergruppe von unitdren Operatoren, zu der T der infinitesimale
Erzeuger ist. Diese 1-Parametergruppe von unitdren Transformationen wird in Abhin-
gigkeit von T mit U_ = e isT bezeichnet. Vgl. [SUD, §.92] oder [TRI].

Die Observablen im Sinne des zweiten Axioms stehen also in einer eineindeu-
tigen Korrespondenz zu den 1-Parametergruppen von unitéren Operatoren, Mit der Cha-
rakterisierung von selbstadjungierten Operatoren als Erzeuger von 1-Parametergruppen

unitdrer Operatoren 148t sich das dritte Axiom unmittelbar formulieren:

Axiom 3. # ist eine Observable und bestimmt die Dynamik des
quantenmechanischen Systems (H,%) in folgendem Sinne: Ist
9o € P(H) ein Zustand des quantenmechanischen Systems, welcher
durch f, e H, Ilfoll =1, reprdsentiert wird, so ist die zeitliche Ver-
dnderung ¢(t) des Zustands gegeben durch die Differentialgleichung

() f = -ize

mil der Anfangsbedingung f(0) = £, -

Das bedeutet: ¢(t) fiir t aus einem geeigneten Intervall J C R wird re-
prisentiert durch die eindeutig bestimmte Lésung f{t) von (S) mit f(0) = f,, wobei
ey = Y(fy): o(t) = v(f(t)). (S) ist die Schridinger-Gleichung, und H# ist der Hamil-
tonoperator (bzw. der Schrédingeroperator) des quantenmechanischen Systems (H, 7).

ITrtar Voaruronmmdiimoer doc Coabermo srmar Ok omm e oee L a0 1 A % s ges o P
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Dynamik des quantenmechanischen Systems als f(t) = o 1t

fy, teJ. (Die Einheiten
sind in der Formulierung des Axioms 3 so gew#hlt worden, daB fiir das Plancksche
Wirkungsquantum h die Gleichung% = 1 gilt.)

Zur Formulierung des vierten Axioms, welches fiir den weiteren Verlauf des
Buches keine Rolle spielt, benétigen wir noch den Begriff der Spektralschar.

14° Spektralsatz. Zu jedem selbstadjungierten Operator T e @ gibt es eine
Spektralschar (Ey)y g, welche den Operator auf die folgende Art beschreibt:

D(T)={fe M : Fiir alle ge H existiert fR rd<g,E; f> als uneigentliches

Riemann-Stieltjes—Integral }

Fiir fe D(T) ist Tf derjenige Vektor aus H, der fiir alle ge H die Bedin-
gung <g,Tf> = kad<g,E>\f> erfiillt. Kurz: T := J‘)\dE)\. Dabei ist eine Spektralschar
(E)\)XE[R eine Schar von orthogonalen Projektionen E)\: H — H, X e R, (d.h. E, ist
selbstadjungiert, stetig, und es gilt E; = Ey oE, ) mit den folgenden Eigenschaften:

i) Fir A <y gilt Ey < Ep, das heiBt <f,Eyf> < (f,EuD fiir alle fe M.
TR . R > 0.
ii) Fiir alle feH und M eR gilt Eyf Eh_nfthsf' e>0
iii) Fiir alle feH gilt lim Eyf=f und _lim Eyf=0.
A= A—>-o0

Zum Beispiel ist fiir den oben in 10° beschriebenen eindimensionalen Orts-

operator Q die Spektralschar gegeben durch

Bxfe= fly g0 MER.

15° Fiir jede Spektralschar wird durch T := J‘kdE)\ ein selbstadjungierter
Operator definiert. Die zugehorige 1-Parametergruppe von unitdren Operatoren ist
dann U, = [e '**dE, (vgl [TRID.

16° Fiir eine Spektralschar (E>\) definiert man fiir Intervalle J=la,bl C R
die Projektion E(J) durch E(]):= Ey - E,, und erhdlt so sukzessive ein SpektralmaB
auf den Borelmengen von R.

Axiom 4. Sei ¢ ¢ P(H) ein Zustand des quantenmechanischen
Systems mit Reprisentant f ¢ Hi, ||fll = 1, und sei T eine Observable
mit zugehdriger Spektralschar (E>\). Fiir ein Intervall J= la,bl ist
dann

2 b 2
ple, T.)) = NEMI® = <EENE> = [ "dUIE, f1%)
a
die Wahrscheinlichkeit dafiir, daB ein MeBwert der Observablen T im

Zustand ¢ im vorgegebenen Intervall ] liegt.

Beispiele von quantenmechanischen Systemen erhdlt man durch kanonische
Quantisierung von klassischen Hamilton-Systemen, und diesem Thema wenden wir uns

im folgenden Paragraphen zu.
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2 KANONISCHE QUANTISIERUNG

Unter einer Quantisierung eines klassischen mechanischen Systems versteht
man ganz allgemein die Zuordnung eines quantenmechanischen Systems zu diesem
klassischen System. Die kanonische Quantisierung eines klassischen Systems geht von
der Hamiltonschen Formulierung des klassischen Systems aus und besteht im wesent-
lichen darin, die Poissonklammer des klassischen Systems durch den Kommutator von
Operatoren zu ersetzen. In diesem Paragraphen soll das Konzept der kanonischen
Quantisierung kurz beschrieben werden, um dann die Axiome des vorangehenden Para-

graphen durch einige Beispiele zu beleben.

Zuerst erinnern wir an den Kommutator von Operatoren. Fiir zwei Operato-
ren im Hilbertraum H, also C-linearen Abbildungen S,T:D — H auf einem Teil-
raum D von H ist der Kommutator [S,T] von S und T definiert als

[S,T] = SoT - ToS.

Dabei muB sichergestellt sein, daB S(D) ¢ D und T(D) ¢ D gilt, damit SoT und
ToS iiberhaupt auf D wohldefiniert sind. Im allgemeinen werden § und T auf ihren
Definitionsbereichen D(S) und D(T) gegeben sein und die entsprechende Definition
[S,TI(f) := SoT(f) ~ ToS(f) wird nur Bestand haben fiir feD = {fe D(T)N D(S) :
T(f) e D(S) und S(f) € D(T)}.

Sei jetzt (P,H) ein Hamilton-System, gegeben durch einen Phasenraum
P & QxR"™ fiir eine offene Menge Q in R™, oder durch eine symplektische Mannig-
faltigkeit P, zusammen mit einer Hamilton-Funktion H. Die Struktur von P liefert
die Poissonklammer {F,G}, die fiir klassische Observable F,Ge & = &6(P,C) definiert
ist und & zu einer Lie-Algebra macht. Sind (q,p) kanonische Koordinaten von P, wie
sie im 9. Paragraphen des Kapitels II stindig verwendet werden, so gilt:

ROl = 55 3 ™ Spusar

Zu einer kanonischen Quantisierung von (P,H) gehort ferner die Auswahl
einer Menge & C & von klassischen Observablen, welche quantisiert werden sollen.
Zum Beispiel wird oft a = {qv,pu,H} gewdhlt oder a = alle Konstanten, alle Linear-
formen in den q\),pu und alle quadratischen Polynome in den qv,pu.

Eine kanonische Quantisierung von (P,H,a) ist dann eine Abbildung
p:a — O von a in die Menge der Observablen @ auf einem Hilbertraum M mit
den folgenden drei Bedingungen:

(21 To(F)Y o{CY] — AIBECYY Fite alle T - nr wte AL o a1
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(2.2) o(1) = idyy, falls die konstante Funktion 1 in a enthalten ist.
Mit Q" = p(q”) und Pu 1= p(pu) bedeutet die erste Bedingung zum Beispiel
v oV
23) [Q ,Pu] = 18u,

wobei 8: das Kronecker-Symbol ist, welches fiir v=yp gleich 1 ist und flir v+ u
verschwindet. 2.3 ist die Heisenberg—Relation, wihrend 2.1, 2.2 unter dem Namen
Dirac-Bedingungen laufen, Natiirlich sollte die Hamiltonfunktion H, die die Dynamik
des klassischen Systems bestimmt, zu a gehoren, so daB dann die Quantisierung von
H, der Operator # := p(H), die Dynamik des quantenmechanischen Systems bestimmt.
AuBerdem legt die Bedingung 2.1 nahe, daB a eine Lie-Unteralgebra der Poissonalge-
bra 6 sein sollte. Fiir den Fall, daB dieses nicht von vornherein der Fall ist, muB man

zu der kleinsten Lie-Unteralgebra & von & iibergehen, welche a enthilt.

(2.4) Beispiele.

1° Der eindimensionale harmonische Oszillator: Phasenraum ist P = RE.
Als die zu quantisierenden Observablen nimmt man a = {q,p,H,1}, wobei wie in
Paragraph 6 des Kapitels II die Hamiltonfunktion durch H = %(p2 + qz) gegeben
ist. Im AnschluB an das Beispiel 10° des ersten Paragraphen wird als Hilbertraum H
der Raum der quadratinteygrierbaren Funktionen H = L%(R) auf R genommen. Durch
olq) == Q, olp) +== P (Q und P wiein10°), o(1) = id und e(H) := H# ist dann

eine kanonische Quantisierung gegeben, wobei # folgendermaBen definiert ist:

D(#) enthilt den linearen Unterraum D = {f ¢ LA(R) : fR|q|4lf(q)|2dq <
und es gibt Af € L2(R) mit ngAqu = ng" fdq fiir alle g€ 8(R) mit kompaktem
Tréiger in R},

H(f) = $(-AF + ¢*f) = $ (-Af + QoQ(f), fir feD.

Man rechnet nach, daB 2.1 und 2.2 erfiillt sind, und kann auBerdem feststel-
len, daB # der ldentitit # = %(Pz + QZ) geniigt, wenn T? fiir ToT steht.

Z entspricht iibrigens dem Hermiteschen Differentialoperator

fr— 5 (-f" + d°f),
wobei hier wie oben in der Definition von D die Bezeichnung f" fiir die zweite
Ableitung von f nach q steht. Denn fiir jede zweimal stetig differenzierbare Funktion
f auf R, deren zweite Ableitung f" in L2(R) liegt, gilt natiirlich f" = Af beziiglich
der in der Definition von D benutzten Notation. Aus der Theorie der Linearen Differen-
tialoperatoren (vgl. z. B. [TRI], S. 314} ist bekannt, daB der Operator # die Eigenwer-
te A,=n+ %, n € N, hat mit den sogenannten Hermiteschen Funktionen hn = hn(q)

als Eigenvektoren, das heiBt, es gilt

o r . « . [
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Bei geeigneter Normierung von h, auf ”hn” = 1 gilt noch der folgende Entwick-
lungssatz: Jeder Vektor fe L2(R) hat die eindeutige Darstellung als konvergente Reihe
f = Z::o (hn,f) h, . Insbesondere gilt fiir f aus dem Definitionsbereich von % :

Z(f) = L <h B> (n+$)hy .

2° Der n-dimensionale harmonische Oszillator wird analog behandelt:
H = L*R™). Ohne hier explizit auf die genauen Definitionsbereiche der Operatoren
einzugehen, sei nur mitgeteilt, daB die Festsetzungen Qvf = qvf, Puf = -] ggu'
Hf = FHf+ %IQ]Zf, mit K f = -LAf und Q% = Z\linon eine kanonische Quan-
tisierung von {1, qV, Py H} liefern. (Dabei ist A der klassische Laplace-Operator).

3° Einfacher noch als der harmonische Oszillator ist das freie nichtrelati-
vistische Teilchenin Q = R® mit L = %mv2 = H als Lagrange-Funktion, also mit
verschwindendem Potential U = 0: Wieder mit H = LAR&®) und QV, Pu wie in 20,
aber o(H) = #,.

4° Komplizierter wird Beispiel 3° mit allgemeineren Potentialen oder bei
Mehrte@lchensystemen. Dabei ist es zunehmend schwieriger zu zeigen, daB die auftre-
tenden Operatoren iiberhaupt selbstadjungiert sind (vgl. [JOW]).

5° Man kann eine kanonische Quantisierung auch auf eine algebraisch orien-
tierte Art konstruieren. Die Grundidee soll wieder am Beispiel des harmonischen Oszil-
lators erldutert werden. Unter der Annahme, daB man eine kanonische Quantisierung
schon hitte, wiirde fiir die quantisierten Observablen notwendig gelten:

[QP] =i, [#,Q1 = ~iP, [#£P] = iQ,
wie man leicht nachrechnet und im iibrigen in 1° schon benétigt hat. Gesucht ist jetzt
ein "minimaler” Hilbertraum und dazu Operatoren' Q, P und F#, welche diese Relatio-
nen erfiillen. (Dieser Weg entspricht im iibrigen der Einfiihrung des Fockraumes in der
Quantenfeldtheorie.) In Analogie zu der komplexen Schreibweise z = g+ ip fiihrt
man Z = Q+iP und Z* := Q- iP ein. Man setzt fiir Z und Z* voraus, daB sie
beziiglich des noch zu bestimmenden Hilbertraumes <Z¢,0> = <¢,Z*¢> erfiillen, daB
ZZ* einen Eigenvektor 9, in diesem Hilbertraum hat und daB ZZ* = 27 +1 gilt.
Unter diesen natiirlichen Annahmen gilt zunichst

77" = Q*+P*+i(PQ-QP) = Q*+P? - i[QP] = Q?+ P2+ 1 = 28 + 1
und daher QZ +P? = 2.7, also

’Z=Q*+P*-1=2%-1= 72" - 2.
Es sei N = 1ZZ* und Nlpg) = Xpy. Es gilt dann Hlpy) = (A -5)e,. Fir
¢y = Zp, folgt

Nlp,) = $ZZ'Z¢, = $Z(ZZ* -2 ¢y = O\ -DZoy, = (A - Do, .
Analog gilt N(Z*(po) = (A + 1)Z*<po. Weiterhin hat man allgemein Z*¢ %+ 0, falls
¢ ¥ 0, denn

2%, Z%¢> = <9, 2Z%0> = {9,Z*Zp> + 2Kp,0> = <Zp,Zo> + 2p,p> > 0.
Fir ¢ = an;zo gilt Np = (A -n)p_  und

Zre,Z%0,> = <9, ZZ% > = 2p No > = 20\ - n)<o_ 0>,
fiir alle ne N. Es folgt: (A-n) >0 oder <¢p_,p.> = 0 fiir alle n € N. Daraus ergibt
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sich die Existenz einer natlirlichen Zahl n;, mit Pn, + 0 und Prgr1 = ZLPno =0. Es
gilt also A = ny +1e N. Mit ¢, = Pn, beginnt man von neuem und definiert eine
Folge ¢_,, = Z*Q)n mit den folgenden Eigenschaften:

NG, = (n+1§,, Hy = (n+HY, .
Mit all diesen Informationen kann man sich jetzt tatsédchlich einen geeigneten Hilbert-
raum mit den Operatoren #,P,Q konstruieren:

Es sei H:= ¢ der Hilbertraum der komplexen, quadratsummierbaren
Folgen ¢% := {z,)): z,eC mit Z\Z‘IZ\JZ <o} (vgl. 1.2.9) mit dem Skalarprodukt

[ SJ—

{z,wd = X7z w, und den Einheitsvektoren e. Setze

(*) Hle)) = (\)+—f;)ev, also #(z) = Z\iizv(v+%)ev fiir geeignete z,
Z*ev = Y2v+2 NI
Zev:= 2\)ev_1,\)>0,Ze0=0.
Geeignete Fortsetzungen von # ,Q = +(Z+ Z*) und P := -i+(Z - Z*) sind dann

selbstadjungierte Operatoren auf H, die den gewiinschten Kommutatorbeziehungen
geniigen.

Aus naheliegenden Griinden wird in diesem Formalismus der Operator Z als
Vernichtungsoperator bezeichnet und Z* als Erzeugungsoperator. Der n-dimensionale
harmonische Oszillator 148t sich entsprechend behandeln. Eine analoge Konstruktion
funktioniert sogar fiir ein System von unendlich vielen harmonischen Oszillatoren. Der
letzte Fall ist bereits ein Beispiel fiir eine Feldquantisierung.

Bemerkenswert an dem 1-dimensionalen Beispiel ist einerseits, daB es nicht
méglich ist, die so einfach strukturierte Menge a = {H,q,p,1} von klassischen Obser-
vablen auf dem Phasenraum R? unter Verwendung eines endlichdimensionalen Hilbert~
raumes H kanonisch zu quantisieren. Andrerseits ist bei der letzten Konstruktion der
wichtigste Operator, namlich der Hamiltonoperator #, der die Dynamik des quanten-
mechanischen Systems bestimmt, von vornherein als in seine Eigenrdume zerlegt gege-
ben (¥): Eigenvektoren, Eigenwerte nebst Vielfachheiten und auch der Definitionsbereich
von J# lassen sich an dieser Zerlegung direkt ablesen.

Im AnschluB an die Eigenwertentwicklung im letzten Beispiel wollen wir eine
kurze Diskussion iiber die Bedeutung von Eigenwerten und Eigenvektoren in der Quan-
tenmechanik einfiigen:

Ein Zustand P, € P(H) eines quantenmechanischen Systems (H,#) heiBt
stationdr, wenn die nach Axiom 3 bestimmte Zeitentwicklung ¢(t) konstant ist:
plt) = Pg Die Bestimmung der stationdren Zustande ist eines der wesentlichen
Anliegen in der Quantenmechanik. Daher ist man daran interessiert, die Bedingung
o(t) = ¢, genauer zu analysieren.

Dazu sei ¢f(t) = ?, stationdr. Ist fo €eH mit Y(fo) = ¢,, so gilt
o(t) = y(f(t)) fir te] mit

f(t) = e_it'%fo

nach Axiom 3. Die Bedingung ¢(t) = ¢ _, also y(f{t)) = y(f,), bedeutet f(t) = c(t)f_
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und -iJf(t) = f(t) = p(t)fo fiir geeignete Funktionen c(t) € C und o(t) € C. Es
folgt .7€f0 = )\(t)f0 fiir geeignete Zahlen X(t) € C. (Wenn c differenzierbar ist, so
wihle man p = ¢ und ) = iéc™l) Daraus ergibt sich: A(t) = A(0) =t A ist kon-
stant. Insgesamt haben wir fiir stationire Zustinde ¢ = y(f,) gezeigt:

i) fo ist Eigenvektor von # zum Eigenwert X,
i) flt) = e tey.

Im iibrigen ist X € R, da # selbstadjungiert ist. Man kann jetzt leicht beweisen (vgl.
[SUD], [TRI] oder [BOH]):

(2.5) Satz. P, = Y(fo) ist genau dann stationar, wenn fo Eigenvektor von
F ist. '

Ein letztes Beispiel noch, welches ein wenig die Problematik der kanonischen
Quantisierung beleuchtet, vor allem die Tatsache, daB 6fters Produkte von klassischen
Observablen quantisiert werden sollen, und die Reihenfolge, in der die zugehdrigen
Operatorprodukte geschrieben werden, nicht durch die kanonische Quantisierung fest-
gelegt ist. Anders ausgedriickt: Die Festlegung der Reihenfolge von Operatorprodukten
bei der kanonischen Quantisierung unterliegt der Willkiir.

(2.6) Beispiel. Kanonische Quantisierung des Keplerproblems (Wasserstoff-
atom). Neben den Ortskoordinaten q” und den Impuisen Py sollen die Drehimpulse
Iu und die Komponenten R, des Runge-Lenz-Vektors R (vgl. [1.7.12) quantisiert wer-
den. Mit H = LZ(R®\{0}) und Pg, Q" wie in 2° ist es naheliegend, o(I) := QxP
zu setzen. In dieser Festlegung hat man keine Probleme der Anordnung, da zum Beispiel
p(Il) = QZP3 - Q3PZ = P3Qz - PZQS. Anders ist die Situation beim Runge-Lenz—Vek-
tor. Der Ansatz

oR) = (1) P, - o(1)P,) + k)

ist verschieden von
1
1
m(Pyet) ~ Pootr) + kR

da
_ 3 1 3 1y
ol)P, = (P,Q" - P,Q)P, + P, (P Q° - P,Q") = Po(1)
wegen

3 3
Q°p, + P,Q°.

Als Loésung des Konflikts, in welcher Anordnung die Produkte geschrieben
werden sollen, bietet sich eine Art Mittelwertbildung an: %(QsP3 +P3 Q%) statt
Q? F‘3 oder P3 Q5. Ergebnis fiir die Quantisierung: Aus p(IZ)F‘3 - p(Ia)l"2 wird
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(p,3(Q%, + P,Q%) - Q'(P))) - (Q'(P)* - $(Q%P, + P,Q))P,), also
1
o(R) = 4 (4P,(Q%, + P,Q° + Q%P, + P,Q%) - Q'((P)? + (P)")) + Kk 1&.

Dabei muB |Q| noch extra definiert werden. In jedem Falle gehort es zu den wesent-
lichen Problemen der kanonischen Quantisierung, die Quantisierung von Produkten wie
q3p3 in Einklang mit 2.1 und 2.2 festzulegen, soweit man an der Quantisierung dieser
Observablen interessiert ist. Eine relativ einfache Rechnung zeigt, daB eine natiirliche
Festlegung der Quantisierung aller quadratischen Polynome auf R? es unméglich
macht, auch die Polynome vom Grad 3 in Ubereinstimmung mit 2.1 und 2.2 zu quantisie-
ren (Satz von Groenwald-van Hove, vgl. z. B. [GUS, S. 101]).

(2.7) Geometrische Quantisierung. Im Rahmen des Themas "Geometrie und
Symmetrie"” darf bei der Diskussion der kanonischen Quantisierung die sogenannte
Geometrische Quantisierung nicht fehlen. Die Geometrische Quantisierung ist eine
mathematisch geprigte kanonische Quantisierung, in der geometrische Konzepte und
Symmetriebetrachtungen eine besondere Rolle spielen. Hier soll nur kurz die wesent~

liche Idee erldutert werden.

Ausgehend von der Hamiltonschen Formulierung der Klassischen Mechanik
hat man bereits einen Kandidaten fiir p, wenn auch die entsprechenden Operatoren p(F)
nicht auf einem Hilbertraum gegeben sind, sondern zunéchst auf dem Funktionenraum
& aller klassischen Observablen. Um das zu erkldren, sei (P,H) ein Hamilton-System
und & = &§(P,C) der C-Vektorraum der klassischen (komplexwertigen) Observablen

mit der Poissonklammer { , }. Fiir F e & definiere man erst einmal
olF) : 8 — & durch ofF)XD) = i{F,1}

Offenbar ist p(F) ein C-linearer Operator auf &. (Es ist iibrigens p(F) = —iLxF
unter Verwendung der Lie-Ableitung L. fiir Vektorfelder X, vgl. M.12.1° und im An-
schluB an 11.9.7.) Es gilt

olF,ch (@ = i{{r,ch1} = i{Ric.1} - ifc.{F 1}

nach der Jacobi-Identitdt (vgl. 11.9.5.3°), also ist

ol{F,GH(1) = {F,e(GXD} - {G,p(F) (D)}
= (-i) p(F)op(GHI) - (1) p(G)op(FUI).

Damit ist die Bedingung 2.1 erfiillt: [p(F),p(G)] = ip({F,G}) .
Allerdings ist p(1) = 0. Ein neuer Ansatz mit p(F){I) = i{F,I} + F-1 lei-
stet zwar 2.2 aber nicht mehr 2.1. Erst die Korrektur

n
(2.8) oB)(D) = i{F,1} + (F - 2 qv%)l
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erfiillt 2.1 und 2.2: 2.2 148t sich unmittelbar ablesen, wihrend 2.1 einer lingeren Rech-
nung bedarf. Zun#chst ist

n
"E e = 0w,

wenn o« die 1-Form o := qup\) bezeichnet. Mit der Abkiirzung of(F) := F + a(Xp)
gilt dann fiir I€ & : p(F)(1) = i{F,I} + o(F}I. Daher ist fiir F,Gl¢ &

p(Flop(G)(D) = p(F)({G,I} + o(G)I) =
= {F,{G,I} + o(G)} + o(F)I(H{G,I} + o(G))
= H{F{G,I} + HF,0(G)} + is(FMG,I} + o(F)o(G)I
und
[o(F),o(G)] = HFIG,1} + i{F.0(G)1} + ic(F){G,I}
- HG R} - {G.0(F)} - ic(GMF,I}
H{F,GLI} + i{F,6(G))I + {F,1}o(G) + {G,I}o(F)
~ i{G,o(F)}I - {G,I}6(F) ~ {F,I}6(G)  (nach 11.9.5)
2{R.GLI + i({F,0(G)} + {o(F),GHI

I

Il

Da andereSeits
ipF,GH (D) = i{F,GLI} + ic({F,GN1I
ist, gilt es also, die Identitdt

(29) o({F,GH = {o(F),G} + {F,s(G)}

zu zeigen. Diese folgt aus den folgenden Gleichungen:

1° Xipqy = -[XpXgl (wie oben),
2° {F,G} = 0(Xg,Xg) (vgl. 11.9.7)
3% du = o (do = d(q"dp,) = dq”adp,)

4° dal(X,Y) = Ly(a(Y)) - Ly(a(X)) - al[X,Y]).

Dabei ist die letzte Gleichung fiir beliebige 1-Formen richtig (und kann auch als Defini-
tion fiir die duBere Ableitung de von « dienen, vgl. M.17.2°), wihrend do = der
besonderen Wahl von « zuzuschreiben ist. Um der Vollstandigkeit halber 2.9 tatsich-
lich aus 1°-4° herzuleiten, stellt man erst einmal o({F,G}) = {F,G} - a([Xg,YoD) nach
1° fest. Nach 4° folgt o({F,G}) = {F.G} + du(XpXg) = {u(X)F} + {a(Xp),G} (unter
Benutzung von LxFot(XG) = {oc(XG),F}, vgl. die Bemerkung im AnschluB an 11.9.7),
und nach 2° und 3° ergibt sich daraus die gewiinschte Gleichung

o({F,GH = 2{F,G} + {o(Xp),G} + {Fa(X )t = {F + a(Xg),GH + {F.G + alXg)}.
Damit erfiillt der Ansatz 2.8 die Bedingungen 2.1 und 2.2.

Man stellt auBerdem fest, daB man anstelle der speziellen 1-Form o auch

eine andere mit du = ® hétte nehmen kénnen, zum Beispiel - pvdqv . In der Form

(2.10) o(F) := —iLxF + F + alXg)
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hat der Ansatz 2.8 daher eine Verallgemeinerung auf beliebige symplektische Mannigfal-
tigkeiten als Phasenrdume, sofern « eine 1~-Form mit do = ©, also ein "symplekti-
sches Potential" zur symplektischen Form © ist. Wenn die geometrisch—topologische
Bedingung do = © nicht erfiillt werden kann, betrachtet man statt des Raumes &
der Funktionen den Raum der Schnitte in einem komplexen Geradenbiinde! iiber dem
Phasenraum mit einem Zusammenhang o, so daB do = ©. Darauf kommen wir im

sechsten Paragraphen des fiinften Kapitel zuriick.

Polarisierung. Mit der C-linearen Abbildung p wie in 2.10 (oder 2.8) ist le-
diglich eine "Priquantisierung” p: & — Homg(8,6) gefunden worden. Zwar erfiillt
o die Dirac-Bedingungen 2.1 und 2.2, aber weder ist & ein Hilbertraum noch haben die
Funktionen in & die richtige Anzahl von Variablen: Statt von n Ver#dnderlichen hiangen
die Funktionen aus & in der Regel von 2n Verdnderlichen ab. Um nun unter Verwen-
dung der Prdquantisierung p zu einer Quantisierung zu kommen, in der die potentiellen
"Wellenfunktionen" die richtige Anzahl von Variablen haben, wird auf dem klassischen
Phasenraum P eine Polarisierung eingefiihrt. Im Falle von P = R®™ ist eine Polarisie-
rung zum Beispiel durch einen n—dimensionalen R-linearen Unterraum V von [Rzn ge-
geben, von dem man noch o{v,v') = 0 fiir alle v,v' € V verlangt. (Es gibt allerdings
noch weitere Polarisierungen auf Rzn.) Unter Beibehaltung von p wird der Raum, auf
dem o(F) fiir Fe & operiert abgedndert zu

6y = {fe & :Firalle xe R®™ ist v —> f(x+v) konstant auf V und

es gilt [yulftwldw < o).
Hierbei ist V' das orthogonale Komplement zu V, und dw soll das iibliche MaB auf
diesem Raum V' = R™ bezeichnen. Auf &, hat man das Skalarprodukt

Ktg> = [y Fwlgw)dw
und kann daher &, zu einem Hilbertraum H,, vervollsténdigen. Es gilt jetzt zu prii-
fen, fiir welche der klassischen Observablen F e & der frither definierte Operator (vgl.
2.10) o(F): &, —> & die Einschridnkung eines selbstadjungierten Operators p(F)
des Hilbertraumes Hy, ist. Fiir die Menge a, dieser F ist dann durch F —— p(F)
eine kanonische Quantisierung gegeben, die die geometrische Quantisierung zur Polari-

sierung V heilt.

(2.11) Beispiel. An einem einfachen Beispiel soll die Konstruktion der Geome-
trischen Quantisierung mittels der geometrischen Daten o und V illustriert werden:
Dazusei V:={(0,p): pe¢ ®R™}. Dann ist &, der Raum der differenzierbaren Funktionen
auf Rzn, die von p unabhingig sind, und kann daher einfach als der Raum der differen-
zierbaren Funktionen ¢ = {(q) auf R" aufgefaBt werden. Der zugehdrige Hilbertraum
ist demzufolge Hy, = LHR™). Mit der Wahl o =-p, dqv gilt fiir Observable Fe §
nach 2.10: o(F)Y = i{F,¢}+ (F - pv )QJ Insbesondere erhalt man fir F = q“:
o(q"10 = q*¢, weil {q",¢} = 0, und fiir F p,: olp,) = laqw weil {pu ¢} = ~3q u‘b
In beiden Fillen liefert das selbstadjungierte Operatoren auf Hy,. Im ersten Fall ist
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damit die kanonische Quantisierung pv(q”) = q“, pv(pu) = iz a wound py (1) =
auf Hy, gefunden worden. Auf diese Weise erhilt man also gerade d1e iibliche Quantl—
sierung der Observablen 1, q sy mit der Heisenberg-Relation 2.3. Allerdings kann eine
so einfache Observable wie etwa F= pu in dleser geometrischen Quantisierung nicht
quantisiert werden, denn es ist p(F)§ = i(~ 2pu6qu¢) (pu - Zpu )¢, und diese Funk-
tion liegt nicht in &+, . Eine kurze Rechnung zeigt, daB nur die linearen affinen Funktio-
nen mit dieser geometrischen Quantisierung quantisiert werden.

Fiir die durch V' = {(q,0): qeR") gegebene und zu V orthogonale
Polarisierung mit o' = qupv gilt: M, ist der Hilbertraum der quadratintegrierbaren
Funktionen in der Variablen p e [Rn, und die Quantisierungen der Koordinatenfunktio-

. wy _ . 9 -
nen errechnen sich entsprechend zu pye(q) = lapu bzw. pv.(pu) = p,-

Um mehr Flexibilitdt zu erlangen und zum Beispiel wenigstens den harmoni-
schen Oszillator quantisieren zu kdnnen, miissen allgemeinere Polarisierungen, insbe-
sondere auch sogenannten komplexe Polarisierungen zugelassen werden. Beispiele dazu
sind im Falle des Phasenraumes R°™ komplex n~dimensionale Unterrdume P der
Komplexifizierung von R®". Bei geeigneter Wahl von P (holomorphe Polarisierung)
kommt man so zunédchst auf den Raum 6p = {pe &: ¢ ist holomorph beziiglich der
Koordinaten Zu = p, + iq“ auf Rzn} und dann auf den sogenannten Fockraum

= {pe by fllb(z)lzexp( |z| )dz < =} (vgl. [WOO, S. 1381). Die geometrlsche
Quantlslerung der Energie H = 4zZ nach 2.10 ist bei der Wahl von o = 1(qdp - pdq)
der Operator p(H) = i{H,g} + (H - $(q® + p?))p. Wegen H{H,p} = 5;1)— + z—Lp— fiir
beliebige ¢ € & gilt also p(H)} = zg—(zp- auf Hp. Immerhin ist dadurch tatsachhch ein
selbstadjungierter Operator pp(H) auf Hp gegeben. Die Eigenwerte von p(H) sind
aber gerade die natiirlichen Zahlen, und nicht, wie es der physikalischen Situation ange-
messen wire, die Zahlen n+1, ne N (vgl. auch mit dem Beispiel 2.4.5%). Um zu einer
physikalisch relevanten Quantisierung zu kommen, muB also noch eine Korrektur des
Quantisierungsschemas vorgenommen werden, die sogenannte metaplektische Korrek-
tur [WOO].

Bei der Durchfiihrung des Programms der Geometrischen Quantisierung, das
wir auf den vorangehenden Seiten in seinen Anfingen skizziert haben, tritt eine Reihe
von Problemen auf:

L. Nicht alle der angegebenen Schritte sind fiir jeden Fall durchfiihrbar.

2. Selbst bei relativ einfachen klassischen Systemen (wie Wasserstoffatom
oder Harmonischer Oszillator) erfordert die Geometrische Quantisierung schwierige
mathematische Uberlegungen, und das liegt nicht nur an der metaplektischen Korrektur.

3. Diverse kanonische Quantisierungen, die ad hoc gefunden wurden, lassen
sich mit der Geometrischen Quantisierung nicht beschreiben.

4. Das Ergebnis der Geometrischen Quantisierung ist abhéngig von der Wahl

der Polarisation.
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Diese in 4. angesprochene Mehrdeutigkeit liegt natiirlich erst recht bei
sonstigen Quantisierungen vor (vgl. die Diskussion zur Quantisierung des Runge-Lenz—
Vektors). Der Vorteil der Geometrischen Quantisierung liegt darin, daB es sich um eine
systematische, geometrisch geprdgte Methode zur Gewinnung einer kanonischen Quan-
tisierung handelt, die sich insbesondere auch fiir allgemeine symplektische Rdume als
Phasenridume beschreiben l48t: Fiir ein Kotangentialbiindel mit der iiblichen symplekti-
schen Form o (= dq“/\ dpu in kanonischen Biindelkoordinaten) gibt es wie im Falle
R ein symplektisches Potential « mit da = ®, so daB der Ansatz 2.10 auch hier
Sinn gibt und eine Praquantisierung liefert. Es ist klar, daB dieser Ansatz auch fiir
sonstige symplektische Mannigfaltigkeiten jedenfalls dann funktioniert, wenn es ein
symplektisches Potential gibt. Im allgemeinen ist das aber nicht der Fall, schon eine so
einfache Mannigfaltigkeit wie die 2-Sphére $2, welche durch die iibliche Volumenform
auf S% (Oberflichenintegral) eine symplektische Struktur erhilt, besitzt kein symplek-
tisches Potential. Flir ein solches Potential « wire ja nach dem Satz von GauB wegen
do = w: 20 = fasz o« = 0. DaB eine symplektische Mannigfaltigkeit wie s fiir
die Quantisierung von Bedeutung ist, sieht man bereits am Pendel (vgl. I1.4) oder bei der
Quantisierung des Bahnenraumes zum Wasserstoffatom, der ja als 62 x 5% beschrieben
werden kann (Keplerproblem, vgl. I1.7.12). Wenn fiir eine symplektische Mannigfaltigkeit
(M,») als Phasenraum die geometrisch—-topologische Bedingung da = © nicht erfiillt
werden kann, so betrachtet man statt des Raumes & der Funktionen, auf dem die
Praquantisierungsoperatoren nach 2.10 definiert werden, einen anderen Raum, und zwar
den Raum der differenzierbaren Schnitte in einem geeigneten komplexen Geradenbiindel
L ilber M mit einem Zusammenhang D auf L, dessen Kriimmung gerade iw ist {(wir
kommen darauf in V.6 zuriick). Die Existenz solcher (L,D} ist gewahrleistet, wenn o
eine "ganze" Form ist, das heiBt wenn die Integrale fsw fiir alle kompakten orien-
tierten Flichen S C M ganze Zahlen sind. Diese topologische Quantenbedingung, die
mit der Bohr—Sommerfeld-Bedingung in enger Beziehung steht [WOO, S. 123], bedeutet
zum Beispiel im Falle des Wasserstoffatoms das Folgende: Der Bahnenraum Bg zur
Energie E (< 0) ist 52 x §% mit der von I (vel 11.7.12.4°) induzierten 2-Form O,
und diese Form erfiillt genau dann die eben beschriebene Ganzheitsbedingung, wenn E
der Balmerformel geniigt, also ganz bestimmte diskrete Werte annimmt.

Eine griindliche Einfiihrung in die Geometrische Quantisierung findet man in
[wWool
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3 SYMMETRIE ALS UNITARE DARSTELLUNG

Nachdem in den ersten beiden Paragraphen der Begriff des quantenmecha-
nischen Systems (H,#) vorgestellt worden ist, wenden wir uns nun der Frage zu, wie
"Symmetrie" beziiglich einer Gruppe G sich bei einem quantenmechanischen System
(H, #) auswirkt und mathematisch formulieren 148t.

Vorweg das Beispiel der Standardwirkung der Drehgruppe G = SO(3) auf
den Hilbertraum H = Lz([Rs)‘ Bei einem von der Drehung A e SO(3) erzeugten
Koordinatenwechsel von R® wird jeder Wellenfunktion fe H die neue Wellenfunktion

Lof= foA™
zugeordnet. Fiir eine weitere Drehung B e SO(3) erhilt man

LpoLaf = Lg(foA™") = foA™'oB™" = fo(BoA) ' = Ly _,f

Wir erhalten also eine Wirkung der Gruppe SO(3) auf dem Hilbertraum H im Sinne
des Paragraphen 3 aus Kapitel I. L ist ein Beispiel fiir eine unitire Darstellung der
Gruppe SO(3) in dem Hilbertraum H:

(3.1) Definition. Sei G eine Matrixgruppe, H ein komplexer Hilbertraum
und %(H) die unitdre Gruppe von H (vgl. 11° in Paragraph 1). Eine unitire Darstellung
von G in H ist ein Gruppenhomomorphismus

R:G —> %),
der in folgendem Sinne stetig ist: Fir alle konvergenten Folgen (g,) in der Gruppe
G und alle fel gilt: Die Folge (R(g,)f) konvergiert beziiglich der Norm in H und
es gilt limR(g)f = R(limg )f.

Die Darstellung heiBt treu, wenn R injektiv ist, das heiBt also, wenn G

isomorph zur Untergruppe R(G) C %(H) ist.

Die Stetigkeitsbedingung 148t sich auch folgendermaBen beschreiben: Fiir alle
feH ist die Abbildung G — H, g —> Rgf = R(g)(f), ge G, eine stetige Ab-
bildung, und das bedeutet nichts anderes, als daB R: G —> %(H) stetig ist, wenn
%(H) mit der sogenannten starken Topologie versehen wird. Die starke Topologie ist
folgendermaBen definiert: Die fundamentalen offenen Mengen von %(H) sind die Men-
gen der Form 7% = V(Uo,fl,fz, cee o sE By v bE ) = {U e U(HD - ||u0fj - Ufjll <g fiir
j=1,2, ... ,n}, wobei fj € H und & > 0; und eine allgemeine Teilmenge % von %(H)
heiBt offen, wenn es fiir alle U €%  eine solche fundamentale offene Menge 7 mit
Ue¥ CcW gibt. Eine unitére Darstellung ist also mit dieser Begriffsbildung nichts

anderes als ein stetiger Homomorphismus R: G —> %(H). Es ist klar, daB man auf
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diese Weise unitdre Darstellungen auch fiir beliebige topologische Gruppen definieren
kann als stetige Homomorphismen nach %(H). Dabei heiBt eine Gruppe G, auf der
noch eine Topologie festgelegt ist, eine topologische Gruppe, wenn Topologie und
Gruppenstruktur in dem folgenden Sinne zusammenpassen:

GxG —> G, (g,h) — gh, und

G— G, g+ g'l,
sind stetige Abbildungen. Jede Matrixgruppe und jede Lie—Gruppe ist also eine topolo-
gische Gruppe. Ebenso die unitdre Gruppe #%(H) (auch fiir dimH = o):

(3.2) Satz. %(H) ist eine topologische Gruppe.

Beweis. Zur Stetigkeit der Gruppenoperation geniigt es zu zeigen, daB es zu
jedem Paar (U,U') von unitidren Abbildungen und zu fe H, € > 0, stets offene Mengen
W und #' in U(H) gibt mit {VoV': (V,V) e #x %'} Cc ¥ (UoU', f,c). Wegen

o U'(f) = Vo V(D)

o U'(f) — VoU'(f) + VoU'(f) — Vo V(D]

[TeU'(H) - VoU N + [Vol'(f) - VoV'(£)]

o u'(f) ~ Vou'(Hlf + IU(F) - V(D

(V ist ja unitédr) ist die Bedingung mit den folgenden fundamentalen offenen Mengen-
erfiillt: " = 7(U,(f', ') und #"' = 7(U'f,e"), wobei ' := U'(f) und €' := %E.
Ahnlich einfach 14Bt sich die Stetigkeit der Inversenbildung beweisen.

Al

I

Fiir eine unitdre Darstellung R in H macht die durch R definierte Wirkung

d:GxH — H, (gf) —> Rgf = ®(g,f)

G zu einer Symmetriegruppe im Sinne des Paragraphen 3 in Kapitel I: Die Struktur, die
erhalten wird, ist die unitdre Struktur des Hilbertraumes H, die durch das Skalarpro-
dukt oder eben durch die unitare Gruppe %(H) gegeben ist. Zu der seinerzeit getroffe-
nen Definition kommt hier allerdings noch die Stetigkeitsbedingung hinzu. Als Beispiele
kennen wir bereits die 1-Parametergruppen von unitdren Transformationen aus dem
ersten Paragraphen (1.12°) mit G =R als die Gruppe, die dargestelit wird.

Man kann bei dem einleitenden Beispiel der Koordinatendrehungen L, mit
einigem Aufwand zeigen, daB die dort definierte Abbildung L : SO(3) —> LAR®) tat-
sdchlich eine unitdre Darstellung ist, die sogenannte Linksdarstellung. Dieses Beispiel
alleine rechtfertigt aber nicht, den Begriff der unitdren Darstellung fiir Symmetriebe-
trachtungen bei quantenmechanischen Systemen in das Zentrum des Interesses zu stel-
len. Das kommt vielmehr von der Tatsache, daB eine unitdre Darstellung das Skalarpro-
dukt und damit die Uibergangswahrscheinlichkeit unverdndert 4Bt (vgl. 1.5°). Eine uni-
tére Darstellung 148t daher die neben H und # wesentliche physikalische GroBe des
quantenmechanischen Systems (H,#) invariant. Unter diesem Aspekt ist es sicherlich
gerechtfertigt, eine unitire Darstellung R: G —> % (i) jedenfalls dann eine Symme-

trie des quantenmechanischen Systems (H,#) zu nennen, wenn auBerdem noch die
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Rolle des Hamilton-Operators # invariant gelassen wird: Jede Lésung f der Glei-
chung f = -i#f (vgl. Axiom 3) soll durch R(g) fiir jedes g€ G in eine Losung
iiberfithrt werden, das heiBt, es soll gelten

d L
dtR(g)f = —i#(R(g)f).

Wegen
%R(g)f = R(g)f = R(g)(-i’f) = -iR(g) HF

folgt A R(g)f = R(g)F#f. Diese Gleichung ergibt sich aus der folgenden Invarianzbe-
dingung: FR(g) = R(g) # fiir alle g e G. Fassen wir zusammen:

(3.3) Definition. Eine unitére Darstellung R der Matrixgruppe G in dem
Hilbertraum H ist eine Symmetrie des quantenmechanischen Systems (H,5), wenn

H mit allen R{g), g€ G, kommutiert.

DaB mit diesem Ansatz einer Definition von quantenmechanischer Symmetrie
noch nicht ohne weiteres alle auftretenden Symmetrien erfaBt werden kénnen, und daB
man insbesondere eigentlich mit projektiven statt mit unitdren Darstellungen beginnen
sollte, wird im ndchsten Paragraphen erldautert.

Mit dieser Definition von Symmetrie ist in Analogie zu der Situation in der
Klassischen Mechanik ein Erhaltungssatz verbunden: Man nennt eine Observable des
Systems (H,#), also einen selbstadjungierten Operator T, eine Bewegungskonstante,
wenn T mit dem Hamiltonoperator # kommutiert: #T = TH#. DaB eine solche
Observable die Bezeichnung Bewegungskonstante zu Recht verdient, wird zum Beispiel
in [SUD], S. 91, begriindet und liegt im wesentlichen daran, daB die Eigenrdume des
Operators T von # invariant gelassen werden. Der angesprochene Erhaltungssatz
lautet jetzt folgendermaBen: Sei (H,#) ein quantenmechanisches System mit einer
Symmetrie, die durch eine unitdre Darstellung R: G —> % (H) gegeben ist. Fiir
jedes Element X € g der Lie~Algebra g von G ist der infinitesimale Erzeuger o(X)
(vgl. 113°) von R(e5%) eine Bewegungskonstante. Das ist klar, denn o(X) kommu-
tiert mit #, weil nach Voraussetzung alle R(e%X) mit # kommutieren. (Zur Defini-
tion von o(X) vergleiche man die vorliegende Situation mit dem Begriff des Fundamen-
talfeldes X bei einer klassischen Symmetriegruppe eines Hamilton-Systems, insbeson-
dere das Bild auf Seite 145. Siehe auch die nachfolgende Ertrterung auf S. 177.)

In diesem Paragraphen soll vor der Diskussion allgemeinerer Symmetrien im
vierten Paragraphen ein Uberblick iiber alle unitéren Darstellungen von SO(3) gegeben
werden und parallel dazu ein Einblick in die Darstellungstheorie von kompakten Grup-
pen. Als erstes benstigen wir noch den Begriff der irreduziblen Darstellung:

(3.4) Definition. Sei R: G — %(H) eine unitidre Darstellung.
1° Ein abgeschlossener linearer Unterraum V C H heiBt invariant (beziiglich
dieser Darstellung), wenn fiir alle ge G eilt: R(V) C V.
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2° 1st V ein invarianter Teilraum, so definiert R‘\/ : G —> UMW),
Rly(g) = Rg v:V —> V, fiir gegG, eine unitdre Darstellung in V, die Reduktion
von R auf V.
30

wenn fiir jeden invarianten Unterraum V bereits gilt: V=H oder V = {0].

R heiBt irreduzibel, wenn es keine solche Reduktion gibt, das heiBt,

Man kann fiir eine unitdre Darstellung R: G —> %(H) leicht zeigen, daB

zu einem invarianten Teilraum V C H auch das orthogonale Komplement
V' = {feM: fir alle geV gilt <fg> = 0}

ein invarianter Teilraum zu R ist. (An dieser Stelle der Untersuchungen von Gruppen-
darstellungen macht sich der Vorteil bemerkbar, daB der Darstellungsraum ein Hilbert-
raum ist und nicht nur ein Banachraum oder noch allgemeiner!) Deshalb zerlegt sich im
Falle 0+ V + H die Darstellung R in die Restriktionen R' = R[\/ bzw. R" = R e
von R auf V bzw. V'. Das heiBt, es gilt R = R[\/ @ R]\/l = R' ® R" in folgen-
dem Sinne: Jedes fe M hat die eindeutige Zerlegung f = f' @ f' mit f' eV und
f"eV' und fiir geG gilt Rof = Rif' @ R',f". Falls nun V oder V' ebenfalls
nichttriviale, invariante Teilrdume enthalten, 14Bt sich dieses Zerlegungsverfahren wie~
derholen. Fiir kompakte Gruppen hat man in diesem Zusammenhang den folgenden Zer~
legungssatz:

(3.3) Satz von Peter und Weyl. Sei G eine kompakte Matrixgruppe. Dann
gilt fiir jede unitdre Darstellung R: G —> % (H) in einem Hilbertraum H:

1° Ist R irreduzibel, so ist H endlichdimensional.

2° R zerfallt in irreduzible Komponenten Rj in folgendem Sinne: Es gibt
invariante Teilrdume [HIJ. C H, welche paarweise orthogonal zueinander sind und den
Raum H aufspannen (das heift H= @ HJ.), so daB fiir die Restriktionen Rj = Rip.
gilt R = @Rj. Je nachdem, ob H endlichdimensional oder unendlichdimensional ist,

ist die Summation iiber eine endliche oder unendliche Indexmenge {j} zu verstehen.

Eine allgemeine und elementare Einfiihrung in die Darstellungstheorie von
Lie-Gruppen und insbesondere einen Beweis des Satzes findet man zum Beispiel in
[SUG] oder in [BRD]. Mehr physikalisch orientierte Informationen iiber Darstellungs—
theorie von Matrixgruppen werden in [SEU], [WAE] und [TUN] gegeben.

Um den Satz von Peter und Weyl auf physikalische Symmetrien mit einer
kompakten Symmetriegruppe G anwenden zu k&nnen, ist es also sinnvoll, die irredu-
ziblen unitéren Darstellungen von G moglichst umfassend zu beschreiben. Das soll im
folgenden fiir die Drehgruppe SO(3) geschehen, und es wird sich herausstellen, daB
auch die irreduziblen Darstellungen der verwandten Gruppe SU(2) mitbehandelt
werden, Bei der folgenden ausfiihrlichen Herleitung werden anstelle der direkten

Symmetrien der Gruppe G erst einmal die zugehirigen "infinitesimalen” Symmetrien,
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also die Elemente aus ¢ = LieG, untersucht. Auf diese Weise kommt im Falle von
S0(3) die "Drehimpulsalgebra” $0(3) ins Spiel.

Eine Rechtfertigung fiir dieses Vorgehen findet sich in der Tatsache, daB eine
unitére Darstellung der Gruppe G in natlirlicher Weise eine Darstellung der zugehéri-
gen Lie—Algebra induziert, wie wir im folgenden erldutern. Sei also R: G —> % (H)
eine endlichdimensionale unitdre Darstellung (d.h. H ist ein endlichdimensionaler Hil-
bertraum) der Matrixgruppe G. Dann ist fiir X e g = LieG durch Ui = RlexptX),
t € R, eine 1-Parametergruppe von unitidren Transformationen gegeben. Nach Nr. 13° in
Paragraph 1 hat U, einen infinitesimalen Erzeuger o(X). o(X) bildet fe H auf
igil;no 1;(Llsf - £) ab. o(X) ist auf ganz H definiert als o(X) = ia(ié(us)|s=o (z.B. weil
H endlichdimensional ist und daher alle unitdren Operatoren durch unitire Matrizen
dargestellt werden kénnen) und es gilt fiir die Lie—-Klammern auf g bzw. End H (vgl.
L.5.3°):

(x)  [6(X),o(Y)] = is(IX,YD fir X,Yegq.

Diese Relation ergibt sich, wenn man filr o(X) = -ic(X), also p(X) = (%tR(etX)] taor

[p(X),p{Y)] = o([X,YD
nachrechnet (vgl. Anhang L.7.6°). p: ¢ —> EndH ist also eine Darstellung der Lie-
Algebra g in H, welche auch mit LieR = p bezeichnet wird.

Man priift leicht nach, daB eine unitédre Darstellung R: G —> #%(H) genau
dann irreduzibel ist, wenn die zugehdrige Darstellung LieR = p: g —> EndH von ¢
irreduzibel ist, das heiBt hier, daB es keinen Untervektorraum V c H mit 0 £ V % H
und o(X)(V) € V fiir alle X e g gibt.

Es ist daher sinnvoll, auf dem Wege zur Beschreibung der irreduziblen Dar-
stellungen der Gruppe SO(3) erst einmal die irreduziblen Darstellungen der Lie-Alge-
bra 80(3) & 8u(2) aufzuspiiren.

(3.6) Analyse der irreduziblen Darstellungen von 80(3): Sei H endlichdi-
mensional und sei p:80{(3) —> End H eine Lie—Algebra-Darstellung. Setze

I = 1eM), k=1,2,3,
wobei (Ml’Mz’Ma) die typische Basis von 80(3) der infinitesimale Drehungen Mj ist
(vegl. 6.j) in Anhang L). Ji entspricht dann der selbstadjungierten Version des Drehim-
pulses; tatsdchlich kann man auf M ein Skalarprodukt voraussetzen, fiir das die T
selbstadjungiert sind. Da ¢ die Lie-Klammern erhilt gilt:

Updel = id5, Uy 3,1 = 11y, [0,5,0,1 = il,, kurz: U dd = e dy.
Setze weiterhin

He= Jg, A= J~il,, A" = Ji+iJ, und J = J7+ )5+ ]2
Dann gelten die folgenden Relationen:

[H,A'] = A", [HA] = -A, [A%,A] = 2H und J = AA* + H + H%.
AuBerdem kommutiert J mit allen Js und es ist A" die Adjungierte zu A, wie die
Notation ja bereits erwarten 14Bt. Die folgenden drei Aussagen enthalten die wesent-

lichen Informationen iiber irreduzible Darstellungen von éo(3):
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(3.7) Lemma. Sei [e¢H Eigenvektor von H mit H{ = A{. Dann gilt
H(A'D) = (0 + DA™ und H(AD = O - DAL,

Denn HA'[ = [H,A*IC+ A*H = A*C+ A"AC = (A\+DA*(, und analog fiir
AC.

A und A* verhalten sich also shnlich wie Z und Z* beim harmonischen
Oszillator (Beispiel 2.4.5°).

(3.8) Lemma. Es gibt einen Eigenvektor Loe€H von H mit A*Co = 0.

Beweis. Sei [ zundchst irgendein Eigenvektor mit Eigenwert ). Fiir die in-
duktiv definierte Folge 7, = U, n, = A*(nn_i), liefert Lemma 3.7: Hn, = (A +nn,.
Es gibt ein me N mit 3 _,, = 0, da sonst die (n,) linear unabhéngig wiren im Ge-
gensatz zu dimH < «. Dieses m sei minimal gewshit, dann gilt fiir Lo ™= Nyt
Lo # 0, H; = O+m)g, und A’y = n_,, = 0.

(3.9) Lemma. Sei Lo € H, §y+ 0, mit H{, = A, und A*CO = 0. Dann gilt
2)x e N und mit g, = AuCO ist {Gy.L,, - Lsy) Basis eines invarianten Untervektor-
raumes V von H. Es gilt qu = A(A+1) Cu, das heiBt V ist Eigenraum zu J mit
Eigenwert A()\+1).

Denn es gilt zundchst ch = (A-p) Cu nach Lemma 3.7 und ACU = Cuﬂ

nach Definition der Cg. AuBerdem ist A*Cu = w(2x—u+1) Cu-i‘ wie man durch Induktion

nach p unter Festsetzung von L., = 0 sieht. Sei me N maximal mit L, * 0. Es
gibt ein solches m, da H endlichdimensional ist. Dann ist Cmer = O und es gilt
0= A"C,, = (m+D2x-m)[_, also wegen [_ + 0: 2Zx-m=0. Daher ist 2\

ganzzahlig. Falls T e {H,A,A%}, zeigen die oben aufgestellten Gleichungen fiir TC,»
daB Tl;u eine Linearkombination der Coolir -+ sbgy ist, daB also T(V) ¢ V gilt und
damit V invariant ist. SchlieBlich ergibt sich JCUL = >‘(>‘+1)Cu aus J= AA* + H + HZ.

Mit einer in der physikalischen Literatur iiblichen Bezeichnung erhalten
wir aus den vorangehenden Lemmata;

(3.10) Satz. Es sei p:80(3) —> EndH eine endlichdimensionale Lie—
Algebra-Darstellung. Mit den obigen Notationen sei j ein Eigenwert von H mit Eigen-
vektor v € H, welcher A*vj = 0 erfiillt. (Man nennt dann 7 einen primitiven
Vektor vom Gewicht j.)

o] s N m . 2s .
17 Fir m= 0,1;2, eosel vy e A Vis Vigq = 0. Dann gilt fiir u=j—- m:
Avu= V-1 Hvu= W, A Ve = GGG+1) - u(u—l))vuﬂ, Vi = 0 fiir u> 2j.
2° 2j ist ganzzahlig, und (v_j,vl_j, ,vj) ist Basis eines (2j+1)-dimensio-

nalen invarianten Unterraums V{(j) von H.
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3° Jv=j(j+1)v fiir ve V(j). Daher gibt es Jysdgs -+ sdp» so daB J auf
H = @J:lV(j\)) die Darstellung J = @\Zijv(jv+1)Pv hat, wobei P, :H —> H die
orthogonale Projektion auf den Teilraum V(j ) ist.

4° Die Restriktion p, von p auf V(j) ist eine irreduzible Darstellung
p, : 80(3) —> End V(j,), und ¢ zerlegt sich folgendermaBen: p = @\:19\).

(3.11) Folgerung. 1° Jede endlichdimensionale irreduzible Darstellung p von
60(3) hat die im Satz angegebene Form mit V(j) = H fiir n=1, j=j,.

2° Fiir jede Zahl j >0 mit 2je N gibt es eine irreduzible Darstellung

o : 80(3) —> EndH,
in einen (2j+1)-dimensionalen C-Vektorraum H; mit einer Basis (vu) und der Wir-
kung der A, A*,H wie in 1° des Satzes. j heiBt der Spin der Darstellung (vgl. [SUD]
fiir die physikalische Bedeutung von j).

Zur Frage nach der Auflistung aller irreduziblen unitdren Darstellungen von
SO(3)wissen wir jetzt unter Ausnutzung des Satzes von Peter und Weyl und wegen der
gerade gezogenen Folgerung tiber die endlichdimensionalen irreduziblen Darstellungen
von 80(3), daB zu jeder solchen Darstellung R die zugehérige Lie—Algebra—Darstellung
Lie R von der Form p(j) sein muB. Aber nicht alle diese p(j) kommen als LieR
irreduzibler Darstellungen R von SO(3) vor, wie wir gleich sehen werden. Es wird
zundchst eine Realisierung von p(j) durch Darstellungen von SU(2) angegeben. Das
ist sinnvoll, weil ja 80(3) = 8u(2) gilt, und weil SU(2) einfach zusammenhingend
ist (vgl. Satz in L.7).

Fir j 20 mit k:= 2je N sei [P’j C Clz,w] der C-Vektorraum der k—homo-
genen Polynome in zwei Variablen mit komplexen Koeffizienten. Die Elemente aus [P’j
sind also endliche Linearkombinationen der k+1 Monome

zk, zk_iw, zk-zwz, . zwk—l, wE.

Da diese Monome eine Basis von le bilden, gilt dimg IP’J. = k+1 = 2j+1. Die "Rechts-
darstellung" zu j

R su — L),
wird definiert durch

R(j)g P(z,w) = P((z,w)g) fiir Pe P; und ge SU(2),
wobei (z,w)g einfach die Matrizenmultiplikation des Zeilenvektors (z,w) mit der
2x2- Matrix g bezeichnet. Es sei

H = iLieRP(r) = LieRV4(} 9)
entsprechend dem natiirlichen Isomorphismus $0(3) 2 8u(2) von Lie-Algebren, der
durch M, +—— %1 vermittelt wird (vgl. L.7.1°).

10

1
Sei X := %(0 _1) Dann ist eXp(tX) - (exp(zt) 0 )

0 exp(-5t)
Beziiglich der Basis (p ) von P,
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pu(z,w) = 2% fir we{—j,—j+, ... ,j-1,+j},
ist
[6))

R xpex) Pulzw) = (zexp(46))Y ¥ (wexp(-36)) " = p,{zwlexput,

also

d( o) . ()

d—t(R exp(ex) P (Z.W) )]tw = LieR" (X)p,(z,w) = pp,(z,w).

Damit wurde nachgerechnet, daB Hpu = up, gilt. Analog iiberpriift man
die Wirkung von ), = iLieR(J)(%'tV), v=1,2, um festzustellen:
Jitp) = 3G+ wp, g *+ 3G - WPy,

Itp) = i3+ wp,y ~ i3G - wpy,,.

Daher A(pu) = (j+ u)pu_1 und A*(pu) = (j- u)pwl. Fiir v, = )\upu mit geeigne-
ten Konstanten >‘u ()\“_1 = ku(j - u) und >‘u #+ 0) gelten dann die Identitéiten von
310.1°, und das bedeutet, daB Lie RY’ = o gilt. Daher:

(3.12) Satz. Die irreduziblen unitdren Darstellungen der Gruppe SU(2) sind
(bis auf Isomorphie) die oben eingefiihrten Darstellungen R(j) s SU(2) — ”?[(Pj).

Zum Beweis dieses Satzes fehlt nur noch die Einfiihrung eines Skalarpro-
duktes auf P, so daB P; zu einem Hilbertraum wird und R(j)(SU(Z)) aus unitdren
Operatoren besteht. Das findet man durch invariante Integration iiber SU(2) (vgl.
L.10) oder durch eine weitergehende Untersuchung der Wirkung von R(j ).

Die irreduziblen unitdren Darstellungen von SO(3) ergeben sich jetzt fol-
gendermaBen: Man benutzt den stetigen Homomorphismus A : SU(2) —> SO(3) mit
KerA = {1,-1} und ImA = SO(3) (vgl. L.8.). Jede irreduzible Darstellung U von
S0O(3) liefert eine Darstellung R := UoA von SU(2). R ist ebenfalls irreduzibel,
also von der Form R = R(j) nach Satz 3.12 mit der Zusatzeigenschaft R(1) = R(-1).
WD) = RY(-1) genau
dann gilt, wenn k= 2j gerade ist, das heiBt, wenn je N ist. Fiir je N 4Bt sich
R(j ) dann tats#dchlich herunterdriicken zu einer irreduziblen unitiren Darstellung auf
SO(3), welche ebenfalls mit R(j)

Eine Inspektion der Definition von R(j) ergibt sofort, daB R

bezeichnet wird:

(3.13) Satz. Die irreduziblen unitdren Darstellungen von SO(3) sind (bis auf
Isomorphie) die gerade definierten R(j) : SO(3) — ”?[(IP’J.) mit jeN. °

Eine an SO(3) besser angepaBte Beschreibung dieser irreduziblen Darstel-
lungen ist die folgende: Fiir je N sei H; = {P € Clx,y,z] : P ist j-homogen und har-
monisch, das heiBt AP = 0}, IHIj ist ein (2j+1)-dimensionaler €-Vektorraum und durch
R(j)gP(x,y,z) = P((x,y,z)g) wird eine irreduzible Darstellung RY . s0(3) —> ”Zl(lHlj)
mit Lie R(j ) p(j ) gegeben, (Dabei ist (x,y,z)g wieder die Matrizenmultiplikation

des Zeilenvektors mit der 3x3—-Matrix g € SO(3).) Eine geeignete Basis von lH]j wird
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4 VON PROJEKTIVEN ZU UNITAREN DARSTELLUNGEN

Eine genauere Analyse des Problems der mathematischen und physikalischen
Formulierung von "Symmetrie” in einem quantenmechanischen System (H, %) zeigt
allerdings, dal aus physikalischer Sicht z.B. bei dem Koordinatenwechsel A € SO(3) le-
diglich die Zustidnde [f], fe H = L%*(R®), transformiert werden. Man erhilt also eine
Abbildung

Ta: P(H) —> P(H).

Ganz allgemein bewirkt eine klassische Gruppensymmetrie mit Gruppe G
fiir jedes g € G bei der Quantisierung eine Transformation Tg: P(H) — P(H). Fiir
je zwei dieser Transformationen verlangt man die natiirliche Homomorphiebedingung
Tgo Tp= Tgh‘ Da jedes Tg die physikalischen Gesetze erhalten muB, wenn man von
einer Symmetrie des physikalischen Systems sprechen will, wird von Tg die Uber-

gangswahrscheinlichkeit (vgl. 5° in Paragraph 1) in P(H) erhalten, das heiBt es gilt
T, Th> = <p.9>

fiir alle @, ¢ ¢ P(H) und alle ge G (£ , D> wiein 4° zu Beginn von Paragraph 1).

Definition. Sei G eine Matrixgruppe. Fiir einen komplexen Hilbertraum H
bezeichne zur Abkiirzung P den zu H gehérigen projektiven Raum P = P(H) (vgl.
1.3°) und Aut(P) die Gruppe aller bijektiven Transformationen T von P(H) =1 in
sich, die die Ubergangswahrscheinlichkeit invariant lassen, die also LT, Th> = o>
fiir alle ¢,0 € P erfiillen.

Eine projektive Darstellung von G in PP (man sagt auch in H ) ist ein Grup-

penhomomorphismus

T:G — Aut(P), g — T(g)=T,:P —> P,

g

der noch der folgenden Stetigkeitsbedingung geniigt: Fiir jedes ¢ € P ist die induzierte
Abbildung

G—> P,g+—— Tgcp,
eine stetige Abbildung. (Man sagt auch: T ist stark stetig.)
Es gilt also, zundchst die projektiven Transformationen aus Aut(P) genauer

zu beschreiben. Man sieht leicht, daB jede unitire Transformation U: H —> H (also
U bijektiv, C-linear und fiir alle f,ge H gilt <Uf,Ugd = <f,g> ; vgl. 1.11°) durch

(A1) TYFETY o TTTF1 € = nn
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ein U e Aut(P) definiert. U ist wohldefiniert, denn fiir f ~ g gilt ja Uf ~ Ug. Mehr
iiber Aut(P) im Satz von Wigner, siche 4.3 unten.

Definition. Sei (H,# ) ein quantenmechanisches System im Sinne des ersten
Paragraphen, und sei G eine Matrixgruppe. Man spricht von G als einer Symmetrie-

gruppe des Systems, wenn G iiber eine projektive Darstellung
T: G— Aut(P)

auf dem System wirkt, derart daB fiir die dynamische 1-Parametergruppe (U;) zum
-itF

Hamiltonoperator # (Ut = e , vgl. Paragraph 1) gilt:

Tgolly = UyoT, furalle g G undalle teR.

Demnach kann man genaugenommen nicht von der Symmetriegruppe G
allein sprechen, sondern nur von der Symmetriegruppe in Verbindung mit der entspre-
chenden Darstellung, welche die Wirkung von G als Symmetriegruppe liefert. Die Be-
dingung, daB T eine projektive Darstellung von G sein soll, leitet sich (abgesehen
von der natiirlichen Stetigkeitsbedingung) allein aus dem ersten Axiom fiir (H,#) ab.
Die Vertauschbarkeit von Tg mit ﬁt ergibt sich aus dem dritten Axiom, denn die

Symmetrie soll ja die durch # bestimmte Dynamik invariant lassen (vgl. auch 3.3).

Das Thema dieses Paragraphen ist eine Begriindung der Tatsache, warum in
der iiblichen Quantenmechanik als Symmetrien meistens "unitdre Darstellungen” von
Lie—Gruppen anstelle der zunichst in natiirlicher Weise auftretenden projektiven Dar-
stellungen angenommen werden kénnen, und welche zusidtzliche Hypothesen dabei als
erfiillt angesehen werden miissen.

Es ist also das Problem zu erdrtern, unter welchen Annahmen eine vor-
gegebene projektive Darstellung T: G —> Aut{P) sich auf die in 4.1 beschriebene
Art durch eine unitdre Darstellung induzieren 14Bt. Die Vertraglichkeit mit # soll da-
bei auBer acht gelassen werden. Es stellt sich also die Frage, wann sich eine vorgegebe—
ne projektive Darstellung

T:G — Aut(P)

von G "liften" 148t zu einer unitédren Darstellung (vgl. 3.1)
R:G —> %M,

mit Tgoy = YoRg fiir alle g e G, wobei y wie bisher (vgl. 1.3°) die Projektion
v: MO0} —> P=P(H), f — [f],

bezeichnet. Unter Verwendung der Abbildung ¥*: Z(H) —> Aut(P), y*(W) = i
fiir Ue %(H) (vgl. 4.1) schreibt sich die letzte Bedingung als

A0y T . ¥ vy €2e o1t oo gV e T XD
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Zur Verdeutlichung kénnen die folgenden zwei kommutativen Diagramme
dienen:

SN

H — G

YJ/ Y % lT

P— P UH) —> Aut(P)
Tg Y

Es zeigt sich, daB nicht alle projektiven Darstellungen T einer Matrixgruppe
G eine unitdre Liftung R besitzen, daB es aber immer Liftungen auf eine geeignet
verdnderten Gruppe G gibt. In diesem Falle erh#dlt man also eine neue Symmetriegrup-
pe 6, welche eng verwandt ist mit der urspriinglichen Gruppe G und welche als die
eigentliche (quantenmechanische) Symmetriegruppe angesehen werden kann. Im Falle
von SO(3) = G kommt man zum Beispiel zu G = SU(2), und es manifestieren sich
auf diese Weise die irreduziblen Darstellungen von 80(3) = 8u(2), die keinen Darstel-
lungen von SO(3) entsprechen kénnen (vgl. 3.12/3.13), doch noch als Symmetrien im
Sinne des Paragraphen 3, jetzt aber als unitdre Darstellungen von SU(2) (vgl. auch
4.9.1°).

Die Frage der Liftung von projektiven Darstellungen zu unitdren Darstellun—
gen l&Bt sich in vier Etappen behandeln:

1. In der ersten Etappe wird zunichst erdrtert, zu welcher Art Abbildungen
von H nach M sich die Transformationen aus Aut{P) iiberhaupt liften lassen.

2. In der zweiten Etappe wird begriindet, warum sich eine projektive Darstel-
lung T zu einer stetigen Abbildung V:G — %(H) liften 1aBt (dh. T = %oV,
aber V ist im allgemeinen nicht Homomorphismus), wenn die Symmetriegruppe G zu-
sammenhidngend und einfach zusammenhingend ist. Fiir den Fall, daB G nicht einfach
zusammenhéngend ist, muB man an dieser Stelle zur universellen Uiberlagerung G von
G iibergehen. Als Beispiel: SU(2) ist universelle Uiberlagerung von SO(3).

3. In der dritten Etappe wird dargelegt, wie eine stetige Liftung V der
projektiven Darstellung T aufgefaBt werden kann als eine unitdre Darstellung R
einer zugehorigen zentralen Erweiterung E (= 8) der Gruppe G

4. In der vierten und letzten Etappe wird diskutiert, unter welchen Bedin-
gungen an die Gruppe G diese unitdre Darstellung der zentralen Erweiterung E zu
einer unitéren Darstellung R von G fiihrt, welche dann schlieBlich T = v*oR er-
fiillt. Das ist immer dann der Fall, wenn die zentrale Erweiterung trivial ist, und es zeigt
sich, daB fiir die meisten natiirlichen Symmetriegruppen wie SO(3), SU(n), Sp(2n),...
alle zentralen Erweiterungen trivial sind. Das gilt auch fiir die Poincaré-Gruppe, aller-
dings nicht fiir die Galilei-Gruppe T.

1. Charakterisierung von Aut{P(H)).
(4.3) Satz von Wicner 7Zu iedem Automornhicmiie T e Aut{®IIENY oiht oc
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eine Abbildung U: H —> H mit

1° Toy=ryoU, also y*(U) = T.

2° U ist R-linear und bijektiv.

3° Fiir eine der zwei Funktionen x{(z) =17z oder y(z)=12z, zeC, gilt fiir
alle X € C und fiir alle f,ge H: UO) = x(\) U(f) und <Uf,Ugd> = y(KFf,g>).

Bemerkungen: Der Beweis des Satzes von Wigner ist elementar, erfordert
aber viele Einzelschritte [sieche zum Beispiel die Arbeit von V. Bargmann: "Note on
Wigner's Theorem on Symmetry Operations.” J. Math. Phys. 5 (1964), 862-868].

ImFalle x = idg ist U also eine unitdre Transformation! Im Falle y(z) =12z
heiBt die Abbildung W antiunitdr. Wir interessieren uns hier nur fiir die unitdren
Transformationen, und definieren %(P) := ¥*(%(H)). Dann ist %(P) eine Untergrup-
pe von Aut(P). Fiir U, Ve %(H) mit v (U) = y*(V) gilt U = AV fiir eine kom-
plexe Zahl A mit dem Betrag 1, also X € U(1). Damit hat man fiir den unitdren Fall
die folgende Sequenz von natiirlichen stetigen Homomorphismen

(44) 1 uq) U(H) U(P) 1.

Dabei steht 1 Ffiir die triviale Gruppe, die nur aus dem neutralen Element
(= 1) besteht. Der erste Pfeil bedeutet die Inklusion 1 —— 1, der zweite Pfeil ist die
Inklusion X —> )\id[H], der dritte Pfeil ist Y*, und der vierte Pfeil ist der konstante
Homomorphismus T —— 1 fiir alle T e %(P). Die Sequenz ist exakt, das bedeutet
allgemein, daB alle Pfeile Gruppenhomomorphismen sind, daB der zweite Pfeil injektiv
ist und der dritte surjektiv, und daB der Kern des dritten Pfeils gleich dem Bild des
zweiten Pfeils ist.

Fiir eine projektive Darstellung T:G —> Aut{P) ist T(l) = idp stets
in %(P), und es folgt fiir den Fall, daB die Matrixgruppe G zusammenhingend ist:
T(G) ¢ %(P). Beweis dazu: Mit Hilfe der Exponentialreihe exp :Lie G —> G (vgl.
L.6) findet man eine offene Umgebung W von 1€ G mit der folgenden Eigenschaft:
Zujedem ge¢ W gibt esein he W mit h® = g. Um das einzusehen, sei W, cLieG
eine konvexe, offene Umgebung von 0 € Lie G, so daB exp]vv0 bijektiv)i(st (vgl. L.6.15°).
Fiir W = exp(W;) gilt dann: Jedes ge W hat die Form g = e~ mit XeW,,
daher ist g = h® fiir h := eéx. Als ein Zwischenergebnis folgt T(g) € %(P) fiir
alle g € W, denn fiir beliebige h e G ist stets T(h)oT(h) € %(P) wegen Z = z (nach
4.3.3°). Sei jetzt ge G beliebig. Da G zusammenhingend ist, gibt es eine stetige
Abbildung v :[01] —> G mit y(0) = 1 und v(1) = g. Die kompakte Menge
v([0,11) kann durch endlich viele der ~{t)W := {y(t)h: he W} iiberdeckt werden.
Deshalb hat g die Darstellung als Produkt g = g,g, ... g, mit g, € W. Es folgt
T(g) € U(P), weil T(gu) € U(P) fiir alle ¢ = 1,2, ... ,m.

Im folgenden soll G immer als zusammenhingend vorausgesetzt werden.

Dann gibt es nach dem Satz von Wigner zu jedem T, € %(P) einen unitiren Operator
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Wg mit Tg = y*(Wg) finden. Die Abbildung W: G —> %(H), g —> W, erfiillt
daher T = y*oW, ist allerdings im allgemeinen weder stetig noch ein Gruppenhomo-
morphismus.

2. Stetige Liftung. Ein topologischer Raum Y heiBt einfach zusammenhin-
gend, wenn sich jeder geschlossene Weg o in Y zu einem konstanten Weg auf stetige
Weise zusammenziehen 14Bt. Dabei ist ein geschlossener Weg o in Y eine stetige
Abbildung wenn « : [q,b] —> Y auf einem abgeschlossenen Intervall [a,b] ¢ R mit
ala) = a(b).Y istalso einfach zusammenhingend, wenn es zu jedem solchen « einen
Punkt g € Y und eine stetige Abbildung T':[a,b]x[0,1] —> Y ("Homotopie") gibt,
50 daB:

I'(t,0) = alt) fiir alle te[a,b],
ri,1) = q fiir alle te[a,b],
I'(a,s) = I'(b,s) fiir alle se[0,1].

Zum Beispiel sind R™, [Ra\{O}, ™ fiir n> 2, SU(2) und SL(2,C) einfach zusammen-
héngend, wahrend Rz\{o}, Sl, SO(3), SO(3,1) nicht einfach zusammenhingend sind.

(4.5) Satz von Bargmann. Jede stetige Abbildung T: G —> Aut{PP) auf
einer zusammenhingenden und einfach zusammenhiéngenden Matrixgruppe G hat eine
stetige Liftung V: G —— %(H), das heift V ist stetigund T = y*oV.

Ein Beweis des Satzes steht in [SIM]. Der dortige Beweis kann aber noch
wesentlich vereinfacht werden unter Berlicksichtigung der Tatsache, daB %(H) (entge-
gen der dort ausgesprochenen Behauptung!) eine topologische Gruppe ist (vgl. 3.2). Man
mufB im wesentlichen zeigen, daB die in 4.4 angegebene exakte Sequenz den Raum % (H)
zU einem Prinzipalfaserbiindel tiber %(P) mit der Strukturgruppe U(1) macht. (Vgl.

V.5 fiir den Begriff eines endlichdimensionalen Prinzipalfaserbiindels.)

Wenn G nicht einfach zusammenhiingend ist, muB man zur universellen
Uberlagerung el tibergehen. Die universelle Uberlagerung eines topologischen Raumes
Y ist ein (bis auf Isomorphie) eindeutig gegebener topologischer Raum Y zusammen
mit einer stetigen, surjektiven Projektion m : Y — Y, so daB die folgenden zwei
Eigenschaften erfiillt sind: Y ist einfach zusammenhingend und 7 : Y — Y st
eine [fberlagerung: Das heiBt definitionsgem4B, daB es zu jedem Punkt yeY eine
offene Umgebung U von y gibt mit einer Zerlegung von =~ '(U) in disjunkte offene
Umgebungen V, der Punkte x¢ Uy (also 7" NUW) = UV, : xe 1"y} }) derart,
daB die Restriktion von n auf V. als Abbildung TE|Vx : V, —> U topologisch ist.

Jede Mannigfaltigkeit Y hat eine universelle Uberlagerung. Im Falle einer
Lie-Gruppe G ist die universelle Uberlagerung G von G wieder eine Lie—-Gruppe und
m:G —> G ist ein differenzierbarer Gruppenhomomorphismus (vgl. z.B. [HIN, S. 77
ff.1). Zum Beispiel ist R universelle Uberlagerung von §!' mit w(t) = expl(it),
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t € R, SU(2) ist universelle Uberlagerung von SO(3), und SL(2,C) ist universelle
Uberlagerung von SO(3,1) (vgl. Anhang L.8).

Da Tom:G —> Y(P) eine projektive Darstellung ist, erhilt man nach 4.5
eine stetige Abbildung V : G —> %(H) mit Tom = v¥oV, das heiBt, das folgende
Diagramm ist kommutativ:

~ T
G—— G

vl lT

() —-Y? UP)
Im allgemeinen ist V kein Homomorphismus.

3. Liftung als stetiger Homomorphismus auf einer zentralen Erweiterung.

Im folgenden sei G stets zusammenhingend und einfach zusammenh#ngend.

Zur projektiven Darstellung T:G —> % (IP) sei eine stetige Abbildung
V:G —> %(MH) mit T = vy*oV gegeben. T ist Homomorphismus, so daB fiir alle
gheG gilt: T p = T 0Ty, also Y*(Vgh) = Y*(Vg)oy*(Vh) . Nach 4.3 und Bemerkun-
gen dazu gibt es w(g,h) € U(1) mit Vgth = wlg,h) Vgh. Es kann auBerdem noch
w(l,1) = 1 gewidhlt werden (durch Wahl von Vo=1= idy; fiir das neutrale Element
e von G). Fir f,g,he G folgt aus Tfo(TgoTh) = (Tfng)oTh zunichst

Veo (w(g,h) Vgh) = w(f,gh) w(g,h) Vfgh = m(f,g)Vfgo vV, = wlf,g)wlfg,h) Vfgh

und deshalb:

(4.6) Die Abbildung ©:GxG —> $' = U(1) ist stetig und erfiillt
w(l,1) =1 sowie olf,g)w(fg,h) = w(f,gh) w(g,h) fiir alle f,g,heG.

Die zentrale Erweiterung E = E_ von G durch © mit 4.6 ist die folgende
Lie-Gruppe:

— Als Mannigfaltigkeit ist E das Produkt E = G x U(1),

— Die Gruppenoperation ist definiert durch (g,z)(h,w) = (gh, w(g,h)zw).

Mit e(z) = (1,z) und =n(g,z) = g rechnet man leicht nach:

1. E ist eine Gruppe mit (e,]) als neutralem Element. 2. Multiplikation
und Inversenbildung sind differenzierbar. 3.¢: U(1l) —> E und n:E — G sind
differenzierbare Homomorphismen. 4. Ime = Kerm, Kere = 1, Imn = G. 5. Ime
liegt im Zentrum von E, das heiBt fiir alle ge e(U(1)) und he E gilt gh = hg.

E, ¢, m mit 1.- 5. liefern den Begriff der zentralen Erweiterung von G. Die
folgende Sequenz ist wegen 4. exakt
1— u@t) — E — G —> 1.
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(4.7) Satz von Bargmann. Sei T:G — %(P) projektive Darstellung einer
zusammenhidngenden und einfach zusammenhédngenden Lie-Gruppe G. Dann existieren
eine zentrale Erweiterung U(1) —> E x> G von G und eine unitdre Darstellung
U:E —> %MH) mit Tor = y*oU.

Wir haben also das kommutative Diagramm von zwei exakten Sequenzen:

1—%(1(1)—? E — G —1

n [CRET:

1 — U) — % ? UP) —> 1

Beweis: Sei U(g,z) = zVy fiir (g,z) € E mit V und E = E, wie oben.
Dannist U:E — %(H) stetig. Fir (g,z), (h,w) € E ist

U(g,z)oUlh,w) = szgth = m(g,h)szgh
und U((g,z)(h,w)) = U(gh, w(g,h)zw) = w(g,h)szgh.
Also ist U Gruppenhomorphismus und damit unitiire Darstellung.

4. Trivialitét von zentralen Erweiterungen

Eine zentrale Erweiterung U(1) < E — G durch © wie in 4.6 heiBit
trivial, wenn es einen stetigen Homomorphismus 6: G — E mit moo = id, gibt.
(o heiBt dann Spaltung der Sequenz U(1) - E—> G.) In solchem Falle liefert
der Satz von Bargmann 4.7 eine unitire Darstellung R der urspriinglichen Gruppe G,
welche eine Liftung von T ist. Denn R:= Uoo: G —> %(H) ist unitdre Darstellung
und es gilt

Y*oR = y¥olUoo = Tomos = T,

Die Existenz von ¢ wie oben bedeutet o(g) = (g, A(g)) mit einer stetigen
Abbildung X : G —> U(1), die sich folgendermaBen verhalt:

(4.8) XMgh) = w(g,h)X(g)Ar(h).

Denn es gilt (gh,X(gh)) = o(gh) = o(g)o(h) und
olglo(h) = (g,x(g)) (h,x(h)) = (gh,w(g, h) A (g)r(h)).

Die Existenz einer Spaltung ¢ ist im tibrigen gleichbedeutend damit, daB die
zentrale Erweiterung E auch als Gruppe isomorph zur Produktgruppe G x U(1) ist.
Fiir Lie-Gruppen G mit Lie~Algebra g = LieG kann gezeigt werden, daB es zu o
mit 4.6 stets eine stetige Abbildung A : G — U(1) mit 4.8 gibt, wenn die zweite "Ko-
homologiegruppe” Hz(g,(R) verschwindet. Ohne auf diese technische Bedingung niher
eingehen zu wollen (vgl. [SIM]), sei hier nur berichtet, daB diese Bedingung fiir die
Matrixgruppen mit einfachen Lie-Algebren (vgl. L.10) also insbesondere fiir die Grup-
pen SO(3,1), SO(n), SU(n), Sp(2n}, SL(2,C) erfiillt ist. Fiir diese Gruppen sind also
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alle zentralen Erweiterungen trivial, nach dem Satz von Bargmann laBt sich daher jede
projektive Darstellung zu einer unitdren Darstellung der universellen iiberlagerung
liften.

Damit ist die abstrakte Diskussion iiber die Liftung von projektiven Darstel-
lungen zu unitéren Darstellungen im Rahmen der Punkte 1 - 4 abgeschlossen. Fiir die
Quantenmechanik ergibt sich das Resultat, daB bei der Quantisierung eines klassischen
Systems die klassische Symmetriegruppe G ersetzt werden muB durch die zugehdrige
quantenmechanische Symmetriegruppe 6, welche in der allgemeinsten Situation eine

zentrale Erweiterung der universellen Uberlagerung von G ist.

(4.9) Dazu drei Beispiele:

1° Die klassische Drehgruppe SO(3) ist nicht einfach zusammenhingend.
Ihre universelle Uberlagerung ist SU(2) mit einem kanonischen Homomorphismus
A : SU(2) —> SO(3) von Lie-Gruppen (vgl. Anhang L.8). Die quantenmechanische
Drehgruppe ist also SU(2). Insbesondere erhalten die infinitesimalen Darstellungen
p(j) der Drehimpulsalgebra 80(3) = 8u(2) (vgl. Paragraph 3) auch fiir halbzahligen
Spin j ihre Realisierung als irreduzible unitére Darstellungen auf SU(2).

2° Der Lie-Gruppenhomomorphismus A hat eine Fortsetzung auf SL(2,C)
mit Werten in der eigentlichen Lorentzgruppe SO(3,1), welche ebenfalls mit A be-
zeichnet wird (siehe den Beweis in Anhang L.8). A : SL(2,C) —> SO(3,1) ist also die
universelle Uberlagerung von SO(3,1). Auch wenn auf die Bedeutung der Lorentzgruppe
SO(3,1) (oder Aquivalent: SO(1,3) ) als Symmetriegruppe der relativistischen Mechanik
erst im nachfolgenden Kapitel eingegangen wird, soll an dieser Stelle schon darauf
hingewiesen werden, daB die zugehdrige quantenmechanische Symmetriegruppe demzu-
folge SL{2,C) ist. Auf diese Weise kommen iiber endlichdimensionale Darstellungen
R: SL(2,C) — GL(n) Spinoren als die Vektoren ¢ € €™ des Darstellungsraumes c”
ins Spiel. Die volle klassische Symmetriegruppe der relativistischen Mechanik ist die
Poincaré—Gruppe SO(8,1)x R*; sie wird auf der quantenmechanischen Ebene durch das
semidirekte Produkt SL(2,C)K R* ersetzt. (Zur Darstellungstheorie der Poincaré-Grup-
pe mit physikalischen Interpretationen vgl. z.B. [SIM1.) Im iibrigen hat SO(3,1) im Ge-
gensatz zu den kompakten Gruppen unendlichdimensionale, irreduzible unitére Darstel-
lungen (vgl. [SIMD).

3° In der Galilei-Gruppe T, die in Paragraph 2 des zweiten Kapitels als dop-
peltes semidirektes Produkt beschrieben wurde, ist zunichst die Gruppe SO(3) durch
SU(2) zu ersetzen, um die universelle Uberlagerung I' von I' zu erhalten. Da nicht
alle zentralen Erweiterungen von I trivial sind, ist die quantenmechanische Symme-
triegruppe f‘ der nichtrelativistischen Mechanik eine geeignete zentrale Erweiterung

~

von I'.
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IV ELEKTRODYNAMIK UND RELATIVITATSTHEORIE

Fiir die Entwicklung der Physik dieses Jahrhunderts waren Symmetriebe~
trachtungen in der Elektrodynamik von eminenter Bedeutung.

Zum einen fiihrte die Entdeckung der Poincaré-Invarianz der Maxwell-Glei-
chungen auf das Problem, das Relativititsprinzip von Galilei mit dieser neuen Symmetrie
in Beziehung zu setzen. Einsteins Losung dieses Problems ist die Postulierung eines
neuen Relativitatsprinzips, welches die Spezielle Relativitdtstheorie begriindet. Das be-
deutet, daB die Galilei~Gruppe als die Symmetriegruppe der Physik zu ersetzen ist
durch die Poincaré-Gruppe.

Zum anderen tritt in den Maxwell-Gleichungen, den grundlegenden Differen-
tialgleichungen der Elektrodynamik, eine koordinatenunabhingige Symmetrie auf: Die
Eichinvarianz der Elektrodynamik, die ein Modellfall fiir die Eichtheorien der modernen

Feldtheorien ist. Auf die Eichinvarianz kommen wir im n#ichsten Kapitel zurtick.

Im ersten Paragraphen stellen wir eine geometrische Formulierung der Elek-
trodynamik vor, die sukzessive aus der iiblichen Form der Maxwell-Gleichungen herge-
leitet wird. In dieser geometrischen Formulierung werden Differentialformen benutzt,
die hier in ihrer einfachsten Auspridgung eingefiihrt werden. AuBerdem werden die
Maxwell-Gleichungen in Beziehung zum Hodge-Operator des Minkowski-Raumes ge-
setzt. Insbesondere wird erldutert, inwiefern die Maxwell-Gleichungen die Geometrie
des unterliegenden Raumes R* (bis auf konforme Invarianz) als die Geometrie des Min-
kowski-Raums festlegen. Im zweiten Paragraphen wird dann die Poincaré—Invarianz der
Elektrodynamik auf elementare Weise behandelt, und es wird auf weitere Symmetrien
der Maxwell-Gleichungen hingewiesen. Die einfachsten Symmetrien der Poincaré-Grup-
pe, ndmlich die Translationen des Minkowski-Raumes, werden im dritten Paragraphen
in den Vordergrund gestellt. Getreu der Beziehung zwischen Symmetrie und Bewegungs-
invarianten filhren diese Symmetrien zu den ErhaltungsgriéBen des Energie-Impuls—
Tensors. Zugleich wird in diesem dritten Paragraphen die Elektrodynamik als Beispiel
einer Feldtheorie mit Lagrange-Dichte und Wirkungsfunktional dargestellt. Im vierten
und letzten Paragraphen wird kurz auf einige Aspekte von Geometrie und Symmetrie im

Rahmen der Relativitdtstheorie eingegangen.

Insgesamt werden in diesem Kapitel nur einige ausgewi#hlte geometrische
Gesichtspunkte in Elektrodynamik und in der Relativititstheorie angesprochen; viele
weitere interessante Phdnomene kdnnen hier nicht dargestellt werden. Diese Unvoll-

standigkeit betrifft in der Elektrodvnamik iunter anderam die wirktioo T Zctimoctiammeta
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der Maxwell-Gleichungen und der Wellengleichung, bei der es darum geht, Lsungen
zu vorgegebenen physikalischen oder idealisierten Anfangs— und/oder Randbedingungen
zu bestimmen oder zu beschreiben. In diesem Zusammenhang ist es zum Beispiel von
Interesse, nach symmetrischen Lésungen zu suchen, also nach Ldsungen, die gegeniiber
Lorentztransformationen invariant sind oder wenigstens gegeniiber den Transformatio-
nen einer nicht zu kleinen Untergruppe der Lorentzgruppe.

Die Unvollstdndigkeit in der Darstellung gilt fiir die Relativititstheorie noch
viel mehr, weil die fundamentalen Differentialgleichungen der Allgemeinen Relativitdts—
theorie, also die Einsteinschen Feldgleichungen, in diesem Paragraphen nicht einmal
erwihnt werden. Ein Grund dafiir ist, daB die zum eigentlichen Verstdndnis und zur
Formulierung der Einsteinschen Feldgleichungen nétigen und etwas tiefer liegenden
geometrischen Konzepte der Allgemeinen Relativitdtstheorie nicht entwickelt werden
kénnen wie etwa Paralleltransport von Tangentialvektoren lings Kurven, Geoditische
in der Raumzeit M als die Bahnen von frei fallenden Beobachtern und Kriimmung als
Abweichung im Kleinen von der Minkowski-Raumzeit und damit als MaB fiir die Stirke
des Gravitationsfeldes. Zum Studium all dieser Zusammenhinge sei auf die gute Lehr-
buchliteratur hingewiesen, wie zum Beispiel [BEE], [HAE], [ONE], [PERI], [ST2].
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[. MAXWELL -GLEICHUNGEN

Der mathematische Gehalt von Faradays Theorie iiber magnetische und
elektrische Felder 1dBt sich durch die Maxwell-Gleichungen beschreiben. In konventio-

neller Notation lauten sie bei geeigneter Wahl! der Einheiten:

an rotE+ 48— divB = 0,
(12) rot H - ‘% = 4nj divD = 4nop,

(13) B=H und E = D.

Dabei sind E = (Ex‘Ez’Ea) und B =(B1,B2,B3) wie auch H und D Vek-
torfelder auf Ra, die noch von der Zeitvariablen t abh#ngen. Fiir ein solches (differen-
zierbares) Vektorfeld X : R® — ®R® mit den Komponenten Xl’Xz’ X3 ist

rot X o= VxX o= (22--—2 —t_2oa Sha SAug

1l

div X :

p und j = (jl,jz,js) in 1.2 sind aufzufassen als vorgegebene GréBen: p ist
die Ladungsdichte und j die Stromdichte. E ist das elektrische Feld, D ist die
elektrische Verschiebung, H ist das Magnetfeld und B ist die magnetische Induktion.
p und j verursachen die Felder E, B, H und D nach MaBgabe von 1.1 und 1.2. Im
Falle von p=0 und j=0 spricht man von den Maxwell-Gleichungen im Vakuum

oder von den homogenen Maxwell-Gleichungen.

Losungen der Maxwell-Gleichungen erhilt man, indem man zunichst die ho-
mogenen Gleichungen 1.1 analysiert. div B = 0 legt den Ansatz B = rot A nahe, denn
solche Vektorfelder A = (Aqu'Aa) gibt es zu differenzierbaren Vektorfeldern B mit
div B = 0 stets, und alle B mit div B = 0 haben diese Form. A heiBt dann das
Vektorpotential zu B und ist bei Vorgabe von B bis auf ein Gradientenfeld eindeutig
bestimmt: Denn fiir A und A' gilt rot A= B = rot A' genau dann, wenn
rot(A' - A) = O ist, das heiBt also genau dann, wenn es eine differenzierbare Funk-
tion ¢ : RP — R mit A' = A+ gradg gibt (Lemma von Poincaré, vgl. M.17.14°).

Bei dem Ansatz B = rot A (mit der Freiheit, A durch A + grad ¢ zu er-
setzen) haben wir B und damit A und ¢ =zunichst als zeitunabhiingig angesehen.

_ 3B

Um die vollen homogenen Gleichungen 1.1 zu erfiillen, muB noch rot E = 3t gel-

L » . we . 2 4 1t . e o Y L . R o
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Ansatz B = rot A muB zur Erfiillung der ersten Gleichung in 1.1 noch rot E = - g—?
gelten. Wegen ‘3]3 = rot %’:‘ ist diese Gleichung offenbar fiir E' := - % erfiillt,

und jede weitere Losung E dazu hat die Form

(1.4) E = -gradV - B = rot A,

Bt’

wobei V eine differenzierbare Funktion auf R x R® ist, und gradV den dreidimensio-

nalen Gradienten

3V 8V 8V
gradV = ( 2qi'd q2’6q3)
bezeichnet. (Denn die Gleichung rot E = rot E' impliziert wie oben die Existenz einer
differenzierbaren Funktion V mit E' - E = - gradV.) V heiBt das skalare Potential.
Die Potentiale (V,A) zu B und E sind folgendermaBen festgelegt: Fiir
1)
(V',A') gilt rot A= B = rot A' und ~gradV~—— = E, E = -gradV' - A ge-

nau dann, wenn es eine differenzierbare Funktion ¢ : R x R —> R gibt mlt

(1.5) V' = V—%(% und A' = A+ grade.

Die Tatsache, daB viele verschiedene Potentiale (V,A) dieselben elektro-
magnetischen Felder B und E ergeben und daher dieselbe Physik beschreiben, ist ein
Phanomen der Eichinvarianz der klassischen Elektrodynamik. Auf diese Eichinvarianz
werden wir im folgenden Kapitel ndher eingehen. Die Festlegung der Potentiale (V,A)
durch eine geeignete Zusatzbedingung ist eine "Fichung" des Potentials (V,A).

Fiir eine weitere Behandlung der Losungstheorie von 1.1 - 1.2 ist zum Bei-
spiel die Lorentzeichung sinnvoll:

oV

(1.6) div A + 5+ ot

= 0.

Nach den vorangehenden Uberlegungen kann man (V,A) mit 1.4 nach MaB-
gabe von 1.5 abwandeln, ohne daf sich B und E #ndern, und ohne die Giiltigkeit von
1.1 zu verletzen. Damit (V',A') auch noch 1.6 erfiillt, muB daher eine Funktion ¢ mit

div A + div grad ¢ + 5+ aV g—t? = 0 gefunden werden. Mit der Notation

0= -2 -A
= ot

EEAA

fiir den Wellenoperator gilt es also, zu vorgegebenem div A + = £ die Wellengleichung

O¢ = divA+ % zu 16sen. Damit ist gezeigt, daB es immer Lésungen von 1.1 in der
Lorentzeichung gibt. Man erkennt zudem: Selbst nach der Lorentzeichung kann man Po-

tentiale (V,A) noch nach 1.5 verandern, ohne 1.6 zu verletzen, wenn nur ¢ = 0 gilt.

Unter der Lorentzeichung und 1.4 sind die Gleichungen 1.2 im Falle der Giil-

tigkeit von 1.3 dquivalent zu
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1.7) OV = 4mnp und DA = 4rxj,

wie man leicht nachrechnet.

Notwendig fiir die Lésbarkeit von 1.1-1.3 ist deshalb die Lésbarkeit von 1.7
unter der Lorentzeichung. Das bedeutet

an 82 = 09Y = O(-divA) = -divOA = - dndiv j,
und es folgt die Kontinuitdtsgleichung
wi+ 20 o
(1.8) divj + 5t = 0.

Unter dieser Bedingung gibt es dann auch immer Lésungen, namlich die Li-

sungen der 4 entkoppelten Wellengleichungen in 1.7.

Die Maxwell-Gleichungen lassen sich kompakter formulieren, wenn die Zeit-
koordinate t und die Raumkoordinaten ql,qz,q3 als im wesentlich gleichartig behan-
delt werden. Diese Formulierung der Maxwell-Gleichungen stammt von H. Minkowski
aus dem Jahre 1908, der diese Entdeckung in einem Vortrag folgendermaBen kommen-
tiert:

Die Anschauungen iiber Raum und Zeil, die ich Ihnen
entwickeln mdchte, sind auf experimentell physikalischem Boden
erwachsen. Darin liegt ihre Stirke. Ihre Tendenz ist eine radikale.
Von Stund an sollen Raum fiir sich und Zeit fiir sich villig zu
Schatten herabsinken und nur noch eine Art Union der beiden

soll Selbstindigkeit bewahren.

H. Minkowski

Tatséchlich ist der Gebrauch von zeitabhingigen Vektorfeldern in dem obigen
Formalismus etwas holperig; auch die Benutzung von 3-dimensionalen Operatoren wie
Gradient, Divergenz und Rotation bei Funktionen und Vektorfeldern, die in Wirklichkeit
von vier Variablen abhdngen, und die gleichzeitige Verwendung des vierdimensionalen
Wellenoperators [J kann keineswegs als geometrisch durchsichtig bezeichnet werden.
Die im folgenden dargelegte Formulierung im Sinne Minkowskis ist geometrisch und
erlaubt es insbesondere, Symmetrien im System der LSsungen zu erkennen. AuBerdem
erhdlt in dieser Formulierung die Gleichung 1.3 eine geometrische Interpretation.

Als erstes setzen wir q0 = t (auch q4 = t ist eine verniinftige Wahl). Fiir
die Ableitungsoperatoren schreiben wir

o, = =%, ¢ =0123.
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Mit T = (p,j',jz,j3), jo = p, lautet die Kontinuitdtsgleichung entsprechend:

(1.9) auj“ =0 oder divy = 0.

wobei div jetzt die Divergenz in R* bezeichnet.

Setze A, = —V.Der Ansatz 1.4 bedeutet in dieser neuen Notation
E1 = —(aoAl - ale) Bl = azA3 - agAz
E, = -(9,A, - 9,A)) B, = -(9,A;-3,A)
By = -(9,A,-9,A)) B, =0A, -0,
Mit der Definition Fuv = auAV - a\)ApL erhilt man die antisymmetrische Matrix
v
\1/9
¢ -E  -E, -K

0 B, -B,

0
El
E, -B, 0 B
E, B, -B, 0

(110) (E,) =
1

Die Komponenten dieser Matrix bilden den Faraday-Tensor F bzw. den
Feldstdrketensor. Aus dem Ansatz Fuv = GuAV - 6\,Au mit 1.10 ergibt sich unmittel-

bar die Aquivalenz von 1.1 mit

(1.1) 8UFV)\ + a\,FM + awa = 0, fiir paarweise verschiedene y,v,A\ zwi-
schen 0 und 3.

Im tibrigen ist 1.11 fiir solche Fuv immer erfiillt (weil diese Gleichung in der
Schreibweise der Differentialformen auf dodA = 0 hinausliuft, wie wir gleich sehen
werden).

Bisher haben wir nur den ersten Teil 1.1 der Maxwell-Gleichungen behandelt,
abgesehen von der kurzen Erérterung im AnschluB an die Einfiihrung der Lorentzeichung
1.6, die zur Kontinuitétsgleichung 1.7 gefiihrt hat. Den zweiten Teil 1.2 der Maxwell~
Gleichungen kann man dhnlich in Angriff nehmen, indem man mit den Komponenten

von H und D wie oben eine antisymmetrische Matrix

o H, H, H,
~-H 0 D -D

(1.12) (Guv) = 1 3 2
_H2 —D3 0 D1
-H D -D 0

bildet. Die Gleichungen 1.2 sind dann dquivalent zu
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(1.13) aqux + 8\)G)\u + 6)\Gw = + 4njx, fir alle »,u,v,), fiir die (¢,u,v,))

eine gerade Permutation von (0,1,2,3) ist.

(Anmerkung: Die in dieser Formel enthaltene Vorzeichenregel 148t sich bes-
ser im Kalkiil der Differentialformen beschreiben (vgl. 1.15).)

Differentialformen auf R* (siehe auch Anhang M.16/17).

Unter einer 0—Form verstehen wir im folgenden eine differenzierbare Funk-
tion ¢ : R* — R.

Eine I-Form ist ein Ausdruck der Form « = o dq mit differenzierbaren

(R — R, fir u = 0,1,2,3. Typisches Beispiel ist das Differential d¢ einer
dlfferenmerbaren Funktion ¢ : R* — ®: do := autpdq mit o, = au@.

Eine 2-Form  ist ein Ausdruck der Form o = dquA dq”, wobei die
Koeffizienten cou wieder differenzierbare Funktionen @, R"' —> R sind und
dq Adq = - dq /\dq gilt, also insbesondere dq adq” = O Typisches Beispiel einer
2—Form ist das Differential do einer 1-Form o = otudq

do = dau/\ dq“ = avaudq\'/\ dq"
= ‘E\)(auot\J - avau)dq“/\ dq”
= %(6 «, ~ 3 )dq“/\dqv
Weiterhin interessiert man sich fiir 3-Formen Y = Yw}\dq A dq A dq mit

differenzierbaren v ‘R — R, wobei dq /\dq /\dq antlsymmetnsch in den

AP
Indizes ist. Beispiel: Differential dw einer 2-Form o = w dq Adq

do = do >\/\dq /\dq = auwv)\dq Adq /\dq

SchlieBlich gibt es noch die 4-Formen auf ﬂ"\?"’, das sind die Ausdriicke von

der Form 7 = dq“A dq” /\dq ~dg™ mit differenzierbaren Mwns © R* — R,

VAN
wobei dq*adq¥ /\t;q Adq™ antisymmetrisch in den Indizes ist. Wegen dieser Antisym-
metrie sind die dq*A dq¥a dq)‘/\ dq™ bis auf Vorzeichen alle gleich dqo/\ dqlA dqz/\ dq3,
und deshalb hat jede 4-Form die Gestalt n = hquA dqlx\ dqz/\ dq3 Beispiele von 4-
Formen sind die Differentiale dy von 3-Formen: dy = dYuva dq" Adqg” /\dq

5-Formen auf R* gibt es nicht, in dem Sinne, daB eine 5-Form automatisch
verschwindet; denn die Antisymmetriebedingung an die dq¥A dqg” /\dq Adg*Adq® er-
zwingt dq“Adq’a dq>‘/\ dq*a dqp = 0, weil mindestens ein Index doppelt auftritt. Ins-
besondere ist fiir eine 4-Form 7 stets dn = 0.

Die Operation d, die auf den Differentialformen wirkt, wird die duflere Ab-

leitung genannt. Sie erfiillt dod = 0, wie man leicht nachrechnet.

Mit dem Formalismus der Differentialformen ist der Faraday-Tensor F aus

1.10 als eine 2-Form F = %F dqu/\ dqv = é‘vodq“/\ dqv aufzufassen, welche auf-

grund der Definition Fuv = 0 A als Differential dA=F des Potentials

OuA u
A = A da® 711 oelten hat Wpapn Ard — 0 afam AAY N e AT N ove s
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ist 1.1 dquivalent zu aquk + aVF)\u + awa = 0 (vgl. £.11) und damit hat man die
Aquivalenz von 1.1 zu

(1.14) dF = 0.

Dazu muB man nur nachpriifen, daB allgemein fiir eine 2-Form K = %Kwdqu/\ dqv,
also K = UZ;.V Kwdq“/\ dq”, das Differential dK in der Form

dK = u<§<>\(aqu>\ +9,Ky, * awa)dq“A dq”A dqx
geschrieben werden kann.

1.14 ist zum homogenen Teil 1.1 der Maxwell-Gleichungen aquivalent. Die
{iberlegungen zu Beginn dieses Paragraphen haben jetzt im Kalkiil der Differentialfor-
men die folgende einfache Form: Wegen dF = 0 ist sofort klar, daB man die 2-Form F
als dA fiir eine 1~Form A darstellen kann (Lemma von Poincaré). Verschiedene A
und A' mit dA = F = dA' unterscheiden sich dann um das totale Differential d¢
einer differenzierbaren Funktion ¢ : R*— R.

Ebenso wie F 148t sich auch der Tensor G aus 112 als eine Differentialform
G = %Gwdqu/\ dqv auffassen, und die gerade beschriebene Form von dG fiir solche
9_Formen 4Bt erkennen, daB 1.13 eine Gleichung fiir das Differential dG ist. Die Glei-

chungen 1.2 sind daher dquivalent zu
(115) dG = 4n],

wobei ] = j0 dql/\ dqz/\ dq3 - j1 dqo/\ dqz/\ dq3 + jz dql/\ dq3/\ dqo - j3 dql/\ dqz/\ dq0

= g dqi/\ dq®a dq® + j‘dqu dq®a dq® + iy dq® A dg®a dqt + i3 qu/\ dq'a dq2 ,
mit j, = jo = p sowie j, = -jn fiir n=1,2,3. Die 3-Form ] wird auch als die
Stromdichte bezeichnet.

Wegen d(dG) = 0 folgt dJ = 0 aus 115 fiir die 3-Form J. Aus der ex-
pliziten Form von ] l4Bt sich unmittelbar dj = avjvdqo/\dqi/\ dqz/\dq3 ablesen.
Damit ergibt sich auch ohne 1.3 die Kontinuitstsgleichung 1.8 in der Form 1.9 als eine
notwendige Bedingung fiir die Losbarkeit der Maxwell-Gleichungen.

Die Abhéngigkeit der 2-Formen. F und G von E, B, H, D kann man sche-
matisch durch die Formeln

F = B + Badq® und G =D - Hadd’

zum Ausdruck bringen, wobei die E, H bzw. B, D hier in naheliegender Weise durch

E, B, H, D eindeutig bestimmte 1-Formen bzw. 2-Formen bezeichnen,

Zum SchluB des Paragraphen wollen wir auf die geometrische Bedeutung der
Identititen 1.3 eingehen. Was bedeutet 1.3 fiir die Formen F und G? Als die zu F

duale 2-Form *F definiert man die durch die Koeffizienten
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0 1 B2 B3
-B _
(116) *F = (xF ) = Y E, -E,
w -B, -E, 0 E,
-B E, -E 0 }

gegebene 2-Form, die aus F durch die Ersetzungen E —> -B, B —> E hervor—
geht. Die Gleichungen 1.3 sind dann nichts anderes als *F = G. Wesentlich fiir das
Versténdnis der Bedeutung von 1.3 ist also die Zuordnung F —— *F auf dem Raum
% der 2-Formen auf R*, die schematisch durch B + Ea dqo —— E - Badg® gege-
ben ist. Diese Zuordnung ist linear iiber &(R*) und sie erfiillt *(*F) = -F. In der
Differentialgeometrie kommen solche linearen Abbildungen *: &2 — A% vor als
die Hodge-Operatoren zu einer Metrik auf dem Raum R*. Tatsdchlich stimmt die in
116 eingefiihrte Dualitit * mit dem Hodge-Operator zur Minkowski-Metrik auf R*
tiberein, wie wir gleich zeigen wollen. Erst durch 1.3 kommt also die Geometrie ins
Spiel, bei den vorangehenden Uberlegungen wurde nur von der differenzierbaren Struk-
tur des R* Gebrauch gemacht. Im iibrigen gilt noch Folgendes: Will man 1.16 als
Hodge~-Operator einer Metrik verstehen, so ist diese Metrik bis auf einen Konformfak-
tor festgelegt. In diesem Sinne legen die Maxwell-Gleichungen daher die konforme

Struktur des Minkowski-Raumes fest.

(1.17) Hodge-Operator zum Minkowski~Raum. (Vgl. G.16) In Uibereinstim-
mung mit einer in der Lehrbuchliteratur gebriuchlichen Formulierung der Elektrodyna-
mik verstehen wir in diesem Kapitel unter dem Minkowski-Raum M die Mannigfaltig-
keit R* mit der durch die Matrix n = diag(+1,-1,-1,~1) gegebenen Minkowski-
Metrik und mit der durch die Volumenform y = dq’a dq*a dg®a dq® gegebenen Orien-
tierung beziiglich der Standardkoordinaten qo, ql, qz, qs. Das steht in Gegensatz zu
der in dem Buch bisher iiblichen Verwendung des Begriffs Minkowski~Raum als R3"
mit Metrik diag(+1,+1,+1,-1) und Orientierung dq‘/\ dqu dq®A dq4, und kann leider
zu einem Wirrwarr beziiglich Vorzeichen und Konventionen in bekannten Formeln
fiihren.

Im folgenden sei & (M) der Raum der s—Formen auf M Ffiir s — 0,1,2,3,4,
und &{M) der Raum aller endlichen Summen von solchen Differentialformen. Auf je-
dem Raum & *(M) wird durch die Minkowski-Metrik in folgender Weise eine bilineare

Abbildung gegeben: Fiir o, € & *(M) mit den Koeffizienten o e und B

Uillp . ViVy o Vg

ist
No,p) = LoitVaghaVz  UsVs,y

s! Lytio +on ust1v2 e Vg'
Dabei sind die 1" die Koeffizienten der zu n inversen Matrix n~! (hier = n).- Der
zu n und y gehorige Hodge-Operator ist der durch folgende Vorschrift definierte
Operator % : o° —> ﬂ4_sz Fiir Be #°(M) ist *B diejenige (4-s)-Form auf M,
fiir die aA*p = f{«,B)u fiir alle s—-Formen o auf M gilt.

Ner Hodoe—roratrme % « o IMAY N P fIAY  mee DA Tt 1. ®fmay 1«
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Abbildung vollstindig beschrieben, wenn er fiir die "Basis"”

[TAVINN

w * = dg¥adq¥A... Adg™ , W<V <. <),

von #{M) bekannt ist. Da diese Basis orthogonal (in Bezug auf 7 ) ist, reduziert sich

die Bestimmung von * ¥V >

UV A

jeweils auf die Bestimmung eines Vorzeichens ¢, denn
es gilt *ow = g °, wobei {x,.p} die angeordnete Komplementdrmenge von
{uv,. A} in {0,1,2,3) ist. Wegen o*V MaxofV Mo fleRV X eV My 1aBt

sich das jeweilige Vorzeichen & aus

UV, A )\)w0123 ( w= m0123 )

® Art P = ﬁ(wuv... ’muv...

direkt ablesen. Im einzelnen:
k=0:
Fiir Funktionen f e (M) ist H(f,f) = 2, und das gilt insbesondere fiir die konstante
Funktion f =1= 0?: 7{1,1) = 1. Also gilt 1a*1 = ¥ = ey mit
irey = (1,1 = u.

Damit haben wir als erstes Ergebnis: *1 = y.
k=1:

Fiir o% ist (%) =1 und H(o¥,0*) = -1 fiir g = 1,2,3. Daher
o rew!?® = w , also +0 = wlza;
wiree?® = ~0 , also ro! = wOZS;
wree®® = —u, also *o? = -wm‘a’;
o’ ree’l? = -, also *xo® = "2
k=2:

Es gilt 7(0"%,0") = -1 und H{o"Y,o") = +1 fiir y,ve{1,2,3}, ¢ <v.Daher
W'rse® = -0, also x0 = -¥,
o?rew® = —w, also 00?2 = oW
wPren'? = ~w, also - *x0?? = -0'?;
w?re0?® = o, also rol2 = %%,
0Baee® = w , also o2 = " ;

0
o¥ree’? = v, also xol? = —°?
k= 3:
. 3 0 0 "

Esist §(0',0%) = -1 und §(0"*,0"*) = +1 fir y,ve{1,2,3}, u <v.Daher
0®ree? = ~0, also ol = o0
0®Pree® = © , also *0?1? = f ;

1
0 Brco! = ® , also *x0'2 = o ;
0"Prew’® = v, also o = —?
, k=4:
Es gilt n(w,0) = -1, daher

wrel = -~ , also *0 = —-1.
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Insbesondere erkennt man
#" = xx = -id auf AK(M) fiur k = 0,2,4 ;

# = xx = id auf &5 fur k = 1.3.

Die Formeln fiir k = 2 zeigen, daB der Hodge-Operator des Minkowski~-
Raumes auf den 2-Formen mit dem in 1.16 definierten Dualitatsoperator {ibereinstimmt.
Fiir die im AnschluB an 1.15 definierte 3-Form ] gilt aufgrund der fiir k = 3 aufge-
stellten Formeln fiir den Hodge~Operator: *¥] = j, wenn j die durch T gegebene
1-Form j := judqu = nwjvdqu bezeichnet. Mit dem durch den Hodge-Operator * de-
finierten Kodifferential & := xd» : o k — k-t erhdlt man daher eine weitere
dquivalente Formulierung der Maxwell-Gleichungen: Unter der Festlegung der Min-
kowski~Metrik auf R* und der Realisierung von 1.3 durch den Hodge-Operator als
*F = G (mit F und G wie in 1.10 und 1.12) sind die verbleibenden Maxwell-Gleichun-
gen 1.1 und 1.2 (oder 1.11 und 1.13, bzw. 1.14 und 1.15) dquivalent zu

(1.18) dF = 0 und 8F = 4rnj,

denn es ist ja dG = 4nJ, also 6F = *dxF = *dG = 47 (x]) = 4nj. Die Kontinui-
tétsgleichung ist einfach §j = 0.

Will man die Gleichungen 1.18 unter Verwendung der Komponenten von F
schreiben ohne d oder § zu benutzen so erhilt man schlieBlich die folgende dquiva-

lente Form der Maxwell-Gleichungen:

v Y
(1.19) 9, F \ + a\,FM + a)\Fuv = 0 und au(F )= 4nj .
Dabei ist F*V = npk nw‘Fk)\ und (™) ist, wie vorher, die zu (nuv) inverse Matrix,
das heiBt hier: %V = L {An anderer Stelle wird -F als Faraday-Tensor genommen,
so daB die zweite Gleichung dann die Form au(F‘“) = 4nj" erhilt.) Mit der Dualitit
*F liest sich der Satz 1.19 von Gleichungen auch in der folgenden symmetrischen Form:

1.20) au(*F““) =0 und au(F““)= 4rij.

Der Vorteil von 1.18 liegt aber gerade darin, daB diese Formulierung der Max-
well-Gleichungen koordinatenunabhéngig ist. Entsprechende Gleichungen hat man daher
auch fiir den Fall von gekriimmten Raumzeiten M anstelle des Minkowski-Raumes
(vgl. [PAR]) und allgemeiner noch in der Eichfeldtheorie (vgl. V.6).
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2 SYMMETRIEN DER ELEKTRODYNAMIK

Eine der wichtigsten Entdeckungen in der klassischen Feldtheorie ist die
Poincaré-Invarianz der Maxwell-Gleichungen. Diese Invarianz wurde erst im Rahmen
der Formulierung der Speziellen Relativititstheorie durch A. Einstein im Jahre 1905 rich-
tig verstanden, und kann als Ausgangspunkt fiir die Postulierung der "Relativitdt” ge-
nommen werden (vgl. Paragraph 4).

Der Beweis der Poincaré-Invarianz kann sich auf irgendeine der im letzten
Paragraphen vorgesteliten Formen der Maxwell-Gleichungen stiitzen. Dabei ist in der
urspriinglichen Fassung 1.1, 1.2 kaum eine Symmetrie in den Gleichungen zu erkennen,
wihrend mit zunehmender Verdichtung in der Formulierung der Maxwell-Gleichungen
mehr und mehr an Symmetrie offenbar wird. Am einfachsten 148t sich die Symmetrie
aus den zum SchluB des ersten Paragraphen vorgefiihrten Varianten der Maxwell-
Gleichungen 118 dF = 0, 8F = 4mj ablesen; dazu geniigt es festzustellen, daBl das
Differential d invariant ist gegeniiber beliebigen Diffeomorphismen (vgl. M.17.4°) und
daB das Kodifferential & invariant gegeniiber Poincaré—Transformationen ist.

Wir benutzen die Maxwellgleichungen in der Lorentzeichung zum Nachweis
der Poincaré-Invarianz. Das ist ein KompromiB zwischen einer direkten Rechnerei mit 1.1,
1.2 einerseits und der Benutzung von Differentialformen andererseits. AuBerdem wird die
Poincaré—Invarianz der Wellengleichung mitbewiesen. Vom geometrischen Standpunkt
aus ist OO der zur Geometrie des R* mit Minkowski-Skalarprodukt gehorige geome-
trische Operator (Laplace-Beltrami-Operator) [1 = 8d; insofern ist klar, daB8 [

Poincaré-invariant ist.

Was bedeutet nun Poincaré-Invarianz? Ausgangspunkt ist der Minkowski-

Raum M := R* mit dem schon oft verwendeten Minkowski-Skalarprodukt
3
<q, 3 = q"d = ¢°q° - T q*q* = ¢, @ = o“q.
u=1 ¢

(n = diag(, -1, -1, -1) wie in Paragraph 1 und anders als in Kapitel IIl oder in Anhang
L.) Die volle Symmetriegruppe von M mit diesem Skalarprodukt wird erzeugt von den
Translationen Tb tM—> M, g+ q+b, fir beM und den orthogonalen
Transformationen

0(1,3) = {AeR(4) | ATqA = 1k

(vgl. Anhang L; O(1,3) und O(3,1) sind in natliirlicher Weise isomorph als Matrixgrup-
pen). Unter der Poincaré-Gruppe P = P(1,3) verstehen wir hier die von den Translatio—

nen und der eigentlichen Lorentzgruppe (vgl. L.4.4°%)

CTA Oy T A N4 DY Tl A 4 1 A0 g
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erzeugte Untergruppe der vollen Symmetriegruppe von M. P(1,3) besteht also aus
denjenigen bijektiven stetigen Transformationen von M —> M, die < , > invariant

lassen, die Orientierung des Raumes M erhalten und die Zeitrichtung nicht verdndern.

Definition. Die Poincaré-Invarianz der Maxwell-Gleichungen bedeutet jetzt,
daB die Maxwell-Gleichungen ihre Form beibehalten, wenn die Raum- und Zeitkoordina-

ten von M mittels einer Koordinatentransformation T aus P(1,3) verdndert werden.

Satz. Es seien j,A: M —> R* differenzierbare Vektorfelder, welche den
Gleichungen

2.1 div A = auA“ = 0 (Lorentzeichung, vgl. 1.6)
(2.2) OA = 4rj (Maxwell-Gleichungen, vgl. 1.7)
geniigen. Sei T € P(1,3). Fiir die vermége q' = Tq transformierten Felder

k
A'(@) = (A%ALAZA% mit AX(q) = A¥(@) 9% (@)
und analog j'(q') gelten die entsprechenden Gleichungen:

(210 div'A' = 0,
(22 O'A' = 4xnj'.

= O g Al — g Atk Vo uVar
Dabei ist: a‘l = 3qe” div'A' = é)uA' und ' = g 8\) a;.

Beweis: Um auf den wesentlichen Punkt zu kommen, zeigen wir statt des

Satzes zunéchst die Poincaré-Invarianz von 0 auf Funktionen: Seien wmp: M — R

differenzierbar mit [lu = o, so gilt fir u'(q') = u(q), das heiBt u'(q') = u(T_i(q')),
und ¢'(q') = plq) stets: O'u’' = p'.
Das ist klar flir Translationen T = T, und muB noch fiir T = A € SO(1,3)

b
gezeigt werden. Dazu sei = A~ die inverse Transformation. Es gilt £ € SO(1,3), was

sich in den Koeffizienten Qt von ) = (Qt) auch folgendermaBen ausdriicken 1:#Bt:

(%) QE nuv Q)‘ = nk)‘.

\Y

k
Wegen u'(q') = ulq) = uoQ(q') und wegen gfm = Q:: gilt:
' 3gk k
Ju'(a) = aku(q>a—;% = u(a)Q;.
Weiterhin gilt dann genauso

2y opu' = a(R0,W = QFd)a,w = 20’3,8,u
und daher
O'v = n‘“’a;a\;u' = nqu:Qs 019 1, also wegen (*)

O'u = nkkakaku = polq) = p'(q")

Damit ist ['u' = p' bewiesen.
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Um den Satz darauf zuriickzufiihren, seien jetzt A und j mit OA = 47j,
das heift DA* = 4nj* fir u = 0,1,2,3. AN(g) = A"(q)%q%‘ = A”(q)AY gilt nach
Definition von A', sowie j'(g') = j(@)A,, wenn T = A e S0(1,3), (flir Translationen
T = T, ist die Invarianz wieder sofort klar). Aus OA” = 4nj° folgt unmittelbar fiir
ulq) = Av(q)Al\f und plq) := 47tj“(q)At: Ou = p. Wie gerade gezeigt worden ist,
gilt daher O'u' = p' und das ist 2.2': D'A'k = 4Trj'k. Es bleibt noch 2.1', also
ai(A'k = 0, zu zeigen:

apA(@) = ', A%(RgIAY = 3 A"@NLAS,
wobei Q = (Q‘;) wieder die zu A inverse Matrix mit A\lfﬂl]: = 8‘:) bezeichnet.
Es folgt

A = 9, A%Y = 5 A" = 0.

Nach dieser ausfiihrlichen Behandlung der Poincaré-Invarianz soll noch kurz
iiber weitere Symmetrien der Elektrodynamik berichtet werden.

Der obige Beweis der Poincaré-Invarianz liefert sofort, daB die Maxwell-
Gleichungen invariant sind gegeniiber der vollen Symmetriegruppe des Minkowski-
Raumes, denn statt A € SO(1,3) hitte man in den obigen Regeln auch A € 0(1,3) zu-
lassen konnen. Insbesondere sind die Maxwell-Gleichungen daher auch invariant gegen-
iiber der Zeitinversion

(t,q) —> (-t,q), qe R, teR,
und der Spiegelung ("Paritit")

(t,q) —> (t,—q), qe RB, teR,
welche die Orientierung von R andert.

Eine ganz anders geartete Symmetrie wurde von Heaviside 1893 fiir die sta-

tiondren, homogenen Maxwellgleichungen
(23) rotE = rotB =20 divB = divE = 0

festgestellt. 2.3 bleibt invariant gegeniiber der Vertauschung B —— -E, E +— B.
Allgemeiner hat man fiir 2.3 noch die 1-Parameter—Symmetrie

Bs = Bcoss — Esins, Es = Ecoss + Bsins, seR,
wie man leicht nachrechnet.

Die homogenen Maxwell-Gleichungen dF = 0, 6F = 0 sind invariant
gegentiber alligemeinen konformen Transformationen von M, wie zum Beispiel

Dilatationen: q ——> R:-q, ReR, r> 0 fest, und

Inversionen: q +—— za—?q—-s, <q, > * 0.
sowie deren Kompositionen. Die konforme Gruppe, das ist die Gruppe aller konformen
Transformationen von M, ist im iibrigen isomorph zu SO(2,4).

Weitere Symmetrien fiir Spezialfille der Maxwell-Gleichungen findet man
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3 ENERGIE-IMPULS-TENSOR

Im Sinne der Paragraphen 7,8 und 9 des zweiten Kapitels iiber Klassische
Mechanik stellt sich die Frage, ob den verschiedenen Symmetrien der Maxwell-Glei-
chungen wieder Erhaltungsgréfien entsprechen. Das ist in der Tat der Fall. Analog zur
Situation in der Klassischen Mechanik gibt es auch in der Feldtheorie ErhaltungsgroBen,
welche durch Symmetrien erzeugt werden, und die zugehtrigen Sitze heiBen wieder
Noethersche Sitze. Um diese Sitze formulieren zu kdnnen, benétigt man einen Hamil-
ton-Formalismus oder einen Lagrange-Formalismus fiir Felder. Darauf soll hier nicht in
voller Allgemeinheit eingegangen werden. Stattdessen wird die Translationssymmetrie
in der Elektrodynamik in Beziehung gebracht zur Erhaltung des Energie-Impuls—Ten-

sors, ohne daB viel auf Motivationen und Erklarungen eingegangen werden kann.

Zu einer vorgegebenen Ladungsdichte j = (jo,jl,jz,js) ‘M —> R* kann
man die Lagrangedichte

BY & = L(A,0,A) = —ﬁFwa - anjvA,

uk v
n

einfiihren: Dabei ist Fuv = auAV - aVAu wie in Paragraph 1 upd W = n Frs-

& 4Bt sich auffassen als Funktional
£ 8mMm* — &aw)

oder, noch besser, als Funktional auf dem Raum & (M) der differenzierbaren 1-Formen
auf M (vel. 114): #'(M) = {A,da*: A, e &M},

Zu einer allgemeinen Lagrangedichte % und insbesondere fiir & wie in 3.1
1aBt sich das Wirkungsfunktional

4
(32) S(A) = [, Z(A,8,A)dY

definieren. Dabei sind naturgemiB nur noch diejenigen A ¢ &(IM) zugelassen, fiir die
das uneigentliche Integral in 3.2 existiert. Es sei dieser Unterraum mit &f;([M) bezeich-
net. Es gilt zum Beispiel .ﬂé(lM) C d;(lM), wobei

.ﬂé(lM) 1= {Audqu egv: A, hat kompakten Tréger fiir @ = 0,1,2,3}.
Nach Definition hat fe &(M) einen kompakten Triger, wenn {xeM: f(x) + 0} in
M beschréankt ist, also in M einen kompakten AbschluB hat. Im tibrigen 4Bt sich die
Einschrédnkung auf 1-Formen aus .;zf(:([M) als eine Randbedingung verstehen.

In Analogie zu der Situation in der Klassischen Mechanik (vgl. 11.7) soll als
Bewegung des Systems (ﬂ:([M),fé’) jedes A€ .ﬂ,}([M) gelten, welches der folgenden
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Eigenschaft geniigt: Fiir alle B¢ .ﬂé([M) ist
d -
(3.3) —d—E—S(A +eB)|._, = 0.

Diese Bedingung ist die typische notwendige Bedingung dafiir, daB flir das
Funktional S in A ein lokales Extremum vorliegt. In diesem Sinne wird A € d;(IM)
mit 3.3 auch stationér genannt.

Eine leichte Rechnung mit partieller Integration zeigt (unter Ausnutzung der
Eigenschaft, daB B auBerhalb einer groBen Kugel verschwindet), daB fiir stetig diffe-
renzierbare & die Bedingung 3.3 dquivalent ist zu den Euler-Lagrange-Gleichungen

A AL - . .
(34) 2% = 3 =25 —~, v= 0,123 (iiber ¢t wird summiert).
A, walo A) ¢

Diese Aquivalenz ist richtig fiir beliebige & und beliebige R™' statt [R"',
wenn nur % geniigend oft differenzierbar ist. In dem von uns diskutierten Falle 3.1

gilt, wie man unmittelbar nachrechnet:

OFL 4V
——aAv = —4nj

oFL _ _1__ 0 v uv :
306 A,) ~ 43 A (F, F +F,F ) (ohne Summation)
=- B
Also bedeutet 3.4 gerade auF‘“ = 4xj’. Da fiir F = dA stets dF = 0

gilt, sind daher fiir A beziiglich & die Gleichungen 3.4 &quivalent zu 1.19 und damit zu
den Maxwell-Gleichungen. Der Energie~Impuls—Tensor © = (0"") wird definiert als

v

wo_ 3% v oW
@5 07 = Frian T A, TN L

Im Falle 3.1 gilt also %Y = insz - Fuouq\))“é))\A(J + nw41rj)\A)\, wobei
F = Fuv F*V. Direktes Nachrechnen ergibt (unter Verwendung von 3.4) im Falle j = 0
den infinitesimalen "Erhaltungssatz":

(3.6 au@““ = 0.

Gleichung 3.6 ist eine Folge der Translationssymmetrie von & und S und
148t sich im folgenden Sinne als Erhaltungssatz auffassen: Fiir die vier Integrale

P'(t) = [o 0”V(,@dG, v = 0,1,2,3,
gilt

denn
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wegen s ' .

Jee jgla@’“(t,q)daq = Jim foa N0 dog = 0,
jedenfalls fiir Felder A, die geniigend schnell abfallen fiir |q] = R—> o . (Dabei be-
zeichnet dws das Oberflachenintegral iiber S; und (NI’NZ’NS) ist das Einheitsnor-
malenfeld an die Sphire S;. Die verwendete Formel folgt dann aus dem GauBschen
Integralsatz.)

P’ ist die Gesamtenergie und P (v=1,2,3) sind die drei Impulse beziiglich
der drei Raumrichtungen.

Wie in der Klassischen Mechanik ist die Lagrange-Dichte % nicht eindeutig
durch das physikalische System festgelegt. Insofern gibt es auch zu ©"" Varianten. Es
gibt gute Griinde, den Energie-Impuls~Tensor in den Indizes y,v als symmetrischen
Tensor aufzufassen. Einen Grund dafiir liefert die Allgemeine Relativititstheorie, denn
in den Einsteinschen Feldgleichungen kommt ein symmetrischer Tensor vor, welcher als
Energie-Impuls—Tensor verstanden werden kann. Ein anderer Grund ist die Beschreibung
des Drehimpulses als ErhaltungsgriBe (siehe unten).

Den Tensor ©"” kann man durch Addition des Termes ak(F‘“n""axAc) in
der Lagrange-Dichte & (nach 3.1) zu einem symmetrischen Tensor machen. Die iibliche
symmetrische Form des Energie-Impuls—Tensors in der Elektrodynamik, die sich daraus

ergibt, ist im Falle j= 0 die folgende:

2 by
@D T = 4YF + FY99"F, .
Man sieht leicht: TV = T, und es gilt wieder &)uTw = 0. AuBerdem ist
der Tensor T = (T*V) spurfrei: Spur(T) = Tﬁ = 0 (mit TS = nv)\Tx“). Die Kom-

ponenten von T’ haben die folgende Form bzw. physikalische Bedeutung

(3.8) T°° = L(E* + BY Energiedichte
T = (Ex B)u u =123 Poynting-Vektor
™ 1<y,v<3) Spannungstensor

|93 2 2
T, = EE,+BB, +n, 3(E +B) (<yv<3)

Als ErhaltungsgroBen, die zu den Raumdrehungen der Poincaré-Gruppe ge-
héren, hat man analog die Drehimpulse

(3.9) M = [Lo(T%" - TV¢")dY, 1<y, <3.

Mit t = qo gilt wieder —é“—tMu“ = 0.
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Zum AbschluB dieses Paragraphen noch 3 wichtige Bemerkungen:

(3.10) 1° Die Lagrange-Dichte % in 3.1 ist (bei j = 0) Poincaré-invariant
in folgendem Sinne: Fiir jede Transformation A € P(1,3) gilt £L(A) = FL(A*A). (Es ist
A¥A(X) = A(AX) Ffiir die Vektorfelder X auf M). Daraus folgt bereits die Haupt-
aussage des vorangehenden Paragraphen, ndmlich die Poincaré-Invarianz der Maxwell-
Gleichungen. AuBerdem zieht diese Invarianz die Erhaltung der GréBen P* und M"Y
nach sich (vgl. 3.9 und 3.6).

2° Die Poincaré-Symmetrie bestimmt die Maxwell-Gleichungen in sehr star-
kem MaBe. Fordert man eine Poincaré-invariante Lagrange-Theorie im Minkowski—Raum
M, so gelangt man mit ganz wenig Zusatzeigenschaften an & (wie "Einfachheit”, siehe
unten) zu den Maxwell-Gleichungen 1.1 und 1.2 (mit B = H und E = D), wobei aller-
dings in 1.1 jeweils auf der linken Seite noch Funktionen analog zu ¢ und j stehen
konnten (siehe unten). Man stellt also fest, daB aufgrund einer bekannten Symmetrie
die mdglichen dynamischen Theorien weitgehend eingeschrdnkt werden. Man kann sich
leicht vorstellen, welche Bedeutung diese Beobachtung flir die Formulierung neuer
Theorien hat, in denen die Symmetrie oft festgelegt oder postuliert wird und mangels
experimenteller Befunde wenigstens durch die Symmetrie die Auswahl der Theorien
wesentlich reduziert wird. Der Fall Elektrodynamik: Will man eine Poincaré-invariante
Lagrangedichte & aufspiiren, in der zu A = Avdqu nur Au’ Fuv ,ju polynomial bis
zur Ordnung 2 auftreten, so sieht ¥ im wesentlichen wie & in 3.1 aus (vgl. z.B. [1TZ,
S. 11).

3° Die Form der inhomogenen Maxwell-Gleichungen 1.1 und 1.2 ist nicht
volistindig symmetrisch insofern, als in 1.1 die Inhomogenitéten fehlen. Eine Version

der Maxwell-Gleichungen, die in diesem Sinne symmetrisch wire, ist

divB = 4no rotE=—‘3—?—~4nk
divE = 4np rotB=+%+4nj

(oder aquivalent dazu: dF = 4nk und SF = 4mj im Kalkiil der Differentialformen)
mit "magnetischen” Stromdichten k = (o,k‘,kz,ks). Eine Losung fiir k + 0 entspri-
che einem magnetischen Monopol, Magnetische Monopole sind bisher experimentell
noch nicht gefunden worden, nehmen aber in der theoretisch orientierten Literatur einen
wichtigen Platz ein. Unter anderem wiirde die Existenz von magnetischen Monopolen
erkldren, warum die elektrische Ladung gequantelt ist (vgl. auch V.6.8).

Zur Theorie von Monopolen, auch mit SU(N) als interne Symmetriegruppe,
siehe zum Beispiel [ATH].
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4 RELATIVITATSTHEORIE UND KOSMOLOGIE

Es ist verlockend, im AnschluB an den im dritten Paragraphen vorgestellten
Lagrange—Formalismus mit der Elektrodynamik fortzufahren und sie als eine Eichtheo-
rie vorzustellen, in der die Erhaltung der elektrischen Ladung, also die Kontinuitdtsglei-
chung, mit der U(1)-Eichsymmetrie in Verbindung gebracht wird. Wir kommen darauf
im nachsten Kapitel zuriick und wenden uns stattdessen kurz der Darstellung von Sym-

metrieprinzipien der Relativitdtstheorie zu.

Die Relativitdtstheorie ist bekanntermafBien eine geometrische Theorie. Des-
halb kénnte man sie im Rahmen des Buches ins Zentrum der Erorterungen stellen und
an vielen Aspekten der Relativititstheorie die geometrische Natur der Physik herausar-
beiten. Es geht mir aber in diesem Buch darum, geometrische Strukturen und Symme-
trien in der Physik aufzuzeigen, die nicht ganz so offensichtlich sind. Aus diesem
Grund scheint es gerechtfertigt zu sein, die Relativitatstheorie nur kurz abzuhandeln,

gerade weil sie fiir jedermann eine geometrische Theorie ist.

Der Paragraph gliedert sich in vier Teile: Spezielle Relativitatstheorie, Allge-

meine Relativitdtstheorie, Kausalitdt und Konforme Invarianz, Kosmologie und Isotropie.
1. Spezielle Relativitatstheorie

Bereits in der Klassischen Mechanik haben wir das Relativitatsprinzip von
Galilei kennengelernt als ein Symmetrieprinzip: Die Gesetze der Klassischen Mechanik
sind dieselben in allen Inertialsystemen (vgl. 11.2.5), und sie sind invariant gegeniiber
Transformationen der Galilei-Gruppe.

In diesem Sinne war fiir die Physiker des ausgehenden 19. Jahrhunderts die
neue Elektrodynamik, die sich durch die Maxwell-Gleichungen beschreiben l4Bt, nicht
relativistisch. Denn die Maxwell-Gleichungen sind ja invariant gegeniiber der Poincaré-
Gruppe, und nicht invariant gegeniiber Galilei-Transformationen. Es ist Einsteins Ver-
dienst, die Situation umgedreht zu haben: Nicht die Elektrodynamik verletzt die Relati-
vitdt, sondern die althergebrachte Klassische Mechanik ist nicht relativistisch. Das
heiBt in unserer Sprache der Geometrie und Symmetrie: Statt der Galilei~Gruppe ist die
Poincaré-Gruppe als die Symmetriegruppe der Physik anzusehen. Das ist der Inhalt von

Einsteins Relativitidtsprinzip.

Allerdings hat Einstein die Poincaré -Invarianz seiner Speziellen Relativitits-

theorie nicht nur damit begriindet, daB die Elektrodyvnamik auf diese Weise relativistisch
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wird. Aber er hat den Effekt, daB das Relativitdtsprinzip mit der Poincaré-Gruppe auto-
matisch viele Asymmetrien in der damaligen Elektrodynamik und auch die Probleme des
absoluten Raumes in der Form des seinerzeit diskutierten "Athers" wegzaubert, als ein
wichtiges Argument fiir sein Relativitatsprinzip ins Feld gefiihrt hat.

Einsteins Relativitatsprinzip hat natiirlich eine Anderung des Raum-Zeit—Be-
griffs zur Folge. Als Raumzeit fungiert jetzt (anstelle der Galilei-Raumzeit, vgl. 11.2.4)
der Minkowski-Raum M = R* (oder analog zu Paragraph 2 in Kapitel II ein 4-dimen-
sionaler affiner Raum) mit dem Minkowski-Skalarprodukt <q,q'> = anuq'v, mit
einer Orientierung von M und mit einer Zeitorientierung, das heiBt einer Anordnung
auf der Zeitachse qo. Die zugehérige Symmetriegruppe, welche < , >, die Orientie-
rung und Zeitorientierung von M invariant l4Bt, ist dann genau die in Paragraph 2
studierte Poincaré-Gruppe P(1,3).

Analog zur Symmetrie in der Klassischen Mechanik (vgl. 11.2.5.ff. und 11.7.10)
gehoren zu der Poincaré-Invarianz zehn unabhingige ErhaltungsgréBen, welche man
als die vier unabhingigen Komponenten des Impuls—Vektors (Energie-Impuls), als die
drei Drehimpulskomponenten und als die drei Komponenten des "relativistischen” Dreh-
impulses identifizieren kann.

Symmetriebetrachtungen in der elementaren relativistischen Quantenmecha-
nik fithren daher zur Theorie der unitdren Darstellungen der Poincaré-Gruppe P(1,3)
und der eigentlichen Lorentzgruppe SO(1,3) (vgl. Paragraph 3 in Kapitel I1I). Unter Be-
rilcksichtigung der in Paragraph 4 des Kapitels IIl gefiihrten Uberlegungen ist die
Gruppe S8O(1,3) durch die einfach zusammenhingende Uiberlagerung SL(2,C) von
SO(1,3) zu ersetzen (siehe Anhang L.8). Entsprechend ist die in der Quantenmechanik
richtige Symmetriegruppe nicht P(1,3) = SO(1,3) x ®*, sondern die entsprechende
Uberlagerung SL(2,C) x R* ("x" ist das semidirekte Produkt, vgl. Paragraph 2 in
Kapitel II) von P(1,3). Zu der Poincaré-Invarianz gehtren dann entsprechend zehn unab-

héngige quantenmechanische ErhaltungsgréBen (vgl. Paragraph 3 in Kapitel III).

Die Gruppe SL(2,C) iiberlagert nicht nur die eigentliche Lorentzgruppe,
sondern sie tritt auch als Uberlagerungsgruppe der Gruppe Mb aller Mébiustransfor-
mationen von € nach € auf. Eine Mobiustransformation ist eine holomorphe Funktion

der Form
S(z) = g—%;tg-, zeC, cz+d + 0,

wobei a,b,c,de€ C mit ad - bc + 0. S ist holomorph auf (IZ\{—%} mit einem einfa-
chen Pol in - % Deshalb liefert eine solche Mbiustransformation einen Automorphis-
mus S der Riemannschen Zahlenkugel P, das heiBt hier eine biholomorphe (oder auch
konforme) Abbildung von P auf sich. P kann als die komplex—projektive Gerade
P = P(C?) = CU{o} aufgefaBt werden und ist topologisch mit der 2-Sphire S° zu
identifizieren. Fiir S € Mb ist
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s ze -3
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die zu S gehorige biholomorphe Abbildung von P fiir ¢ + 0 mit den offensichtli-
chen Korrekturen fiir ¢ = 0.

Jede biholomorphe Abbildung von P auf sich ist von der Form S fiir eine
geeignete Mobiustransformation S. Vom Standpunkt der Geometrie der Riemannschen
Zahlenkugel P ist die Gruppe Mb daher besser zu verstehen, wenn sie als die Gruppe
Hol P aller biholomorphen Abbildungen von P aufgefaBt wird: Hol P ist die Symme-
triegruppe von P beziiglich der komplexen Struktur auf P.

Als eine natiirliche Abbildung 7 : SL(2,C) —> HolP hat man

ngz) = Ly g = (2 B)esLizo.

Offensichtlich ist m ein Gruppenhomomorphismus. Wenn auf Hol® die Topologie der
kompakten Konvergenz eingefiihrt wird, ist m stetig, da diese Topologie iibereinstimmt

mit der Topologie der Konvergenz der "Komponenten” a,b,c,d in C. Aus der Identitdt

ez +dd  Acz+d T cz+d

Aaz+Ab _ A az+b az+b fiir AeC\0)

liest man jetzt ab: 7 ist eine surjektive Abbildung und es gilt m(g) = id genau dann,

wenn g = idgs. oder g = - id .. Damit ist gezeigt:
m: SL(2,C) —> Hol P

ist die universelle Uberlagerung von Hol P. Da n wie SL(2,C) —> SO(1,3) eine
zweifache Uberlagerung mit denselben Fasern ist, ergibt sich insbesondere, daB Hol P
und die eigentliche Lorentzgruppe SO(1,3) isomorph als Lie-Gruppen sind. Dieser ein-
fache Sachverhalt hat seinen Ursprung in der "abstrakten" zweifachen Uberlagerung
SL(n,C) —> PL(n,C), wobei PL(n,C), #hnlich wie der projektive Raum, die Quotien-
tengruppe SL(n,C)/. beziiglich der Aquivalenzrelation "A ~B & IxeC: A = AB"
ist: Es gilt Hol P = PL(2,C) £ S§0(1,3). Im iibrigen entspricht der {ibergang von line-
aren Abbildungen aus SL(n,C) zu Transformationen auf P(C™) der in III.4 studierten
Zuordnung Y¥(U) = i} (vgl. II1.4.1); hier allerdings nicht auf unitire oder antiunitire

Abbildungen angewandt, sondern auf spezielle lineare Abbildungen.

Mit der Kenntnis von SO(1,3) &£ Hol P stellt sich dann die Frage, ob dieser
Isomorphie eine physikalische Bedeutung gegeben werden kann. Das ist in der Tat der
Fall. Ein Beobachter in Hier-Jetzt mit Koordinaten 0 ¢ M erhilt Signale aus dem
Riickwirtslichtkegel

C_={qeM: q° < 0, an“q“ > 0}

Die Lichtsignale, die er als seinen "Himmel" wahrnimmet lassen sich mit
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¢ _ n{d®=-1 ={q" = -1 und anuq“ = 0}

identifizieren. Denn die Lichtsignale verlaufen geradlinig ganz in 8C_, und sie befinden
sich, wenn sie zu einem festen Zeitpunkt wahrgenommen werden, eine Zeiteinheit vor-

her in der Ebene {q° = —1}. Diese Menge ist aber zur Sphire $°=P isomorph:
3,
ac_n{a’=-1t = {o"=-1und Yq'q’ =1} = p.
j=1

1]

q 4

Verédndert man die Koordinaten des Beobachters durch eine Lorentztransformation
A € 80(1,3), so verdndert sich sein "Himmel" gerade um die zugeordnete biholomorphe
Transformation von [P. Zwei verschiedene Beobachter, die sich in 0 treffen, erleben
ihre jeweilige Himmelssphdre P also als durch eine holomorphe Bijektion zueinander
in Beziehung gesetzt.

Der hier dargestellte einfache Zusammenhang zwischen der Geometrie des
Minkowski-Raumes und der Komplexen Analysis, der insbesondere eine Parametrisie~
rung aller Lichtstrahlen durch den Ursprung mit Hilfe der Riemannschen Zahlenkugel
liefert, erfahrt im Rahmen des Twistor-Programms von Penrose eine weitgehende Ver-
allgemeinerung mit vielen interessanten Resultaten (siehe z.B. [WAW], [HUT], [PERI],
[MAN2]).

2. Allgemeine Relativititstheorie

Auch wenn die Spezielle Relativitdtstheorie als neue relativistische Theorie
der Mechanik und der Elektrodynamik auBerordentlich erfolgreich ist, so erklart sie
nicht, woher die Inertialsysteme kommen, und sie 148t auch keine befriedigende Be-
schreibung der Gravitation zu. Die physikalische Auszeichnung der Klasse der Inertial-
systeme l4Bt befiirchten, daB noch ein Rest von Newtons absolutem Raum in der Formu-
lierung der Speziellen Relativitdtstheorie iibriggeblieben ist. DaB gerade die Gravitation
im Rahmen der Speziellen Relativitdtstheorie nicht beschrieben werden kann, muB als
besonders unbefriedigend gelten.

Beide Probleme hat Einstein mit einem Federstrich gelsst durch die Postulie-

w1y Ao A mt1iiralarnmrmeirnerierane Thac A ettt vrmalmommreetonm o £ od e ver T d i ol i 4 s g
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wird) 148t sich auffassen als Verschirfung des Prinzips der Aquivalenz von trager und
gravitativer Masse. Fiir ein homogenes Gravitationsfeld bedeutet das Aquivalenzprinzip
zum Beispiel, daB in einer frei fallenden Kabine dieses duBere Gravitationsfeld innerhalb
der Kabine nicht beobachtet werden kann. Fiir ein allgemeines inhomogenes und zeitab-
héngiges Gravitationsfeld wird Entsprechendes im Kleinen gefordert. Das Aquivalenz-
prinzip kann daher folgendermaBen formuliert werden: In jedem Raum-Zeit—Punkt 138t
sich lokal ein Inertialsystem so einfiihren, daB in einem kleinen Bereich um diesen Punkt
die Naturgesetze die gleiche Form haben wie in einem unbeschleunigten euklidischen
Koordinatensystem ohne Gravitation. In der Sprechweise der Eichinvarianz kann man das
Aquivalenzprinzip auch als folgende Verschirfung des Einsteinschen Relativitatsprinzip
(der Speziellen Relativitdtstheorie) auffassen: Das Einsteinsche Relativitdtsprinzip ver-
langt, daB die Gesetze der Physik invariant gegeniiber beliebigen ("globalen”) Poincaré—
Transformationen A € P(1,3) sind. Das Aquivalenzprinzip der Allgemeinen Relativitdts—
theorie verlangt, daB die Gesetze der Physik invariant gegeniiber beliebigen lokalen
Poincaré—Transformationen A(q) € P(1,3) sind. Die Transformation A = Alq) darf sich
also im Gegensatz zur Speziellen Relativititstheorie noch von Punkt zu Punkt der unter-
liegenden Raumzeit differenzierbar dndern. Wie im Falle der Eichinvarianz fiihrt dieses
Prinzip zu eine "kovarianten” Ableitung; diese kovariante Ableitung kommt in der Allge-
meinen Relativitdtstheorie von dem Levi~Civita-Zusammenhang (vgl. G.15.6°) einer

semi-Riemannschen Metrik g.

Zur mathematische Formulierung des Aquivalenzprinzips ist die folgende

Modifikation des Konzepts der Raumzeit sinnvoll:

Raumzeit: Das mathematische Modell fiir Raum und Zeit ist eine vierdimen-
sionale Mannigfaltigkeit M mit einer semi~Riemannschen Metrik g auf M. Das heift
fiir jeden Punkt ge M ist Bq: TqM X TqM —> R eine symmetrische Bilinearform,

welche fiir eine geeignete Basis e,,€,,e,,e_ € TqM als

gq(X,Y) = 9, X"Y”

fiir Tangentenvektoren X,Y ¢ TqM, X = Xueu, Y = Yvev, geschrieben werden kann.
AuBerdem hdngen die gq noch in dem folgenden Sinne differenzierbar von q ab: Fiir
differenzierbare Vektorfelder X und Y auf offenen Mengen U C M ist die Funktion
q gq(X(q),Y(q)) ebenfalls differenzierbar (siehe auch I1.8 und G.12). (M,g) heiBt
Raumzeit oder Lorentzmannigfaltigkeit.

Die Metrik g macht also M in jedem Punkt q e M infinitesimal zu einem
Minkowski~Raum, in dem Sinne, da$ (TCl M,gq), g € M, zum Minkowski-Raum isome-
trisch isomorph ist. g wird als Gravitationspotential interpretiert. Die Naturgesetze
sind in der Raumzeit (M,g) kovariant, das heiBt invariant gegeniiber beliebigen lokalen

Koordinatentransformationen. Es gibt also keine ausgezeichneten Koordinatensysteme,
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insbesondere keine Inertialsysteme, wenn auch der Begriff des lokalen Inertialsystems

gepragt werden kann:

Lokale Inertialsysteme: Zu jedem Punkt g, € M findet man ein Koordinaten-

system in einer Umgebung U von q,, welches fiir

= 9 @
(q) := a aqu’aqv)

Buv

folgende Bedingungen erfiillt:

gw(qo) = N,y akgw(qo) = 0.

Ein solches Koordinatensystem ist dann das oben postulierte lokale Inertial-
system und es gelten, jedenfalls in q, und das heiBt in quM, die Gesetze der Spe-
ziellen Relativitdtstheorie.

Das Aquivalenzprinzip in prizisierter Fassung besagt jetzt, daB in den Glei-
chungen der Naturgesetze in der Allgemeinen Relativitdtstheorie nur die Metrik g der
vorgegebenen Raumzeit (M,g) und ihre Ableitungen vorkommen diirfen neben den
GriéBen, die bereits in der Speziellen Relativitdtstheorie auftreten. AuBerdem miissen sie
kovariant sein und sich in einem lokalen Inertialsystem auf die speziell-relativistischen
Gesetze reduzieren.

Man verlangt von einer Raumzeit (M,g) in der Regel noch, daB M zusam-
menhéngend, orientiert und zeitorientiert (siehe unten) ist. Von besonderem Interesse
ist dann die zugehdrige Symmetriegruppe Isom(M,g) aller Transformationen ¢ von
M in sich, welche die Metrik invariant lassen wie auch Orientierung und Zeitorientie-
rung. Zum Beispiel ist der Minkowski-Raum M mit der Metrik 3 eine Raumzeit mit
Isom(M,n) = P(1,3). Im allgemeinen haben andere Raumzeiten weniger Symmetrien.

Vergleichsweise viel an Symmetrie haben allerdings die folgenden zwei Beispiele:

In dem fiinfdimensionalen Minkowski-Raum R® = R mit dem Skalarpro-
dukt <q,9"> = q°q'"° - (qd'q" + """ + ’q’* + ¢*q"*) sei

M, = {qeR®: <q,9> = -1 und ¢° > 0}

mit der von < , > induzierten Metrik g, sowie der von R!* kommenden natiirlichen
Orientierung und Zeitorientierung. M, ist dann topologisch mit Rxs® dquivalent
und heiBt die de-Sitter-Raumzeit. Isometriegruppe ist {A € O(1,4): detA = 1 und
Ay > 0} = SO(1,4).

In dem fiinfdimensionalen Raum R® = R®® mit dem indefiniten Skalarpro-
3 ,3

dukt <q,q"> = q°q"° + q'q"' - (Q®q"* + @®q"* + q"q'*) sei zunichst
ML= {qeR® : <qq = +)
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mit der von < , > induzierten Metrik g. M' ist dann diffeomorph zu $'xR® und
enthilt geschlossene zeitartige Kurven. Die universelle Uberlagerung von (M',g) mit
mit der von g induzierten Metrik heiBt dann Anti-de-Sitter-Raumzeit und wird mit M_

bezeichnet. Zu den Isometrien M_ von gehéren die Transformationen aus S0(2,3).
3. Kausalitdt und Konformstruktur.

Es sei (M,g) eine Raumzeit, die als zusammenhingend angenommen werden
soll. Eine Zejtorientierung auf M ist gegeben durch ein Vektorfeld Z auf M mit
gq(Zq,Zq) > 0 fiir alle gqe M. Eine Kurve v:[t,,t.] —> M heiBt kausal (das
heiBt zeitartig oder lichtartig), wenn gilt: gY(t)(Y(t),‘{(t)) 2 0 fiir alle teltg,t].

Die kausale Vergangenheit von a € M ist

C_(a) == {be M: Es gibt eine kausale Kurve v : ft,t] —> M mit

¥(t) =b, y(t)=a und g_,(Z y»¥(£)) 2 0 fiir alle te [t,.t 1}

Y My (t

Im Falle des Minkowski-Raumes ist C_(0} = C_ der oben eingefiihrte Riickwirts—
lichtkegel. Die Menge der C_(a), a € M, {und analog C+(a) ) kann man als die Kausal-
struktur von (M,g) mit Zeitorientierung Z auffassen. Jede andere Zeitorientierung
Z' liefert C'(a) = C_(a) und C(a) = C/a) fiir alle ae M oder C'(a) = C,la)
und Ci{a) = C_(a) fiir alle ae M. Die Transformationen von M, welche die Kausal-
struktur invariant lassen, sind die konformen Abbildungen, also die differenzierbaren
Abbildungen ¢ : M —> M’, zu denen es eine positive, differenzierbare, skalare Funk-
tion A: M —> R mit g(X,Y) = Xg'(Te(X),Te(X)) fiir alle differenzierbaren Vek-
torfelder X,Y auf M gibt.

Neben der Isometriegruppe Isom(M,g), welches die volle Symmetriegruppe
von (M,g) ist, hat man also die gréBere Gruppe Konf(M,g) derjenigen Diffeomorphis-
men, welche neben den Orientierungen die Kausalstruktur invariant lassen.

Fiir den Minkowski-Raum M hat man Konf(M) & SO(2,4), wobei die in
Paragraph 2 beschriebenen konformen Abbildungen von M noch neu hinzukommen. Fiir

M, bzw. M_ gehoren die Elemente aus SO(2,5) bzw. SO(3,4) zur konformen Gruppe.
4. Kosmologie

Das "Kosmologische Prinzip" verschirft das Kopernikanische Prinzip in der
folgenden Weise: Das Universum als Raumzeit ist in allen Raumzeitpunkten (approxima-
tiv) raumlich isotrop, das heifit keine Richtung ist ausgezeichnet. Man kann dieses
Prinzip physikalisch und philosophisch begriinden, aber man kann es natiirlich nicht
nachpriifen. Bestenfalls einige Konsequenzen des Kosmologischen Prinzips lassen sich

anhand von Beobachtungen tiberpriifen, Mathematisch prizise ausformuliert bedeutet

das Kosmalooicche Prinzin 7nnsSchet die Fvictarns vwmm Feaboaloam ~dam ool oboo s fancl
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[HAE]) Symmetrien, unter denen die physikalischen Gesetze invariant bleiben. Das hat
besondere Konsequenzen fiir das Gravitationspotential, das ja in einer Raumzeit (M, g)
durch die Metrik g reprisentiert wird. Eine genaue Analyse der Isotropiebedingungen
liefert als eine befriedigende Definition, daB (M, g) genau dann dem Kosmologischen
Prinzip geniigt, wenn die Schnittkriimmung von (M,g) konstant ist. Ohne auf den Be-
griff der Schnittkriimmung ndher einzugehen (es handelt sich im wesentlichen um die
Kriimmungen von 2-dimensionalen Flichenstiicken S C M, vgl. G.14.4°) ist klar, daB
jetzt die Mathematiker aufgerufen sind, alle 4—dimensionalen Raumzeiten mit konstan-
ter Schnittkriimmung aufzuzéhlen (Raumformenproblem). Ein erstes Resultat in diese
Richtung (siehe z.B. [ONE]):

Satz. Sei (M,g) zusammenhingende und einfach zusammenhingende Raum-
zeit mit konstanter Schnittkriimmung o. Dann ist (M,g) isometrisch isomorph zu
einem der folgenden Modelle:

1° 6>0 : M2 RxS o=r"
2° 5 =0 ® RxE®X M Minkowski-Raum
3° 6<0 : M= RxH 6= -1"

Die Metriken sind in allen drei Fillen die natiirlichen Produktmetriken, auf der zweiten
(Raum—-)Komponente jeweils negativ zu nehmen. Sz ist die bereits wohlbekannte
3~-dimensionale Sphére mit Radius r > 0 im euklidischen R4. E® ist einfach der eukli-
dische 3-dimensionale Raum. [H]la_ ist der dreidimensionale hyperbolische Raum mit
Radius r > 0 (vgl. G.14.5°). [H]i kann realisiert werden als die folgende 3—-dimensiona-

le Untermannigfaltigkeit von M

, —
Hy = {geM: <a@> =%, a°>0) = {a" =}/ % o’ ++* }

mit der von M induzierten Riemannschen Metrik auf [Hli. Fiir geeignetes r ist 1°
isometrisch isomorph zur de-Sitter-Raum~Zeit M, und 3° zur Anti-de-Sitter—Raum-
zeit M_. Die 3 Modelle des Satzes haben die gleiche Kausalstruktur: M ist zu dichten

3 3 . .
Unterrdumen von R x §_ bzw. Rx H_ konform dquivalent.

Stellt man also zusdtzlich zum Kosmologischem Prinzip zur Vereinfachung
die Bedingung, daB das Universum einfach zusammenhingend ist, so ist das Univer—
sum isometrisch isomorph zu einem der drei Modelle des Satzes. Ansonsten hat das
Universum als universelle Uberlagerung eines dieser drei Modelle. Anders ausgedriickt:
Das Universum ist geeigneter Quotient eines dieser drei Modelle. Die Klassifizierung

dieser Quotienten ist noch nicht abgeschlossen.
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V EICHINVARIANZ

Seit der Entdeckung der Quantenmechanik ist es ein Hauptanliegen der
Theoretischen Physik, Atomkerne und deren Bestandteile zu verstehen und zu systema-
tisieren, Als ein wichtiges Hilfsmittel dazu dienten Symmetriebetrachtungen. Aber trotz
der groBen Erfolge, etwa der Vorhersage neuer Teilchen, fehlte es bis Mitte der siebzi-
ger Jahre an einer fundamentalen physikalischen Theorie zur Erkldrung des komplizier-
ten dynamischen Verhaltens der verschiedenen Elementarteilchen. Neben der elektrody-
namischen Wechselwirkung, welche im Rahmen der Quantenelektrodynamik befriedi-
gend behandelt werden konnte, galt es vor allem, fiir die schwache und die starke
Wechselwirkung eine fundamentale Theorie zu finden.

Aus heutiger Sicht 148t sich sagen, daB es an "Geometrie” fehlte. Geometrie
hat in Form von Eichtheorien, in der Symmetrieprinzipien und Geometrie in besonders
enger und fruchtbarer Verbindung stehen, ihren Eingang in die modernen Elementarteil-
chentheorie gefunden. Tats#chlich liefert erst die Idee der Eichinvarianz und die damit
verbundene Eichfeldtheorie ein brauchbares und #uBerst wirkungsvolles Werkzeug zur
Formulierung fundamentaler Physik der Elementarteilchen. Durchgesetzt haben sich die
Eichtheorien, zu denen H. Weyl bereits 1918 erste geometrische Ansitze bei dem Versuch
lieferte, Elektrodynamik und Relativititstheorie einheitlich zu beschreiben, erst in den
siebziger Jahren, nachdem mit der sogenannten Symmetriebrechung ein Mittel gefunden
worden war, den Austauschteilchen der jeweiligen Theorie eine nichtverschwindende
Masse zuzuordnen. Bis dahin forderte die Theorie, daB solche Austauschteilchen - wie
zum Beispiel das Photon — masselos zu sein haben, im Widerspruch zu der kurzen
Reichweite der untersuchten schwachen und starken Wechselwirkungen.

Aus mathematischer Sicht manifestieren sich in der Geometrie der Prinzipal-
faserbiindel mit Strukturgruppe die gemeinsamen Aspekte von Geometrie und Symme-—
trie auf besonders liberzeugende Weise. DaB auch eine der bedeutendsten Entwicklungen
in der Theoretischen Physik, nimlich die Verwendung der Eichtheorie, nichts anderes als
eine andere Formulierung der Faserbiindelgeometrie ist, hat vor etwa 25 Jahren groBe

Verwunderung ausgeldst.

In diesem Kapitel soll die Idee der Eichinvarianz und ihr geometrischer Ge-
halt dargelegt werden. Damit wird nicht mehr als der Ausgangspunkt beschrieben, von
dem man fortschreiten kann zur Quantisierung von Eichtheorien und zur eigentlichen
Quantenfeldtheorie mit ihren vielen Ver#stelungen, Erfolgen und Problemen. Wir begin-
nen im ersten Paragraphen mit der in Kapitel IV bereits angesprochenen Eichinvarianz
der Elektrodynamik, welche insbesondere die Ladungserhaltung erkldrt, kommen im

zweiten Paragraphen unter Voraussetzung der Quantenmechanik und der Forderung von

T L2 wews 1 . . P
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der Quantenelektrodynamik, um im dritten Paragraphen die Eichinvarianz auf nichtabel-
sche Gruppen, insbesondere auf SU(2) als Isospingruppe, zu libertragen. Diese ersten '
drei kurzen Paragraphen haben einfiihrenden Charakter und sollen die spiteren Begriffs-
bildungen motivieren. Die beiden folgenden Paragraphen vier und fiinf sind der mathe-
matischen Formulierung der geometrischen Aspekte der Eichtheorie gewidmet. Diese
zwei Paragraphen lassen sich unabhingig von dem Rest des Kapitels lesen als eine Ein-
fiihrung in die Grundbegriffe der Faserbiindelgeometrie, zuerst im Rahmen der Vektor-
biindel und dann im Rahmen der Prinzipalfaserbiindel. Im sechsten Paragraphen wird
diese geometrische Sprache benutzt, um die Dynamik von Eichtheorien zusammen mit

einer Reihe von Beispielen zu behandeln.

Mit der in diesem Kapitel dargestellten klassischen Eichtheorie ist man noch
weit davon entfernt, die Elementarteilchen zu beschreiben. Denn eine Elementarteil-
chentheorie muB eine Quantentheorie sein. Die zur Zeit beste Quantentheorie der
Elementarteilchen ist die Quantenfeldtheorie. In der Quantenfeldtheorie spielt die
klassische Eichtheorie lediglich die Rolle der zugehérigen "unquantisierten” Feldtheorie:
Seit lingerem versucht man ndmlich, dhnlich wie die Photonen in der erfolgreichen
Quantenelektrodynamik auch die anderen Elementarteilchen als quantisierte Felder zu
beschreiben. Die Photonen sind die Quanta einer quantisierten Elektrodynamik. Deshalb
sucht man zu den anderen Elementarteilchen entsprechend klassische Feldtheorien,
deren Quanta als die jeweiligen Elementarteilchen aufgefaBt werden. Als solche klassi-
sche Theorien haben sich die Eichtheorien bewihrt, insbesondere die Yang-Mills—-Theo-
rien. Die Gruppe U(1) der Phasenfaktoren der Elektrodynamik wird dabei ersetzt durch
nichtabelsche Gruppen wie SU(2), SU(3) und andere. Die Nichtkommutativitit der
Gruppen bewirkt u.a., daB die entsprechenden Bewegungsgleichungen (als Verallgemei-
nerung der Maxwell-Gleichungen) nicht mehr linear sind.

Auch wenn die Quantentheorie von vielen Physikern als die eigentlich primé-
re Theorie angesehen wird, aus der sich die klassischen Theorien als Grenzfall ergeben
sollten, so wird dennoch Gebrauch von klassischen Theorien gemacht, um zu quanten-
theoretischen Modellen zu kommen. Im Falle der Quantenmechanik wird dabei auf die
Klassische Mechanik zuriickgegriffen, im Fall der Quantenelektrodynamik auf die Elek-
trodynamik. Im Falle der Quantenfeldtheorie dagegen werden die jeweiligen klassischen
Theorien erst als geeignete Eichtheorien kiinstlich eingefiihrt, sie basieren nicht auf be-
reits bekannten klassischen Theorien. Sie sind in diesem Sinne als unphysikalisch einzu-
stufen, sie haben ihre Berechtigung nur als die klassischen Gegenstiicke zu den gesuch-
ten Quantenfeldtheorien. Trotzdem ist es wiinschenswert, den bereits eingefiihrten "un-
physikalischen” Theorien eine gewisse physikalische Realitit zuzusprechen, wie das zum
Beispiel zu Beginn des sechsten Paragraphen kurz versucht wird.

Es ist klar, daB bei dem oben geschilderten Gebrauch der Eichfeldtheorien
nicht nur das Studium der klassischen Eichtheorien sondern vor allem der Ubergang von

der jeweiligen klassischen Theorie zur zugehdrigen Quantentheorie — also die Quantisie-
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1 EICHINVARIANZ IN DER ELEKTRODYNAMIK

Bei der Beschreibung der Maxwellschen Gleichungen in Paragraph 1 von
Kapitel IV wurde ausdriicklich darauf hingewiesen, daB die Elektrodynamik eichinvariant
in folgendem Sinne ist:

Zu jedem Viererpotential A = (A;,A;,A,Ay) = (V,A), A=A dq", A € E(M),
welches Losung der Maxwell-Gleichungen ist (vgl. IV.1.19), das heiit fiir F = dA gilt

dF = 0 und auF““ = 4nj”,

ist auch A' = A +d¢ fiir ¢ € §(M) Ldsung der Maxwell-Gleichungen. Denn es gilt
dA' = dA, also F' = F, wegen ddp = 0.

Es sollte moglich sein, diese Eichinvarianz der Maxwell-Gleichungen bereits

beim Wirkungsfunktional S zu erkennen, denn S bestimmt die Dynamik (vgl. IV.3).
Sei also S(A) = —f (AF F"™ +4nj¥A)dt
MY4 Lty } A q

" 1 .
fir Ac (M) und F = dA, das heift F,, = 8,A, -~ dA .

Die Bedingung
(L1 S(A) = S(A +de) fiiralle Ae&y(M) und ¢ € §_(M)

zieht offenbar nach sich, daB mit jeder Lésung A der zugehtrigen Euler-Lagrange-
Gleichungen (vgl. IV.3), also hier der Maxwell-Gleichungen, auch A + d¢ eine Lésung
ist. (6 (M) = {pe 8(M): ¢ = 0 auBerhalb einer kompakten Menge K C M})

Um 1.1 zu analysieren, vergleiche man S(A + dgp) mit S(A):

S(A + do)

]

. . 4
- IM(%FuVFuV + 47UVAV + 47t]\)avcp)d q

I

S(A) - 4m fM(jVav(p)d4q .

Also gilt 1.1 genau dann, wenn das Integral flM(jvavcp)d4q fiir alle ¢ € & _(M) ver-
schwindet. Wegen

Jad, (iVe)dYy

Jar@,Meda+ [, i(0,0)d%
und

. 4 . 4 .
JmaoGo)d'a = [ a,(Pe)dba = [N, Ppdey = 0

ist 1.1 daher dquivalent zu f(avjv)(pd4q = 0 fir alle ¢ € §_(M), also zur Kontinui-
tatsgleichung avj“ = 0. Dabei wurde der Satz von GauB fiir eine groBe (euklidische)
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Kugel Kc ™M mit {ge M: ¢{q) £ 0} C K benutzt, um fKav(jvcp)d%] als Integral
iiber die "Oberfldche" von K, nidmlich die 3—Sph'eife $® = 9K mit Hilfe der duBeren
Normalen (Nj,N;,N,,N;) zu schreiben. Wegen ‘PIaK = 0 verschwindet dieses Inte-

gral.

Damit erweist sich die Kontinuitatsgleichung, die im letzten Kapitel eine Ver-
tréglichkeitsbedingung zur Lisbarkeit der Maxwellschen Gleichungen war, jetzt als die
Bedingung dafiir, daB die zugehdrige Wirkung S eichinvariant ist. Die Kontinuitétsglei-
chung, welche die Losbarkeit der Maxwell-Gleichungen garantiert, ist zugleich ein
Resultat der Eichinvarianz und entspricht tatsdchlich einer ErhaltungsgrdBe zu dieser

Invarianz: Der lokale Erhaltungssatz avj\J = 0 wird aufintegriert zu

QL) = [rei’(t.a',0% aY) da'de’de® = [t @)ds,

wobei t = qo und q = {q,q,,q,).

Q(t) ist die Ladung zur Ladungsdichte jo = p und Q ist eine Erhaltungs-

groBe:
Q) = 3,Qt) = [adyi°(t,a)dq = ~[jgadiv jlt,gddq = 0

wie oben, wenn j kompakten Tréger hat oder geniigend schnell gegen Null geht Ffiir
gl — .

Damit hat die Ladungserhaltung in der Elektrodynamik eine Erkldrung durch
eine geeignete Symmetrie gefunden, ganz im Sinne der Umkehrung der Noetherschen
Satze (vgl. Paragraph 9, Kapitel II). Die Symmetriegruppe ist die unendlichdimensionale
Gruppe &(M,U(1)} (der Bichtransformationen), wie wir im nichsten Paragraphen sehen

werden.
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2 WECHSELWIRKUNG EINES GELADENEN TEILCHENS MIT DEM
ELEKTRODYNAMISCHEN FELD

In diesem Paragraphen soll die Elektrodynamik aus einem Invarianzprinzip
der Quantenmechanik hergeleitet werden.

Ein quantenmechanischer Zustand wird beschrieben durch eine Wellenfunk-

tion ¢ = ¢(q), I4ll = 1, ¢ € B (vgl. Paragraph 1 in Kapitel 111). Der Zustand bleibt
invariant unter den globalen Phasenrotationen:

20§l —> ¢'(q) = e p(q),

wobei 6 € R ein fester Winkel ist. Die Phase eie von (¢ kann also nicht als physika-
lische GréBe angesehen werden.

Es stellt sich die Frage, ob Phasenrotationen an verschiedenen Orten ver-
schieden gewihlt werden kénnen. Das heiBt, es gilt zu untersuchen, ob der quanten-
mechanische Zustand fiir differenzierbare 6 = G(q) auch invariant bleibt unter den
sogenannten Jokalen Phasenrotationen:

22) g — P'(q) = 9@

d(q).

Es zeigt sich, daB die Zustinde invariant gegeniiber lokalen Phasenrotationen
sind, wenn man die Bewegungsgleichung, also hier die Schriédinger-Gleichung, in geeig-
neter Weise modifiziert. Diese Modifikation 14Bt sich dann anschlieBend interpretieren
als die Einfiihrung von elektromagnetischen Feldern. Zugleich 148t sich bei dieser Inter-
pretation die Wechselwirkung aus dieser Modifikation ablesen. Zur Terminologie: In der
Physik wird (anders als in der Mathematik) eine von q abhéingige Phasenrotation wie 2.2
eine Jokale Phasenrotation genannt. Sie heift global, wenn 6(q) konstant ist wie in 2.1,

Geht man aus von einer kanonischen Quantisierung (wie in den Beispielen

1°-4° in [11.2) mit Hilbertraum H = L*(R™) und zugehorigem Schrédinger-Operator
Ry = Hgb + VY, e DR,

wobei #, = - A (im nichtrelativistischen Fall) gilt, und V = V(q) ein Potential
ist, so verdndert die lokale Phasenrotation § ——> ¢' nach 2.2 im wesentlichen an U]
nur #;¢ und dort die Ableitungen auq; von ¢. Dasselbe gilt fiir ein freies relati-
vistisches Teilchen im Minkowskiraum M: #; = - %Aq + %ag =10 = %aua“ (mit
¥ = n“"av) oder & = .?60 +Vauf H = Lz(IM), und es gilt auch fiir Vielteilchen-
svsteme (vel 7B F1OWD
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In der jeweiligen Schridinger-Gleichung bei einer kanonischen Quantisierung
mit dem Hilbertraum der quadratintegrierbaren Funktionen verdndern sich durch 2.2
also im wesentlichen nur die Ableitungen au:

autb'(q) = a (eie(q))dl(q) + eie(q)autb(q)

= V(@0 + 13,00 h(q)

Lokale Phaseninvarianz, das wire etwa auqﬂ = eie(q)autb, ist natiirlich vordergriindig
verletzt, kann aber erzwungen werden, wenn die Ableitungen au modifiziert werden
durch Einfiihrung eines differenzierbaren (FEich-) Potentials Au = Au(q) und der zu-

gehorigen, sogenannten kovarianten Ableitung

(2.3) D, = 9, + ieAu,
wobei e € R, e + 0, eine Konstante ist. Das Feld (Au) wird jetzt am giinstigsten als
1-Form A = Audq” geschrieben. A soll sich unter 2.2 wie folgt transformieren:

(2.4) Ag —> A'u = Au - —8 0 das heiBt A —> A' = A - —d9

Jetzt priift man leicht nach, daB unter 2.2 und 2.4 mit

v .
(2.5) D,—> D, =29, + ieA
gilt

e io
(2.6) Db —> DLY' = "D g.

Denn Di'(q) = 3, 4'(q) + Al (q)

_ 19(q)(a Lb(q) + i e(q)w(q) + ieA (q)qJ(q) - i9 9(q)tb(q))

= Py Lt e kb)(q)

_ 19(q)D 4)( )

Als Ergebnis haben wir: Die lokale Phasenrotation 2.2 14Bt die Ausdriicke DULIJ inva-
riant im Sinne von 2.6. Damit ist also die modifizierte Schrédinger-Gleichung, in der
au durch Du ersetzt wird, das heiBt # := %DuDu + V, invariant gegeniiber 2.2:
'Y = £DDYY + Vit = 4D DY) + Ve'y
= 51D, Db + Ve = (FY)'.
Bemerkungen und Beispiele:

1° GroBen wie $Du¢ bleiben invariant gegeniiber lokalen Phasenrotationen

und eignen sich daher als Bestandteile einer invarianten Lagrange~Dichte.
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)

2° Das Transformationsverhalten 2.4 entspricht gerade der in Paragraph 1
ausgesprochenen Eichinvarianz beim elektromagnetischen Potential: Mit ¢ = - —é—e gilt
ja A'= A - 1do = A +de.

3° Lokale Phaseninvarianz (i.e. Eichinvarianz) erfordert also die Einfiithrung
eines Feldes A mit dem Transformationsgesetz 2.4. Wird A als elektromagnetisches
Potential interpretiert, so ist durch au —> Du = au + ieAu bereits die Wechsel-
wirkung zwischen dem Feld ¢ und A mit der Kopplungskonstanten e bestimmt. e
entspricht dann der Ladung des durch ¢ beschriebenen Teilchens und A geniigt den
Maxwell-Gleichungen mit einer geeigneter Stromdichte. Dieses Verfahren hat als Prin-
zip der Eichinvarianz eine weitgehende Verallgemeinerung fiir andere Gruppen und damit
fiir andere potentielle Wechselwirkungen erfahren, (vgl. 6.10).

4° Fiir das freie relativistische Teilchen der Masse m > 0 gilt p2 =m

aufgrund der Erhaltung von Energie—Impuls (p2 = nw P, P, mit der Energie p, = E
und den Impulsen Py:Pys P ). Bei der kanonischen Quantisierung mit E — 9, und

p, —> —id,,v = 1,2,3, wird aus p2 - m2 = 0 die Klein-Gordon—-Gleichung

@7 (0 + m)y =0

2.7 kann im iibrigen auch als Euler-Lagrange-Gleichung zur Lagrange-Dichte
Ly = % n“v auanv - %mz q)z erhalten werden (vgl. IV.3.4).

2.7 besteht in Wirklichkeit aus 2 Gleichungen fiir Real- und Imaginirteil von
¢, was auch durch

(0 + m*)¢ = 0 und (0T + miy =0
ausgedriickt wird, wobei ¢ und -LE als unabhidngige Felder behandelt werden. Diese
beiden Gleichungen haben als Lagrange-Dichte zum Beispiel

£y = n“"aucpﬂ - mZLpE.
Die Ersetzung au — DLJL = au + ieAu in &, liefert die neue Lagrange-Dichte
£ =1"D4DY - m?yy,
die natiirlich eichinvariant ist. Es gilt (bei 8% = n“"av und A% = anAv)
2 = "o - m*4y - ieA (@ WT - $@YD) + efAYA 4T
= &, - 1eA ("D - Y" D) + eZA“Auq)E.
u

Dabei kann jetzt i = ie((3"P)Y - ¢(8%¢)) als Stromdichte mit auj“ = 0 aufgefaBt
werden, denn

I

N

W7 = 10002500 + 8o, b ~ 3 4" D) - 93, D)

ie(O¢y - ¢O¢) = ie(- m*¢T + pm?Q) = 0.

& A“Auqﬁ entspricht einer Selbstwechselwirkung mit Strom J = ezq@. Also:

w — ¢ _ Ma o a2 2 u,
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5° Die Dirac-Gleichung
(2.8) (iy“au -m =0

entstand unter anderem aus dem Bemiihen, die Klein—-Gordon—-Gleichung zu linearisieren,
bzw. die "Wurzel" aus [ + m? zu ziehen. 2.8 ist ein sinnvoller Ausdruck, wenn zu-
ndchst die "Wellenfunktion” ¢ = ({(q) jetzt ihre Werte in €" hat, also ein Spinor ist,
und wenn Yu, u = 0,1,2,3, Matrizen aus C(n) mit

Pyt Tt = 2™
sind. Zum Beispiel kann man im Falle n = 4 die von Dirac eingefilihrten Gamma-Ma-

trizen Yu verwenden: Die Blockmatrizen

W = (I O) ’ ™= (_0 Gu) D u= 1,23

0 -1 o, 0

Hier sind die O die Pauli-Matrizen (vgl. L.6.6°) und 1 ist die 2x2-Einheitsmatrix. Fiir
¢ gilt iy"9,iy"a, = -0 und (iy"d, + m)(iy"a, - m) = (O +m"). Aus 2.8 folgt
sofort (C1 + mz)Lp = 0.

Als eine Lagrange-Dichte &, die zu 2.8 fiihrt, kann £, = Ej(iy“au -m)

angesehen werden, wenn dies als Abkiirzung von
—
Lob = j;l ¢, Gy 8, - m);

verstanden wird. Die entsprechende eichinvariante Lagrange-Dichte ist dann

2y = §(iy"D, - m)¢
$live, - ey“A, - m)y

$0¢ - anu‘p AU-’

I

I

wobei wieder j“ = e_q: Yugb als Stromdichte mit auj“ = 0 aufgefaBt werden kann.
Die vollstandige eichinvariante Lagrange-Dichte der Quantenelektrodynamik erhilt man
daraus durch die Addition eines Terms —%FWFW fiir die Selbstwechselwirkung,

welcher die Ausbreitung freier Photonen beschreibt:
— — 143 _ l (3AY)
(2.9) $QED = %, j Au 4Fuv F

6° Die Einfiihrung einer Masse zum Photonenfeld in 2.9 wiirde einen Term

der Form %mzA‘LAu erfordern. Dieser Term ist nicht eichinvariant gegeniiber 2.2, 2.4
4] [ N _1 u

denn A"A, —— (A" - $a"0)(A, - 59,0) + A“A,

rung: Die lokale Eichinvarianz verlangt hier, daB die Photonen masselos sind.

fiir nichtkonstante 6. Folge-

AbschlieBend zu diesem Paragraphen wollen wir den historischen Ursprung

q > e T 21 . " P . 2. a 11 N v 0t 4 s 43 ses a2 9
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der Elektrodynamik einheitlich beschreiben zu kénnen, hat Hermann Weyl 1918 vorge-
schlagen, die Verdnderungsrate von Funktionen f nicht wie iiblich durch einen unifor-
men MaBstab zu bestimmen, sondern durch einen ortsabhiéngigen MaBstab von Punkt
zu Punkt verschieden zu gewichten,

Das ist die ganze Idee der Eichinvariang !

In Formeln ausgedriickt ist die Verdnderungsrate von differenzierbaren Funk-
tionen f = f(q) fiir einen uniformen MaBstab proportional zum Gradienten von f:
Fiir kleine h gilt

flg+h) = f(q) + auf(q)hu + O(lh® |, ie. flg +h) ~ flq) ~ Vf(qh.
Eine ortsabhingige Fichung oder Reskalierung des MaBstabs bedeutet eine Beschrei-
bung der Verdnderungsrate durch zusitzliche Funktionen S = Su(q), so daB statt
9,f@h* nun

(0,fla) + 5 (q)f(q))h*
als Anderungsrate aufgefaBt wird.

Fiir den Fall von Su(q) € R, den H. Weyl urspriinglich vorgesehen hatte,
fiihrt eine Formulierung der Physik mit der entsprechenden Eichtheorie zu Unstimmig-
keiten. (Einsteins Gegenargument: Man beobachte zwei Uhren, die von einem Punkt a
ausgehen und ldngs verschiedener Wege nach a zuriickkehren. Sollten sich die MaBsta-
be fiir die beiden Uhren im Verlauf ihrer Geschichte verdndert haben, so hitten sie
verschiedene GriBen und die Uhren zeigten verschiedene Zeiten an. Das UhrenmaB wire
daher abhingig von der Vorgeschichte der Uhr. Damit aber wire Physik unméglich, da
jeder seine eigenen Gesetze hitte.) Deshalb wurde H. Weyls Ansatz zunichst verworfen.
Nach der Entdeckung der Quantenmechanik im Jahre 1925 wurde Weyls Idee aufgegriffen
von Fock und London (und auch von Weyl) und statt einer MaBstabs~Reskalierung eine
Phasenverschiebung betrachtet, indem S als imagindr angenommen wird: S = 1eA
wie in der obigen Einfiihrung der kovarxanten Ableitung. (Auf dem Niveau von Symme—
triebetrachtungen kann diese Veridnderung des Weylschen Ansatzes verstanden werden
als ein Wechsel von der additiven Gruppe R mit infinitesimalen Reskalierungen
Su(q) € R = LieR zur multiplikativen Gruppe U(1} mit infinitesimalen Reskalierungen
ieAu(q) €iR = LieU(1).) Mit dieser Verinderung beschreibt die hier vorgestellte
U(1)-Eichinvarianz eine Symmetrie der Elektrodynamik und der Quantenelektrodynamik,
im iibrigen auch der Geometrischen Quantisierung (vgl. I11.2 und V.6.12). Diese Theorien
{eie(q)l 6:M —> R differenzier-
bar}. In dieser Form hat Weyls Idee eine Verallgemeinerung auf allgemeinere Lie-Grup-
pen G anstelle von U(1) und fiihrt zu den Yang-Mills-Eichtheorien (vgl. Paragraph

sind invariant unter der "Eichgruppe” & (M, U(1)) =

6). Weiterhin hat die Theorie der Eichinvarianz eine schéne geometrische Fassung, die
wir in den Paragraphen 4 und 5 besprechen werden. Insbesondere erhilt die kovariante
Ableitung, die in der obigen Herleitung als Rechentrick oder Vertréglichkeitsbedingung
erscheint, eine geometrische Deutung als kovariante Ablejtung eines geometrischen
Zusammenhangs im Rahmen einer Geometrie, in der der Paralleltransport lings Kurven

der fundamentale geometrische Begriff ist.
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3 EICHINVARIANZ DER ISOSPINGRUPPE

Die ‘Uberlegungen des Paragraphen 2 werden jetzt von U(1) auf die Isospin-
gruppe SU(2) tbertragen.

In Experimenten hat sich gezeigt, daB die starke Wechselwirkung zwischen
zwei Protonen, zwischen Proton und Neutron, sowie zwischen zwei Neutronen jeweils
fast iibereinstimmen. Auch die Massen von Proton und Neutron sind nahezu gleich:
938,2 MeV und 939,5 MeV. Aufgrund dieser Beobachtungen schlug W. Heisenberg im
Jahre 1939 vor, daB die Ursache fiir diese Uibereinstimmungen in einer internen Sym-—
metrie zu finden sei, welche es erlaubt, das Neutron wie auch das Proton bei Vernach-
lissigung von schwacher Kraft, elektrodynamischer Wechselwirkung und Schwerkraft
jeweils als speziellen Zustand eines Nukleons aufzufassen. Diese verschiedenen Zustén-
de seien insbesondere durch eine Art Phasenrotation ineinander iiberfiihrbar. Die starke
Wechselwirkung sei dann invariant beziiglich dieser Symmetrie.

Diese Symmetrie, welche aus historischen Griinden Isospin-Symmetrie ge-
nannt wird, und welche eine Symmetrie der Gruppe SU(2) ist, kann im wesentlichen
folgendermaBen beschrieben werden: Die Wellenfunktionen von Proton bzw. Neutron
seien mit p bzw. n bezeichnet. Sie werden zu einem Vektor § = (B) Zusammenge-
faBt. Auf ¢ konnen dann die Matrizen g ¢ SU(2) durch Matrixmultiplikation wirken.

Die Theorie erweist sich zunichst invariant gegeniiber Transformationen der
Form ¢ ——> g¢ mit ge SU(2), welche jetzt globale SU(2)-Eichtransformationen
heiBen. Ohne die genaten Gleichungen fiir die freie Theorie von Nukleonen zu kennen,
kann man analog zu den liberlegungen des Paragraphen 2 Invarianz gegeniiber lokalen
SU(2)~ Eichtransformationen verlangen. Eine lokale SU(2)-Eichtransformation ist von

der Form
3.1) Y@ > ¢'(q) = S(q)d(q).

wobei §: M —> SU(2) eine differenzierbare Abbildung ist. S ist Element der Grup-
pe &(M,SU(2)) und 14Bt sich auch als 8(q) = expu(q) schreiben mit o € &{M, 8u(2)).
Eine in Lehrbiichern der Physik iibliche Schreibweise ist

alq) = Lic-8(q), ¢-8(q) = o;6'(a),

mit den Pauli-Matrizen o,,0,,0, (siehe 6.6%in Anhang L) und mit ej e 6(M,R). Es ist
dann S(q) = exp(}io-6(q)).
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Unter der Annahme, daB in den relevanten Gleichungen unter den Transfor-
mationen 3.1 wieder nur bei den Ableitungen au Verédnderungen auftreten, muB man

jetzt au so modifizieren zu Du‘ daB stets gilt:
(3.2) Du(b(q) — D"llb'(q) = S(q)Dud,J(q) mit §'(q) = S{q)P(q).

Um mit dem Ansatz D, = 9, + icB, mit ceR und iBu(q) € gu(2) auf

die geeignete Form von DZL zu kommen, rechnet man :

I

Dlﬂ" auq;' + icB;L ¢!
= (apsw + sauq; + icB'uSlIJ
sowie

SD0 = 83,4 + SicBy
Fiir die Giiltigkeit von 3.2 muB daher stets

Lomt e _
1cBuS = ic SB‘L aus

sein und daher

—1

= i -1
33) B, = sB,s™ + 13 5)s

gelten.

ZusammengefaBt: Die neu eingefiihrte "kovariante Ableitung" D ¢ ist eich-
invariant im Sinne von 3.2 unter lokalen SU(2)-Transformationen der Form 3.1 genau
dann, wenn sich Du au + ICBu vermoge 3.3 transformiert.

Um einen Vergleich mit der U(1)-Invarianz 2.4 aus Paragraph 2 herzustellen,
betrachte man 3.3 fiir solche S, die ihre Werte in der Untergruppe U :=- {(g %): zeC,
Iz} = 1} = U() von U(2) haben. Dann ist S(q) = exp(ie(q)os) mit. 6 € 6(M,R),
und 3.3 bedeutet wegen auS(q) = iaue(q) S(q):

_ -1 i -1 _ -t _ 1
B'u = SBuS + c(auS)S = SBuS caue.

Das entspricht fiir Bu € LieU wegen SBu = BuS gerade dem Transformationsverhal-
ten 2.4, wenn A‘l = Bu und e = c gesetzt wird.

Als Ergebnis dieser Broérterungen erhilt man Felder B , welche ihre Werte
in 8u(2) haben und sich nach 3.3 transformieren. ZusammengefaBt geben die B eine
su(2)-wertige 1-Form B:= B dq fir qe M also B(q)=B (q)dq T M— éu(Z)
Physikalisch entspricht den dre1 Komponenten von B(q) (8u(2) ist dreldlmensmnal')
bei geeigneter Interpretation je ein Feld (analog zur Situation bei A = A dq ), und
diese drei Felder beschreiben die Wechselwirkung mit ¢ als der Kopplungskonstanten
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Analog zur Elektrodynamik hat man auch hier eine Wechselwirkung des
Potentials mit sich selbst, welche in der Elektrodynamik durch den Term - %Fuv F* in
der Lagrange-Dichte % beschrieben wird. In der allgemeineren Situation sucht man
nach Guv e §(M,SU(2)) mit dem Transformationsgesetz GLN = SGUV S, Der erste
Ansatz Guv = aqu - a\)Bu fiihrt nicht zum Ziel, aber

(3.4) Guv = auB\J - aVBu + ic[Bu,Bv}
mit der Lieklammer [ , ] von 8u(2) ist eichinvariant, das heift fiir S e &£{(M,SU(2))
gilt G, = §G,,s .

Als typische Lagrange-Dichte betrachtet man zum Beispiel zum freien Dirac—
Operator iyuau (vgl. 2.8) und zur Masse m > 0 ({ ist jetzt ein Paar von Ct-werti-
gen Funktionen, bzw. Feldern):

(35) £ = - {spur (G,,G*") + Pliy"D, - m)p

Die vorgestellte Theorie ist anwendbar auf den "Isospin”, wie wir zu Beginn
des Paragraphen dargelegt haben, aber auch auf die schwache Wechselwirkung, welche
ebenfalls einer SU(2)-Symmetrie unterliegt. Bine gemeinsame Untersuchung der U(1)-
Symmetrie (Elektrodynamik) und der SU(2)-Symmetrie (schwache Wechselwirkung)
fiihrt dann zu einer U(1) x SU(2)-Eichtheorie, welche zu der erfolgreichen Beschrei-
bung des Glashow-Salam-Weinberg-Modells der elektroschwachen Wechselwirkung
(= vereinheitlichte schwache und elektromagnetische Wechselwirkung) verwendet wird
(siehe z.B. [QUI], [RYD]).

Eine offensichtliche Verallgemeinerung der vorgestellten Theorie auf SU(3)
beziiglich der achtdimensionalen Darstellung von SU(3) (durch A-Matrizen, vgl. [QUI],
Seite 196) hat Anwendungen in der Beschreibung von gréBeren Familien von Elementar-
teilchen (wie zum Beispiel Baryonen—-Oktetts) und auf die Quantenchromodynamik, die

Theorie der Quarks.

In fast allen Fillen ergibt sich, daB die in Frage kommenden Teilchen zu-
nichst in der Theorie keine Masse haben (vgl. Ende von Paragraph 1). Eine geeignete
Masse kann diesen Teilchen aber doch zugeordnet werden iiber den Mechanismus der
Symmetriebrechung (vgl. z.B. [ORA], [QUI], [RYD]).



227

4 GEOMETRIE DER EICHTHEORIEN: VEKTORBUNDEL

In den folgenden zwei Paragraphen soll ein Einfiihrung in die geometrischen
Aspekte der Eichinvarianz gegeben werden. Es gilt also, den Potentialen A bzw. B
aus den vorangehenden Paragraphen und den GréBen F bzw. Guv eine geometrxsche
Rolle zuzuschreiben.

In diesem Paragraphen konzentrieren wir uns dabei auf Vektorbiindel, im
nédchsten behandeln wir die Geometrie der Prinzipalfaserbiindel. Der ganze vierte Para-
graph kann als eine ausfiihrliche Voriibung zum Begriff des Zusammenhangs aufgefaBt
werden. Denn im néchsten Paragraphen wird die Geometrie von Zusammenhingen auf
Vektorbiindeln in dem allgemeineren Rahmen der Geometrie von Zusammenhingen auf
Prinzipalfaserbiindeln kurz wiederholt. Insofern kann der vorliegende Paragraph auch
iilbergangen werden.

Zu Beginn werden die Vektorbiindel zunichst einmal als trivial angenommen.
Fiir viele physikalische Anwendungen ist es ausreichend mit trivialen Vektorbiindeln zu

arbeiten; lokal hat man in jedem Falle die Situation eines trivialen Vektorbiindels.

(4.1) Definition. Ein triviales Vektorbiindel vom Rang r iiber einer Mannig-
faltigkeit M ist einfach ein Produkt E := M x F, wobei F ein r-dimensionaler Vek-

torraum iiber K ist.

Dabei steht K fiir R oder fiir C, und entsprechend spricht man von
einem reellen oder von einem komplexen Vektorbiindel. Unter einer Mannigfaltigkeit
wird hier und im folgendem stets eine beliebig oft differenzierbare Mannigfaltigkeit ver—
standen, die fiir viele Zwecke einfach als eine offene Menge im R™ aufgefat werden
kann (vgl. Anhang M). F ist nach der Wahl einer Basis gleichzusetzen mit K. F
erhilt auf diese Weise die Struktur einer Mannigfaltigkeit, die von der iiblichen diffe-
renzierbaren Struktur des Raumes K* der r-Tupel von Zahlen aus K stammt. Daher
hat auch das Vektorbiindel E als Produkt die natiirliche Struktur einer Mannigfaltig-
keit (vgl. M.8), und die Projektion 1 := pr,: MxF —> M auf die erste Komponen-
te ist eine differenzierbare Abbildung. ("Differenzierbar" steht hier und im folgendem
stets fiir beliebig oft differenzierbar.) Die Fasern E, = 7 Ha) = {a) xF der Projek~
tion 7 erhalten von [ die Struktur eines K-Vektorraums.

Von besonderem Interesse sind aus Sicht der Eichtheorien die F-wertigen
Funktionen, die den Materiefeldern der letzten Paragraphen entsprechen, sowie die
Schnitte im Vektorblindel E. Der Raum aller differenzierbaren [F-wertigen Funktionen
auf einer offenen Menge U C M wird mit &(U,F) oder 8(U,K") bezeichnet. Jede
differenzierbare F—wertice Bunktion o « 1T c— 5% T bamem <ot o £% £ g 3
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a e U, auch als "Schnitt” in dem Vektorbiindel E aufgefaBt werden, also als differen-
zierbare Abbildung s: U —— E mit mos = idy;, und umgekehrt: Ein differenzierba—
rer Schnitt s des Vektorbiindels E iiber U, also eine differenzierbare Abbildung
s:U—> E mit mos = idu, liefert eine differenzierbare F-wertige Funktion
g = pryos mit s = s, also s(a) := (a,9(a)) fir alle ae U. Aufgrund dieser
Bezichung zwischen differenzierbaren F—wertigen Funktionen auf U C M und differen-
zierbaren E—wertigen Schnitten auf U kann der Raum der differenzierbaren Schnitte
s: U — E in E, den wir mit 8(U,E) bezeichnen wollen, mit &(U,F) identifiziert
werden. Beziiglich der punktweisen Addition und Multiplikation sind &(ULE) wie auch
&(U,F) K-Vektorraume. Weiterhin ist die Multiplikation einer "skalaren"” Funktion
fe &(U) = &(UK) mit einem Schnitt se &(UE) punktweise definiert (durch
(fs)(a) = fla)s(a) fir ae U) und ergibt einen Schnitt fs € §(U,E). Diese Multipli-
kation macht ‘6(U,E) zu einem &(U)-Modul. Die Zuordnung § +——> s, erhilt diese
Modulstruktur, das heiBt es gilt Spre = Sy + 8, und Sgp = fs¢‘

Zur Beschreibung der kovarianten Ableitung sind die differenzierbaren
1-Formen auf M mit Werten in einem Vektorraum [ oder einem Vektorbiindel E
niitzlich: Im Falle einer offenen Menge M C R™ und Koordinaten ql,qz, ,qn auf
M ist eine solche F-wertige differenzierbare 1-Form A gegeben durch A = Audq“
mit Au € 6(M,F), u=12, ...,n. Im allgemeinen hat A mittels lokaler Koordinaten
(vgl. M.8) beziiglich einer Karte auf einer offenen Menge U C M die entsprechende
Beschreibung A|u = Audqu mit A, € &(U,F). Eine koordinatenfreie Definition funk-
tioniert folgendermaBen (vgl. M.17.5°) : Eine differenzierbare 1-Form auf einer offenen
Menge W C M mit Wertenin F ist eine Abbildung A : B(W) —> &(W,F), die line~
ar beziiglich &(W) ist. Dabei bezeichnet B(W) den Raum der differenzierbaren
Vektorfelder auf W (vgl. M.12), und eine solche Abbildung ist &(W)-linear, wenn fiir
alle X,Y € B(W) und alle skalaren Felder fe §(W) die Identititen A(fX)= fA(X)
sowie A(X +Y) = A(X) + A(Y) giiltig sind. Tatsachlich liefert A mit Al = A dq"
flir offene UU'C W eine solche &(W)-lineare Abbildung vermbge A(X)|y = AuXu
fiir X € B(W) mit lokaler Darstellung X|y = x“au, X" € (1) . Insbesondere lassen
sich solche 1-Formen auch als differenzierbare Abbildungen A :TM —> F auffas-
sen, fiir die Afa) = A]TGM jeweils eine lineare Abbildung Ala): T M —> F ist
fiir alle a € W. Den Raum der differenzierbaren F-wertigen 1-Formen auf einer offenen
Menge W C M bezeichnen wir mit AW, F). Jﬂl(W,ﬂ-) ist wie auch &(W,F) in
natiirlicher Weise ein K-Vektorraum (punktweise Addition und Multiplikation!). Wei-
terhin ist die Multiplikation mit skalaren Funktionen fe (W) definiert und macht
AYW,F) zu einem &(W)-Modul. Fiir das triviale Vektorbiinde!l E = M X [F definiert
man die E-wertigen 1-Formen auf W in Analogie als die &(W)-linearen Abbildungen
n: B(W) —> &(W,E). Den Raum aller E-wertigen 1-Formen auf W bezeichnen wir
mit (W ,E). Natlirlich ist auch AYW.E) ein K-Vektorraum und &(W)-Modul, und
es lassen sich wie zuvor die Raume & (W,F) und & W.E) miteinander identifizieren:
Fiir eine 1-Form A € £YW.E) ist ja durch 71, (X)a) = (a,A(X)(a)), ae W, eine
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E-wertige 1-Form Ny € ﬂl(W,E) definiert und umgekehrt; auBerdem ist die Zuordnung
A —> n, ist §(W)-linear. (Tatsichlich lassen sich die E-wertigen 1-Formen auf W
auch als die differenzierbaren Schnitte in dem Biindel T"M ® E auffassen.)

Fiir den speziellen Fall des Vektorraumes g = End(F) aller K-linearen
Abbildungen von F nach F (also des Raumes K(r} der rxr-Matrizen beziiglich einer
Basis von [) bestimmt eine g-wertige differenzierbare 1-Form A e Jle(M,g) stets
eine &(M)-lineare Abbildung A : 8(MF) — A (MF) durch A(G)(X) = A(X)(p)
fir € 6(M,F) und X € B(M), und umgekehrt: Eine solche &(M)-lineare Abbildung
B: 8(MF) —> ! (M,F) ist immer von der Form B = A mit Ae¢ A1 (M,g), wobei
AX)(P) == BYNX).

Eine Inspektion der Beispiele aus den vorangehenden Paragraphen ergibt, daB
dort die kovariante Ableitung beziiglich der lokalen Koordinaten jeweils gegeben ist
durch "Potentiale” A,, die auf den vektorwertigen ¢ zusammen mit der partiellen
Ableitung au in der Form Dunp = auq) + AuL[J = (ag + Au)qb wirken, Fiir F-wertige ¢
gibt das Sinn, wenn die Au ihre Werte in dem Raum der r x r—Matrizen haben, wie
zum Beispiel im Falle der Isospingruppe mit Au = icBLL € 8u(2) C C(2) (vgl. mit dem
Ansatz vor 3.3). Ohne Bezug auf eine Basis von F ist die addquate Bedingung an die
A , daB sie ihre Werte in dem Raum End(F) aller K-linearen Abbildungen von F nach
F haben den wir wieder mit g bezeichnen. Damit haben wir eine g-wertige 1-Form

= A dq gefunden, mit der folgenden Eigenschaft: d + A wirkt auf differenzier-
bare IF-wertige Funktionen ¢ durch

(d+ Ay = dip + A¢
(mit d komponentenweise wie in M.15). Beziiglich emer Basis €,€,, ...,e, von F hat
¢ die Form ¢ = (be und A kann als Matrix (cx ) von skalaren Funktionen ge-
schrieben werden. Mit all dlesen Indizes ergibt sich dle Wirkung von d + A als
iber (d+ AN = autbjdquej + ot;utpjdquei = (au(bldqu + cx;uqJquu)ei

dg = (dgle; = (auqﬂdq“)ej
und o

Ay = o ¢'dq"e;.:

Wichtig an diesen Formeln ist zweierlei: Erstens lassen sie erkennen, daB
das Ergebnis {d + A){ eine F-wertige 1-Form ist. Zweitens hat d + A als ein Opera-
tor D := d+ Avon 8(W,F) nach & W,F) die folgenden Linearititseigenschaften:

D + @) = DY) + Dlp) fiir §,p € E(W,F),
D(fy) = (df)g + £D¢ fiir alle fe 8(W) und ¢ € §(W,F).

Nach diesen Vorbereitungen ist die folgende Definition natiirlich:

(4.2) Definition. Sei E = M X[F ein triviales Vektorbﬁndel tiber M. Ein
Zusammenhang auf E ist eine Abbildung D : §(M,E) —> dl(M,E) mit

(Z1) D(s +t) = D(s) + D(t) fiir alle Schnitte s,t € 6(M,E) (das heiBt D
b ard AN e d
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(Z2) D(fs) = dfs + fD(s) fiiralle s e §(M,E) und fe §(M) (das heifit
D erfiillt die Leibnizregel).

Dabei muB dfs noch erklirt werden: Allgemein ist fiir eine (skalarwertige)
i-Form o auf M und s¢ §(M,E)} die E-wertige 1-Form as: B(M) —> &E(M,E)
durch (as)X) := a({X)s definiert. (as wird gelegentlich auch als «®s bezeichnet.
Dann hat (Z2) die Form D(fs) = df®s + fD(s).)

Im iibrigen ist ein Zusammenhang D immer K-linear, denn fiir eine kon-
stante Funktion A gilt D(xs) = d\s+ ADs = ADs,da d\x = 0.

Ein Zusammenhang wird auch kovariante Ableitung genannt, obwohl dieser

Begriff meist fiir den folgenden Sachverhalt reserviert ist:

(4.3) Kovariante Ableitung. Sei D ein Zusammenhang auf E und X € B(M)
ein Vektorfeld. Dann heiBt die Abbildung Dy : E(ME) —> 6(M,E), Dys = (Ds)(X),

fiir s € &(M,E), die kovariante Ableitung von s in Richtung X. Es gelten die folgen-
den Regeln:

(D1) Dy + Dy = Dy, .
(D2) Dy = fDy,
(D3) Dy{s +t) = Dys + Dyt,
(D4) Dy (fs) = (Lyf)s + fDys,
fiir alle X, Y € W(M), alle fe &(M) und alle s,t e 6(M,E).

Diese Regeln folgen unmittelbar aus der Definition des Zusammenhangs
unter Beachtung von df(X) = L. f (vgl. M.15). Umgekehrt 148t sich leicht zeigen, daB
eine Kollektion (DX)XGINM) von Abbildﬁngen Dy : 6(M) —> &(M) mit den Re-
geln (D1) - (D4) einen Zusammenhang D auf E mit Ds(X) = Dys definiert.

Vor der Definition 4.2 haben wir bereits gesehen, daB die Operatoren d + A
mit A€ .,di(M,g) Beispiele von Zusammenhingen liefern: Ein Schnitt s € §(M,E) ist
von der Form s(a) = (a,{(a)), ae M, mit ¢ € §(M,F). Ds = Ds,, wird dann als die-
jenige 1-Form mit Werten in E definiert, die zu der 1-Form d{ + Ad gehort, das heifit
Dqu = Nag+ Ag- Die Rechnungen vor 4.2 zeigen, daB dieses D tatsHchlich die Regeln
(Z1) und (Z2) erfiillt. Es gibt keine weiteren Zusammenhinge, denn:

(4.4) Satz. Zu jedem Zusammenhang D auf einem Vektorbiindel E = M xF
iiber M gibt es eine g-wertige 1-Form Ae¢ .ﬁl(M,g) mit Ds, = Ngy. ag fiir alle
e MF) (g = End(F)). Kurz: D = d+ A. A heift das Eichpotential zu D.

Beweis: D induziert eine Abbildung D, : EM,F) — HUM,F) mit den zu
(Z1) und (Z2) analogen Eigenschaften: Ist ¢ € 6(M/F) und s, (a) = (a,9(a)) der zu-
gehorige Schnitt, so ist Dy} € HAHMF) die zu Dsqj gehorige 1-Form, das heiBit es gilt
De = n_  Die Aussace des Satzes ist nichts anderes, als daB D, von der Form
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D, = d+A mit Ae &' (M) ist. Durch B(y) = Dy - dp, e E(M,F), wird eine
Abbildung B: 6(M,F) —> &f‘(M,IF) definiert, die K-linear ist, weil D und d K-
linear sind. AuBerdem gilt fiir alle ¢ € §(M,F) und alle fe &(M) die Identitit
B(f}) = Dy(fp) - d(fp) = (df)g + £f(Dyd) - (dBY - f(d¢) = f(Dyd - dg) = £(B(W)).
Also ist B &(M)-linear und kann, wie weiter oben gezeigt wurde, als eine 1-Form mit
Werten in ¢ aufgefaBt werden, genauer: B = A mit Ae.ﬂl(M,g). Insgesamt ist
damit Dy = d + B(¢) = dp + Ay bewiesen worden.

Aus dem Satz folgt, daB die Menge & aller Zusammenhidnge auf dem Vek-
torbiindel E sich als d + ‘ﬂl(M,g) schreiben laBt. Insbesondere ist & in natiirlicher
Weise ein (allerdings unendlichdimensionaler) affiner Raum (vgl. I1.1) iiber dem Korper
K mit zugehérigen Vektorraum Jdl(M,g), wobei g = ¢(F) = End(F).

Die in den vorangehenden Paragraphen beschriebene Eichinvarianz der kovari-
anten Ableitung hat fiir ein Vektorbiindel E die folgende Formulierung. Wihlt man
fiir das Biindel E = M X F eine andere Trivialisierung ® : E ——> M x [F, also einen
Diffeomorphismus & mit mo® = 7, der in den Fasern von 7 linear ist, so ist & ge-~
geben durch eine eindeutig bestimmte differenzierbare Abbildung g: M —> GL(F)
mit ®(ay) = (a.gla)y) fir (ay) € E = M x F. Eine solche Abbildung g heiBt Fich-
transformation und kann verstanden werden als ein Basiswechsel gla) von [, der von
den Punkten a e M differenzierbar abhingt, und daher einen Basiswechsel der einzel-
nen Fasern E, liefert. Ein Schnitt se §(M,E) im Vektorbiindel E = M x[F hat

jetzt beziiglich der Trivialisierung & eine neue Realisierung: Fiir ein g e E(M,F) ergibt
sich qu(q) = (a,{a)) in der bisherigen Beschreibung der Schnitte durch F-wertige
Funktionen ¢ und s:p(a) = & Na,dla)) = (a.g M) .¢(a)) in der Beschreibung
beziiglich der neuen Trivialisierung &. Also ist 8y = s'g¢.

E= MxF —%> MxIF

NS

Den libergang von einer vorgegebenen Trivialisierung zu einer neuen Triviali-
sierung, die durch eine Eichtransformation g gegeben wird, kann man auch verstehen
als einen Wechsel von dem bekannten Isomorphismus ¢ —> Sq zwischen den 6(M)-
Moduln &(M,F) und &(M,E) zu einem neuen Isomorphismus b —> s:p dieser bei-
den &{(M)-Moduln, der durch Sy = S'gq, vermittelt wird. Dieser Wechsel entspricht
dem Automorphismus § —— g des &(M)-Moduls &(M,F).

Den Zusammenhang D : §(M,E) —> &fl(M,E) kann man auch in der neuen
Trivialisierung als eine Summe d + A' darstellen, wobei A'e .ﬂl(M,g). Zwischen der
1-Form A, welche D wie oben in 4.4 beschreibt, und A' muB dann wegen der Glei-
chungen Ds(’b na¢+A,¢ und Ds = Nag+ Ag sowie S¢ = sg¢ und ng = ngB
fir Be ALMF) die folgende Bemehung bestehen: g(d + AY) = (d + A')gd fiir alle
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$e 6(MF). Wegen dlg¢) = (dg)p + g(dd) folgt daraus gAd = dg+ A'g, also
A= gAg.1 - (dg)g_l, und wegen 0 = d(gg—l) = (dg)g_l +gdg ! ergibt sich daher

(4.5) A'= gAg_1 +gdg™*.

Bis zu dieser Stelle ist im Vergleich zu der Ansétzen der vorigen Paragraphen
fast nichts Neues dargestellt worden. Es ist lediglich der Begriff der kovarianten Ablei-
tung verallgemeinert worden auf beliebige Mannigfaltigkeiten M und Vektorrdume
F & K", und die Formel 4.5 kann verstanden werden als Folge des Wechsels der Trivia-
lisierungen von E. Die Bedeutung der Symmetriegruppe (U(1) bzw. SU(2) in den Bei-
spielen) tritt dagegen etwas in den Hintergrund. Die Invarianz 4.5 14Bt sich allerdings
fiir jede Gruppe G mit G C GL(F) oder mit einer Darstellung p: G —> GL(F) for-
mulieren. Dieser Aspekt erhilt seine Bedeutung erst richtig im Rahmen der Zusammen-
hange auf Prinzipalfaserbiindeln und ihren assoziierten Vektorbiindeln, wie im néchsten

Paragraphen dargestellt werden soll.

Es ist das Anliegen dieses Paragraphen, die geometrische Bedeutung des
Zusammenhangs herauszuarbeiten. Dazu beschreiben wir zundchst das vertikale Blindel
des Vektorbiindels E. Durch die Projektion n : E —> M wird fiir jeden Punkt £ € E
ein natiirlicher linearer Unterraum VE = KerTEW des Tangentialraumes TEE indu-
ziert. VE ist der sogenannte vertikale Anteil des Tangentialraumes TEE an E. Im
Falle E=(a,y) € E = MXx[F hat VE auch die Beschreibung VE = {xe€ TEE : wobei
X = [Y]E = %Ylt=0 = ¥(0) mit vy(t) = (an(t)) fiir eine differenzierbare Kurve
n(t) in F mit n(0) = y}. Die Vereinigung V = (J {VE: ¥ ¢ E} C TE erweist sich als
ein triviales Vektorbiindel iiber der Mannigfaltigkeit E mit Faser F, denn die Abbil-
dung j: ExF —> V, gegeben durch j(a,y,v) = [(ay + tv)](q'y), ist bijektiv und
bildet {£} x IF linear auf Ve ab. Als Abbildung nach TE ist j: ExF — VCTM
auBerdem differenzierbar. Das Biindel V heiBt das vertikale Biindel von E. Die Trivia-
lisierung E = M x [ liefert zudem einen weiteren linearen Unterraum RE von TEE:
R, = {xeTE: x = [yl = ¥(0) mit v(t) = (a(t),y) fiir eine differenzierbare
Kurve «ft) in M mit o«{0) = a}. Der Raum RE ist zu VE komplementér, das heiBt
es gilt TEE = Rg ® Ve, also hat jeder Vektor z ¢ TEE eine eindeutige Darstellung als
Summe z = X +V mit XERE und VEVE, die wir mit z = x ®v oder z = (x,v)
bezeichnen. Die Restriktion von TEn auf RE ist ein Isomorphismus von RE auf
TH(E)M. Insgesamt hat RE alle Eigenschaften, die man an einen horizontalen Unter-
raum von TEE stellen kann. Die Vereinigung der RE gibt wieder ein Vektorbiindel R.

Ein Unterraum V eines Vektorraumes T hat (auBer in den trivialen Fallen
V = {0} und V = T) viele verschiedene Komplement4rraume, von denen in der Regel
keiner ausgezeichnet ist (vgl. das Bild auf S. 255). Die Festlegung auf einen bestimmten
Komplementirraum bedeutet in gewisser Weise die Festlegung einer Geometrie. So ist

es auch in unserer Situation. Zwar ist der vertikale Anteil VE des Tangentialraumes TEE
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Komplemente, das heiBt lineare Unterrdume K C T E mit K @ V =T E Zum Beispiel
wird durch eine andere Trivialisierung von E, die wie oben durch ein ge &(M,GL(F))
gegeben sei, ein im allgemeinen von R verschiedener Komplementirraum R’ festge-
legt: R; = {xeT (B x = ['y]E = Y(O) fur v(t) = («(t),g *(alt))gla). y), wobei «
ein dlfferenznerbarer Weg in M mit a(0) = a ist}.

In der Beschreibung von horizontalen Komplementen zum vertikalen Biindel
V kommen jetzt die Zusammenhinge auf dem Vektorbiindel E ins Spiel. Dazu sei ein
Zusammenhang D auf E beziiglich einer festen Trivialisierung E = M xF wie in
4.4 als d+ A gegeben mit A« .Jdi(M,g). Fir € = (a,y) € E definiert die 1-Form A
eine R-lineare Abbildung Vg TEE -_ TEE auf die folgende Weise:

(4.6) Definition der horizontalen Projektion. Jeder Tangentialvektor z e T E
hat beziiglich der Trivialisierung E = M xF die Darstellung z = (x,v) € RE X V
(= R, ® V, )mit x = [(ot(t),y)] € R sowie v = [(a, n(t))]Ee Vg Die Kurve « in M
geht durch a und definiert einen Tangentlalvektor lal e T M. Daher ist Allal)eg
(¢ = End(F)) und weiterhin A([«] o)Y € F. Insgesamt erhalten wir eine Abbildung
NE : T E — VE durch N, (x,v) = Alx)y = jla,y,Alla] o)-¥), wobei mit der oben
eingefﬁhrten Bezeichnung j(cx,y w) = [{a,y + tw)] fiir (§,w) = (a,y,w) e ExF. Ng
ist R-linear in x sowie unabhingig von v und kann auch N (x,v) = N (x) geschrle—
ben werden. Durch ¥ (x,v) == (0,v + N, (x)) wird jetzt die gewunschte [R% ~lineare Ab-
bildung definiert. Es 1st Vol = Uy, we11 vE(O,v) = {0,v) gilt, das heiBt v ist eine
Projektion, fiir die nach Konstruktion VE = ImvE gilt. Deshalb ist der Kern von Ve,
der Unterraum HE 1= Ker‘u‘E = {(x,v) € TEE 1V o+ NE(X) = 0}, ein Komplementdrraum
zZu VE: Es gilt TEE = HE <] VE‘ Die dadurch gegebene eindeutige Zerlegung von
Vektoren (x,v) € T E ist (x,v) = (x,- N, (X)) ® (0,v+ N (x)) Der Komplementérraum
H heiBt der durch den Zusammenhang festgelegte borlzonta/e Raum in T E, und Ve
hEIBt die horizontale Projektion. Eine niitzliche Beschreibung von H mit den frither
eingefiihrten Kurven o und 7 ist He = {(x,) eT eE: 1(0) + A([ot]a).y 0}. Ele-
mentare Rechnungen zeigen, daB HE unabhanglg von der speziellen Waht der Triviali-
sierung ist. (Das folgt auch aus einer anderen Beschreibung von HE durch horizontale
Liftungen, wie wir sie spiter kennenlernen werden, vgl. mit der Bemerkung nach 4.14.)
Damit ist vorlaufig eine geometrische Interpretation eines Zusammenhangs D auf dem

Vektorbiindel E gegeben:

(4.7) Satz. Jeder Zusammenhang D auf dem Vektorbiindel E induziert in

jedem Tangentialraum T E € ¢ E, einen horizontalen Vektorraum HE und damit eine
Zerlegung T E = HE ® VE

Welche Zerlegungen kommen auf diese Weise vor?

Zur Beantwortung dieser Frage stellt man als erstes fest, daB in der obigen
Konstruktion die Zuordnung £ —— HE differenzierbar ist im folgenden Sinne: Zu
jedem £, ¢ E gibt es eine Umgebung U und Vektorfelder X..X.. .. X e®(). =o
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daB fiir alle £ e U der horizontale Unterraum HE von den Vektoren X,(E),X,(E), ...,
X, (€) aufgespannt wird. Ein solches U findet man zum Beispiel als ein U, xF CE,
wobei U, C M eine Kartenumgebung von 7(¥) ist. (Im iibrigen ist die hier festgelegte
Differenzierbarkeitsbedingung dquivalent dazu, daB die Vereinigung der HE ein Vektor-
biindel bildet, welches ein Unterbiindel von TE ist; allgemeine Vektorbiindel (vgl. 4.19)
haben wir allerdings noch nicht in die Betrachtung mit einbezogen, abgesehen von den
Tangentialbiindeln, die in der Diskussion auftreten. Will man die Darstellung ganz auf
triviale Vektorbiindel beschrinken, so betrachte man nur offene Mengen M in Rn.)

Fine weitere Eigenschaft zur Charakterisierung derjenigen horizontalen Zer-
legungen, die von Zusammenhsngen kommen, ist die Invarianz gegeniiber der Skalarmul-
tiplikation auf E: Fir ce K\{0} sei m_ :E —> E die Multiplikation mit c,
m_(E) = cE flir €€ E, die sich als m (ay) = (acy) fir (ay)eMxF beziiglich
der Trivialisierung E = M X F schreibt. m_ ist differenzierbar und induziert daher
die Tangentialabbildung Tgmc : TEE —> TcgE {oder Ableitung, vgl. M.10), gegeben
durch Tgmc([E(t)]E) = [mcE(t)]CE fiir differenzierbare Kurven E(t) in E durch E.
Beziiglich der Trivialisierung und der davon induzierten Zerlegung TEE = RE ® VE
gilt fir x = [{a(t)y)ly €R; und v = [lan(t)lge Vg: Tem(xv) = (x',v') mit
x' = [(oc(t),cy)]CE und v' = [(a,cn(t))]cE.Aus dieser Beschreibung von T,m_ folgt
aus (x,v) € H‘é stets auch Tgmc(x,v) = (x',v') e HCE. Denn (x,v) € HE = KervE be-
deutet v+ A(x).y = 0, also #(0) + A([a] ).y = O, und daraus folgt unmittelbar
c#(0) + Allal ).cy = c(#(0) + Alled).y) = 0, das heiBt v'+Alx')ey = 0, und
daher Tgmc(x,v) € Hcg' Also ist Tgmc(Hg) = Hcg’ und ebenso sieht man die umge-
kehrte Inklusion Tgmc(Hg) o) Hcg' Wir haben damit gezeigt, daB Tgmc(Hg) = Hc!';' fiir
alle ce K\{0) und Ee E gilt. Daran schlieBt sich die folgende geometrische Charak-
terisierung von Zusammenhdngen an:

If

(4.8) Satz. Ein Zusammenhang auf einem Vektorbiindel E ist durch eine
differenzierbare Schar von Untervektorrdumen HE C TEE’ £ ¢ E, gegeben mit den fol-

genden Eigenschaften:

(H1) TEE = HE ] VE fiir alle F ¢ E, das heiBt HE ist horizontal.
(H2) Tgmc(Hg) = H fir alle ceK\{0} und E¢E, das heiit Hg ist
invariant gegeniiber Multiplikationen m_.

Umgekehrt definiert jeder Zusammenhang D auf E eine differenzierbare
Schar HE mit (H1)-(H2), wie wir gerade gesehen haben.

Beweisskizze: Die Zerlegung TEE = HE @ VE nach (H1) bedeutet, daB es zu
jedem E e E eine R-lineare Projektion v von TEE auf TEE mit Hy = Ker v und
VE = Imw, gibt. Also 1Bt sich L5 als lineare Abbildung L% TEE o VE auffassen,
die sich zu einer Abbildung » : TE —> V zusammensetzt. ¥ ist eine differenzierbare
Abbildung, weil £ > HE differenzierbar ist. Das vertikale Biindel V hat neben der

e 1.1 v 1er . xT T o b ot e T bkt e X 0 N B OAie Aadiin~h
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definiert ist, daB jedem Vektor ve VE' der von einer Kurve £+ t{ mit n(f) = n(0),
E,L € E, herkommt, also v = [£+ tC]E, der Wert pr,(v) :== [ ¢ E zugeordnet wird.
Auch pr, ist differenzierbar und liefert zusammen mit » die differenzierbare Abbil-
dung x = pryov: TE —> E mit verschiedenen Vertraglichkeitseigenschaften. Der
zugehdrige Zusammenhang D 14Bt sich jetzt durch Dys = x0Ts(X) = xoTsoX de-
finieren, fiir einen Schnitt s € §(M,E) mit der Tangentialabbildung Ts: TM —> TE
und ein Vektorfeld X € B(M), das ja insbesondere eine differenzierbare Abbildung von
M nach TM ist. Also TsoX := Ts(X):M — TE und xoTsoX ¢ &(M,E). Die
Regeln (D1)-(D3) fiir die so definierten Abbildungen Dy : 6(M,E) —> &(M,E) erge-
ben sich leicht, wihrend zum Nachweis von (D4) die Abbildung x eingehend untersucht
werden muB. Wir erlauben uns diesen Nachweis nicht zu fiihren und gehen stattdessen
gleich auf weitere geometrische Bedeutungen des Zusammenhangsbegriffs ein. (Einen

vollstdndigen Beweis kann man zum Beispiel aus den Darlegungen in [POO] ablesen.)

Davor allerdings wollen wir noch auf folgendes hinweisen: Die Abbildung
v: TE —> V laBt sich als eine 1-Form auf E mit Werten in V auffassen, die offen-
bar die Eigenschaften »(z) = z fiir ze V und m:v = » (vgl. M16 fiir o) fir
alle c e K\{0} erfiillt. Daher

\

(4.9) Satz. Ein Zusammenhang auf einem Vektorbiindel E ist durch eine V-
wertige 1-Form v € o (E,V) gegeben, welche die folgenden Eigenschaften hat:

(»1) »(z) = z fiiralle zeV,
(»2) miv = » fiir alle ¢ € K\{0}.

Ganz dhnlich ist eine weitere Charakterisierung des Zusammenhangsbegriffs:
Die Restriktion der Tangentialabbildung Tgn : TEE —> T,M zur Projektion n auf
den horizontalen Unterraum HE C TEE ist bijektiv. Denn T§“|H§ ist surjektiv, weil
TEn surjektiv ist und TEE die Zerlegung TEE = H& ® VE mit VE = KerTETr hat.
Weiterhin ist TEnll‘Ig dann bijektiv aus Dimensionsgriinden: Wegen dimTEE = n+r
und dimVE = r folgtja dimH)E = dimTEE - dimVE = n = dimT_M aus der Zerle-
gung. Daher wird durch einen Zusammenhang auf E eine Kollektion von R-linearen
Abbildungen Iy = (TEHIHE)‘1 : TQM — T.E gegeben mit Tonoly = idTuM und
TngOFE = ch'

(4.10) Satz. Ein Zusammenhang ist gegeben durch eine Familie FE von
R-linearen Abbildungen FE T M — TEE’ die differenzierbar von £ und a abhin-
gen, mit

(G1) T‘__lwrol"E = iquM fiir alle ae M,
(G2) TEchFE = T fiiralle £€ TE und c e K\{0}.

(Vgl. auch mit 4.22 zum weiteren Verstindnis dieser Bedingungen.)
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Die zuletzt beschriebene Abbildung FE hat in der frilther benutzten Zerlegung
T,E = H; &V, die Form FE(TE'II(Z)) =z filr ze€ HE' Fiir einen Tangentialvektor
XeTM heiBt FE(X) die horizontale Liftung von X nach TEE (beziiglich des Zu-
sammenhangs, der durch die horizontalen HE nach 4.7 bzw. 4.8 gegeben ist). Von
groBer Wichtigkeit fiir die geometrische Beschreibung des Zusammenhangsbegriffs ist
die Tatsache, daB sich diese "infinitesimale" Liftung ausdehnen laBt auf Kurven in M:

(4.11) Horizontale Liftung. Sei D ein Zusammenhang auf dem Vektorbiindel
E iiber M mit der zugehorigen Zerlegung TE = H + V in horizontale und vertikale

Richtungen.
1° Eine Kurve £E:1 —> E in E heiBt horizontal (oder auch parallel),
wenn die durch £ gegebenen Tangentialvektoren E(t) := [E(t)]g(c) € T‘é(t) samtlich

horizontal sind, also E(t) € Hg(y, fiir alle tel.

2° Sei o:1 —> M eine Kurve in der Basismannigfaltigkeit M. Eine hori-
zontale Liftung von o (durch E, € ot(to)) ist eine horizontale Kurve £ in E mit
o = mof (mit E(t)) = E;). Die folgende Abbildung veranschaulicht eine solche hori-
zontale Liftung iiber dem Punkt a(t,) = b.

3° Entsprechend heiBt eine differenzierbare Abbildung £€: N —> M (von
einer offenen Menge N C RS oder einer k—dimensionalen Mannigfaltigkeit N nach
M) horizontal, wenn T, E(T_N) C H&(b) fiir alle be N gilt. Und £ ist horizontale
Liftung einer differenzierbaren Abbildung f: N —> M, wenn £ horizontal ist und
f = mok erfiillt.

E E
o | Zak
I — S M N ——> M
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4° SchlieBlich wird ein Schnitt von E iiber einer offenen Teilmenge U C M
(also eine differenzierbare Abbildung s : U —> E mit idy = mos) horizontal ge-
nannt, wenn qu(TuM) C Hs(q) fiir alle ae U gilt, das heiBt wenn s horizontale
Liftung von idy; ist.

Unter "Kurve” in 1° und 2° soll eine stiickweise differenzierbare Kurve ver-
standen werden, das ist fiir eine Kurve in M eine stetige Abbildung «: 1 —> M von
einem Intervall I = [t,,t,] C R mit einer Unterteilung L=<y <<, =ty
so daB jeweils die Restriktion von « auf die Intervalle [r‘j,er] differenzierbar ist.
Damit sind also endlich viele "Kanten" zugelassen, in denen die Kurve méglicherweise

zwei Tangenten hat.

Mit der 1-Form A ¢ &Y (M,F), welche den Zusammenhang D beziiglich
einer Trivialisierung beschreibt (vgl. 4.4), ist die Bedingung an eine Kurve £ = (u,n),
eine horizontale Liftung von o = mof zu sein, gleichbedeutend mit der Gleichung
v+ Alx).n(t) = 0, wobei x = &(t) und v = #(t). Daher gilt:

(4.12) Satz. Sei E ein Vektorbiindel ilber M mit Zusammenhang D.

1° Eine Kurve € = (a,n) in E ist genau dann eine horizontale Liftung von
o = mok, wenn die Gleichung

() + A(alt))q(t) = 0
erfiillt ist.

2° Ein Schnitt s in E lber Uc M ist genau dann horizontal, wenn die
Gleichung

Ds =0

erfiillt ist, das heiBt wenn s kovariant konstant ist.

Beweis. 1° wurde gerade hergeleitet. Ein Schnitt s hat beziiglich der Trivia-
lisierung E = M xF die Form s(a) = (a,0{a)), ae U, mit ¢ e E(U,F). Aus Ds = 0
ergibt sich sofort dy + A = 0, also Ly + AX)) = 0 fiir alle X e B(U). Es sei
« eine geeignete Kurve durch ae U, die X in diesem Punkt reprisentiert {das heiBit:
X{a) = [al, = &(0)). Setze 3 := Qoo und y := n(0) = {a). Aus Ds = 0 folgt
wegen Lyl(a) = S¢ouj,_, = #(0) unmittelbar die Gleichung #(0) + A(&(0)).y = 0.
Also erfiillt (x,v) € T (E mit x = [y gy und v = [la,n)i o
dende Bedingung v + A(x).y = 0 und gehért daher zu H, (o  Wegen T_s(X) = (x,v)
ist daher T_s(T M) C H, (o fiiralle ae U gezeigt, das heiBt s ist horizontal. Wenn
umgekehrt s horizontaler Schnitt ist, so liegt Ta(t)s(d(t)) in Hs(t) fiir alle Kurven

die entschei-

o in UCM, soa ist also horizontale Liftung von o. Nach 1° bedeutet das gerade
n(t) + Ala(t)).n(t) = 0, wenn soalt) = (alt),n(t)) ist, und fiir ein Vektorfeld X mit
X(aft)) = &lt) folgt dann Lydp(a(t)) + A(a(t)).4(x(t)) = 0. Da alle Vektorfelder X
auf diese Weise beschrieben werden kénnen, ist stets Lyt + A(X)p = 0 und das
heiRt Des = 0 Damit jet atirh 22 omral ok
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(4.13) Beispiele. 1° Fiir den Zusammenhang D auf E = MxF, der zur
verschwindenden 1~-Form A = 0 gehort, gilt: Ein Schnitt s = S¢ ist horizontal,
wenn ¢ lokal konstant ist. Denn s ist genau dann horizontal, wenn d§ = 0 gilt.

2° Die Geometrie einer Fliche im Raum fiihrt zu einem Zusammenhang auf
dem zugehbrigen Tangentialbiindel der Fliche: Sei T ¢ R® ein Flichenstiick mit einer
Parametrisierung ¢ : Q —> %, QC R?. Die euklidische Metrik auf R°® induziert auf
dem Tangentialbiindel TX & T x R? = E eine Metrik, die sich beziiglich der durch ¢
gegebenen Basis ¢,¢(q),d,4(q) von TpE mit den Koefflzlenten By = <93 ¢a >
ausdriicken ldBt. Zur Metrik gehoren d1e Christoffelsymbole F (vgl. Anhang G.4),
die auf E einen Zusammenhang festlegen: Die 1-Formen I‘ = I‘;udqu bestimmen
eine Matrix I : (I‘ ),alsoein A = Te A (E,Q(Rz)). Dieses A liefert einen Zusam-
menhang in der uns gewohnten Weise: Fiir einen Schnitt s im Tangentialbiindel E, also
ein Vektorfeld X = s, wird Ds ¢ .ﬂl(E,E) durch die Angabe aller Ds(Y), Y ¢ B(%),
vollstdndig beschrieben. Es ist Ds(Y) = ds(Y) + I'(Y)s, also mit vielen Indizes und
X = s: Ds(Y) = ((ain)YV + r;uY“xj)aiq» (vgl. G.8.1°). Ganz analog liefert eine Rie-
mannsche Metrik auf einer Mannigfaltigkeit M einen Zusammenhang auf dem Tangen-
tialblindel TM (vgl. G.15). Dieser Zusammenhang heiBt der Levi—Civita-Zusammenhang.

3° Im allgemeinen gibt es keine horizontalen Schnitte, die vom Nullschnitt
verschieden sind. Zum Beispiel sei fiir M = R? und F = R der Zusammenhang
auf dem "Geradenbiindel” M xR durch die 1-Form A := ydx — xdy gegeben. Ein
horizontaler Schnitt s = S¢ miiBte auqy = —Aunp fiir pu=1,2 erfiillen, wobei ¢
eine differenzierbare Funktion auf einer offenen Menge U C R% ist. Sei ae U. Wenn
¢la) £ 0 gilt, so kann man wegen der Stetigkeit von ¢ die Menge U so klein
wéhlen, daB ¢(b) # O fiir alle b e U gilt. Dann ist

0 2]
a1Az = —al(—(%q)—) = —32(%) =

im Widerspruch zu 8,A, = -1 und J9,A, = 1. Also gibt es keinen horizontalen
Schnitt mit s(a) + 0. Es gibt aber immer horizontale Liftungen von Kurven. Eine Kurve
der Form (o,B) hat die horizontale Liftung («,8,1), wenn die Funktion n der Differen-
tialgleichung 1 + (B& - af)y = 0 geniigt. Dazu gibt es immer Lésungen, sogar zu einer
beliebigen Anfangsbedingung n(0) € R.

Der zuletzt genannte Sachverhalt gilt allgemein:

(4.14) Satz. E sei ein Vektorbiindel iiber M mit Zusammenhang. Zu jeder
Kurve o:{t;,t;] —> M und jedem Vektor £, € E gibt es genau eine horizontale
Liftung & auf [ty,t,J mit E(t)) = §;.

Beweis. Beziiglich einer Trivialisierung E = M x[F gilt § = (ot(to),no)
mit 1, € . Eine horizontale Liftung (a,n) von « muB nach 4.12.1° die Differential-
gleichung 1 + A(&(t)).n = O erfiillen. Diese lineare Differentialgleichung hat zu dem
Anfangswert n, genau eine Losung auf dem Intervall [ty.t,].
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Im iibrigen kann die Bedingung 4.12.1° auch Dy (yE(t) = 0 geschrieben
werden. Damit erschlieBt sich die Mdglichkeit, die horizontalen Komplementérriume
HE direkt mit D zu beschreiben: Fiir alle E¢ E ist HE = {[E(t)]E € TEE: E(t) ist
Kurve in E mit £(0) = § und mit Dy ,E(t) = 0, wobei alt) = moE(t)}. Aus die-
ser Beschreibung folgt insbesondere auch die Unabhingigkeit der Definition der HE von
der speziellen Trivialisierung.

Mit dem Resultat 4.14 kénnen wir schlieSlich die Parallelverschiebung beziig-
lich eines Zusammenhangs definieren.

(4.15) Definition. Unter den Angaben des letzten Satzes ist g = Elt) eE
die Parallelverschiebung (oder die horizontale Verschiebung) von €, ldngs der Kurve
o. Die Parallelverschiebung definiert einen Vektorraumisomorphismus

[+ 4
Pto.tl ; Eoc(to) ? sz(t,)’

wobei E_ die Faser des Vektorbiindels im Punkte ae M ist: E = " Ha).

die einer

o
- Pt,r

Bei der Restriktion der Kurvenstiicke auf Teilintervalle [t,u] C [ty.t,] erge-
wtty " Egquy
Reihe von Vertréglichkeitsbedingungen geniigen. Zum Beispiel gilt P::’ro IP’Z "
fir t<u<r,
Der Zusammenhang als Operator D : 6(M,F) —> & *M,E) mit (Z1) und
(Z2) kann in enger Verbindung mit den Verschiebungsoperatoren P® auch folgender-
maBen definiert werden: Fiir Schnitte s ¢ £(U,E) iiber U und fiir Kurven « in U gilt
im Punkte a = aft) mit X = alt):

ben sich entsprechende Verschiebungsoperatoren IP:( u'E

(¥) Dysla) = }I,il?o%((ﬂ:p(éu 1,1)_1(soot(t +h) - sooc(t)))‘

Die kovariante Ableitung Dy miBt also langs o (das heiBt in Richtung des
Tangentialvektors X = &(t)) die infinitesimale Abweichung des Schnittes s, horizon-
tal zu sein.

Bevor wir in diesem Paragraphen auf allgemeine, nicht notwendig triviale
Vektorbiindel zu sprechen kommen, soll noch einmal auf die Existenz von horizontalen
Schnitten eingegangen werden. Aufgrund des Resultats iiber horizontale Liftungen von
Kurven macht der folgende Ansatz sicherlich Sinn: Sei ¢ : U —> Q Cc R™ eine Karte
auf einer Umgebung U C M eines Punktes ae M mit ¢{a) = 0, so daB Q ein Pro-
dukt Q = I <1, x...x I, von offenen Intervallen lu ist, seien 9, die Vektorfelder
in Koordinatenrichtungenund D, = D 5, die entsprechenden kovarianten Ableitungen.
Sei auBerdemn E; € E ein beliebiger Punkt mit n(g,) = a. Léngs der ersten Koordinate
der Karte ¢ hat man aufgrund von 4.14 die eindeutig bestimmte horizontale Liftung
E(t) von t — q:"‘(tel), tel, mit E(0) = E;. Durch jeden Punkt E(t,) ¢ E gibt es
ebenfalls nach 4.14 die horizontale Liftung t ——> E(ti,t) , t€l,. Dieser Ansatz fiihrt

zu einem horizontalen Schnitt iiber U, wenn zundchst F:I. XI. —> E horizontal
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ist und bei weiteren Schritten, bei denen sukzessive die anderen Koordinaten einbezogen
werden, die entsprechende Abbildung ebenfalls horizontal ist. Unter welchen Umst#n-
denist nun §:1 xI, —> E horizontal? Nach Definition ist £ genau dann horizontal,
wenn die Gleichungen D\¥ = 0 und D,§ = 0 erfiillt sind. D, = 0 gilt aber unmit-
telbar, weil das die Gleichung D &t
alt) := q:fl(tle1 + tez) ist. Unter der Annahme, daB die kovarianten Ableitungen D,
und D, vertauschen, gilt D,Df = D,D,E = D,(0) = 0. Also ist y(t) :== DE(t,t)
horizontale Liftung von « durch v(0) = D(t,,0) = D/(t,) = 0.Da 0 aber wegen

)E(tl,t) = 0 fiir die horizontale Liftung der Kurve

der Eindeutigkeit der horizontalen Liftung (vgl. 4.14) stets nach 0 verschoben wird,
heiit das, daB y(t) = O fiir alle t e, ist. Damit haben wir gezeigt, daB £ horizon-
tal ist, falls DD, = D,D, gilt. Entsprechend erhdlt man einen horizontalen Schnitt
s iiber U, falls alle Du miteinander vertauschen. Umgekehrt 148t sich genauso zeigen,
daB die Existenz eines horizontalen Schnittes bedeutet, daB sdmtliche Kommutatoren
[Du,Dv] = DuDv -bpD, verschwinden. Uibertragen auf beliebige Vektorfelder ist da-
mit das folgende Resultat gut begriindet:

(4.16) Satz. Fiir einen Zusammenhang D auf einem Vektorbiindel E iiber M
sind die folgenden Eigenschaften dquivalent:

1° Fiir alle Vektorfelder X,Y e B(M) gilt [Dy,Dy] - Dy y7 = 0.

2° Zu jedem Punkt ae M gibt es eine offene Umgebung U c M, so daB
es durch jeden Punkt £, € E_ einen horizontalen Schnitt s : U —> E gibt.

3° Der Paralleltransport zu D ist lokal wegunabhidngig: Zu jedem Punkt
a € M gibt es eine offene Umgebung U, so daB fiir je zwei Kurven o und B in U mit
o(0) = B(0) und «(l) = B(1) der Paralleltransport iibereinstimmt, d.h. Pg,l = [F"g,l.

Der Beweis zur Aquivalenz von 1° und 2° wurde vor dem Satz skizziert.
Wenn 2° erfiillt ist, so gibt es zu B €E o) = Ea(o) einen horizontalen Schnitt s
mit s(a(0)) = E;. Weil s horizontal ist, wird durch E(t) = sowa(t) die horizontale
Liftung von o durch den Punkt E; gegeben: Dy ()E(t) = 0 wegen Ds = 0. Daher
ist P:,1(Eo) = soa(l) = s(x(1)). Ebenso ist £'(t) := soB(t) horizontale Liftung von
B, und es folgt P§ (E)) = s(B(1)). Also gilt Py (E,) = P (E,) wegen o) = (D),
und wir haben 3° gezeigt. Wenn umgekehrt 3° gilt, so ist fir be U und fiir eine
Kurve o in U von a = «(0) nach b = «(l) der Wert s(b) = P:,l(ﬁo) unabhin-
gig von a und daher wohldefiniert. Der dadurch definierte Schnitt s ist differenzier-
bar. Er ist horizontal, weil fiir beliebige o die Gleichung Dyw)ys =D Et) =0
gilt, wenn E(t) die horizontale Liftung von o durch E; bezeichnet.

(L)

(4.17) Definition. Die Kriimmung eines Zusammenhangs D auf einem Vek-
torbilindel E iiber M ist der Operator F, der je zwei Vektorfeldern X,Y € B(M) die
Abbildung FL(X,Y) := F(X,Y)} = [Dy,Dy] - Drxyy! 6(M,E) —> &(M,E) zuordnet.
Der Zusammenhang D heiBt flach, wenn die Kriimmung Fp, verschwindet, das heifit
wenn (wie in Satz 4.16) F..(X.Y) = 0O fiir alle X. Y € R(M) oilt
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Die Bedeutung der Kriimmung als ein Hindernis fiir die Existenz von lokalen
horizontalen Schnitten haben wir bereits kennengelernt (zur Kriimmungstheorie auf Fli-
chen und riemannschen Rdume vgl. Anhang G). Von welcher Art die Kriimmung ist,
wollen wir im folgenden genauer untersuchen.

1° F(X.,Y) : 6(M,E) —> &(M,E) ist 8(M)-linear fiir alle X,Y ¢ B(M).
Denn fiir fe (M) und s e 8(M,E) ist

F(X,Y)(fs) = [DX,DY] fs - D[x.Y] fs =

= Dy ((Lyf)s + fDys) - Dy ((Ly f)s + fDys) = (Lpy yqf)s - fDrx v18
(LyLyf)s + (L f)Dys + (Lyf)Dys + fDyDys

- ((LyLyf)s + (Lyf)Dys + (L f) Dys + fDyDys)

]

= (Lpx yaf)s = Dy yys
= ([Ly,LyIf)s + fIDy,Dyls - (L[x_Y]f)s - fD[X,Y]S

f([Dy.Dyls - Dpy y18) = £(F(X,Y)(s)).
Dabei wurde in der vorletzten Zeile die Identitit [LyLlyl = Ly y7 benutzt (vgl. auch
M.12),

il

2° Sei Homg ., (6(M,E)) der 6(M)-Modul der £(M)-linearen Abbildungen
S: 6(M,E) —> &(M,E). Ahnlich wie 1° zeigt man, daB der Kriimmungsoperator
F: B(M) x B(M) —> Homg(M)(é‘;’(M,E)) &(M)-linear in jedem Argument ist. AuBer-
dem ist F(X,Y) = - F(Y,X).

3° Eine E-wertige (differenzierbare) k-Form auf einer offenen Menge U in
M ist nach Definition (vgl. M.17.5°) eine Abbildung n: (93(1.1))k —> &(M,E), die alter-
nierend und in jedem der k Argumente &§(U)~linear ist. Der &(U)-Modul der E-wertigen
k-Formen wird mit & k(U,E) bezeichnet. Nach 2° vermittelt jeder Schnitt s € &§(M,E)
eine solche 2-Form (X,Y) —— F(X,Y)(s) mit Werten in E, die wir mit Fs oder
Fs bezeichnen. Nach 1° ist nun F: §(M,E) —> HAME) linear in bezug auf &(M).

Damit haben wir die Kriimmung F = F, einerseits als &(M)-bilinearen
Operator F: B(M) x BM) —> HomS(M)(g(M,E)) tnd andrerseits als &(M)-lineare
Abbildung F: 6(M,E) —> «£%(M,E) kennengelernt. Wie vergleicht sich jetzt F un-
ter dem zweiten Aspekt mit dem Zusammenhang D : §(M,E) —> .ﬂl(M,E)? Um das
zu beschreiben, setzen wir D fort zu einer Abbildung

4° D:#'ME) — HUME),
durch D(8s) := dfs - OADs fiir 6 e H (M) und se &(M,E), von der wir ansonsten
verlangen, daB sie K-linear ist. (Die 2-Form 0a ¢ ¢ #*(M,E) fiir 1-Formen 6 ¢ 4 (M)
und de LHME) ist durch 6a H(XY) = 0(X)P(Y) - 0(Y)P(X) fiir Vektorfelder
X,Y € B(M) definiert, vgl. M.16.7°.)

(4.18) Satz. F, = DoD = D?,

Beweis. Diese Identit#t ergibt sich durch direktes Einsetzen. Fiir s € &(M,E)
hat Ds eine Darstellung als Summe Ds = Oksk mit geeigneten 0¥ e # (M) und
5y € 6(M,E). Also ist DoDs = D(Gksk) = (dek)sk - Ok/\Dsk. Angewandt auf zwei



242 V  Eichinvarianz

Vektorfelder X,Y erhilt man daraus DZS(X,Y) = (de(X,Y))sk I Dsk(X,Y). Wegen
do{X,Y) = LXO(Y) - LYG(X) -0([X,Y]) und 6ADs(X,Y)=8(X)Ds(Y) - 6(Y)Ds(X) ist
D%s(X,Y) = Ly (65(Y)) s, + 65(Y)Ds, (X) = (L (8X(X)) s, + 85(X)Ds,(Y)) - 6¥([X,YD)s, ,
also D*s(X,Y) = Dy (65(Y) 5,) - Dy (65(X) s,) - 6X([X,YD)s . Wegen Dys = 6X(Z)s,
fiir Vektorfelder Z = X, Z =Y und Z = [X,Y] bedeutet die letzte Gleichung
bereits DZS(X,Y) = DXDYs =~ DyDys — D[X’Y]s = Fs(X,Y).

Zum SchluB des Paragraphen soll kurz erldutert werden, daB Zusammenhang
und Kriimmung mit ihren verschiedenen Erscheinungsformen auch fiir allgemeine Vek-
torbiindel sinnvoll definiert werden kdnnen und die vorangehenden Ergebnisse im we-
sentlichen ihre Giiltigkeit behalten. Ein GroBteil der Aussagen auf den letzten Seiten

ist ja bereits ohne Bezug auf eine Trivialisierung des Biindels formuliert.

(4.19) Definition. Ein (K-) Vektorbiindel E vom Rang r iiber der Mannig-
faltigkeit M ist eine Mannigfaltigkeit E mit einer surjektiven, differenzierbaren Ab-
bildung n: E —> M zusammen mit einer K-Vektorraumstruktur auf jeder Faser
E_ = 7 Ha), so daB noch folgendes gilt:

(V) Zu jedem Punkt ae M gibt es eine offene Umgebung U und einen

Diffeomorphismus
e:n i) — UxK,

fiir den myp = = pryo¢ gilt und fiir den fiir alle b ¢ U die Restriktionen

T -y
= ()
Pp = Pryo@|g : B, — K" K-linear sind. (Dabei ist pr,: UxK" —> K die

Projektion auf die zweite Komponente.)

E ist der Totalraum des Vektorbiindels und = ist die Projektion. Die Diffeo-
morphismen ¢ in (V) heiBen auch lokale Trivialisierungen. Sie legen auf den entspre-
chenden Ey = 7 HU) eine Struktur fest, die bisher in diesem Paragraphen ein trivia-
les Biindel genannt wurde. Sind fiir offene U und U' mit nichtleerem Durchschnitt
W = Un U lokale Trivialisierungen ¢ und ¢' gegeben, so hat man die sogenannten
Uibergangsabbildungen ¢'op™' : W x K* —> W x K', welche einen Wechsel der Tri-

vialisierungen iiber W vermitteln, von denen zu Beginn des Paragraphen die Rede war.

r

vl oy ¢’
WxK — 1 (W) — WxK

w

Fiir alle be W und ye K™ gilt o'cp by = (b,(p'bmp;l(y)) = (b,g(b).y), wobei
durch g(b) := <p'bo<pgl € GL(K") = GL(r,K), be W, eine differenzierbare Abbildung
oW — S 9 (IKFY Aafiniart et waleche atteh die Voplblohtinoefiinkbtinm canannt wird
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g ist eine lokale Eichtransformation, die zwischen den lokalen Trivialisierungen ¢ und
¢' vermittelt.

Ein Vektorbiindel vom Rang r liefert eine Kollektion U, (ve€]J) von offenen
Mengen aus M mit lokalen Trivialisierungen ¢,, so daB die U, die Mannigfaltigkeit
M iiberdecken, es gilt also M = U{LIL : teJ}. Die Trivialisierungen geben auf den
Durchschnitten u, = un U, die Verklebungsfunktionen g, 4, — GL(K")
mit (,OLC)(p;I (a,y) = {a,g,(a).y). Fiir das Tangentialbiinde] TM {iber einer Mannigfal~
tigkeit M kann man zum Beispiel aus dem Transformationsverhalten von je zwei
Biindelkarten (vgl. M.10) ablesen, daB g _ (a) := D(chO(p;l)(cpk(a)) geeignete Verkle-
bungsfunktionen auf U,= Uunu, sind, wenn die ¢, U, —> Q, Karten auf M
mit M = (J{U, : €]} sind. Offensichtlich gelten die folgenden

(4.20) (Kozyklus—-)Bedingungen: Fiir alle 1,x,) € ]

cn g, =1,
(C2) g e, =1,
(c3) EuBsnBar = L

Dabei bezeichnet 1 = id die Identitdt (= Einheitsmatrix) in GL(K") = GL(r,K), also
das neutrale Element in dieser Gruppe. Umgekehrt:

(4.21) Satz. Durch eine offene Uiberdeckung (UL:L €J) von M und differen-
zierbare Funktionen g _ : U, — GL(r,K) mit den Bedingungen (C1)-(C3) wird ein
Vektorbiindel E definiert, so daB die - Verklebungsfunktionen sind.

Zur Konstruktion von E fiithrt man auf der disjunkten Vereinigung U E, der
trivialen Vektorbiindel U, x K = E, eine geeignete Aquivalenzrelation mit Hilfe der
g, ein und bildet den Quotienten.

Zur Definition des Begriffs "Vektorbiindel” gehdren noch die zuldssigen Ab-
bildungen zwischen Vektorbiindeln, die Vektorbiindelhomomorphismen. Ein Vektorbiin-
delhomomorphismus zwischen Vektorbiindeln E und F iiber M ist eine differenzier—
bare Abbildung ¢ : E — F, die die Projektionen respektiert, das heiit m© = ToQ
(wobei 1:F —> M die Projektion des Vektorbiindels F ist), und die faserweise
K-linear ist, das heiBt 0, = <p|Ea : E; —> F_ ist K-linear fiir alle ae M.

Weiterhin gehdren zu den Vektorbiindeln natiirlich die Schnitte. Ein Schnitt
in dem Vektorbiindel E iiber der offenen Menge U C M ist eine differenzierbare Ab-
bildung s: U —> E mit mos = idy;. Der Raum der Schnittein E iiber U sei wie-
der mit &(U,E) bezeichnet, oder gelegentlich genauer mit T'(U,E), wenn der Raum der
Schnitte von dem Raum aller differenzierbaren Abbildungen von U nach E deutlich
unterschieden werden soll. Beziiglich der punktweisen Addition und Multiplikation ist
&(U,E) ein Modul iiber dem Ring &(U).

An Beispielen von Vektorbiindeln kennen wir neben den trivialen Vektor-

Tt oer 3 1 1 . g — o 2e ee oa e e o



244 V  Eichinvarianz

Kotangentialbiindel T*M, (vgl. M.10, die lokalen Trivialisierungen kommen in diesen
beiden Fdllen von den Karten auf M) sowie das horizontalen Vektorbiindel H eines
Zusammenhangs (vgl. 4.8). H ist ein Unterbiindel von TE, das heiBit, daB die Injektion
H C TE ein Vektorbiindelhomomorphismus ist. Typische Vektorbiindelhomomorphis-
men, die uns bereits bekannt sind: Die Tangentialabbildung Tf: TM —— TN einer dif-
ferenzierbaren Abbildung f: M — N und die horizontale Projektion » : TE —> TE
zu einem Zusammenhang auf einem trivialen Biindel E (vgl. 4.9).

Auch T aus 4.10 kann als Vektorbiindelhomomorphismus aufgefaBt werden.
Dazu benétigen wir das Pullback eines Vektorbiindels. Sei f: N ——> M eine differen—
zierbare Abbildung und sei n© : E —> M ein Vektorbiindel. Das Pullback f*E von
E ist ein Vektorbiindel iiber N mit den gleichen Fasern wie die von E: f*E ist die
Untermannigfaltigkeit f'E = {(bw) e NxE: f(b) = n(w)} von NxE mit der
offensichtlichen Projektion auf die erste Komponente und der offensichtlichen Vektor-
raumstruktur auf f*Eb = {b} X Eg(y,). Wenn E durch Verklebungsfunktionen (g,.)
gegeben ist (siche oben), dann ist das Vektorbiindel f*E beziiglich der {iberdeckung
(w), w == f'i(UL),von N durch die Verklebungsfunktionen f*gm = g,
Durchschnitten f—l(Um) = W, = U N U, gegeben. Insbesondere kann man auf die-

Lof auf den

se Weise das Tangentialbiindel TM auf den Totalraum E eines Vektorbiindels mittels
der Projektion m:E —> M anstelle von f zuriickziehen zu dem Vektorbiindel
7n*TM iiber E. Ein direkter Vergleich mit 4.10 zeigt, daB dort die folgende Eigenschaft

mit anderen Mitteln formuliert worden ist.

(4.22) Satz. Ein Zusammenhang D auf einem Vektorbiindel m : E —> M
ilber M wird auch durch einen Vektorbiindelhomomorphismus I': n*TM — TE mit
den folgenden Eigenschaften gegeben:

(G1) Tnol = pr, (wobei pr,: *TM — TM die Projektion auf die
zweite Komponente ist).

(G2) Tgm ol = T, fiiralle ce K\{0} und alle £€E.

cg

Ein triviales Biindel ist unter Beriicksichtigung der weitergefaBten Definition
4.19 eines Vektorbiindels aufzufassen als ein Vektorbiindel, zu dem es eine globale
Trivialisierung @ : E —> M x K" gibt, und eine solche Trivialisierung ist natiirlich
ein Vektorbiindelisomorphismus, das heiBt ein bijektiver Vektorbiindelhomomorphis-
mus, dessen Inverse qfl ebenfalls ein Vektorbiindelhomomorphismus ist, oder — aqui-
valent dazu - ein Vektorbtindelhomomorphismus, der zugleich Diffeomorphismus ist.
Unter den Tangentialbiindeln TM gibt es viele, die nicht trivial sind, das heiBt zu
denen es keine globale Trivialisierung gibt. Der bekannteste Fall ist wohl das Tangen-
tialbiindel iiber der 2-Sphire $%. Ein anderes typisches Beispiel fiir ein Vektorbiindel
ohne globale Trivialisierung ist das M&biusband, das sich ja als ein Vektorbiindel vom

1

Rang 1 iiber der Kreislinie M = §° auffassen 14Bt. Weitere Vektorbiindel vom Rang 1,

die keine globale Trivialisierung besitzen, sind die tautologischen Geradenbiindel: Das
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sind die Vektorbiindel T:= {(a,y) ¢ P (K) x K™ yea}cC P (K) x K™ mit der Pro-
jektion m = pr,: T —> P _(K) iiber den projektiven Riumen. Sie heiBien tautologisch,
weil m @) ¢ K*'\{(0} mit derjenigen Geraden iibereinstimmt, die durch die Aquiva-
lenzklasse a reprisentiert wird. Das Mobiusband ist der Fall n=1 und K = R. Ob
ein Vektorbiindel E iiber M trivialisierbar ist, 148t sich im tibrigen auch an den oben
eingefiihrten Verklebungsfunktionen (gm) ablesen: E hat genau dann eine globale
Trivialisierung, wenn es geeignete g ¢ 5(UL,GL(r,lK)) gibt, fiir die g = g:1gx auf
U, = U nuU, gilt Man sagt dann, daB der Kozyklus zerfillt. Im iibrigen gilt fiir
offene, konvexe Mengen M C Rn, insbesondere fiir R™ selbst, da8 alle Vektorbiindel
iiber M eine globale Trivialisierung haben. '

Neben den genannten Vektorbiindeln sind uns implizit noch weitere bekannt.
Denn alle iiblichen algebraischen Manipulationen, die aus vorgegebenen Vektorraumen
neue machen, lassen sich auch fiir Vektorbiindel in sinnvoller Weise definieren: Sind E
und F Vektorbiindel, so werden dadurch zum Beispie!l die Biindel E*, E®F, E®F,
Hom(E,F), etc. festgelegt. Auf diese Weise kann man zum Beispiel aus einem vorgege-
benen Vektorbiindel E iiber M das Biindel T"M ® E bilden. Die Schnitte in diesem
Biindel sind gerade die E-wertigen 1-Formen, also S(M,T*M ® E) = .ﬂl(M,E), wie
man leicht nachpriift. Entsprechend hat man zu einem vorgegebenen Vektorbiindel E
die Vektorbiindel AkE* der k-multilinearen Formen auf E. Man findet so die Diffe-
rentialformen (vgl. 4.17.3°%) wieder als Schnitte in AkT*M: .,dk(M) = F(M,AkT*M).
Allgemeiner gilt analog ﬂk(M,E) = F(M,AkT*M ® E). Auch die Kriimmung F eines
Zusammenhangs auf E erweist sich in diesem Spiel als ein Schnitt in dem richtigen
Vektorbiindel, namlich in A*T"M ® End(E) & A?T*M ® E* ® E. (Hier ist End(E)
das Endomorphismenbiindel Hom(E,E) ).

Nun zur Geometrie auf allgemeinen, nichttrivialen Vektorbiindeln:

(4.23) Zusammenhang. Auf einem Vektorbiindel © : E — M 4Bt sich ein
Zusammenhang auf die folgenden verschiedenen aber aquivalenten Arten definieren:

1° Ein Zusammenhang auf E ist eine Abbildung D : §(M,E) —> .ﬂfl(M,E),
die additiv ist (Z1) und die Leibnizregel (Z2) erfiillt: Es ist D{(fs) = dfs + fDs fiir
fe &(M) und se 6(ME) (vgl. 4.2).

1°A Ein Zusammenhang auf E ist eine kovariante Ableitung, das heiBt eine
Kollektion (Dx: X € ®(M)) von Operatoren Dy : 6(M,E) —> &(M,E), die den Re-
geln (D1) - (D4) aus 4.3 geniigen.

Beziiglich einer offenen Uberdeckung (LIL)LGJ von M habe E die lokalen
Trivialisierungen ¢, : 7 W) — Ux K mit den zugehtrigen Verklebungsfunktio-
nen g :U_ —> GL(r,K). Ein Schnitt se &§(M,E) bestimmt die lokalen Funktio-
nen ¢, = PryoPos|y, u — K" mit posla) = {ala)) fir ae U,. Es gilt
9,00 0(p,08) = (pos) fir Lxe] mit U, = UNU, + £, also §, = Bl -
Umgekehrt definiert jede Familie (& ) von differenzierbaren Funlkticnnen  « 11 —s b
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mit ¢, = g, ¥, einen globalen Schnitt s in E mit s(a) = @:1(G,QJL(Q)) fir aeq,.
Ein Zusammenhang D nach 1° ergibt auf U, x K" einen Zusammenhang D, durch
DL(@Los) = ¢ (Ds) fiir lokale Schnitte s¢ S(UL,E). Nach 4.4 kennen wir solche
Zusammenhinge und wissen, daB D, auf den lokalen Schnitten a+—— (a,P{a)) als
¢ —> dd + A operiert mit einer 1- Form A ¢ &il(UL,g), wobei g = End(K") = K(r).
Diese g-wertigen 1-Formen A , t€], sind die lokalen Eichpotentiale! Thre Beziehung
untereinander ist bekannt (vgl. 4.5): Aus D/(p o05) = qame;l(Dx((pxos)) folgt die
Identitat d¢, + A §, = g, (db, +'A ¢ ). Zusammen mit ¢, = g_ ¢, fihrt das zu der
Vertréglichkeitsbedingung (d + A) (g, ,) = g, (d+ A ), . Es folgt wie bei 4.5:

(A) A =g Aeg,. +g,de,; auf U imFalle U, + &.

1524

Damit kommen wir zur einer weiteren dquivalenten Definition:

2° Ein Zusammenhang auf E ist eine Familie (A)) von lokalen Eichpo-

LE
tentialen A € &fl(UL,g) mit der Vertridglichkeitsbedingung (A).J

Wie im trivialen Fall ist das vertikale Biindel durch V := KerTn gegeben.
Uber die A _ erhidlt man wie in 4.6 — 4.8 horizontale Komplemente HE zZu VE in TEE‘
Een'(u).

3° Ein Zusammenhang auf E ist ein Vektorbiindel H, welches Unterbiindel
von TE ist, mit

(H) TE= Ha& V,

(H2) Tgmc(Hg) = Hcg fiir alle £€ E und c ¢ K\{0}.

Nicht sehr viel verschieden davon sind die nidchsten drei Definitionen:

3°A Ein Zusammenhang auf E ist ein Vektorbiindelhomomorphismus
v: TE —> TE mit

(V1) voy = v und Imp = V,

(V2) Tm_ov = woTm_ fiir alle ce K\{0]}.

3°B Ein Zusammenhang auf E ist eine i-Form v e A NE,V) mit

1) vy, = idy,

(#2) mlv = », fiir alle ceK\{0} (vgl. 4.9).

3°C Ein Zusammenhang auf E ist ein Vektorbiindelhomomorphismus T

mit den in 4.22 formulierten Eigenschaften.
Horizontale Liftungen, horizontale Abbildungen und horizontale Schnitte

sind unter Benutzung von 3° wie fiir triviale Vektorbiindel definiert; bei der Definition
4.11 wurde kein Bezug auf eine globale Trivialisierung genommen. Es gelten auch die
grundlegenden Resultate 4.12 und 4.14 fiir den allgemeinen Fall. Ebenso haben daher
die Definitionen des Paralleltransports 4.15 auch fiir einen Zusammenhang auf einem
nichttrivialen Vektorbiindel ihre Giiltigkeit.

4° Fin Zusammenhang auf E ist ein Paralleltransport P auf E, das heiBt
fir je zwei Punkte a und b aus M und fiir jede Kurve o in M mit Anfangspunkt
a und Endpunkt b die Festlegung eines Vektorraumisomorphismus [P’z'b :E, —> E,
mit geeigneten Vertrdglichkeitsbedingungen.
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Diese Vertridglichkeitsbedingungen wollen wir hier nicht formulieren (vgl.
z.B. [Pool, S. 43 ff.), es sei nur darauf hingewiesen, daB man soviel an Vertraglichkeit
verlangen sollte, um mit der bei 4.15 festgestellten Formel (*) die kovarianten Ableitun-

gen Dy zu erhalten.

Auch der Begriff der Kriimmung F = Fp (vgl. 4.17) iibertrégt sich auf Zu-
sammenhinge D auf einem allgemeinen Vektorbiindel, und es gelten die Resultate 4.16
liber die Bedeutung der Kriimmungsbedingung F = 0 sowie die Beschreibung von F
als F = DoD.

(4.24) Lokale Beschreibung des Zusammenhangs und der Kriimmung. Es sei
m:E —> M ein Vektorbiindel iber M mit einem Zusammenhang D. Uber einer
offenen Menge U C M sei eine lokale Trivialisierung ¢ : ) — Ux K gegeben,

Es seien auBerdem r Schnitte 84,84, ... ,5,. € [(U,E) festgelegt, so daB (s (a),s,(a),
s 8,(a)) fiir alle ae U eine Basis von E_ ist (z. B sjl@) = @~ (ue ) fiir eine
Basis (e) des Vektorraums K'). Dann gilt Ds A 8y m1t eindeutig bestxmmten

1- Formen A e & (WK). Diese l-Formen kann man als Matrix zusammenfassen zu
einer g- wertlgen 1-Form A : (A )e #NU,g) auf U, wobei w1eder g=K(r). Zu
Jedem Schnltt s € I(U,E) gibt es emdeutlg bestimmte Funktionen gb € §(UK) mit
= ¢ 5y - Aus den grundlegenden Eigenschaften (Z1) und (Z2) des Zusammenhangs

folgt Ds = d(lesk + kaDSk, also Ds = (dll)j +Ai&bk)sj. Abkiirzend schreibt man
dafiir

1° D=4d + A,
wie uns das ja bereits in 4.4 und wieder in 4.23.1°A begegnet ist. A ist also das lokale
Eichpotential, das den Zusammenhang iiber U vollsténdig beschreibt. Beziiglich einer
Wahl von Koordinaten qu in der Umgebung U (falls U klein genug gewidhlt worden
ist) kann man sich die 1-Form A auch als A = Audqu = (Ajl;dqu) mit Au € 6(U,g)
und AJ.ku € 6(U,K) vorstellen. Es ist dann

2° D, =9, + A,u=12 .. ,n,
wenn Dus = Ds(ap) die kovariante Ableitung in Richtung au bezeichnet.

Fiir die Krﬁmmung F = DoD gilt:

Fs; = D(A}s,) = d(A )5, — AfaDsy = d(A])s, - AfAAs;

= (dA + AL /\A )s

und das wird entsprechend

3° F = dA + ArA
abgekiirzt, oder in der Koordinatenschreibweise: F = zF dq /\dq mit

4° Foo=0,A, - avAu + [Au,Av].
Diese Beschreibung von F durch A nennt man oft die Strukturgleichungen. Genau
genommen miiBte man in 3°eine neue Bezeichnung flir den Ausdruck dA + AAA
einfiihren, die evtl. auch noch die Abhingigkeit von der jeweiligen Trivialisierung zum
Ausdruck bringt.
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Bereits kurz vor 4.23 wurde festgestellt, daB die Kriimmung F eines Zusam-
menhangs D auf einem Vektorbiindel E als eine 2-Form mit Werten in dem Endomor-
phismenbiindel End(E) aufgefaBt werden kann. Das spiegelt sich wieder in der lokalen
Beschreibung von F als eine Matrix von 2-Formen: F = (dAjl + Ali(/\ Ajk) (nach 4.25.
3°). Aus dieser lokalen Beschreibung 148t sich unmittelbar die folgende Version der
Bianchi-Identitét (vgl. 5.31) ablesen:

(4.25) Satz. Fiir die Kriimmung F eines Zusammenhangs D mit lokalem
Eichpotential A gilt
1° dF = FAA - AAF,

Beweis. dF = d(dA + AAA) = ddA + dAAA -~ AAdA = dAAA - AAdA und
FAA - AAF = (dA + AAAIAA - AA(dA + AAA) = dAAA - AAdA.

Die kovariante Ableitung eines Zusammenhangs wurde bereits fortgesetzt zu
D: AME) — HZME) durch D(ns) = dns - naDs (vgl. 4.17.4°). Sie kann wei-
ter fortgesetzt werden zu D : Jdk(M,E) —_ ﬂkH(M,E) durch die Definition

D(ns) = (dn)s + (—l)kn/\Ds fiir k-Formen 7€ ﬂk(M).

D induziert auBerdem einen natiirlichen Zusammenhang auf dem Endomor-
phismenbiinde! End(E), den wir ebenfalls mit D bezeichnen, und zwar durch

DL(s) := D{(Ls) — L(Ds)
fiir L € I'(W,End(E)) und s e I'(W,E). Insbesondere kann man deshalb die kovariante
Ableitung D : #%(M,End(E)) — #3(M,End(E)) auf die Kriimmung F als 2-Form
anwenden mit dem folgenden Ergebnis (vgl. auch 5.30):

(4.25.2°) Satz (Bianchi-Identitit): DE = 0.

Dazu muB wegen 4.25.1° nur DF = dF + AAF - FAA aus der Definition von
D (auf End(E)) abgeleitet werden (fiir "A" vgl. M.16.7°).

Eine weitere Folgerung aus den Strukturgleichungen 4.24.3%74° ist das Ver-
halten der lokalen Darstellungen der Kriimmung beim Wechsel der lokalen Eichung. Um
das zu beschreiben, sei @' : 1 (W) —> U x K" eine weitere lokale Trivialisierung des
Vektorbiindels mit der Uibergangsabbildung (p’Ocp'1 U x K —> UxK' . Weil diese
Abbildung faserweise linear ist, gilt ¢'o¢ (a,y) = (a,gla).y) mit einer lokalen Eich-
transformation g: U —> GL(r,K). Sei F' die lokale Darstellung der Kriimmungs-
form beziiglich der neuen Trivialisierung, dann gilt F' = dA' + A'AA' wobei die trans-
formierte 1-Form A' mit A in der Beziehung A' = gAg—1 +gdg™' steht (vgl. 4.5
und (A) in 4.23). Deshalb gilt, wie man durch Einsetzen unmittelbar sieht:

(4.26) Satz. Es ist F' = gFg—l mit den gerade eingefiihrten Bezeichnungen.
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S GEOMETRIE DER EICHTHEORIEN: PRINZIPALFASERBUNDEL

Zu einer Eichtheorie (oder auch: Eichfeldtheorie) gehoren ein Prinzipalfaser-
biinde! P iiber einer Mannigfaltigkeit M mit Strukturgruppe G, auf dem die jeweilige
Geometrie als ein Zusammenhang gegeben ist, und eine endlichdimensionale Darstel-
lung ¢: G —> GL(r,C) der Strukturgruppe.

Der Raum P entspricht in der physikalischen Sprechweise dem Raum der
(verallgemeinerten) Phasen (-faktoren) tiber der Raumzeit M und die Gruppe G ist
die interne Symmetriegruppe. Die kinematischen Variablen sind in diesem Bild die Zu-
sammenhidnge auf P, die als die globalen Eichpotentiale gegeben sind, und die Darstel-
lung o kontrolliert die Materiefelder, das sind diejenigen Cr~wertigen Funktionen ¢
auf P, die sich entsprechend der Darstellung p transformieren.

Fiir viele Anwendungen in der Physik konnen die auftretenden Biindel als
triviale Biindel vorausgesetzt werden. Aus diesem Grunde, und auch weil wesentliche
geometrische Eigenschaften bereits bei den trivialen Biindeln auftreten, wird dieser
Fall im folgenden besonders hervorgehoben. Der ganze fiinfte Paragraph ist so ange-
legt, daB man die Erérterungen iiber nichttriviale Biindel iiberspringen kann und dann
ohne Kenntnis des nichttrivialen Falles die meisten der Beispiele im nichsten Paragra-
phen verstehen kann. Es wird auBerdem versucht, den fiinften Paragraphen unabhingig
vom vierten Paragraphen aufzubauen, obwohl natiirlich die Geometrie der Vektorbiindel

an mehreren Stellen von Nutzen ist.
Wir beginnen also mit dem Konzept eines trivialen Prinzipalfaserbiindels:

(5.1) Definition. Zur Beschreibung eines trivialen Prinzipalfaserbiindels bens-
tigt man die folgenden Bestandteile:

1° Eine differenzierbare Mannigfaltigkeit M der Dimension n, welche Ba-
sismannigfaltigkeit genannt wird.

In vielen physikalischen Situationen ist M der Minkowski-Raum M & R*
wie zum Beispiel in den vorangegangenen Paragraphen 2 und 3 oder eine allgemeinere
Raumzeit M. Unter einer Mannigfaltigkeit soll hier immer eine differenzierbare Man-
nigfaltigkeit verstanden werden (vgl. Anhang M), und differenzierbar steht fiir unend-

lich oft differenzierbar,

2° Fine Matrixgruppe G, meistens kompakt, welche Strukturgruppe genannt
wird. Es sei g = LieG die zugehorige Lie-Algebra (vgl. Anhang L). g ist insbeson-
dere ein R-Vektorraum und k := dimg g ist die Dimension der Gruppe G als Man~

nigfaltigkeit.
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Entsprechend dem physikalischen Sprachgebrauch ist G die interne Symme-
triegruppe (oder die Fichgruppe). G wird deshalb interne Symmetriegruppe genannt,
weil die Wirkung von G (siehe Nr. 3° unten) nicht die Raumpunkte verdndert. In den
vorangegangenen Paragraphen 1 bis 3 kommen die folgenden Matrixgruppen als interne
Symmetriegruppen vor (Dimensionen jeweils in eckigen Klammern): U(l)[ﬂ, SU(Z)[3],
SUW(3)pgy, U) x SU(2),47. An anderer Stelle wurden die Gruppen Z 43, SO(3)(57,
50(4)pg7, SL(2,C) gy, SUlSIay7, SOBDgy, PBVe7s 50(4.2)py57 Tpyoy (Galilei~
Gruppe, vgl. 11.2), und weitere behandelt oder genannt. Ansonsten von Interesse in der
Physik: SO(8)[5g7, S0(82) 4967, SU(10) gg7: Egrage (exzeptionelle Lie-Gruppe), ...

3° Dije beiden Objekte M und G geben zusammen den Totalraum P als
das Produkt P:= M x G mit der Projektion

m=pr,: MXG — M
auf die erste Komponente und mit der natiirlichen Gruppenaktion

¥:PxG — P,
gegeben durch ‘I’g(a,h) = (a,hg) fiir ae M und g, he G. Es gilt ‘Pgo ‘I’g. = ‘I’g.g
fir g, g'€ G und ¥_ = idp fiir das neutrale Element e € G. Das bedeutet, wenn man
allgemein auch pg fiir ‘I'g(p), p € P, schreibt: (pg')g = plg'g) und pe = p
Deshalb nennt man ¥ auch Rechtsaktion, im Gegensatz zu den in Paragraph 3, Kap. I,
eingefiihrten Linksaktionen.

Das Prinzipalfaserbiindel besteht jetzt aus dem Totalraum P zusammen mit
der Rechtsaktion ¥ der Strukturgruppe G auf P und der Projektion n : P —> M.
P = n Ha) = {a} xG fir ae M sind die Fasern von .

Ein Schnitt im Prinzipalfaserbiinde! iiber einer offenen Menge U C M ist
eine differenzierbare Abbildung ¢ : U —> P mit moo = id. Ein solcher Schnitt ist
also gegeben durch eine differenzierbare Abbildung g : U —> P mit ola) = (a,g(a))
fir ae U. Insbesondere gibt es zu einem solchen trivialen Prinzipalfaserbiindel immer
globale Schnitte, das heiBt Schnitte auf ganz M.

—> MxG

LA

UCM——}G

Die Wirkung ¥ definiert im librigen eine Aquivalenzrelation auf P mit den
Fasern 7 Ya), ae M, als Aquivalenzklassen. Der zugehérige Quotient ist gerade M
mit der Projektion n als Quotientenabbildung. Diese Beschreibung fiithrt zu allgemei-
nen Prinzipalfaserbiindeln, die lokal wie ein triviales Prinzipalfaserbiindel aussehen.
(Wer nur an trivialen Biindeln interessiert ist, kann das Folgende iiberschlagen und bei
5.5 weiterlesen.)

(5.2) Definition. Seien P und M Mannigfaltigkeiten und sei G eine Ma-

el rrverttoieim Elom Dalemioia o mmemdiitonvdinl f~doew ITavsedmcmodriidonda N D W O ) i Ay
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Totalraum P und der Strukturgruppe G ist durch eine differenzierbare Abbildung
m:P —> M zusammen mit einer differenzierbaren Rechtsaktion ¥:PxG —> P
gegeben, so daB lokal die oben in 5.1 beschriebene Situation vorliegt:

(P) Zu jedem Punkt ae M gibt es eine offene Umgebung U von a und
einen Diffeomorphismus ¢ : 1 H(UW) —> Ux G mit ‘I’((p_i(cl,h),g) = <p_1(c1,hg) und
(e Mah)) = a fir alle ae M und alle g,heG.

Wenn man die jeweilige Rechtsaktion von G auf MU bzw. UXG ein-
fach als Rechtsmultiplikation schreibt und wenn man, wie iiblich, mit pr; die Projektion
pri: UXxG — U des trivialen Prinzipalfaserbiindels U x G auf die erste Kompo-
nente bezeichnet, so haben die in (P) gegebenen Bedingungen die Form plpg) = ¢lplg
und prog(p) = n(p) fiir alle pe U und g € G. Eine prignante Schreibweise dieser
beiden Bedingungen ist daher auch: cpo‘I’g = ‘I"gozp fir alle ge G und priog = my,
wobei ‘I"g die iibliche Rechtsaktion auf U x G {vgl. 5.21°) und Ty die Restriktion
von m auf n YU) bezeichnet.

¥
i - uxe i —=Es 1w

| N

UxgaG -—‘Pﬁ UxagG
g

Der Diffeomorphismus ¢ in der Bedingung (P) vermittelt einen Isomorphis-
mus des Biindels = (U) iber U mit dem trivialen Blindel U x G iiber U; ¢ heiBt
daher auch lokale Trivialisierung.

In der Definition eines Prinzipalfaserbiindels wird offensichtlich die differen-
zierbare Struktur der Matrixgruppe G benstigt (vgl. Anhang L), Natiirlich ist der Be-
griff genauso sinnvoll mit einer allgemeineren, abstrakten Lie-Gruppe. Die Bedingung
(P) zieht im iibrigen nach sich, daB die Projektion 7 eine surjektive Abbildung und Sub-
mersion ist. Die Rechtsaktion von G auf P definiert wie beim trivialen Prinzipalfaser-
biindel eine natiirliche Aquivalenzrelation mit den Fasern P_ = 1 a) von n als
Aquivalenzklassen bzw. Bahnen, und es gilt auch hier, daB M der Quotient als Mannig-
faltigkeit mit n als Quotientenabbildung ist (vgl. M.8). Diese Beobachtung gestattet
die Definition eines Prinzipalfaserbiindels als die Quotientenabbildung einer freien dif-
ferenzierbaren Lie~-Gruppenaktion auf P (vgl. 1.4.18). Im iibrigen ist P_ diffeomorph
zur Matrixgruppe G vermdége irgendeiner der lokalen Trivialisierungen in einer Umge-
bung U von a, aber P, ist nicht isomorph zu G, weil ja P_ keine Gruppenstruktur
hat.

Ein Schnitt im Prinzipalfaserbiindel iiber einer offenen Menge UCM ist
wie oben eine differenzierbare Abbildung o: U —— P mit nooc = idy;, die im allge-
meinen nichttrivialen Fall allerdings eine Produktdarstellung der Form a —> (a,g(a))
nur beziiglich der lokalen Trivialisierungen hat (vgl. Diagramm zu 5.1). Den Raum der

~ € . = o
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Der Unterschied zwischen dem in 5.1 definierten trivialen Prinzipalfaserbiin-
del und dem in 5.2 allgemeiner gefaBten Begriff ist lediglich, daB global keine Aufspal-
tung von P als Produkt gefordert wird. Ein einfaches Beispiel eines nichttrivialen
Prinzipalfaserbiindels mit der 0-dimensionalen Gruppe G = {1, -1} c €(1) als Struk-
turgruppe ist gegeben durch P = 5! = M, n(z) = 2% fiir ze s' und ¥, (z) = z)
fiir z € Sl ,AeG.DaB m:P —> M nicht trivial ist, liegt im wesentlichen daran,

daB es auf S' keine Quadratwurzel gibt! Dazu gibt es das folgende Resultat:

(5.3) Satz. Sei (P,M,G,n) ein Prinzipalfaserbiindel. Es gibt genau dann einen
Diffeomorphismus ¢ : P —> Mx G mit n = pr,op und ¢lpg) = ¢(plg, also
eine "globale Trivialisierung" von P, wenn es einen globalen Schnitt in P gibt, das ist
eine differenzierbare Abbildung c: M —> P mit mooc = idy,.

Beweis. Ist ¢ eine globale Trivialisierung, so ist o(a) = <p'1((1,e) ein glo-
baler Schnitt. Umgekehrt 14Bt sich mit Hilfe eines globalen Schnittes ¢ die globale
Trivialisierung ¢(p) = (wx(p),6(p)), p € P, definieren, wobei o(p) € G das eindeutig
bestimmte Gruppenelement mit p = o(n(p))&(p) ist. Es gilt o Nag) = ola)g fiir

diese Trivialisierung.

Jedes Prinzipalfaserbiindel iiber M = R™ besitzt eine globale Trivialisie-
rung; allgemeiner gilt das auch fiir eine zusammenziehbare Mannigfaltigkeit M. Uiber
einer dreidimensionalen Mannigfaltigkeit ist jedes Prinzipalfaserbiindel mit der Struk-
turgruppe SU(2) trivialisierbar. Im allgemeinen gibt es aber viele nichttriviale Prinzipal~

faserbiindel, wie man auch aus den folgenden Beispielen ablesen kann.

(5.4) Beispiele.

1° Das Reperbiindel einer Mannigfaltigkeit. Ein Prinzipalfaserbiindel, das sich
auf jeder Mannigfaltigkeit M in natiirlicher Weise ergibt, ist das Biindel der Basen der
Tangentialrdume, das wir Reperbiindel nennen ("frame bundle” im Englischen): Zu je-
dem Punkt a sei R, die Menge der Basen des Tangentialraumes T_M. Ist eine Basis
b = (b,,b,, .. ,b_ ) von T_M gewdhit, so ist jede andere Basis aus R, von der Form
bh = (b,h,byh, ... ,bnh), wobei buh = h:bv mit einer eindeutig bestimmten
reguldren Matrix (h:) = he GL(n,R). Also kann R durch die Gruppe G = GL(n,R)
parametrisiert werden, diese Parametrisierung héngt allerdings von der Wahl einer
Basis von T M ab. Der Totalraum des gesuchten Prinzipalfaserbiindels ist als Menge
R == (J{R,: ae M}. Die Projektion m:R —> M ist durch n(R,) = {a} festge-
legt. Die geforderte Rechtsaktion ¥ :RxG —> R auf R ergibtsich in natlirlicher
Weise aus der gerade geschilderten Parametrisierung der Basen von T_M: Wir setzen
¥(b,h) == bh fiir (bh) e RxG, also (bh)u = h:b\). Natiirlich ist bid = b. Auler-
dem gilt fiir je zwei Gruppenelemente g,he G: b(gh) = (bg)h, denn es ist

(beh)) = (eh)’b = 2°h’b. = h'g’b. = h'(bg), = ((bg)h) .
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Die Struktur eines topologischen Raumes und die einer differenzierbaren Mannigfaltig-
keit erhdlt R mit Hilfe der folgenden lokalen Trivialisierungen: Sei ¢ : U —> Qc RrR"
eine Karte der Mannigfaltigkeit M. Durch ¢ wird in jedem Tangentialraum T M,
a € U, die Basis {ai(u),az(a), w9 ()} e R, der Koordinatenrichtungen ausgezeichnet
(vgl. M.10). Fiir b e R, sei ¢(b) e G die Matrix mit bu = ?p’(b):av(a) , also gilt in der
oben eingefiihrten Notation: b = d(a) (b). Es ist leicht zu sehen, daB8 die Abbildung
P:rHUW) ~— UXG, b —> (n(b),3(b)) fir beR, bijektiv ist. Die Topologie auf
7 {UW wird so gewihlt, daB $ topologisch ist. Dann ist § eine Karte und die
Kollektion all dieser Karten definiert einen differenzierbaren Atlas, wenn fiir je zwei
Karten q : u — Q. 9:U —> Q,, der Basismannigfaltigkeit M der Uibergang
$.0 @;1 t U, xG —> U, xG stets differenzierbar ist (vgl. M.8).

A=t

U _xgG —%" 1 L‘ u
L X T ULK) L3¢ x G
T
pr, pr,
ULX

Um das zu beweisen, geniigt es wegen P.0 @;l(a,h) = (a,§,0 <Np;1(h)) die Differenzier-
barkeit von o 'q“J;‘ : G —> G zu zeigen. Es ist D(chO(p;l)(tpx(a)) $,(b) = F(b) fiir
b € R, nach Definition der $ (siehe auch M.10 fiir den Vergleich der durch ¢, =9 und
¢, = ¢ gegebenen Basen von T,M). Wenn man jetzt h = $,.(b) setzt, folgt daraus
schlieBlich § o &;l(h) = D((p,_o«p;l)(cpx(a))h. Also sind alle o $;1 differenzier-
bar. Auf R ist damit eine differenzierbare Struktur definiert, fiir welche die Projektion
n und die Rechtsaktion ¥ differenzierbar sind und fiir welche auBerdem die $L die
Trivialisierungsbedingung (P) erfiillen. Damit ist das Reperbiinde! R = R(M) als ein
Prinzipalfaserbiindel iiber M mit der Strukturgruppe GL(n,R) nachgewiesen. R(M) ist
genau dann trivialisierbar, wenn das fiir das Tangentialbiindel gilt, also wenn M paral-
lelisierbar ist.

2° Restriktion der Strukturgruppe. Die Vorgabe einer Struktur auf M kann
zu einem Prinzipalfaserbtindel P ¢ R mit einer Strukturgruppe G C GL(n,R) fiihren.
Beispielsweise sei die Mannigfaltigkeit M orientierbar mit einer festen Orientierung
(vgl. M.18 und 1.4.7). Man betrachte die Menge Ry CR der positiv orientierten Basen
der T M und erhilt so ein Prinzipalfaserbiindel R, iiber der Mannigfaltigkeit M mit
GL (nR) = {ge GL(n,R): detg > 0} als Strukturgruppe. Ahnlich erhilt man bei der
Zusatzstruktur einer Volumenform auf M das Prinzipalfaserbiindel aller orientierten
und volumentreuen Basen (vgl. 1.4.8) mit der Strukturgruppe SL(n,R). Im Falle einer
Riemannschen Mannigfaltigkeit M mit einer Riemannschen Metrik g (vgl. G.12) bilden
die Orthonormalbasen der T_M beziiglich g(a) ein Prinzipalfaserbiindel R(M,g) c R(M)
iiber M mit der Strukturgruppe O(n). Unter Beriicksichtigung einer Orientierung auf
M (falls M orientierbar ist) kommt man entsprechend zu dem Prinzipalfaserbiindel
R,(M,g) aller positiv orientierten Orthonormalhacan i 4o e 1.
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Bei allen diesen Konstruktionen bleiben die lokalen Trivialisierungen erhalten. Analoge
{iberlegungen fiir eine semi-Riemannsche Mannigfaltigkeit M fiihren zu den Biindeln
R(M,g) C R(M) bzw. R,(M,g) mit den Strukturgruppen O(p,q) bzw. SO(p,q).

3° Das Reperbiindel eines Vektorbiindels. Fiir ein K-Vektorbiindel E vom
Rang r iber M hat man analog zu der in 1° durchgefiihrten Konstruktion das Reper-
biindel GL(E) der Basen aller Fasern E_, a € M, mit GL(r,K) als Strukturgruppe. Fiir
diesen allgemeineren Fall geht man anstatt von Karten auf M, welche geeignete
Biindelkarten des Tangentialbiindels vermitteln, gleich von lokalen Trivialisierungen ¢
des Vektorbiindels E aus, um analog zu 1° die lokalen Trivialisierungen von $ zu
erhalten. Ein Vergleich mit 1° zeigt R(M) = GL(TM). Die Fixierung einer zusitzlichen
Struktur auf E fiihrt dhnlich wie in 2° ,u weiteren Prinzipalfaserbiindeln mit Unter-
gruppen G von GL(r,K) als Strukturgruppen. Ein typischer Fall fiir komplexe Vektor-
biindel E:Die Festlegung einer hermiteschen Metrik auf E ergibt das U{n)-Prinzipal-
faserbiindel der Orthonormalbasen der E_. Auch ein Zusammenhang D auf dem Vek-
torbiindel E (vgl. Paragraph 4) kann iiber die Holonomiegruppe des Zusammenhangs
zu einer Reduktion der Strukturgruppe fiihren (vgl. [LIC], [pOO]).

4° Homogene Riume. Durch geeignete Quotienten von differenzierbaren
Mannigfaltigkeiten nach freien Gruppenoperationen werden viele konkrete Beispiele von
Prinzipalfaserblindeln gegeben (vgl. 1.4.18°%) . Als bekannten Fall wollen wir hier nur die
projektiven Raume hervorheben: Der reell-projektive Raum P_(R) entsteht als Quotient
von g™t beziiglich der Gruppenaktion x —— - X. $n+1 ist also ein Prinzipalfaser-
blindel iiber P_(R) mit der Gruppe {1,-1} = Z, als Strukturgruppe. (Das vor 5.3
genannte Beispiel ist tibrigens der Fall n=1.) Entsprechend ist Sznﬂ Prinzipalfaser-
biindel iiber dem komplex-projektiven Raum P _(C) mit Strukturgruppe U(1). Im Falle
n=1 ist dieses Beispiel aus 11.6.13 als Hopf-Abbildung s° —» s> P(C) bekannt.
Eine andere Beschreibung des projektiven Raumes als homogener Raum (vgl. 1.4.15°)
geht von den Gruppen orthogonaler bzw. unitirer Matrizen als Totalraum aus: Auf
diese Weise ist SO(n+1) Prinzipalfaserbiindel iiber P_(R) mit O(n) als Struktur-
gruppe. Die Wirkung von SO(n) kann folgendermaBen beschrieben werden: Indem man
jeder Matrix A aus O(n) die (n+1)x(n+1)-Block—Matrix (((;)X)’ ¢ = (det A)'l, aus
SO(n+1) zuordnet, wird eine Einbettung O(n) — SO(n+1) definiert. Daher kann
O(n) als Untergruppe von SO(n+1) aufgefaBt werden. Die Wirkung von O(n) auf
SO(n+1) ist jetzt einfach die Multiplikation von rechts. Analog ist SU(n+1) ein Prin-
zipalfaserbiindel iiber P (C) mit U(n) als Strukturgruppe. Entsprechend hat man
auch SL(n+1,K)/GL(n,K) = P, (K} fir Ke {R,C} und sogar fiir die Quaternionen.

(5.5) Das vertikale Biindel. Eine geometrische Struktur erhilt man auf einem
Prinzipalfaserbiindel 7 : P —> M mit Strukturgruppe G erst durch die Festlegung
eines Zusammenhangs. Dazu benstigen wir das vertikale Biindel V im Tangentialbiin-
del TP von P:Die Tangentialabbildungen Tpn : TPP — Tn(p)M fiir p € P bestim-

q T IT Y rEs  § 4

T o T P Aer atich vertitbaler Raum genannt
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wird. ZusammengefaBt liefern die vertikalen Réume das vertikale Biindel V:
Vo= U{Vp:peP} c TP

V ist Unterbiindel von TP. Die Fasern Vp von V sind k-dimensional, denn Vp ist
als R-Vektorraum in natiirlicher Weise isomorph zur Lie-Algebra g von G. AuBer-
dem hingt Vp differenzierbar von p ab. Daher ist V ein R-Vektorbiindel vom Rang
k. Wir werden gleich sehen (vgl. 5.8), daB sich V stets als ein Produkt V = Pxg
schreiben 14Bt, also ein triviales Vektorbiindel iiber P ist. In dem Spezialfall eines tri-
vialen Prinzipalfaserbiindels P = M x G hat TpP die durch P = M x G gegebene
Zerlegung in TpP = R" x g und es gilt offenbar Vp = {0} xg.

(5.6) Definition. Sei 7 : P —> M ein Prinzipalfaserbiindel mit der Struk-
turgruppe G und der Wirkung ¥ :Px G — P, Ein Zusammenhang auf dem Prinzi-
palfaserbiindel ist durch eine differenzierbare Schar (Hp )p ep YOR Untervektorréun)en
Hp cT pP gegeben mit den folgenden Eigenschaften:

(H1) TpP = Hp @ Vp fiir alle p € P, das heiBt Hp ist horizontal,

(H2) Tp‘Pg(Hp) = Hpg fiir alle pe P und ge G, das heifit Hp ist inva-

riant gegeniiber der Wirkung ¥.
Dabei bedeutet die Differenzierbarkeit von p— Hp, daB es zu jedem Punkt Py €P
eine offene Umgebung U von P, und differenzierbare Vektorfelder Xu : 0 — TP,
u = 1,..n, gibt, so daB (Xl(p), Xz(p),.‘.Xn(p)) fiir alle pe U eine Basis von Hp
ist. (Uibrigens ist V ebenfalls differenzierbar in diesem Sinne,)

Eine Zerlegung TpP = Hp @ Vp von TpP nach (H1) in einen horizontalen
und einen vertikalen Anteil wird durch eine eindeutig bestimmte R-lineare Abbildung
LA TpP —> TpP mit H = Kervp und Volv, = id,, gegeben. v, erfiillt dann
auch die Identitit » pO%p = ¥, und wird die horizontale Projektion genannt.

Im allgemeinen gibt es viele solche Projektionen, wie man sich an dem
folgenden einfachen Beispiel klarmachen kann: Sei T ein 2-dimensionaler R-Vektor-
raum und V C T ein eindimensionaler Teilraum von T. Sei veV ein fester Vektor
v+ 0. Fiir jeden Vektor he T\V ist (v,h) eine Basis von T, also hat jeder Vektor
t € T eine eindeutige Darstellung t = ov + Bh mit o,peR. Jetzt gilt: »(t) = av
definiert eine R-lineare Projektion auf V mit Kerv = {Bh:BeR} = H. Je zwei
solche Projektionen w,»' sind genau dann verschieden, wenn Ker » + Kerwv', das
heiBt, wenn h und h' linear unabhingig sind.

-~ v /
T~ VAN
- h
hl
\\\\\\Hl
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Die Bedingung (H2) iibersetzt sich im trivialen Fall mit der oben angespro-
chenen Identifizierung TpP ~ R™x g als Hp = Hpg fiir alle ge G und p € P. Die
Differenzierbarkeitsbedingung in der Definition 5.6 bedeutet im iibrigen gerade, daB die
Schar (Hj ),ep sichzueinem Vektorbiindel H := U{Hp :peP} c TP zusammen-
setzt, welches zugleich ein Unterbiindel des Tangentialbiindels TP ist. H wird das
horizontale Biindel genannt und erfiillt TP = H ® V im Sinne der direkten Summe von

Vektorbiindeln.

(5.7) Satz. Ein Zusammenhang auf einem Prinzipalfaserbiindel n : P —> M
mit Strukturgruppe G definiert einen Vektorbiindelhomomorphismus ®»: TP —> TP
(also: » ist differenzierbar, und v = vl p: T P —> TP ist R-linear fiir alle

p b P P
p € P) mit den folgenden Eigenschaften:

(V1) por = » und Imw» = V, das heiBt » ist Projektion auf V,

(v2) T‘Ifgov = voT‘I’g fiir alle ge G, das heiBt » ist ¥P-invariant.
Umgekehrt bestimmt ein solches % stets einen Zusammenhang auf dem Prinzipalfaser-

biindel, der durch Hp = Ker v, P € P, definiert ist.

Beweis. Bei Vorgabe eines Zusammenhangs durch eine Schar (Hp) von hori-
zontalen Unterrdumen setzen sich die weiter oben eingefiihrten Projektionen v, zU
einer Abbildung v : TP —> TP, »(§) = ’lFP(E) fiir £ € TpP, zusammen, welche faser-
weise linear ist und unmittelbar die Bedingung (V1) erfiillt. Es gilt daher nur nachzu-
priifen, da die Differenzierbarkeit von Hp gerade die Differenzierbarkeit von v be-

deutet, und daB aus {H2) die Bedingung (V2) folgt.

(5.8) Das Fundamentalfeld. Es sei wieder g = LieG die Lie-Algebra zu G.
Fiir X e g ist das Fundamentalfeld X zu X analog zu Paragraph 9 in Kapitel III
{nach I1.9.13, vgl. Bild S. 145) definjert:

)N((p) = —ddT(pexth)|t=0 = [pexth]pe TpP.

Man kann leicht nachpriifen, daB Vp = {)’z(p) 3 X e g} gilt. Deshalb ist die Umkeh-
rung der Abbildung P x ¢ —> V, (p,X) —> X(p), eine natiirliche globale Trivialisie-
rung des vertikalen Blindels. Es sei oy Vp —> g die zu X —— )'Z(p) inverse
Abbildung. Dann erhdlt man die R-linearen Abbildungen Wy, TpP —> g durch
. = o _ow_, peP, die man zu einer g-wertigen I-Form = cov:TP —> ¢

P p P
zusammenfaBt {o € £ (P,g), vgl. M.16 oder Paragraph 4).

(5.9) Satz. Ein Zusammenhang auf dem Prinzipalfaserbiindel definiert eine
g-wertige 1-Form o € #(P,g) auf dem Totalraum P mit

(o) oX) = X fir Xe g,

02) o(T¥,(Z) = g 'o(Z)g fir geG und Vektorfelder Z auf P.
Umgekehrt liefert jede g-wertige 1-Form o mit (01) und w2) iiber Hp = Kerwp
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Fir peP,Xeg und Z¢ TP bedeuten (v1) und (2) u)p()w((p)) = X und
(opg(Tp‘Pg(Z)) = g_lmp(Z)g. (Hier und in (02) ist g'iwp(Z)g wohldefiniert fiir Ma-
trixgruppen G ¢ GL{(m,C), da in dieser Situation LieG = g € C(m) gilt. Daher ist Xg
fiir die Matrizen X = (op(Z) €g und geG als Matrixprodukt gegeben und es gilt
g'IXg € g. Fiir allgemeine Lie-Gruppen wird in (w2) der Ausdruck g_lw(Z)g durch
Adg-:(m(Z)) ersetzt.) Im iibrigen ist ‘I’Zm = on‘I’g das Pullback von o (vgl, M.16);
mit dieser Notation schreibt sich (02) auch in der kompakteren Form: ‘I’;m = g_lwg
fiir alle g € G. Fiir den Beweis des Satzes benétigt man im wesentlichen nur die Formel
opg(Tp‘I’g(ﬁ(p))) = g—!Xg, die sich direkt aus den Definitionen und aus (V2) ergibt.

» heiBt die Zusammenhangsform des Zusammenhangs. I physikalischen
Sprachgebrauch ist P der Raum der Phasenfaktoren und © das (globale) Eichpoten-
tial. Die Eichpotentiale der vorangehenden zwei Paragraphen 2 und 3 sind dagegen
lokale Eichpotentiale, die sich aus o folgendermaBen ergeben:

Sei UC M offene Mengeund 6: U — p ein Schnitt, also eine differen-
zierbare Abbildung o: U —» p mit moc = idy. Im trivialen Fall bedeutet das
einfach o(a) = (a,g(a)), fiir g : U —> G differenzierbar. 6 wird in der Physik als
lokale Fichung bezeichnet und definiert auf U mit Hilfe von  eine g-wertige
1-Form A° := ¢*y auf U, durch

*o(Y) = o(To(Y)) fiir Vektorfelder Y auf U.

A° heiBt das zu ¢ gehdrige Eichpotential bzw. die lokale Zusammenhangsform. A°
ist auf U eine 1-Form im folgenden Sinne: Fiir alle ¢ U ist mit p = ola) die
Abbildung A? = A%(q) = 9p°Ta0: TM — g R-linear (T M = T_u).

(5.10) Satz. Fiir je zwei Schnitte ;¢ LIJ. —> P, j=12 mit U:= u,n U,+¢

gilt mit A = ofw und A' = 05w, sowie g = 02_101 auf U:
(A) A'= gAg™ + gdg™ (= gag™ - (dg)g™).

Dabei ist die Abbildung g = 0;101 = ‘I’oi(o;) :U —> G fir aeU durch das
eindeutig bestimmte Gruppenelement gla) € G mit o,la) = o,(a) gla) gegeben. In
lokalen Koordinaten geschrieben ist das die in 3.3 hergeleitete Transformationsbedin-
gung (mit Au = icBu und g statt S):

A= gAe v goET! (= gAgT - (3,0gY).

Den Beweis dieser wichtigen Transformationseigenschaft zeigen wir exemp-
larisch etwas ausfiihrlicher (die vorangehenden Sitze haben einfachere Beweise): Der
Tangentenvektor Y e T_M sei durch die Kurve Y in M gegeben: Y = (%;Y(t)lr.:o'
Dann gilt mit p = 6,(a) und p' = oyla):

AL(Y)

ALLY) = mp.(gtozoy(t),t:o).

]

ofmq(Y) = (op(Taol(Y)) = “’p(c%;"1°'f(t)'t=o)’ sowie analog
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Es ist
4 6,010 = S0 o1W] = §loror@) & or]erg
= S (oov g (@)|eeo *+ 4 (o,(a)g™ ov(®)];eq
= (—i(it‘l'h(cloy(t))‘t=0 + gt(cz(u)g(a))(g_loy(t))ltm (mit h = g ')
= Tp\}fh(qul(Y)) + gt(oz(a)g(u))(g"oY(t))|t=°-
Um den zweiten Term dieser Summe zu verstehen, betrachten wir die durch vy gegebe-
ne Kurve gla) g loy(t) in der Matrixgruppe G. Wegen g(a)g-loy(O) = e (= Ein-
heitsmatrix) in G ist der zugehorige Tangentenvektor X == c%t(g(ct) g loy(t))|;., ein
Element von T_G und kann als ein Element der Lie-Algebra ¢ = TG aufgefaBt
werden. Da gla) g'loy(t) nichts weiter als ein Matrixprodukt ist, kann X auch als
X = (%t(g(a)g'lo*{(t))lt=o = g(ﬂ)gt(g"ov(t))|t=,, = g(a)T g '(Y) geschrieben wer-
den. Fiir das zu X € g gehorige Fundamentalfeld X auf P gilt allgemein fiir jede
Kurve n(t) in G mit n(0) = e und gtn(t)|t=o = X: X(p) = (%t(pn(t))lt=o. Ange-
wandt auf die Kurve g(a)g 'oy(t) ergibt das Xip") = (%t(oz(a)g(a)g'loy(t))|t=o,
denn es ist p' = oz(a). Jetzt kommt die Eigenschaft (wi) der Zusammenhangsform
zum Zug: Es ist mp.()m(’(p')) — X nach (w1), und das bedeutet die Identitat:
W o, (& (oylaigl@e or]y) = X = gla)T g ' (Y).
Aufgrund von (02) gilt (mit he G statt dort g) fiir den ersten Term der Summe
0, (T¥R(T o0 (M) = o, (Teo,(Y)h.
Es folgt wegen p' = ph, h! = gla) und A_(Y) = wp(Taol(Y))

(2) 0, (T T,(Teo, () = gla) Ag(Y) g Na).
Insgesamt folgt aus

ALY) = o, (§ 0,070

= 0, (T (Teo, (1) + 4 (o,tagla) (g7 o¥(0)]e-)
wegen (1) und (2) die angestrebte Bedingung (A):

ALY) = gl@A (Vg (@ + gla) T g ' (Y).

Damit ist der Satz bewiesen.

In welcher Weise bestimmen geeignete lokale Eichpotentiale eine globale Zu-
sammenhangsform auf dem Totalraum P des Prinzipalfaserbiindels? Darauf gibt der

folgende Satz eine Antwort unter Verwendung der gerade hergeleiteten Bedingung (A):

(5.11) Satz. Auf dem Prinzipalfaserbiindel = . P —> M mit der Struktur-
gruppe G sei eine Familie von lokalen Schnitten o : U, — P, e, iiber offenen
Mengen U, CM gegeben, welche M iiberdecken: M = U{UL . 1e 1}, BEs seien durch
6, = 0,8, im Falle U = U N u, + @ die differenzierbaren "Verklebungsfunk-

Iy,

I DR T
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g-wertigen 1-Formen Aed 1(LIL,g) mit der Vertréiglichkeitsbedingung
(A A, = g, Ag, + g,dg;! auf U, fiiralle (1) € Ix] mit U, + g,

gibt es dann eine eindeutig bestimmte Zusammenhangsform o auf dem Prinzipalfaser-
biindel mit G?&) = A, fiiralle te1,

Die verschiedenen lokalen Eichpotentiale A, mit der Transformationseigen-
schaft (A) bestimmen also ein globales Objekt, die Zusammenhangsform o auf P.

Zum Beweis definiert manzu ae UL, p = oL(a), Ye TqM und X eg erst
einmal N olTqo (Y) + )“&p) = A, (YY) +X. Dann ist n, eine g-wertige 1-Form auf
6, (W ). Fortsetzen auf n‘l(UL) erfolgt durch W, pgl(Z) = gblnL’p(Tpg‘Pg—l(Z))g fiir
g€€G und Z¢ Tp P+ Man erkennt, daB dadurch eine differenzierbare, d-wertige
1~Form auf T[.—I(u'_) definiert ist. Es 148t sich nachpriifen, daB8 dieses w, die Bedingun-
gen (wl) und (w2) erfiillt, und daB cn*wL = A, gilt. Bis zu dieser Stelle wird die Eigen—
schaft (A) noch nicht benétigt. Um zu zeigen, daB es eine g-wertige 1-Form © auf P
mit » = o, auf Tt-l(UL) gibt, muB festgestellt werden, daB fiir alle (,%) € IxI mit
U, * 2 die Formen o, und o auf n'l(ULK) libereinstimmen. Dazu geniigt es we-
gen der Invarianz (02) fiir die w,, die Gleichheit Olo,(u,) = B, lo, (1, ) Zu beweisen.
Mit einigem Aufwand folgt diese gerade aus der Bedingung (A).

(5.12) Beispiel. Die aus Paragraph 2 bekannte U(1)~Eichtheorie soll in dem
neuen Formalismus dargelegt werden.

Der Rahmen der Eichtheorie ist in dieser Situation das triviale U(1)-Prin-
zipalfaserbiinde! tiber dem Minkowski-Raum M: Der zugehdrige Totalraum P ist der
Raum P = M x U(1) der Phasenfaktoren mit der Projektion n : P —> M auf die
erste Komponente und mit der Rechtsaktion

Y. (qw) = (qw)z = (q,wz)
fiir qeM und w,z e U(), Als Koordinaten wihlen wir die kartesischen Koordinaten
q = (qo,qt,qz,qa) im Minkowski~Raum M und die Winkelvariable s e R fir z=¢'®
in U(1). Entsprechend ist {80,61,62,83,84} eine Basis des Tangentialraumes T P, wenn
s = g* gesetzt wird. (64 = d%:(q,ei(yt))[t:o, bzw. 64f(q,eis) = ditf(q,ei(5+t))ft=o)
Zur Gruppe G = U(1) ¢ GL(1,C) = ¢ jst g =ull) = iRccC die Lie-Algebra. Das
Fundamentalfeld eines Lie~Algebra-Elements X := ibeg, 0¢R, in p = (q,eis) eP
ist dann durch )N((p) = 09, gegeben (wegen )Aé(p) = %(q,ei(5+te))]t=o = 09,). Sei
® eine g-wertige 1-Form auf P, die als eine Zusammenhangsform dienen soll. Es gilt
also, fiir diesen Spezialfall die Bedingungen (w1) und (02) zy verstehen. o ist fiir pe P
als eine R-lineare Abbildung w(p) = W, TpP —> @ gegeben. Beziiglich der oben
festgelegten Koordinaten ist w(p) daher von der Form o(p) = wv(p)dqv mit diffe-
renzierbaren Funktionen w, = w(d ) auf P.

Die Bedingung (w1) ist wp()'z(p)) = X, also fir X = i@, wp(ea4) = i@,

Es folet 3 — ¢y 2 Y _
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Die Bedingung (02) ist o (T ¥,(Z)) = 7o (Z)z = 0 (Z) fir peP,
z € U{1) und fiir Vektorfelder Z auf P (letztere Gleichheit wegen der Kommutativitat
der Gruppe U(1)). Aufgrund von Tp‘{’z(a\,) =9, fir v<3 folgt aus (w2) also, daB
die Koeffizienten w, von Zz € U(l) unabhéngig sind.

Insgesamt haben wir hergeleitet, daB eine g-wertige 1-Form © auf P ge-
nau dann Zusammenhangsform des trivialen Prinzipalfaserbiindels ist, wenn sie sich als
wlqz) = ile Av(q)dqv + ds) darstellen 148t (mit einer willkiirlichen Konstanten e € R
und differenzierbaren Funktionen A, : M —> R). Fiir den speziellen ("Eins—")Schnitt
oy : M — P, o5lq) = (q,1), ist das zugehorige lokale Eichpotential A = ieAqu\’;

fiir beliebige differenzierbare Schnitte olq) = (q.g(q)) mit glg) = ei(’o(t)

entspre-
chend A° = A+idg = A+ g—ldg. Die Transformationseigenschaften lassen sich
jetzt direkt ablesen. (Man beachte, daB wegen der Kommutativitdt der Gruppe uQ)

stets g 'Ag = A gilt)

Zur Geometrie des Zusammenhangs auf einem Prinzipalfaserbiindel gehort
neben den bisher dargelegten Begriffen wie horizontales Biindel, Zusammenhangsform
und lokale Eichpotentiale auch der Paralleltransport und die kovariante Ableitung. Der
Paralleltransport eines Zusammenhangs wird tiber die horizontalen Liftungen von Kur-

ven der Basismannigfaltigkeit definiert.

(5.13) Definition. Auf (P,M,G,n) seiein Zusammenhang durch die horizon-
talen Rdume Hp C TpP, p € P, nach 5.6 gegeben. Fine {stiickweise differenzierbare, vgl.
die Definition im AnschluB an 411) Kurve B:1 —> P in P heiit horizontal, wenn
alle Tangentenvektoren an p horizontal sind, das heift wenn Blt) € HB(t) fiir alle tel
gilt. Ist a: 1 — M eine Kurve in M, so heiBt die Kurve B in P horizontale Liftung
von o, wenn o = mop gilt und wenn g horizontal ist. (Siehe das Bild im vierten

Paragraphen: 4.11.)

Ahnlich wie bei Vektorbiindeln (vgl. 4.14) gibt es immer horizontale Liftun-

gen zu den Kurven in der Basismannigfaltigkeit:

(5.14) Satz. Sei (P,M,G,x) ein Prinzipalfaserbiindel mit Zusammenhang und
sei o:1 —> M eine Kurve in M durch den Punkt a = alty). Dann gibt es zu

jedem pe€ n"Ya) genau eine horizontale Liftung B von o mit Blty) = p.

Beweis. Da die Aussage lokaler Natur ist, geniigt es anzunehmen, daB das
Prinzipalfaserbiindel trivial ist. Dann ist p=(ah) e MxG =P und jede Kurve B in
P mit o = mof hat die Form B(t) = (a(t),hg(t)) mit einer Kurve g in G, fiir die
glty) = e gilt. Fiir den Schnitt opla) = (a,h), aeM, gilt also Blt) = By(t) gt),
wobei By = 040, g ist genau dann horizontal, wenn “"a(t)(é(t)) = 0 gilt, und das

- e

., modiionno an g und &, Analog
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zu dem Beweis zu 5.10 (wobei B die Rolle von o, und By bzw. 0, die Rolle von o,
spielen) 1aBt sich die Gleichung

(ogw) (&) = guglflg™t + g%(g-l)
herleiten. Mit der g-wertigen 1-Form A := ogw auf M ist diese Gleichung wegen
0= %(gg-l) = (%g)g_l + ggdt-(g—l) gleichbedeutend_mit g+A (g = gmB(B).
B ist also genau dann horizontale Liftung von « durch p, wenn g+ A (d)g = 0
und glty) = e gilt. Dieses Anfangswertproblem fiir ein System von gewdhnlichen

Differentialgleichungen hat aber eine eindeutig bestimmte Lésung.

(5.15) Paralleltransport. Fiir eine Kurve @ von a = alty) nach b = alt,)
wird durch die horizontalen Liftungen von o eine Abbildung P:;'tl P, — P, defi-
niert, indem [P:;_t‘(p) = Blt,) gesetzt wird fiir die eindeutig bestimmte horizontale
Liftung 8 von « durch den Punkt pe P ,dh p = Blty). P::'t‘ P — P, ist
der Paralleltransport von a nach b lidngs «. P:; * ist Diffeomorphismus und
genligt einer Reihe von Vertr'a'.glichkeitsbedingungen. Insbesondere ist P:) 'ty invariant
gegeniiber der auf P definierten Rechtsaktion.

(5.16) Beispiel. Wir setzen das Beispiel eines trivialen U(1)-Prinzipalfaser-
blindels fort (vgl. 5.12): Ein Tangentenvektor 7 = Z“av + 80, (mit der Summation nur
bis v = 3) aus TpP liegt in Hp, wenn wp(Z) = 0 gilt. Nach 5.12 folgt wegen
w, = ileA dq” + ds): Hy ={ZeTP:eA (q)Z"+0 = 0}. (ec R ist hier ein Para-
meter.) Die horizontale Liftung einer Kurve « in M mit alty) = g, durch den Punkt
p = (q,,1) ist daher B = (ot,ei(P), wobei ¢ die Losung der Differentialgleichung
(iJ+eAv(0()dtv = 0 mit ¢{t)) = 0 ist. Fiir das konkrete Beispiel AlQ = q?,
Alg) = -q' und Ay = A; = 0 (vgl. 413.3°) gilt es, die gewthnliche Differential-
gleichung ¢ + e(o®a! - cx‘dcz) = 0 zu l6sen. Fiir die Kurve alt) = (0,cost,sint,0),
t € [0,2n], etwa mit den Werten ty = 0 und q; = (0,1,0,0) ist o{t) = et die Ls-
sung, und es gilt B(t) = (0,cost, sint,O,eiEt). Damit haben wir auch ein konkretes
Beispiel eines Paralleltransportes: b = «(21) = q, = a,also t; = 2n. Der Parallel-
transport P:)’tl: P, — P‘.J lings der Kurve o ist deshalb einfach die Zuordnung
(0,1,0,0,z) —> (O,I,0,0,zelzne). Insbesondere ist der Paralleltransport fiir diesen
Zusammenhang auf dem trivialen Biindel P = MxU() im allgemeinen nicht wegun-
abhéngig. Denn fiir die Kurve ¥(t) = (0,cost,sint,0),t e 0,471 (doppeltes Durchlau-
fen der Kreislinie), ist mit t, = 4n der Paralleltransport langs der Kurve y die Zu-
ordnung (0,1,0,0,2) — (0,1,0,0,zei4"e). Der Paralleltransport ist also nur dann
wegunabhingig fiir diese spezielle Situation, wenn e ganzzahlig ist.

Um schlieBlich den Zusammenhang als allgemeine kovariante Ableitung
beschreiben zu kénnen, benétigen wir die vektorwertigen Differentialformen, die wir
auch zu Beginn des vierten Paragraphen eingefiihrt haben (vgl. auch Anhang M.16). Sei
F ein endlichdimensionaler Vektorraum iiber K ¢ {R,C} und U offene Monoa in aimew
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Mannigfaltigkeit. Die (beliebig oft) differenzierbaren Funktionen von U nach F wer-
den auch als 0-Formen aufgefaBt. Den Raum dieser Funktionen schreiben wir als 6§{(U,[F)
oder als A°(U,F). (U, F) ist in natiirlicher Weise ein Modul iiber dem Ring &(U,K)
{punktweise Addition und Multiplikation). Eine F-wertige (differenzierbare) 1-Form ist
eine &(U,K)-lineare Abbildung 1 : B(U) —> &(U,F) auf dem &(U,K)-Modul der dif-
ferenzierbaren Vektorfelder auf U. Zu jedem Punkt a€ U definiert eine solche 1-Form
eine R-lineare Abbildung n(a) = ng: T U — F, und eine Kollektion solcher
R-linearen Abbildungen n, bestimmen eine i-Form, wenn sie differenzierbar von a
abhiéngen. Der Raum der 1-Formen auf U wird mit & (UF) bezeichnet. AHUF) ist
wieder ein Modul iiber dem Ring &(U,K). Eine (differenzierbare) k-Form 1 ist eine
Abbildung n: 93(11)k —> F, die k-fach multilinear beziiglich des Moduls &(U,K)
und auBerdem alternierend ist. Wieder hat man eine alternative Beschreibung einer k-
Form als elne differenzierbare Familie von k-linearen, alternierenden Abbildungen

(T, U) ——5 F. (Vgl. M.16 fiir weitere Beschreibungen der differenzierbaren, vek-
torwertlgen k-Formen in lokalen Koordinaten und ihr Transformationsverhalten. Siehe
auch die Bemerkungen vor 4.23 fiir die Definition der k-Formen als Schnitte in geelgne—
ten Vektorbundeln) Der Raum der F-wertigen k-Formen auf U wird mit A (U )
bezeichnet. & (LI,!F) ist wieder ein &(U,K)-Modul.

Ein Zusammenhang auf einem Prinzipalfaserbiindel (P,M,G,n) legt auf allen
vektorwertigen k-Formen auf P kovariante Ableitungen auf die folgende Weise fest.
Der Zusammenhang sei durch die Zerlegungen TpP = H, @ Vp gegeben. Diese Zerle-
gungen sind auch durch eindeutig bestimmte Projektionen o, : TpP -_— TpP auf die
horizontalen Raume H gegeben, und zwar gilt: o, ist R-linear, 6,06, = €

Kero, = V , Ime, = H und p — 6, ist differenzierbar. (Anders ausxg)edrﬁcit
in der Sprache der Vektorbundel (vgl. Paragraph 4): ¢ ist eine Vektorbiindelhomomor-
phismus ¢ : TP —> TP mit eo6e = o, Kere = V und Imoe = H.) Mit der oben
(unmittelbar nach 5.6) verwendeten, komplementéren Projektion v, steht o b in der

Beziehung »_ + ¢ = idy oP - In Erganzung zu den vielen Charakterisierungen des Zu-

sammenhangsbegrrx)ffs gilt daher Ein Zusammenhang wird auch durch einen Vektorbiin-
delhomomorphismus ¢ : TP —> TP gegeben, der Kere = V und 6 06 = @ sowie
00T‘I’ T‘I’ oo fiir alle ge G erfiillt. Anschaulich gesprochen ist fiir einen Tan-
gentenvektor Z € T P durch den Vektor &, (Z) e H gerade der horizontale Anteil
von Z beschrieben. Insbesondere ist Z= L (Z) ® o, (Z) Fiir einen beliebigen endlich-
dimensionalen K—Vektorraum [ definiert dle PrOJektlon ¢ die folgenden Operatoren
* . ¥ @F — A5(PF)
durch 6*WZ,,Z,, ..., Zy) = n(6(Z,),6(Z,), .. .,6(Z,)) fiir Vektorfelder Z,Zy, ..., Zy
auf P. Fiir 1-Formen ausfiihrlicher: (a*n) (Z ) = . (G(Z )), p € P. Offenbar gilt fiir
k-Formen 1 und 6 sowie fiir Funktionen fe é(p, D<) G (n +0) = 6*(n) +6*(8) und
e*(fn) = f6*(q). AuBerdem folgt aus eoe = 6 unmittelbar die entsprechende Bezie-
hung 6*oe* = 6%. 6" ist also auch eine Projektion, und es ist klar, daB in dieser Pro-

svei g oocote Information iiber den Zusammenhang enthalten ist.
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(5.17) Definition. Die kovariante Ableitung D eines Zusammenhangs auf
einem Prinzipalfaserbiindel (P,M,G,n) ist die Abbildung

D = o*od: & (PF) —> 4*"(pF).
Dabei ist d: A “(P,F) —> & "PJF) die duBere Ableitung (vgl M.17).

Die kovariante Ableitung zu einem Zusammenhang ist nicht linear beziiglich
des Ringes &(P,K), weil auch d nicht linear ist: d(fn) = dfaq+ fdn fiir k-Formen
n und Funktionen f, und im allgemeinen ist dfan + 0. Es gilt aber fiir D die ent-
sprechende Leibnizrege! fiir skalare Funktionen f,ge §(P,K):

D(fg) = Dfg + fDg.

Im iibrigen ist D natiirlich additiv und es gilt D(\n) = ADy fiir die vektorwertige
k-Formen n und die Konstanten ) e K, das heiBt D ist K-linear.

Welche der Eigenschaften einer kovarianten Ableitung D als K-lineare Ab-
bildung D : &ik(P,lF) —_> &ikﬂ(P,lF) grundlegend sind in dem Sinne, daB sie einen
Zusammenhang definieren, wird in dem folgenden Satz gezeigt:

(5.18) Satz. Ein Zusammenhang auf einem Prinzipalfaserbiindel (P,M,G,x)
mit der Rechtswirkung ¥ :PxG —> p sei durch die Projektion e auf den horizon-
talen Anteil gegeben, Die zugehdrige kovariante Ableitung D : 6(P) — 4 1(P) auf
den Funktionen, definiert durch D = 6*od, erfiillt dann die folgenden Eigenschaften:

(Z) DU, + f,) = Df, + Df, firalle f,f,c &),

(Z2)  DUf,f,) = (Df)f, + £,(Df,) fir alle f,f,c &(P),

(Z3) DE(X) = 0 fiir alle fe &(P) und alle X ¢ g,

(Z4) ¥ oD = Do¥ fiir alle ge G,

(Z8) Df = df firalle fen*(8(P)), das heit f = fon mit f, € E(M).

Umgekehrt wird durch eine Abbildung D : §(P) — HYP) mit (Z1)-(Z5) ein eindeu-
tig bestimmter Zusammenhang festgelegt, der D als kovariante Ableitung hat (vgl. 4.2
bzw. 4.23.1°).

Beweis. (Z1) und (Z2) wurden bereits gezeigt. Wegen )ﬂ‘f(p) € Vp fir Xeg
und peP st vp()w((p)) = )?(p), also @p()w((p)) = )N((p) -vp()w((p)) = 0, und es
folgt Df()%)(p) = (df)p(&p()ﬂé(p))) = 0. Also gilt (Z3). (Z4) ergibt sich unmittelbar

* * * * * * * * * * * *
aus ¢ o‘I’g = ‘I’go@ : ‘I’goD = ‘Pgo@ od = ¢ o‘I’god = @ odo‘Pg = Do‘?c'g wegen
do ‘If; = ‘I’;od (vgl. M.17.4°). Diese Invarianz priift man nach durch direktes Einsetzen:
* * * 2y

(e 0¥ ) (Z) = (*‘Ifgn)p(op(zn: npg(Tp‘I’go@p(Z)) fir ZeTP, (pg)e P><'G,
und eb:nso* ((‘Pgio 1n)p(Z) = (o n)pg(Tp‘I’g(Z)) = npg(@pEOTpTg(Z)). Daher ergibt
sich o o‘Pg = ‘I’goa aus Tp‘I’go@p = pgoTp‘I’g bzw. T¥oe = 6o TY¥, und das ist
wegen 6 = id -~ » gleichbedeutend mit (V2). Die fiinfte Eigenschaft (Z5) ergibt sich
wie (Z3): Es ist Trow = 0 wegen Im» = V = KerTn,also Tr = Troe, und daher
D(fyon)Z) = d(fjon)(e(Z)) = df,(Trnoe(2)) = df,(Tr(Z)) = d{f,on)(Z).
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Umgekehrt sie D mit (Z1)-(Z5) gegeben. Fiir Vektorfelder Z € B(P) setze
man

Q) = df(Z) - Df(Z), fe &(P).
Dann ist die Abbildung Q : &(P) —> &(P) eine Derivation (vgl. M.12). Also gibt es
ein eindeutig bestimmtes Vektorfeld »(Z) ¢ B(P) mit Q, = Laczy das heiBt fiir alle
fe &P) und Ze B(P) gilt: df(w(Z)) = df(Z) - Df(Z). Die dadurch definierte Abbil-
dung v : B(P) —> B(P) bestimmt eine differenzierbare Abbildung TP ——> TP, die
wieder mit » bezeichnet werden soll. Nach (Z1) und (Z2) ist #: TP —> TP faser-
weise R-linear und daher ein Vektorbiindelhomomorphismus. Aus (Z3) folgt w(X) = X
fiir alle X eg, denn es gilt L, g,f = df(X) - DEX) = df(X) = Lgf. Aus (Z8)
ergibt sich Tmow = 0, denn es ist dfo(Tnov(Z)) = d(foon)(v(Z)) = 0 wegen
D(fyon) = d(fjom). Aus Dimensionsgriinden folgt Im» = V und weiter vov = ¥.
Damit ist (V1) nachgewiesen. SchlieBlich ist (V2) eine direkte Konsequenz aus der Be-
dingung (Z4); Es ist ¥soDf = DfoT¥, = dfoT¥ - dfovoT¥, fiiralle fe 6(P) und
DO‘Yzf = D(fo‘I’g) = d(fo‘I’g) - d(fo‘I’g)ov = dfoT‘Fg— dfoT‘Fgov, also nach (Z4)
zun#chst dfovoT‘I’g = dfoT‘I’gov und daher voT‘I’g = T‘I’gov.

Im iibrigen kann ein Zusammenhang auch als eine Kollektion von kovarianten
Ableitungen D : &(P) —> &(P) mit Eigensthaften analog zu (D1)-D4) aus 4.3 defi-

niert werden.

Wir wollen kurz beschreiben, was an der kovarianten Ableitung "kovariant”
ist. Dabei gehen wir von unseren Beispielen in den Paragraphen 2 und 3 aus und formu-
lieren nur einen ziemlich naiven Aspekt der Kovarianz. (Weitergehende (iberlegungen
findet man u. a. in [PER, S.34/351.) Aus der Sicht der genannten Beispiele sollen vektor-
wertige Funktionen ¢ e§(P,F) transformiert werden zu P' € 6(P,F) mit Hilfe einer
lokalen "Phasenverschiebung” g: M —> G beziiglich der von den Punkten ae M
der Basismannigfaltigkeit abhingigen Phasen g(a) € G in der internen Symmetriegrup-
pe G.In diesem Bild wird also die Struktur eines Prinzipalfaserbiindels (P, M, G,m) mit
Wirkung ¥:PxG —> P zugrundegelegt und ein endlichdimensionaler C-Vektor-
raum [ fixiert. Die Gruppenelemente g(a) ko&nnen im allgemeinen allerdings nicht
direkt in sinnvoller Weise auf die Funktionen ¢ wirken. Wenn aber das Prinzipalfaser—
biindel trivial ist mit P = M x G, so ist ¢'{a,h) = ¢(a,gla)h), (ah) € P, die richtige

Transformierte von (. Eichinvarianz der kovarianten Ableitung ist nun die Identitdt
(519) D'¢' = (DY) fiir alle §e E(PJF),

wobei D' eine geeignete Transformation von D ist. Um D' zu beschreiben, verwen-
den wir die durch g definierte Abbildung Tg=T: P —> P, t(a,h) = (a,gla)h). t
ist ein Diffeomorphismus, wenn g als differenzierbar vorausgesetzt wird. ¢' kann

dann in der Form ¢' = (ot = ¥ geschrieben werden. Sei jetzt D' = ™*D1*"!, das
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heiBt D'¢ = 1*(D(pot™!)) fir ¢ € 6(P,F). Setzt man in diese Formel §' fir ¢ ein,
so erhilt man sofort D'Y' = DY = (DY) . Ihre Bedeutung erhilt dieser einfache
Sachverhalt erst durch die Feststellung, daB D' wieder eine kovariante Ableitung
eines Zusammenhangs ist. Dazu miissen nur die Eigenschaften (Z1)-(Z5) nachgepriift
werden, um den Satz 5.18 anwenden zu kénnen. Fiir die zugehdrige Zusammenhangsform
©' gilt im iibrigen ' = ™0, wenn © die Zusammenhangsform zu D ist.

Die (differenzierbaren) Abbildungen g: M —> G sind im Falle eines tri-
vialen Prinzipalfaserbiindels die (lokalen) Eichtransformationen. Die Menge 6(M,G)
aller Eichtransformationen ist in natiirlicher Weise eine Gruppe vermdoge der Gruppen-
operation (gh)(a) := g(a)h(a) Fiir a€ M. Diese Gruppe heiBt die Eichgruppe des
Prinzipalfaserbiindels und wird mit % = %(P) bezeichnet. € kann als eine un-
endlichdimensionale Lie-Gruppe aufgefaBt werden. Jede Eichtransformation g€ % de-
finiert wie oben einen Diffeomorphismus i P — P, der ein Automorphismus des
Prinzipalfaserbiindels ist. Dabei ist (auch fiir nichttriviale Biindel) ein Automorphismus
des Prinzipalfaserbiindels ein Diffeomorphismus t:P —3 p mit der Invarianz-
eigenschaft ¥ o0t = 10 ¥y, fiir alle he G. (Man nennt T dann auch dquivariant.) Die
Automorphismen AutP bilden in natiirlicher Weise eine Gruppe beziiglich der Kompo-
sition als Gruppenoperation. Die oben eingefiihrten Diffeomorphismen 1 & sind dquiva-
riant wegen Tg(a,hoh) = (a,gla) hyh) = (a,g(a) hy)h = Tg((l,ho)h. Daher hat man im
trivialen Fall einen injektiven Homomorphismus €(P) —> AutP, und man kann die
Eichgruppe auch als eine Untergruppe der Automorphismengruppe des Prinzipalfaser—
biindels auffassen. Wie man leicht sieht, handelt es sich dabei um die Untergruppe
aller Automorphismen 1, welche die Projektion 7 respektieren: m = mot. Solche
Automorphismen werden vertikal genannt. Im allgemeinen Fall eines nicht notwendig
trivialen Prinzipalfaserbiindels wird die Eichgruppe %4 = %(P) in Ubereinstimmung
mit dem Vorangehenden daher als die Gruppe der vertikalen Automorphismen definiert:

Definition. Die Eichgruppe des Prinzipalfaserbiindels (P, M,G,n) ist die
Gruppe ¢ = {1¢ 8(P,P) : 1 ist Diffeomorphismus mit © = not und ¥ o1 = 0¥,
fiir alle he G}. € ist Untergruppe der Automorphismengruppe AutP,
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Es ist klar, daB auch fiir die allgemeinen Eichtransformationen t¢ % die
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Eichinvarianz 5.19 erfiillt ist, wenn man wie oben ' = ¢ und D' = *po*! setzt,
und es 148t sich zeigen, daB D' ein Zusammenhang auf dem Prinzipalfaserbiindel ist.
In manchen Situationen wird als Eichgruppe auch eine geeignete Untergruppe von %
bezeichnet, z.B. die Gruppe aller 1€ %, die nur iiber einer kompakten Menge aus M
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verschieden von der Identitdt sind oder die auf einer festen Faser n—l(ao) = Pao mit
der Identitét iibereinstimmen.

Die Eichtransformationen t € ¢ wirken auf den Zusammenhingen in der ge-
rade beschriebenen Weise D —— D' = *D1*"'. Der Zusammenhang D' wird dabei
aus geometrischer und physikalischer Sicht als zu D unmittelbar aquivalent angesehen.
Von Interesse ist daher der Raum aller Zusammenhinge auf einem Prinzipaifaserbiindel
modulo Eichtransformationen. Um diesen Quotienten zu beschreiben, ist es sinnvoll,
den Raum der Zusammenhinge zu untersuchen. Fiir je zwei Zusammenhangsformen ©
und o' ist natiirlich die Differenz 7 = @' - w eine g—wertige 1-Form 1€ AP,g).
Fiir Fundamentalfelder X mit Xe g gilt n(;() = m'(;() - w(;() = X-X = 0.Da-
her verschwindet n auf den vertikalen Biindel V. AuBerdem ist stets ‘P;n = g-lng
erfiillt. Der Raum ﬂé(P,g) der "Basisformen" .ﬂé(P,g) = {nedUPG : Ny = O
und ‘I’;n = glng fir alle ge G} ist ein Untervektorraum von #(P,g), und die
1-Form © + n ist fiir alle ne & é(P,g) wieder eine Zusammenhangsform: (1) und (©2)

folgen unmittelbar. Damit haben wir bewiesen:

(5.20) Satz. Der Raum 4 = & (P) aller Zusammenhange auf (P,M,G,m)
ist ein affiner Raum (vgl. IL1) mit .ﬂié(P,g) als dem zugehorigen R-Vektorraum (bzw.
Translationsgruppe). & ist insbesondere ein unendlichdimensionaler affiner Unterraum
von &'(P,g). (Vgl. auch mit 5.26.)

Der oben angesprochene Quotient & /¢ kann daher auch als Jdé(P,g)/cg
aufgefait werden, wobei die Wirkung von 1€ 4 aufne Jdé(P,g) wieder durch *n ge-
geben ist. & /@ bzw. Jﬂé(P,g)/cg ist der Moduiraum der Zusammenhénge oder auch
der Raum der "Eichbahnen” des Prinzipalfaserbiindels.

Der fundamentale Begriff des Zusammenhangs auf einem Prinzipalfaser—
biindel ist in diesem Paragraphen auf fiinf zum Teil wesentlich verschiedenen Arten ein-
gefiihrt worden: Erstens als horizontales Biindel in TP, zweitens als Zusammenhangs—
form oder globales Eichpotential, drittens als Familie von vertriglichen lokalen Eichpo-
tentialen, viertens als Paralleltransport und fiinftens als kovariante Ableitung. (Bine
Kollektion von Parallelverschiebungen P* zu allen Kurven « in M mit geeigneten
Vertriglichkeitsbedingungen bestimmt iber die kovariante Ableitung tatsachlich einen
Zusammenhang, vgl. dazu die Formel (#) nach 4.15 in Paragraph 4.)

Es wird den Leser nicht {iberraschen zu horen, daB das Thema der verschie-
denen aquivalenten Beschreibungen des Zusammenhangsbegriffs auf einem Prinzipalfa—
serbiindel damit noch keineswegs ausgereizt ist. Zum Beispiel 14Bt sich analog zu 4.22
ein Zusammenhang als eine geeignete Abbildung T':7*TM —> TP definieren, so daB
die natiirliche Sequenz 0 — V —> TP — *TM —> 0 spaltet. Eine weitere
Beschreibung greift die Momentenabbildung auf (vgl. 1L.9), die durch die Wirkung von

- - R . .t FOETIC S 972 FE.1).
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Assoziierte Biindel,

Die Verwandtschaft der Begriffsbildungen eines Zusammenhangs auf ejnem
Vektorbiindel einerseits (vgl. Paragraph 4) und eines Zusammenhangs auf einem Prinzi-
palfaserbiindel andrerseits kann kein Zufall sein. In der Tat besteht eine enge Beziehung,
die wir als nichstes darstellen wollen: Dem Prinzipalfaserbiindel (P,M,G, ) mit
Strukturgruppe G ist eine Schar von assoziierten Vektorbiindeln zugeordnet, und zwar
induziert jede endlichdimensionale Darstellung ¢ von G ein solches assoziiertes Vek-
torbiindel E o — M. Bei Vorgabe eines Zusammenhangs auf dem Prinzipalfaserbiindel
iibertréagt sich dieser auf jedes assoziierte Biindel als assoziierter Zusammenhang (siehe
unten). Den entsprechenden Ubergang von einem Vektorbiindel E iiber M ZU einem
Prinzipalfaserbiindel haben wir bereits in 5.4.3° angesprochen. Es handelt sich um das
Reperbiindel GL(E), auf das sich jeder auf E vorgegebene Zusammenhang iibertragt.

Es kommt also eine Darstellung p: G —> GL(r,C) ins Spiel, das bedeutet,
in den geometrischen Rahmen des Prinzipalfaserbiindels P iiber M mit einem Zusam-
menhang o ist noch ein stetiger Homomorphismus ¢:G —> GL(r,C) einzubauen.
Aus physikalischer Sicht dienen die Darstellungen ¢ der Beschreibung von Materiefel-
dern. In den vorangehenden Beispielen hat man die Inklusionen U(1) c GL{(1,C) oder
() — GL(4,C), X — Aidg.s, als Darstellungen (V.2), sowie SU(2) c GL(2,0),
SU(2) — GL(4,C) oder SU(3) —> GL(8,C) in (V.3),

In gewohnter Weise behandeln wir zundchst einmal den Fall eines trivialen
Prinzipalfaserbiindels (P,M,G,m1), P = M x G. Daneben ist noch die (stetig differen-
zierbare) Darstellung p: G —> GL{F) mit einem r-dimensionalen Vektorraum [
iiber C als Darstellungsraum gegeben. Sei Tg: E —> M das triviale Vektorbiindel
E == M xF mit Projektion Teg:MXF — M auf die erste Komponente. Die Dar-
stellung ¢ induziert durch Y{a,h,z) = (a,plh).z) fir (a,h,z) e M X G XF  ejne
natiirliche Abbildung Y:PXF — E, welche die beiden Biindel P und E in Bezie-
hung setzt. Dabei ist p(h).z das Bild der C-linearen Abbildung oth) : F — F im
Punkte zeF, vy ist surjektiv wegen y(q,e,z) = (a,z), und die Fasern von Y sind von
der Form y Y(q,z) = {(a,h,pth™).2) : heq).

Die Materiefelder sind in dieser Situation die Schnitte in E iiber offenen
Mengen U c M, das heiBt die (differenzierbaren) Abbildungen s:U — E mit
Tgos = id;.Im Falle eines trivialen Vektorbiindels E= M x [ sind die Schnitte iiber
U von der Form s{a) = (a,0(a)) mit einer differenzierbaren Abbildung ¢ : U — F.
Der C-Vektorraum der Schnitte im Vektorbtindel E iiber U wird mit I'(U,E) oder
8(U,E) bezeichnet. Ein Schnitt s € I'(M,E) kann unter Verwendung von ¥ auch aufge-
faBt werden als eine differenzierbare Abbildung ¢ : P — F auf dem Totalraum des
Prinzipalfaserbiindels, welche sich entsprechend der Darstellung o transformiert:
{pg) = olg™").9(p) fiir alle (pg) e P X G: Fiir ¢(a,h) = oth™).ola) gilt ndmlich
diese Invarianz und es ist s(a) = y(p,d(p)) Ffir jeden Punkt pe P, lber a. Der
Raum der p—invarianten Abbildungen auf P werde mit 5P(P,IF) bezeichnet. Damit
haben wir fiir triviale Prinzipalfaserbiinde]| cezeijot-
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(5.21) Lemma. Die Raume [(M,E) und GP(P,IF) sind isomorph als C-Vek-

torraume.

(5.22) Der assoziierte Zusammenhang. Jeder Zusammenhang auf dem Prinzi-
palfaserbiindel induziert iiber die Darstellung ¢ von G einen Zusammenhang auf E
mit Hilfe der Abbildung v : P xF —> E. Dieser Zusammenhang heiBt der assoziierte
Zusammenhang. Er 148t sich auf verschiedene Arten beschreiben, die letztlich alle
gleichwertig sind:

1° Der Zusammenhang auf P sei durch das horizontale Biindel H auf P
gegeben, das die Zerlegung TpP = Vp @ Hp fiir jeden Punkt peP beschreibt. Fiir
jeden Vektor z aus der allgemeinen Faser F von E wird durch v,(p) = y(p,2),
p € P, eine differenzierbare Abbildung v, :P — E definiert. Es gilt © = mgoy,
also Tn = TrngoTy, nach der Kettenregel.

T,y
Yz p'z
_._——-———} = =
P E Vp@Hp TpP —_ TEE VE(E)QHE(E)
\7\‘ ﬁa TPN /FE“E
N
M TGM

Fir (p2) e PxF mit y(pz) = & gilt deshalb TpYz(Keern) C Ker T Wegen
Tpn(Hp) = T,(M) hat TpYz(Hp) die Dimension dimH, = dim M. Weil auBerdem
TPYZ(HP) n KerTEnE = {0} ist, hat daher TEE aus Dimensionsgriinden die Zerlegung
TpYz(Hp) @ KerTEnE = TEE‘ Mit der Definition VE(E) = KerTEnE als vertikaler
Unterraum von TEE und HE(E) = TpYz(Hp) als horizontaler Unterraum wird des-
halb ein Zusammenhang

TEE = VE(E) ® HE(E)
auf dem Vektorbiindel E festgelegt. Dazu muB allerdings noch nachgepriift werden,
daB die HE(E) unabhingig von der Wahl von (p,z) sind: Fir andere (p',z') € Px[F mit
y(p'iz') = E = y(p,z) gibt es ein eindeutig bestimmtes g€ G mit p' = pg und
z' = p(g").z. Damit folgt Tvaz-(Hp-) = Tp.YZ.(Tp‘I’g(Hp)) aufgrund der Invarianz
(H2) (vgl. 5.6); weiterhin die gewlinschte Unabhéngigkeit Tp.yz.(Hp.) = TpYZ(Hp)
(= HE(E)) wegen Tp.Yz,oTp‘Ifg = Tp(YZ,o‘I'g) und wegen v,.0¥, = 1, flir feste
z,z' und g mit z' = olg H.z: Yz.o‘I’g(p) = Y(pg,p(g'l).z) = y(p,z).

9° Der Zusammenhang auf P sei durch die Projektion v : TP —> TP nach
5.7 gegeben. Die in 1° verwendete Faktorisierung Tn = TrgoTy, liefert dann einen
eindeutig bestimmten Vektorbiindelhomomorphismus v : TE —> TE, welcher durch
die Gleichungen Ty,ovg = o Ty, festgelegt wird. Dieser definiert den assoziierten
Zusammenhang auf E.

3° Der Zusammenhang auf P sei durch eine Zusammenhangsform w gege-
ben. Diese 148t sich beziiglich eines globalen Schnitts ¢ zu einem lokalen Eichpotential

“ e g v g Tyabctallung 0 von G gehort die Darstellung
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Liep: g ~— g(F) der Lie-Algebra ¢, und zwar ist Liep(X) := ggp(exp(tX))l‘Fc.
Fiir die 1-Form AE.ﬂI(M,g) wird durch (o, A}Y) = Liep(A(Y)) die g(F)-wertige
1-Form ¢,A ¢ .ﬂl(M,g(lF)) definiert. Der assoziierte Zusammenhang auf E wird dann
durch oA festgelegt.

4° Der Zusammenhang auf P sei durch die kovariante Ableitung D gege-
ben. Diese ist insbesondere auf &(P,F) definiert. Fiir e £p(P,lF) und X € B(M) ist
D{(X) wieder invariant, das heiBt D(X) e SP(P,[F), wie man aus (Z4) in 5.18 folgern
kann. Unter Verwendung von 5.20 definiert D daher fiir jedes X eine Abbildung
Dy : TI(M,E) —> T(M.E} mit den Eigenschaften einer kovarianten Ableitung auf
einem Vektorbiindel.

usw.

Die vorangehenden Erlduterungen in 1°~4° sind insofern nicht ganz voll-
sténdig, als nicht alle Eigenschaften nachgewiesen werden, die ein Zusammenhang auf
einem Vektorbiindel erfiillen muB. Die Erlduterungen sind so angelegt, daB sie auch
ohne Verwendung des vierten Paragraphen zu verstehen sind. In diesem Falle sind die
jeweiligen Konstruktionen so aufzufassen, als daB dadurch der Begriff Zusammenhang
auf einem Vektorbiindel iberhaupt erst definiert wird. Setzt man dagegen den Begriff
des Zusammenhangs auf einem Vektorbiindel voraus, so miissen in allen Fillen noch

gewisse Vertréglichkeitsbedingungen nachgewiesen werden (vgl. Paragraph 4),

(5.23) Das assoziierte Vektorbiindel im nichttrivialen Fall.

1° Fiir den Fall, daB das Prinzipalfaserbiindel nicht trivial, also nicht als
Produkt darstellbar ist, erhilt man Tg:E —> M als ein nichttriviales Vektorbiindel
folgendermaBen: Auf P x F fijhrt man die Aquivalenzrelation (p,y) ~ (pg.elg™M.y)
fiir g€ G und (py) ePxF ein, und definjert Ep als den Quotienten Ep = Px[F/_
mit der Quotientenabbildung Y:PxF — Ep. Zur Existenz des Quotienten als
differenzierbare Mannigfaltigkeit (vgl. M.8) geniigt es zu zeigen, daB die Relation
R = {{lp.y),(p'y)): (py) ~ (p'y')} als Teilmenge des Produkts (P x F) x (P x F)
eine abgeschlossene Untermannigfaltigkeit ist (vgl. z.B. [ABM, S$.262]). Um das einzuse-
hen, sei Rp == {(pp)ePxP: n({p) = n(p")} die Relation auf P, welche von der
Wirkung ¥ auf P kommt. R, ist eine abgeschlossene Untermannigfaltigkeit von
PxP,denn 7 ist Submersion, also auch 7 x 7, und es gilt Rp = (n x n)‘l(A) mit
der Diagonalen A = {(q,a) : a ¢ M}. Das Urbild einer abgeschlossenen Untermannig-
faltigkeit unter einer Submersion ist aber nach dem Satz vom Rang (vgl. M.3) stets eine
abgeschlossene Untermannigfaltigkeit. R ist aber genau dann eine abgeschlossene
Untermannigfaltigkeit von (P x F) x (P x [F) swenn R' == {{(p,p'),(y.y")) e Rp XxF xF:
(p,y} ~ (p',y")} eine abgeschlossene Untermannigfaltigkeit von Rp X F x F ist. Fiir
(p,p") €Rp sei jetzt ¢(p,p') € G das durch p' = po¢lp,p") eindeutig bestimmte
Gruppenelement. Dann ist die Abbildung ¢ : Rp —> G differenzierbar, und es gilt
R' = {((p,p"),(y,y")) ¢ RoXxFxF: y = p(d(p,p")).y}, also R' = {(x.(y,p00(x).y)) :
X€R, und yeF}. R' ist also der Granh vom fv ol © s o ap o .
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abgeschlossene Untermannigfaltigkeit. Nach dem zitierten Resultat hat also die Menge
E o = E der Aquivalenzklassen die Struktur einer Quotientenmannigfaltigkeit mit einer
differenzierbaren Submersion vy : P xF — Ep als Quotientenabbildung. Natiirlich ist
dann auch ng:E — M, v(p,y) —> 7(p), wohldefiniert und differenzierbar. Die
Fasern zu ng, E_ = n}_;(a), erhalten ihre Vektorraumstruktur von [ {iber die Bijek-
tion F —> E_, y /> ¥(p,y}, wobei p € P_. Weiterhin hat ng:E —> M lokale
Trivialisierungen mit der Eigenschaft (V) aus 4.19. Um das einzusehen, sei 6: U —> P
ein Schnitt im Prinzipalfaserbiindel (P,M,G,n) iiber einer offenen Menge U c M. Dann
definiert {a,;y) —> y(ola),y) eine differenzierbare Abbildung f:UxF — Tr]'al(U)
mit pr; = mof. f ist surjektiv, weil fiir jeden Punkt v(p,2) € E, ein ge G existiert
mit ofa) = pg. Daher gilt fir y = olg™M.z: y(ola)y) = v(pg.olg H.2) = v(p,2)
nach Definition der Aquivalenzrelation. f ist offensichtlich injektiv, und die Umkehr-
abbildung ¢ = £! erweist sich ebenfalls als differenzierbar. SchlieBlich ist f und
damit auch ¢ faserweise linear. ¢ ist also eine lokale Trivialisierung. Insgesamt haben
wir nachgewiesen, da E = Ep ein Vektorbiindel iiber M ist. Ep heiBt das zur

Darstellung p assoziierte Vektorbiindel.

PX[F—Y-%EP

o |

Pr—M

2° Entscheidend fiir das Verstindnis der Konstruktion des zu p assoziierten
Biindels ist die Giiltigkeit der zu 5.21 analogen Aussage: Der Raum der p-invarianten
F-wertigen Abbildungen sei wie vorher SP(P,IF) = {¢pe &PF): dlpg) = p(g_l).LI)(p)
fiir alle peP und ge G}. Fir ¢e¢ 8P(P,[F) setze qu(q) = v(p,(p)), peP,. Wir
werden gleich zeigen, daB sy stets einen globalen Schnitt in E definiert und daB die
Abbildung ¢ ——> s, ein Vektorraumisomorphismus von 5P(P,|F) nach F(M,Ep) ist.
Die Schnitte in E sind also wieder die F-wertigen Abbildungen auf P, "die sich nach
o transformieren”.

Beweis von 5.21 fiir den nichttrivialen Fall: Zunichst ist S wohldefiniert,
denn es ist y(pg,Y(pg)) = v(pg.olg .0(p)) = (a,p(hg)e(g ).4(p)) fir p = (ah),
also v(pg,d(pg)) = (a,p(h).9(p}) = v(p,d(p). Die Definition ist daher unabhéngig von
der Wah! von pe n Ha) = P_ . Andererseits findet man zu jedem Schnitt s € I‘(M,Ep)
eine Funktion ¢ € &(P,F) mit s(a) = v(p.4(p)), p e P,. Denn fiir jedes aeM und
p € P ist die Abbildung y +—— v(p,y) eine Bijektion zwischen F und der Faser E_,
nach Definition der Aquivalenzrelation. Also existiert ein eindeutig bestimmter Vektor
Op) e F mit sla) = y(p.g(p)). Natiirlich ist ¢ differenzierbar. Zur p-Invarianz:
Wegen s(a) = y(pg.d(pg)) = v(p,b(p)) ist (pg.dlpg)) ~ (p,0(p)), und deshalb gilt
¢(pg) = p(g'l).kp(p) nach Definition von ~. Alsoist ¢ € 5p(P,[F) und s = S, Woraus
sich 5.21 ergibt.
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3° Fine dquivalente Art, das zu ¢ assoziierte Vektorbiindel zu konstruieren,
ist die folgende: Nach Definition gibt es zu dem Prinzipalfaserbiindel (P,M,G, ) eine
offene {iberdeckung (UL)LeI von M mit lokalen Schnitten o, : U —> P, die jeweils
lokale Trivialisierungen festlegen. Die Funktionen Byt U,, —> G mit 0, = o8,
auf den Durchschnitten u, = u, n U, bestimmen das Prinzipalfaserbiindel insofern,
als man (P,M,G,7) bis auf Isomorphie aus diesen Verklebungsfunktionen (g,) re-
konstruieren kann. Denn die (g,,) erfiillen die Kozyklus-Bedingungen (vgl. 4.20, jetzt
mit Werten in der Gruppe G mit 1 als neutralem Element): und jede Kollektion von
(g,) mit diesen Kozyklus-—Bedingungen bestimmt ein Prinzipalfaserbiindel (analog zu
4.21). Die Funktionen pog, : U, — GL(F) erfiillen die Kozyklus—Bedingungen 4.20
und definieren daher nach 4.21 ein Vektorbiindel vom Rang dimF. Dies ist das assoziier-
te Vektorbiindel Ep (bis auf Isomorphie). Insbesondere erweist sich auf diese Weise
jedes Vektorbiindel E als das assoziierte Vektorbiindel zu dem Reperbiindel GL(E)
beztiglich der natiirlichen Darstellung p = id : GL(F) —> GL(F) (vgl. 5.4), und T™
ist das assoziierte Vektorbiindel zu R(M).

4° Den assoziierten Zusammenhang auf dem assoziierten Vektorbiinde] er-
hélt man auch im allgemeinen Fall wie in 5.22. Mit der gerade hergeleiteten Beziehung
zwischen den Verklebungsfunktionen von (P,M,G,n) und Ep ergibt sich insbesondere
die zu 3° analoge Aussage: Ist der Zusammenhang auf (P,M,G,n) durch lokale Eich~
potentiale A e &fl([lt,g) mit der Bedingung (A) aus 5.11 gegeben, so erfiillen die
ex(A) € ﬂ’(UL,g([F)) die entsprechende Bedingung (A) aus 4.23.2° ynd legen damit den
assoziierten Zusammenhang fest. »

5% Auf diese Weise kann ein Zusammenhang DF auf dem assoziierten Biin-
del unter Umsténden auch einen Zusammenhang auf den Prinzipalfaserbiindel induzje-
ren, wenn es ndmlich fiir die lokalen Eichpotentiale ALE zu DE geeignete A, mit (A)
gibt, fiir die px(A) = ALE gilt. Diese Bedingung ist fiir alle Zusammenhinge auf E
erfiillt in bezug auf das Reperbiindel GL(E) des Vektorbiindels, weil ja in dieser Situa-
tion p = id ist. Die Geometrie der Zusammenhinge auf Vektorbiindeln ordnet sich
daher der Geometrie der Zusammenhidnge auf Prinzipalfaserbiindeln unter.

(5.24) Assoziierte Faserbiindel. Das oben besprochene Assoziationsschema
hat noch eine interessante Verallgemeiner‘ung auf Faserbiindel, die nicht notwendig
Vektorbiindel sind. Dazu sei jetzt F eine beliebige Mannigfaltigkeit (die "typische"
Faser) und ¢:FxG —s g eine differenzierbare Linkswirkung. Beispielsweise hat
man eine solche Linkswirkung auf F=F in dem bereits diskutierten Falle einer Dar-
stellung p: G — GL(F) durch &(y,g) := plg).y. Andere interessante Beispiele
werden durch die Adjungierte Ad: G — AutG, Adg(h) = ghg—I, gegeben mit der
Wirkung (h,g) — Adg(h) = ghg™! = ®(h,g) auf der Gruppe G als Faser oder
durch die Adjungierte Up : G —> GL(g), ?Ibg(X) = gXg™! mit der entsprechenden
Wirkung (X,g)} — QIbg(X) = &(X,g) auf der Lie-Algebra ¢ als Faser. Wie im line-

aren Fall definiert man eine natiirlicha Koo 3 1 .
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indem man (p,y) und (pg,®ly.g ") als dquivalent erklart fiir alle g e G und fiir alle
(p,y) € P x F. Genau wie oben in 5.23.1° 4Bt sich zeigen, da8 der Quotient P xF/  als
Mannigfaltigkeit existiert und bezliglich der natiirlichen Projektion n' : PxXF/ — M
lokale Trivialisierungen hat. Dieser Quotient P xgF = PxF/  ist dann ein Faserbiin-
del iber M der allgemeinen Faser F (sowie der Strukturgruppe G) und heiBt das zu
& assoziierte Faserbiindel.

Fiir das Beispiel Ad ergibt diese Konstruktion das adjungierte Biindel AdP.
AdP ist kein Prinzipalfaserbiindel, aber ein Biindel von Gruppen. Aus Sicht der Eich-
theorie besteht ein besonderes Interesse an diesem Blindel, weil die Schnitte in AdP
gerade den weiter oben eingefiihrten Eichtransformationen entsprechen. Ein Schnitt
o € T(M,AdP) kann mit einer Ad-invarianten differenzierbaren Abbildung b€ & Ad(P,G)
identifiziert werden {Beweis wie der Beweis zu 5.21 in 5.23.2°). Eine solche Abbildung
definiert eine Eichtransformation t :P — P vermége T14(p) = pblp), peP:
Offensichtlich ist diese Abbildung differenzierbar und bijektiv mit der Umkehrabbildung
p—> p((p(p))—1 und es ist (1 (p)) = m(p). AuBerdem ist 1, #quivariant wegen

t (pg) = (pe)p(pg) = (pg)(Adg-1d(p)) = (pe)g b)) = (1,(p))8.
also TGOTg = ‘I’gorc fiir alle g € G. Weiterhin laBt sich 1,5 = 15075 Von der De-

finition von 1, ablesen. Insgesamt wurde damit gezeigt:

(5.25) Satz. Es gibt einen natiirlichen Isomorphismus zwischen der Eichgrup-
pe %(P) und der Gruppe ['(M,AdP) der Schnitte im adjungierten Biindel. Beide Grup-
pen sind auBerdem isomorph zur Gruppe & Ad(P,G) der Ad-invarianten Abbildungen
auf P mit Werten in G.

Analog sind die Ub—invarianten g-wertigen 1-Formen 7 € &ﬂé(P,g), die auf
dem vertikalen Biindel verschwinden, zu identifizieren mit den 1-Formen mit Werten in
dem zu Wb assoziierten Biindel UDP. Unter Verwendung von 5.20 und 5.21 (siehe auch
5.33) folgt

(5.26) Satz. Sei w eine Zusammenhangsform (P,M,G,n). Dann ldBt sich der
Raum & aller Zusammenhédnge mit o + AN M, UDP) identifizieren.

Zum AbschluB des Paragraphen kommen wir zur Kriimmungstheorie der

Prinzipalfaserbiindel und ihrer assoziierten Vektorblindel.

(5.27) Definition. Die Kriimmung eines Zusammenhangs auf einem Prinzipal-
faserbiindel (P,M,G,n) mit Zusammenhangsform o und zugehoriger kovarianter Ab-
leitung D = D® ist durch die g-wertige 2-Form

Q = Dwe #*(P,g)
gegeben.
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vertikal ist.

2° ‘I’;Q = g_IQg fiir alle ge G.

Beweis: Ist Y ¢ TpP vertikal, so gilt (YY) = Y und folglich 6,(Y) = 0.
Deshalb gilt Qp(Y,Z) = dmp(ap(Y),@p(Z)) = dmp(O,ap(Z)) = 0. Fiir die zweite Eigen-
schaft benutzt man 'P;oa* = 6'o ‘I’; (vgl. Beweis von 5.18, Teil (Z4)):

r.Q = Y00 do = o*o¥ do = 6 (d(¥}w)),

also nach (w2): ‘I’;Q = a*d(g'lwg) = g'i(@*dm)g = g'0g.

Fir g-wertige 1-Formen 1,9 ¢ dl(P,g) sei [n,8] ¢ dz(P,g) definiert durch
ns1Y,Z) = n(Y),8(Z)] - (Z)5()1  fiir Y,Z € B(P). Im Falle n = 9% gilt dann
nal(Y,z) = 200 (2)]. wir kommen jetzt zu den wichtigen Strukturgleichungen:

(5.29) Satz. (Strukturgleichungen) Die Kriimmung 0 eines Zusammenhangs
o auf einem Prinzipalfaserbiinde] erfiillt:
Q = do + o],

Beweis: Es gilt also, fiir Y,Z ¢ TpP und peP dije Gleichung

(%) Qp(Y,Z) = dmp(Y,Z) + [mp(Y),mp(Z)]
ZU zeigen. Da jeder Tangentenvektor in TpP eine Zerlegung in einen vertikalen und
horizontalen Anteil hat, geniigt es die folgenden zwei Fille Zu untersuchen:

L Fall: Y und 7 sind horizontal. Dann gilt [(op(Y),wp(Z)] = 0 wegen
wp(Y) = mp(Z) = 0 und Qp(Y,Z) = dwp(Y,Z) wegen @p(Y) =Y und @p(Z) = Z,.
Also ist die Gleichung (%) erfiillt.

2.Fall: Y oder Z ist vertikal. Dann ist Q,(Y,Z) = 0 nach 5.28.1:. Ohne
Einschriankung der Allgemeinheit sej Y vertikal, Sei X := oY), also Y = X(p). Z
werde fortgesetzt 2y einem Vektorfeld auf P, welches wieder mit Z bezeichnet wer—
de. Allgemein gilt die Homotopieformel Lyo = dligzw) + txdo (vgl. M.17.11°). Weil
%0 = (X) = X (nach (01)) konstant ist, gilt in unserer Situation Lw = tpdo.
Nach Definition ist Lya(Z) = d%tptm(Z)]t o Mmit dem FluB ¢ (p) = pe™ 24 X.
Aufgrund von (»2) folgt

Lyw(Z) = %e—txm(7)n

T, I\ wr
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Insgesamt ergibt sich damit:
(do + 0] (X,2) = zdo(Z) + [o(X),0(2)] = Lgo(Z) + [X,0(2)] = 0,
also gilt unsbesondere dwp(Y,Z) + [o)p(Y),wp(Z)] = 0, und das war zu zeigen.

(5.30) Folgerungen.

1° Die Strukturgleichungen liefern eine Zerlegung von dw in den horizonta-
len und vertikalen Anteil: do = -~ % [o,w].

9° DO = 0. (Diese Gleichung heiBt die Bianchi-Identitét, vgl. 4.25.)

Eine k—-Form 7 heiBt horizontal {(bzw. vertikal), wenn np(Zl,ZZ, ,Zk)
verschwindet, falls nur einer der Tangentenvektoren ZJ. vertikal {(bzw. horizontal) ist.
Die Zusammenhangsform o ist also vertikal nach Definition der horizontalen Richtun-
gen H = Kero, und die Kriimmung £ ist horizontal nach 5.28. Damit ergibt sich 1°.
Zum Beweis der Bianchi-Gleichungen ist es zweckmaBig, die Klammer { , 1 auch zwi~
schen 1~ und 2-Formen einzufithren (vgl. M.16.6°): Fiir ne€ A%P,g) und He A4P.g)
ist

(n9NX,Y,Z) = (X, Y).8(2)] + [n(Y,Z),8(X)] + [(Z,X),3(Y)]
fiir Vektorfelder X,Y,Z auf P und (8] = ~[n,9]. Man sieht sofort, daB die nahe~
liegenden Formeln [[$,91,8]1 =0 und d[e,8] = [de.9] - [9,d8] = 2[d9,9] erfiillt
sind. Angewandt auf die Strukturgleichungen erhalten wir daher (unter Verwendung von
dde = 0):

40 = d(do + L lew)) = [dew] = [do + 3 [oelw] = [Q.0].

Daher ist DQ = &FdQ = 0, weil © vertikal ist, also auf den horizontalen Anteilen

der eingesetzten Vektorfelder verschwindet.

Die Theorie wird haufig beziiglich einer lokalen Trivialisierung benotigt, da-
her sollen im folgenden einige der entsprechenden Formeln beschrieben werden. Sei also
U ¢ M eine offene Menge und o:U —> P ein Schnitt tiber U in (P,M,G,n). Die
Zusammenhangsform legt durch A = ofwe LU, g) das lokale Eichpotential
fest und auBerdem die lokale Feldstirke F = o*Q e A2(U,g). Die vorangehenden
Resultate bedeuten dann wegen doo® = o' od (M.17.4°) unmittelbar:

(5.31) Fiir das lokale Eichpotential A und die lokale Feldstarke F gelten
die Gleichungen
F = dA + 5[AA] und dF = [FAl

Will man das Dachprodukt nag fiir g-wertige Formen benutzen, das fiir
Matrixgruppen in der offensichtlichen Weise mittels der Matrixmultiplikation definiert
wird (vgl. M.16.6°), so erhalten die obigen Gleichungen die Form (vgl. 4.24/25)

FE = dA + AAA und dF = FAA - AAF.
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(5.32) Satz. Bei einem Wechsel der lokale Eichung stehen die jeweiligen loka-
len Feldstirken F' := ¢'*Q und F = ¢*Q iiber die zugehdrige lokale Eichtransforma-
tion ge 6(U,G), 6 = o'g, in der folgenden Beziehung

F' = gFg!

Nach 5.10 gilt A' = gAg™!+ gdg™! und daraus ergibt sich die Aussage aus
5.31 durch Einsetzen und Differenzieren.

Das im letzten Satz formulierte Transformationsverhalten der lokalen Eich-
felder ( = Feldstédrken) macht einen gravierenden Unterschied zwischen einer abelschen
und einer nichtabelschen Eichtheorie deutlich: Im Falle einer abelschen Symmetriegrup-
pe G wird durch die Formel F' = gFg™! = F ein globales Eichfeld auf ganz M
definiert. Wenn G eine nichtabelsche Gruppe ist, gilt dagegen gFg™* + F im allge—
meinen und die Feldstdrke existiert aus diesem Grunde in der Regel als ein globales

Objekt nur auf dem Totalraum P des Prinzipalfaserbiindels.

Um schlieBlich die Kriimmungstheorie auf einem vorgegebenen Prinzipalfa-
serbiindel (P,M,G,n) mit der Kriimmungstheorie auf den assoziierten Vektorbiindeln
zu vergleichen, benétigen wir die folgenden Raume von dquivarianten Formen: Dazu sei
p:G —> GL(F) eine Darstellung der Matrixgruppe auf einem endlichdimensionalen
K- Vektorraum und sei E das assoziierte Vektorbiindel vom Rang dim[F. Eine k-Form
ned (P F) heiBt aqu1var1ant (in Bezug auf p), wenn ¥ el = olg” 1)7] fiir alle ge G
gilt. Wir setzen:

..(Zik(P F) == {ne szk(P F) : 1 ist horizontal und 'eiquivariant}

- Als Spezxalfall haben wir die Basnsformen das sind die Formen aus d (P,g) fiir die
adjungierte Darstellung ¢ = Ub: G —> GL(g), die auch mit sz (P g) bezeichnet
werden. Zum Beispiel sind die Differenzen o - o' zweier Zusammenhangsformen solche
Basisformen (vgl. 5.20) wie auch die Kriimmungsformen (vgl. 5.28). Der in 5.23.2° aus-
gefithrte Beweis von 5.21 148t sich auf den Fall von Formen verallgemeinern und liefert

die folgende Aussage:

(5.33) Lemma. Fiir 7 ¢ ﬂs(P,lF) setze man

?’)(Tn(Zl),Tn(Zz), wSTR(Z)) @) = y(p, "(Zp 9 o 22 )(p)) € E_
wobei n(p) = ae M und Z € T P. Dann ist 3 ¢ & (ME ) eine wohldefmlerte k-
Form mit Werten in dem assoznerten Vektorbundel E E, das heiBt ein {differen-
zierbarer) Schnitt im Vektorbiindel AYT*M ® E (vgl die Erlﬁuterung vor 4. 23) Die

Zuordnung n ——> 1 ist ein Vektorraumlsomorphlsmus von d (P F) nach & (ME )
(der auch als Isomorphismus von &(M)-Moduln aufgefaBt werden kann).

Die so wichtigen Basisformen auf P lassen sich daher als AbP-wertige For-
men auf der Basismannigfaltigkeit M verstehen: Es gilt .ﬂ,]f(P,g) o ﬂk(M,?IbP).
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Die kovariante Ableitung D zu dem Zusammenhang auf dem Prinzipalfaser-
biindel respektiert die Aquivarianz: Aus ‘F;n = olg"hHn folgt ‘I’;Dn = olg"\)Dn, denn
‘I’;Dn = ‘I’Zo@*dn = a*o‘Iden = &*d(‘I’Zn) = 6*d(plg ™) = Dlplg™ ) = olg™Dn,
wie im Beweis zu 5.28.2°. Deshalb gilt fiir 7€ &f:;(P,iF) stets Dne .ﬂ(l:ﬂ(P,[F).

Die Beweismethode zu 5.29 liefert mit geringfligigen Anpassungen auch die

folgende niitzliche Formel:

(5.34) Satz. Flir jede Basisform n € .,Q{Zé(P,g) oder ne ﬂé(P,g) gilt
Dy = dn + [wn].

Man beachte, daB diese Formel nicht fiir die Zusammenhangsform o, die ja
auch keine Basisform ist, richtig ist. Nach 5.29 gilt vielmehr Do = do + %[w,w] . Die lo-
kale Variante von 5.34 beziiglich eines lokalen Schnittes ¢ ist fiir B = 0%y entspre-
chend

(5.35) DB = dB + [A,B],

wobei A = oo das lokale Eichpotential der kovarianten Ableitung D ist. Genau ge-
nommen muB dazu noch DB definiert werden, ndmlich als DB := ¢*(Dy). Dann gilt
nach 5.34 unmittelbar DB = o*(dn + [w,n]) = d(c*y) + [6¥w,6n] = dB + [A,B].

In lokalen Koordinaten beziiglich einer Karte gilt:

{5.36) Fiir den Fall einer 1-Form ¢*n = B = Bvdqv mit kovarianter Ablei-
tung DB = £ (D B, - Dva) dg¥adq” ist

DB, = 3B, +[A,B].
Fiir 2-Formen B = %dequ/\ dq” mit DB = %(DUB\))\ +D,B, ,+ D)\Bw)dq“/\ dq’a dqx
ist

ES

I

Dqux = auB\D\ + [Au’B\;)\]'

Die Ableitungsausdriicke Du’ die wir hier als rechentechnische Terme einge-
filhrt haben, lassen sich auch folgendermaBen auffassen. Beziiglich der adjungierten
Darstellung gehort zu dem auf (P,M,G,n) vorgegebenen Zusammenhang ein assoziier-
ter Zusammenhang auf dem Vektorbiindel AbP. Dieser Zusammenhang werde wieder
mit D bezeichnet. Dann ist D, = Dau im Sinne von 4.3, also D;s = Ds(au) fiir
Schnitte s in AUDP. Die Bu’ Buv in den obigen Formeln sind solche Schnitte.

Im iibrigen hat die Bianchi-Identitét 5.30.2° fiir die lokale Kriimmungsform
F = ¢*Q die Gestalt DF = 0. Da Q nach 5.28 eine Basisform ist, bedeutet diese
Identitit nichts anderes als dF + [A.F] = 0 (vgl. 5.31). Daraus erhilt man die
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(5.37) Lokale Version der Bianchi-Identit&t:

DuFun* D.Fy, +DyF,, = 0 oder D F,, = 0.

Mit dem Ergebnis 5.33 kénnen wir einmal mehr (vgl. 5.22/5.23.4°) den asso-
ziierten Zusammenhang auf E = E o beschreiben. Dabei wird ein Vergleich der Kriim-
mung 2 des Zusammenhangs auf dem Prinzipalfaserblindel mit der Kriimmung F des
assoziierten Zusammenhangs auf dem Vektorbiinde! E angestrebt: Beschrédnkt man die
kovariante Ableitung D : AHPF) — HAPF) des Zusammenhangs © auf Jdé(P,[F),
so erhdlt man eine Abbildung D : &ié(P,[F) —_— ﬂé(P,lF), die nach 5.33 eine entspre-
chende Abbildung V : l,dl(M,E) — AAHM,E) induziert. Aufgrund der Eigenschaften
(Z1)-(Z5) aus 5.18 ist diese Abbildung V ein Zusammenhang auf dem Vektorbiinde! im
Sinne von 4.2 und 4.23.1°. Fiir die Krilmmung Q@ = Do auf dem Prinzipalfaserbiindel ist
0x(Q) = LiepoQ eine differenzierbare 2-Form mit Werten in den Endomorphismen
a(F) = EndF. Die durch p bestimmte Darstellung R = fbop: G —> GL(g{F))
mit dem Darstellungsraum g(F) ist durch R(g)(T) := p(gloToplg™ ), Te g(F), gege-
ben. (Dabei steht "o" natiirlich fiir die Komposition in 8(F).) Der angestrebte Zusam-
menhang zwischen den Kriimmungsformen ist der folgende:

(5.38) Satz. Mit den eingefiihrten Bezeichnungen gilt:

1° 0,0 € HL(P,g(F)).

2° Das Endomorphismenbiindel EndE o ist das zur Darstellung R assozi-
ierte Vektorbiindel E, (bis auf Isomorphie).

3°Die Kriimmung F = VoV ¢ dz(M,EndEp) des assoziierten Zusammen-
hangs V auf dem Vektorbiindel Ep ist gerade die 2-Form, die nach 5.33 durch die
dquivariante 2-Form p,Q € & IZ,A(P,g(ﬂ:)) bestimmt wird.

Beweis: Natiirlich ist px§) horizontal, da Q horizontal ist. Fiir geG gilt
auBerdem ‘P;p*ﬂ = p*(‘I';Q) = o,(g"0g) = p(g_l)OQ*Qop(g) = Rlg 10,9, also 1°,
Zu 2°: Wenn P nél(u) — UXF eine lokale Trivialisierung ist, so erhilt man eine
lokale Trivialisierung & : (nEndE)_l(U) — Uxg(F) des Endomorphismenbiindels
EndE durch ®,(8) = ¢ 0Bop ! fiir Ee EndE_. Daher: Sind g/, e (U, GL(F))
die Verklebungsfunktionen des Biindels E beziiglich einer offenen Uberdeckung von
M (vgl. 4.21), so sind entsprechende Verklebungsfunktionen G, € £(Um,GL(g([F))) von
EndE durch G, (a)(T) = g:”(a)oTogzx(a)—j gegeben. Die 8,,, sind aber von der
Form g, = olg,,), wobei die 8, Verklebungsfunktionen des Prinzipalfaserbiindels
sind (vgl. 5.23.4°). Also ist G, = R(g, ), das heiBt EndEp ist das zu R assoziierte
Vektorbiindel. Die Eigenschaft 3° folgt schlieBlich aus der oben dargelegten Beziehung
zZzwischen D und V.

Mit diesem Resultat ordnet sich das Studium der Kriimmung in der Riemann-
schen Geometrie (vgl. Anhang G) der Kriimmungstheorie in Prinzipalfaserbiindeln unter:
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6. DYNAMIK DER EICHTHEORIEN UND BEISPIELE

Eine ausfiihrliche Behandlung des Themas dieses Paragraphen wiirde die Sei-
ten eines ganzen Buches fiillen. Deshalb kann dieser Paragraph, in dem als Ausklang
des Kapitels der biindeltheoretische Formalismus der letzten Paragraphen anhand von
Yang-Mills—Gleichungen und weiteren Beispielen in Beziehung zu physikalischen Model~
len gesetzt werden soll, nur skizzenhaft sein. Vor den eigentlichen Beispielen wird ver-
sucht zu erkliren, wieso die Faserbiindelgeometrie bei der Beschreibung von klassischen

Feldtheorien iiberhaupt eine so wichtige Rolle spielen kann.

Aus der Sicht von Geometrie und Physik 148t sich das Auftreten von Zusam-
menhang und Kriimmung in der klassischen Feldtheorie folgendermaBen interpretieren.
Ein klassisches, strukturiertes Teilchen werde beschrieben durch einen Punkt in der
Raumzeit M (z.B. M = R*) und durch einen internen Strukturzustand, der durch ein
Element der Strukturgruppe G gegeben ist. Auf diese Weise ist jedem Punkt ae M
der Raumzeit ein interner Phasenraum P a zugeordnet, und dieser Phasenraum steht in
Bijektion zu G.Die P_ sind allerdings fiir verschiedene Punkte als verschieden aufzu-
fassen, dhnlich wie etwa zwei Tangentialvektoren im R", die in verschiedenen Punkten
definiert sind, grundsitzlich nicht gleich sein kénnen, selbst wenn sie in dieselbe Rich~
tung weisen. Rein mengentheoretisch ergibt sich damit als Konfigurationsraum P des
strukturierten Teilchens, also als Raum der Zusténde des Teilchens, die folgende "Fase-
rung”: P = U{{a} xP_: ae M}. In speziellen Fallen haben die vielen verschiedenen
P, ae M, jeweils eine so gut zueinander passende Identifizierung mit der Struktur-
gruppe G, daB man sich den Konfigurationsraum als das Produkt P = M x G (im
Sinne von Mannigfaltigkeiten) vorstellen kann, also als das triviale Prinzipalfaser-
biindel. Es ist eine sinnvolle Forderung, eine solche Situation jeweils im Kleinen anzu-
nehmen, und damit die Struktur eines (in der Regel nichttrivialen) Prinzipalfaserb'tindels
fiir den Konfigurationsraum P zu postulieren.

Wenn duBere Krifte auf das Teilchen einwirken, kann eine Produktstruktur
P & M x G, also ein trivialisierbares Prinzipalfaserbiindel, nicht erwartet werden, denn
solche Krifte verursachen eine Verschiebung der verschiedenen P, zueinander. Wie
allerdings eine mogliche Identifizierung von P und Py fiir zwei Punkte a,be M in
einem Prinzipalfaserbiindel aussehen kann, ist uns im Rahmen der Geometrie der
Prinzipalfaserbiindel bekannt: Die Fasern ldngs eines Weges von a nach b lassen sich
mittels eines Paralleltransports miteinander identifizieren. Bei einer Verdanderung des

Weges oder des Paralleltransports édndert sich in der Regel auch die Identifizierung.



V.6 Dynamik der Eichtheorien und Beispiele 279

Aus physikalischer Sicht entspricht die Einfithrung eines Paralleltransports
der Vorstellung, daB ein Teilchen, welches sich langs eines Weges v in M, also auf
einer Weltlinie, bewegt, den jeweils internen Raum PY(t) der Phasen mit sich triagt und
auf diese Weise den Paralleltransport definiert. In dieser Situation bedeutet die Identifi-
zierung ldngs verschiedener Wege eine Verschiebung der Phase durch einen Phasenfak-
tor ge G, welche ihre Ursache in dem &uBeren Kraftfeld hat, Aus geometrischer Sicht
ist dieser Phasenfaktor darstellbar durch die Kriilmmung des jeweiligen Paralleltrans-
ports, und wir haben damit eine Erkldrung dafiir, daB in abstrakter Auffassung das
duBere Feld mit der Kriimmung des Paralleltransports bzw. des zugehdrigen Zusammen-
hangs gleichgesetzt wird. Unter diesem Gesichtspunkt ist die Zusammenhangsform des
Paralleltransports das globale Eichpotential und die zugehérige Kriimmung ist das Eich-
feld: Wir sind mitten in der Beschreibung einer Eichtheorie und ihrer Beziehung zur
Geometrie der Faserbiindel,

In einer solchen Theorie miissen noch endlichdimensionale Darstellungen von
G beriicksichtigt werden, denn als Darstellungen manifestieren sich die Elementarteil-
chen. Diese Beriicksichtigung erfolgt in natiirlicher und sinnvoller Weise, indem dije
Geometrie der assoziierten Vektorbiindel mit in die Betrachtung einbezogen wird.

Zu einer blindeltheoretischen Formulierung der Eichtheorie, wie sie in den
letzten zwei Paragraphen vorbereitet wurde, gehéren erst einmal ein Prinzipalfaserbiin-
del (P,M,G,7) und eine endlichdimensionale Darstellung ¢ : G —> GL(F). Dabei ist
M aufzufassen als die Raumzeit, die in der Regel als vierdimensional vorausgesetzt
wird. Es gibt aber interessante Modelle, in denen hoherdimensionale oder auch nieder-
dimensionale Mannigfaltigkeiten M als Raumzeit dienen. Der Totalraum P ist der
Raum der verallgemeinerten Phasenfaktoren und die Strukturgruppe G, die wir der Ein~
fachheit halber als ejne Matrixgruppe voraussetzen, ist die interne Symmetriegruppe,
die nur die Phasen, also die Fasern von n, nicht aber die Mannigfaltigkeitspunkte q e M
verdndert. Die Darstellung o legt das Transformationsverhalten der Materiefelder fest,
das sind die invarianten F-wertigen Funktionen auf P oder die Schnitte iiber M im
assoziierten Vektorbiinde] Ep: F o= 5P(P,IF) & F(M,Ep) - Die globalen Eichpotentiale
sind die Zusammenhangsformen auf dem Prinzipalfaserbiindel, Sie werden oft auch als
lokale Eichpotentiale gegeben oder als kovariante Ableitung auf dem Raum & der
Felder. Der Raum & aller Eichpotentiale auf dem Prinzipalfaserbiindel ist ein affiner
Raum mit Modellen in dem Vektorraum der Basisformen dé(P,g) = &il(M,?U)P), den
man auch als den Vektorraum der UbP-wertigen 1-Formen A 1(M,?U)P) verstehen
kann. An wesentlichen abgeleiteten GriéBen kommen noch die Eichfelder oder Feldstar-
ke-Tensoren als die Kriimmungen der Zusammenhinge vor.

Die kinematischen Variablen der Eichtheorie sind also die Paare (w,{) von
Eichpotentialen we & und Teilchenfelder ¢ € F, oder besser die Eichdquivalenzklas-
sen von solchen Paaren beztiglich der Wirkung der Eichgruppe € I'(M,AdP), die
als Abbildung & X F X € —— o x T v A T g e



280 V Eichinvarianz

Je nach der speziellen Situation werden noch weitere geometrische Struk-
turen benttigt wie zum Beispiel Metriken auf M oder Ep, Bilinearformen auf der Lie-
Algebra g von G oder weitere Prinzipalfaserbiindel, die, wie z. B. die Spinbiindel, in
enger Beziehung zu dem Ausgangsbiindel (P,M,G,n) stehen.

Soweit die Kinematik einer eichinvarianten Feldtheorie. Eine fiir viele Zwecke
sinnvolle Dynamik 148t sich wie in der Klassischen Mechanik aus geeigneten Variations-
prinzipien gewinnen, wie wir in Kiirze darlegen werden. Aber vorher noch einmal das
Beispiel der Elektrodynamik als eine U{1)-Eichtheorie, bei der wir die Dynamik bereits

kennen.

(6.1) Beispiel. Die lokalen Eichpotentiale auf dem trivialen Prinzipalfaserbiin-
del P = M x U(1) iiber M haben nach 5.12 die Form A = ieAvqu mit Funktionen
A, e &(M) . Die Feldstdrke (oder Kriimmung) ist in dieser Situation die auch aus IV.1
wohlbekannte 2-Form F = dA = ie%(auAv— avAu)dqudq“. Sie erfiillt natiirlich
dF = 0, wie man sofort aus dod = 0 folgern kann. Dies ist die Bianchi-Identitat. Mit
Blick auf die Dynamik (vgl. IV.1) bedeutet dF = 0 einen Teil der Maxwell-Gleichun-
gen. Die vollen Maxwell-Gleichungen dF = 0 und SF = j lassen sich aus einem
Variationsprinzip herleiten (vgl. IV.3), in dem die Eichinvarianz und die Poincaré-Inva-
rianz bereits "eingebaut” sind (vgl. 11 und 1V.3.10.1°). Die entsprechende eichinvariante

Lagrangedichte ist
— = -1 o v
£ = LA A) = ~{FF an A,

wie wir in [V.3.1 und in V.1.1 gesehen haben. Ohne groBe Veranderungen 14Bt sich dieser
Ansatz von U(1) auf eine Matrixgruppe G verallgemeinern, wenn deren Lie—Algebra g
eine invariante, nichtausgeartete symmetrische Bilinearform hat. Das soll als néchstes

behandelt werden:

(6.2) Reine Yang—Mills—Theorie. Zur Beschreibung der Dynamik von Eichthe-
orien beschrinken wir uns erst einmal auf den Fall, in dem nur die Eichfelder ve &
auftreten, also auf die sogenannte reine Yang—Mills-Theorie.

Es wird dazu ein Prinzipalfaserbiindel (P,M,G,n) zugrundegelegt. Als
weitere Struktur wird eine (semi-Riemannsche) Metrik g auf M, eine Volumenform
% auf M und eine invariante, nichtausgeartete symmetrische Bilinearform § auf der
Lie-Algebra g der Strukturgruppe G bendtigt. (Zur Existenz von § vergleiche L.10.)

Wir behandeln zunichst den Fall eines trivialen Biindels P = M x G mit
T = pry. {iber den Standardschnitt 6: M — P, a — (al), wird jede Zusammen-
hangsform € & zu einem lokalen Eichpotential A := o¥w e AHM,g) zuriickgeholt
und die Kriimmung @ = Dw wird zur lokalen Feldstdrke F = o*Q e #%M,g). Die
geometrischen Vorgaben g und B legen auf den g-wertigen k-Formen eine symmetri-

sche Bilinearform ( , ) : A¥(M,g) x H¥(M,g) —> 6(M) fest: Fiir e, b€ A¥(M,g) ist

4 T T L e
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wenn ¢ in lokalen Koordinaten als %!(p“#z _dq™a dq“za .. Adg"k gegeben ist und
P M2 wie iiblich mit Hilfe von g als oMbz -tk ghtiightve guk\’ktp\,l\,2 g
definiert ist. Aufgrund des Transformationsverhaltens von ¢, und g bei Karten—
wechseln (vgl. M.16) ist (¢,9) unabhéngig von der jeweiligen Karte und daher wohlde~
finiert. Fiir eine Eichtransformation h e 6(M,G) (die einer anderen Trivialisierung von
P entspricht) gilt (heh™ hgh™!) = (o), weil B invariant ist (also fiir X,Yeg und
he G stets B(X,Y) = ﬁ(hXh'l,th_l)erfﬁllt ist). In diesem Sinne ist (., ) eichinva-
riant. Fiir Fe dz(M,g) ist insbesondere (|F||? = (F,F) = B(FUV,FW). Fiir die Kriim-
mung Q des Zusammenhangs e o st Q)% = IFI? und diese Definition ist
unabhingig von der Wahl des Schnittes o, also der speziellen Wahl der lokalen Feld-
stdrke, weil ( , ) eichinvariant ist. Dieser Ausdruck ist im wesentlichen die Yang-
Mills-Lagrangedichte .Sf’YM A — E(M),

Lym(® = cllQl? fir we A, wobei Q = Do,

mit einer geeigneten Konstanten ce R\{0}. Diese Konstante wird zum Beispiel so ge-
wihlt, daB Lvm ein gewlinschtes Vorzeichen erhilt. Fiir die Bewegungsgleichungen
hat die Wahl von ¢ aber keine Bedeutung.

Definition. Die Bewegungen des Systems sind die Zusammenhinge © auf
dem Prinzipalfaserbiindel, welche Stationdr beziiglich des Wirkungsfunktionals

Sym®) = [ Lyl

sind. Sym ist die Yang—MiHs—-VVirkung.

Hierbei muB man sich gegebenenfalls auf solche Zusammenhinge und Varia-
tionen beschrénken, fiir die das Integral jeweils existiert, Oder man integriert nicht
iiber ganz M, sondern stattdessen iiber geniigend viele kompakte Teilmengen K c M.

Es ist klar, daB auch das Wirkungsfunktional SYM eichinvariant ist. Die
Eichgruppe % fiihrt daher Bewegungen in Bewegungen iiber. Als den Raum der Bewe-
gungen faBt man daher auch die Menge der stationiren Punkte von Sy, modulo der
Gruppe der Eichtransformationen auf, Dieser Raum entspricht dem Bahnenraum der
Klassischen Mechanik.

Wie lauten nun die zugehérigen Bewegungsgleichungen? Ein Zusammenhang
0 e A ist stationdr beziiglich der Yang—Mills—Wirkung, wenn

d%SYM(w(e))'E=O =0
gilt fiir alle zuldssigen Kurven wle) in F mit w0) = ¢, Da & ein affiner Raum
ist — mit dem Raum & }( M,g) der g-wertigen 1-Formen als Vektorraum der Translatio-
nen (vgl. 5.20 und 5.26 im Fall eines nichttrivialen Prinzipalfaserbiindels) — genligt es

sich auf Kurven der Form o(g) = ©+eB mit Be .ﬂi(M,g) zU beschrinken. Fiir die
jeweiligen lokalen Feldstirken F und Fle) zu o und w(e) gilt

oYY -~ o « O
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wenn hier D die kovariante Ableitung zu © bezeichnet. Das kann man zum Beispiel
aus F = dA + 3[A,A] (vgl. 5.31) ablesen:
Fle) = d(A +eB) +3[A +eBA+ ¢B]

dA +4[A,A] + e(dB + §[AB] + 3[BA]) + 1¢%[B,B]

= F + e(dB + [AB]) + $°[B.,B]

= F +¢DB + 3¢*[B,B].
Dabei wurde [A,B] = [B,A] und DB = dB + [A,B] (vgl. 5.35) verwendet. Fiir die
Yang-Mills-Dichte hat man deshalb &y lw +eB) = C(HF“Z + 2¢(F,DB) + ¢2(F,[B,B])

+ weitere Terme, die in & mindestens quadratisch sind) . Die Bewegungen sind daher

It

genau die v € & mit

[y (EDB)X = 0
fiir alle B e &' (M,g), fiir die dieses Integral existiert. Wir bendtigen den zu D formal
adjungierten Operator D" : #2M,g) — A1M,g), der durch

[ @ EBI = [3, (F.DBI
fiir alle Fe #%M,g) und alle Be#'(Mg) definiert ist, um schlieBlich die Bewe-
gungsgleichungen zur Yang-Mills-Dichte in der folgenden kompakten Form schreiben

zu kénnen:

(6.3) Yang—Mills-Gleichungen. Die Bewegungen der reinen Yang—-Mills—

Theorie sind die Losungen der sogenannten Yang-Mills—Gleichungen
DF = 0.

D wird auch als Kodifferentialoperator bezeichnet und mit & oder, um die Abhéngig-
keit von © auszudriicken, mit 5° bezeichnet. Aus rein geometrischen Griinden gilt
sudem noch die Bianchi-Identitit DF = 0 (vgl. 5.30). Zusammen also

p”Q = 0 und 8°Q = 0.

Die Analogie zu den homogenen Maxwellgleichungen ist evident. Allerdings
sind die Yang-Mills-Gleichungen im nichtabelschen Fall in der Regel nichtlinear, wie

wir auch an speziellen Beispielen sehen werden.

(6.4) Beispiel. SU(N)-Eichfeldtheorie. Auf der Lie-Algebra g zu SU{N)
gibt es eine natiirliche Bilinearform B, niamlich die Spurabbildung (tr = Spur):

BIX,Y) = -§tr(XoY)
fiir X,Yegq. B ist symmetrisch, nichtausgeartet und invariant (vgl. Anhang L.10). Zur
Beschreibung der Yang-Mills-Gleichungen nehmen wir noch an, daB die n—dimensionale
Mannigfaltigkeit M orientiert ist und ) die zur Metrik gehdrige Volumenform ist
(das heiBt fiir jede positive Orthonormalbasis (e,.ey, .. .e,) von TM, ae M, gilt
ey eq, ,en) = 1). Als spezielle Beispiele kénnen der R* mit der tiblichen euklidi-
schen Metrik oder der Minkowski—Metrik und der zugehorigen iiblichen Integration die—

P o e Dt oanfvrn e Y atich mMit



V.6 Dynamik der Eichtheorien und Beispiele 283

Hilfe des Hodge-Operators x : &fk(M,g) —_—> dzfn_k(M,g) beschreiben (vgl. G.16);
(p0In = L tr(pna *),

Daraus ergibt sich mittels partieller Integration, daB D* — *Dx oder D* = =*Dx  (je

nach Signatur von 8 und Dimension n) gilt. In jedem Falle sind die Yang-Mills-Glei-

chungen #quivalent zu

D(*F) = ¢.

ImFalle M = gt mit euklidischer Metrik oder mit der Minkowski-Metrik errechnet
sich daraus in lokalen Koordinaten das System

uv
DuF =0
von Gleichungen, also (vgl. 5.36)

3 F* + [AF1 = o

von 6.4) den zugehdrigen Laplace-Operator A = 5°D® + D“s® auf den g-wertigen

k-Formen auf M, und eine k-Form { heift harmonisch, wenn sie Amrb = 0 erfiillt.
Die Lésungen der Yang—Mills—Gleichungen erfilllen DF = ¢ und §“F = ¢, Daher
lassen sich diese Losungen auch als diejenigen Eichpotentiale beschreiben, die eine har-
monische Kriimmung haben, und die reine Yang-Mills-Theorie kann aus dieser Sicht als
eine nichtabelsche Verallgemeinerung der iiblichen Hodge-Theorie (vgl. [WAR]) auf
Riemannschen Mannigfaltigkeiten angesehen werden,

lumenform > auf M erhilt man zunédchst eijne eichinvariante Bilinearform( , ) auf
den Formen &fk(M,?IbP) wie in 6.2. Fiir lokale Schnitte 6: U —> P des Biindels
kann daher als ein erster Ansatz auf der Suche nach einer Yang-Mills-Dichte ZU e o
mit Kriimmung Q = Dy dje GroBe Hs’lllzlu = |lo*Q|? = (6*Q,6*Q) dienen. Wegen
8.32 und der Eichinvarianz von (. ) ist diese GréBe unabhingig von dem Schnitt o
und definiert daher eine globale Yang~Mills-Dichte Lomlo) = ¢ 0% mit der zuge-
hérigen Yang—Mills—Wirkung

Sym@) = [ 2 ().
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Die Bewegungen, also die stationdren w, sind wie vorher die Losungen der Yang—Mills—
Gleichungen
D'F = 0,
wobei D* der zu D formal adjungierte Operator ist. Falls A wieder (wie in 6.4) eine
metrische Volumenform zur Metrik g ist, so kann D* mit Hilfe des Hodge-Operators
durch *D# ausgedriickt werden, so daB sich die Yang-Mills-Gleichungen in der Form
DxF = 0
schreiben lassen. Daneben haben wir auBerdem noch die geometrisch bedingte Bianchi-
Identitat
DF = 0.

(6.7) Instantonen. Instantonen sind spezielle Losungen der reinen Yang-—
Mills—-Theorie im Falle einer A-dimensionalen orientierten Raumzeit M. In diesem Falle
liefert der Hodge—Operator * auf F-wertigen 2-Formen eine Bijektion

«: AHME) — HEMP).

Ein Zusammenhang eines Prinzipalfaserbiindels P ilber M mit Strukturgruppe G und
zugehobriger Lie-Algebra g heiBt selbstdual (bzw. antiselbstdual), wenn filr die Kriim-
mung Fe€ A%(M,g) die Identitat *F = E (bzw. *F = - F) gilt. Ein solcher selbstdua-
ler oder antiselbstdualer Zusammenhang ist stets auch Losung der Yang-Mills-Glei-
chungen (wenn die Wirkung endlich ist): Denn nach der Bianchi-Identitét ist DF = 0,
also auch D*F = 0. Eine spezieller selbstdualer Zusammenhang fiir den euklidischen
R* = M mit der iiblichen Orientierung 138t sich im Falle der Gruppe SU(2) (und Prin-
zipalfaserbiindel M x SU(2)) folgendermaBen angeben: Die Punkte von ®* konnen als
Quaternijonen geschrieben werden, und die Lie-Algebra gu(2) ist in dieser Situation
als die Menge der rein imaginaren Quaternionen aufzufassen. Ein spezielles Beispiel ist
durch die Formel

Alq) = 31+ 1) (qdd - da @)
gegeben. Diese definiert eine 1-Form A € A1(M,8u(2)), also ein lokales Eichpotential,
und damit ein Zusammenhang auf dem trivialen Prinzipalfaserbiindel M x SU(2) . {Dabei
ist "~ " die Konjugation der Quaternionen und qdg steht fiir das Produkt zweier Qua-
ternionen.) Fiir die Krimmung errechnet sich

F = (1+|g® *(dardad),
und diese 2-Form ist selbstdual. AuBerdem garantiert der Term (1+ lqlz)—z, daB die
Wirkung endlich ist. Also ist damit eine Losung der Yang—Mills—Gleichungen gefunden.

Im iibrigen hat A eine differenzierbare Fortsetzung X nach S"', der Ein—
Punkt-Kompaktifizierung von R*. Allerdings ist A nicht mehr ein Zusammenhang auf
dem trivialen Prinzipalfaserbiindel iiber &%, sondern auf einem geeigneten nichttrivialen
Prinzipalfaserbiindel iiber %, wie zum Beispiel in [AT1] gezeigt wird. Auf diese Weise
treten nichttriviale Prinzipalfaserbiindel auch bei der Untersuchung von urspriinglich
trivialen Prinzipalfaserbiindeln auf. Unter einem Instanton versteht man nun eine anti-

o o-Mills—Gleichungen, die eine Fortsetzung
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auf ein SU(2)-Biindel iiber $* hat. Solche Instantonen werden eingeteilt nach dem to-
pologischen Typ des zugehdrigen Biindels. Die Prinzipalfaserbiindel iiber $* mit der
Strukturgruppe SU(2) kénnen mit der sogenannten Chern-Zah!l k € Z klassifiziert wer-
den (vgl. [WAW, S. 273]). Dieses k ist im physikalischen Sprachgebrauch die Instanto-
nenladung. Die Gesamtheit aller Instantonen zu vorgegebener Instantonenladung 148t
sich als eine Lésungsmannigfaltigkeit der Dimension 8k —-3 beschreiben. Das ist in [AT1]
griindlich ausgefiihrt worden (siehe auch [NAS] oder [WAWT]), Im iibrigen werden durch
die Instantonen nicht alle Lésungen der Yang-Mills-Gleichungen (im Falle dim M = 4
und G = SU(2)) beschrieben, wie kiirzlich von Sibner und Uhlenbeck gezeigt wurde.

Obwohl fiir viele Eichtheorien die entsprechenden Prinzipalfaserbiindel als
trivial angenommen werden kénnen, gibt es einige wichtige physikalische Situationen, in
denen die auftretenden Prinzipalfaserbiindel nichttrivial sind. Das gilt zum Beispiel fiir
den Aharonov-Bohm-Effekt, der allerdings erst in der Quantentheorie seine Bedeutung
erhilt (vgl. z.B. [WOO] oder [NAK1) und fiir Berrys Phase. Im Rahmen der klassischen
Eichtheorien ist die einfachste Situation, in der ein nichttriviales Prinzipalfaserbiindel

unvermeidlich erscheint, die Theorie des magnetischen Monopols nach Dirac.

(6.8) U(1)~Monopol. Das elektromagnetische Feld F zu einem magnetischen
Monopol ist ein zeitunabhingiges Feld, welches als 2-Form F e #%(M) auf dem Raum
M = R*\{0} gegeben ist. Der magnetische FluB durch eine Fliche ¥ c M wird durch
das Integral

o) = [.F
definiert, und der magnetische FluB durch die 2-Sphire $2 ist die magnetische Ladung
¢ des Monopols: ¢ := ®(52). Im iibrigen ist der Wert des magnetischen Flusses unab-
hingig von der speziellen Wahl der Fliche 3 — $%, das heiBt es gilt fiir alle kompak-
ten, orientierten (und zusammenhingenden) Flichen ¥ ¢ M, welche 0 im Inneren ent-
halten (welche sich also in M nicht stetig zu einem Punkt zusammenziehen lassen):
¢ = ®(3). Die Nichttrivialitdt des entsprechenden Prinzipalfaserbiindels bei einer biin-
deltheoretischen Beschreibung des magnetischen Monopols liegt an dem folgenden ein-
fachen Resultat:

Satz. Wenn die magnetische Ladung ¢ von Null verschieden ist, so gibt es
kein globales Potential A ¢ &Y(M) mit dA = F.

Denn nach dem Integralsatz von GauB ist g = Jg2 dA = fang = 0 fiir
jede 1-Form A e & 1(M) wegen 852 = g,

Aber es gibt fiir die Bereiche My = {{xyz2)eM: z>0 falls x= y = 0}
und M_ = {(x,y2) eM:2<0 falls x=y=0) stets 1-Formen A€ .ﬂfi(MJr) und
A_e A (M) mit dA, = F|py, und dA_ = Fim_,denn M, und M_ sind sternfor-
mice Gebiete (vel M 17) Diocoa Barmbiambtre o L1l ot 1~ 4 . B
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MM, NM_) = {(0,0z2): ze R, z+ 0} eine Singularitit der Potentiale zuzulassen.
Die Lage eines solchen Strings ist aber willkiirlich, und sie hat keine physikalische Be-
deutung.

In einer uns geldufigen U(1)-Theorie mit dem trivialen Prinzipalfaserbiindel
M x U(1) kann die 2-Form F aufgrund des Satzes nicht als Kriimmung eines Zusam-
menhangs auf M x U(1) vorkommen. Aber die Potentiale A, und A_ weisen bereits
den Ausweg aus diesem Dilemma: Sie lassen sich auffassen als die lokalen Eichpotentia-
le eines geeigneten Zusammenhangs auf einem nichttrivialen Prinzipalfaserbiindel (P,M,
G,n) mit der Strukturgruppe U{1). Dazu muB (bei der iiblichen Identifizierung der
Lie-Algebra u(1) mit iR) nur A, = iA_+ clgg_1 mit einer differenzierbaren Abbil~
dung g: M, NM_ —> U({l) gelten, denn dann definiert die Verklebungsfunktion g
ein U(1)-Biindel beziiglich der Uberdeckung {M,,M_} von M. Schreibt man schlieB-
lich g = explig), so muB also nur A, = A_ + dp gefunden werden.

Dazu ein explizites Beispiel: Die Feldstarke sei

E = c{4nr®) U(xdyadz + ydzadx + zdxady), r == x? +y2 + 22 £ 0.

F ist wohldefiniert als 2-Form auf M und hat in O eine Singularitat. F erfiillt die
Bianchi-Identitit dF = 0 und die Yang-Mills-Gleichung d(xF) = 0. Fiir die zweite
Bedingung rechnet man zundchst *F = c{4nr3) '(xdx + ydy + zdz) nach, um daraus
d(*F) = 0 direkt abzulesen. Ein Potential auf M, ist
A, = c(4nr(r+2))  (xdy - ydx),
wie man mit einiger Rechnerei nachpriift: dA, = F. A, ist auf dem "Dirac-String"
{(0,0,z) : z < 0} singuldr. Entsprechendes gilt auf dem Bereich M_ fiir das Potential
A_ = clanrlr-2))Y(-xdy + ydx).

Auf dem Durchschnitt M NM_ gilt A, -A_ = c(2n(x® + y9)) Yxdy - ydx) wegen
(rle+2)Y ' + (rlr-2))! = (cte2=-22) Y r -z +r+2) = 20r2-22)"1 = 2(x2+yz)-l. Da-
her hat man mit ¢(x,y,z) := zc—narc tan-i(i eine Funktion gefunden, welche das gesuchte
Prinzipalfaserbiindel durch die Verklebungsfunktion g := exp(ie) : M, nM_—> U(1)
definiert. Die Einfachheit dieser Verklebungsfunktion erkennt man am besten, wenn man
Polarkoordinaten (r,0) fiir (x,y) benutzt (von z und r hdngt g nicht ab): Dann ist
g(r8,z) = exp(i—z%e). Damit dadurch wirklich eine eindeutige Funktion festgelegt ist,
muB ¢ eine ganze Zahl sein. (¢ ist die Chern-Zah! des Biindels, als Integral der ersten
Chern-Form des Biindels (vgl. z.B. [WAW]) iiber der Sphare.) Fiir den in unserer Dis-
kussion uninteressanten Fall ¢ = 0 ist auf diese Weise das triviale Prinzipalfaserbiin-
del gegeben. Fiir c € Z\{0) wird ein nichttriviales Prinzipalfaserbiindel definiert, und
zwar flir verschiedene ¢ auch nichtisomorphe Prinzipalfaserbiindel (siehe oben). Im
Falle ¢ =1 sind wir wieder einmal bei der Hopf-Faserung ¢ : 58— 52 (vgl. IL.6):
Eine vollstindige Beschreibung des Prinzipalfaserbiindels fiir ¢ = 1 wird ndmlich unter
Beachtung von M 52 x R, folgendermaBen gegeben: P := 53 % R, mit Projektion
n:P—> M, (p;r) —> W(plr).
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Die Ganzheitsbedingung ¢ € Z kann als eine Quantisierungsbedingung aufge-
faBt werden. Aus der entsprechenden Quantisierung der Theorie zusammen mit der
Quantisierung der elektrodynamischen Felder bedeutet diese Ganzheitsbedingung, daB im
Falle der Existenz auch nur eines Monopols, die elektrische Ladung wie auch die Mono-
polladung nur gequantelt auftreten kdnnen.

Im iibrigen sind die Konstanten so gewdhit, daB tatsiachlich ®(5?) = ¢ gilt:
Denn das Integral von F iber $2 st gleich der Summe der beiden Integrale iiber die
Halbsphiren, die sich in z = 0 beriihren. Nach dem Integralsatz von GauB ist das In-
tegral Uber die obere Halbsphdre H, gleich dem Integral fH+F = f 8H+A+’ und daher
fH+F = J:Trc (4m)"ldt = %c, und das gilt analog auch fiir die untere Halbsphire.

Monopole werden in Analogie zu 6.7 auch fiir SU(2) und fiir weitere interne
Symmetriegruppen studiert, vgl. z.B. [ATH], [GOS], [NAST und [WAW, 8.4].

(6.9) Lagrangeformalismus im Rahmen der Eichtheorie. Mit der Untersuchung
von reinen Yang-Mills-Theorien ist nur ein erster Schritt auf dem Wege zu einer eich-
theoretischen Feldtheorie getan. Im folgenden werden Materiefelder mit in die Betrach-
tung einbezogen, und es wird auf die Herleitung von Bewegungsgleichungen fiir Mate-
riefelder und Eichfelder eingegangen. Dabei wird ein allgemeines Verfahren zur Gewin-
nung von geeigneten Lagrangedichten erlautert, das wir hier das Prinzip der Eichinva-
rianz nennen wollen.

Neben dem Prinzipalfaserbiindel (P,M,G,n) ist also noch eine Darstellung
¢: G —> GL(F) der internen Symmetriegruppe G gegeben und damit insbesondere
das assoziierte Vektorbiindel Ep mit der Faser F. Sei wie zuvor & der Raum der
Zusammenhinge auf dem Prinzipalfaserbiindel bzw. der assoziierten Zusammenhinge
auf dem Vektorbiindel Ep, und sei % der Raum F(M,Ep) der Schnitte. Eine Lagrange—
dichte % ist zum Beispiel eine Abbildung ¥ : & x F — A (M) (oder auch
Ll xF —> (M), wenn auBerdem noch eine feste Volumenform e (M) auf
M vorgegeben ist). Je nach Situation ist & gelegentlich auch nur auf einer Teilmenge
7V C o xF definiert, die sich etwa durch Randbedingungen oder Zwangsbedingungen
ergibt. Allgemeinere Lagrangedichten beziehen auch die Metriken auf der Mannigfaltig-
keit M ein: Es sei J der Raum der Metriken auf M (mit einer festen Signatur).
Eine Lagrangedichte & ist dann auf einer Teilmenge % von & x & x M (oder
von A X F X M X .. unter Einbeziehung von weiteren kinematischen Variablen)
definiert.

Eine Lagrangedichte & definiert das Wirkungsfunktional

S = [u& oder s = [, 22

auf 7, und die Bewegungen des Systems sind die stationdren Punkte des Funktionals
S, das heiB3t diejenigen ¢ € ¥, deren Variation nach einer geeigneten Menge W von
Vergleichsvariablen verschwindet. Diese Bedingung wird hiufig mit §S = 0 abgekiirzt,
und sie bedeutet im Falle von linearen oder affinen Rdumen W C % c of « & < 4
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d
LS red), =

fiir alle ¢ € %, wie wir das bereits an vielen Stellen gesehen haben (zuletzt in 6.2).

An die Lagrangedichte & einer klassischen Feldtheorie werden in der Re-
gel im voraus einige Bedingungen, und zwar vor allem Symmetriebedingungen gestellt.
Beispiele dazu:

1. Eichinvarianz: Im Falle 7 = & x J heiBt & eichinvariant, wenn
L(*u,%s) = Llu,s)

fiir alle (0,8) € & x & und alle Eichtransformationen te€¢ % {(vgl. Definition nach
5.19). Dabei ist fiir Schnitte s € & der "zuriickgezogene Schnitt” *s folgendermaBen
definiert: Beziiglich einer lokalen Trivialisierung des Prinzipalfaserblindels iiber einer
offenen Menge U C M habe 1 die Form t(a,h) = (a,g{@)h) und s die Darstellung
s(a) = (ad(a)) mit ge 8MU,G) und e S(UF). Dann ist t*s(a) lokal durch die
Formel t¥s(a) = (a,0lgla)” D{a)) definiert, und diese Definition ist unabhingig von
der lokalen Trivialisierung. Diese etwas komplizierte Definition wird verstédndlicher,
wenn man beriicksichtigt, daB jeder Schnitt durch eine eindeutig bestimmte invariante
Funktion ¢ € 8 (P,F) beschrieben werden kann (vgl. 5.21 und 5.23. 2°), und die Eich-
transformation 1 auf diesen Funktionen in der iiblichen Weise als 9 = ot wirkt.
Umgerechnet auf die Schnitte s als Abbildungen s: M — EQ bedeutet das gerade
die obige Definition fiir ™s.

2. Kovarianz: Im Falle 7 ¢ o x & x M heiBt & kovariant, wenn fiir alle
Paare (f,f,,) von Diffeomorphismen f:P — P und zugehdrigen Diffeomorphismen
fyu: M — M mit mof = fyom

L 0,175, Fyg) = Ll0,s.8)

fiir alle (w,s,g) € ¥ gilt.

3. Natiirlichkeit: & ist natiirlich, wenn & in lokalen Koordinaten durch ge-
wisse universelle Polynome ausdriickbar ist (zum Beispiel hochstens quadratische Poly-
nome).

4. Konforme Invarianz: Unter einer konformen Invarianz von & versteht

man zum Beispiel
Plo,se g = L(0,5.8)

fiir alle (w,s,g)-€¢ 4 xF x4 und alle differenzierbare Funktionen A : M —> R, .

(6.10) Prinzip der Eichinvarianz. Im Rahmen diese Kapitels sind wir natiirlich
vor allem an der Eichinvarianz interessiert, die im folgenden genauer untersucht werden
soll. Wie kommt man zu physikalisch sinnvollen und eichinvarianten Lagrangedichten?
In vielen Fallen durch die Einfiihrung einer zundchst nur G-invarianten Dichte, welche

a4 4 ibLoo o oo den diblichen Ableitungen zu den kovarianten Ableitungen
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und die Einfligung des "Selbstwechselwirkungsterms” Ly aus der reinen Yang-
Mills—Theorie zu einer eichinvarianten Lagrangedichte wird.

Diese Methode beschreiben wir erst einmal fir den Fall einer offenen Menge
M C R"™ und eines trivialen Prinzipalfaserbiindels P = M x G. Eine differenzierbare
Funktion L : M x C" x Hom(!R{n,(Er) —> R definiert in natiirlicher Weise ein Funktio-
nal &Z,:% — &M) durch LoW)a) == L{a,d(a), TP(a))  Fiir differenzierbare
P:M — C 2 F, das heiit hier ¢ € % . Dabei ist T¢(a) die Ableitung von ¢ im
Punkte a (Jacobi~Matrix), die wir hier nicht, wie iiblich, mit D¢ bezeichnen, um eine
Verwechslung mit spiter auftretenden kovarianten Ableitungen D zu vermeiden. L
heiBt Lagrangefunktion und das durch L definierte Funktional &, ist eine Lagrange-
dichte im Sinne der obigen Erlauterungen.

Definition. L (bzw. die induzierte Lagrangedichte &, ) ist G-invariant, wenn

Lla,gv,gT) = L(q,v,T)
fiir alle (a,v,T) € M x C* x Hom(R",C™ und alle g€ G gilt. Dabei sind gv und gT
die folgenden Abkiirzungen: gv = p(g)v und gT(x) == olg).T(x), x ¢ R".

Die oben angesprochene Prozedur fiihrt zu der folgenden eichinvarianten La-
grangedichte auf & x.%: Zur Verdeutlichung der Abhingigkeiten bezeichnen wir die
kovariante Ableitung eines Zusammenhangs © als D“ {anstelle von D) und entspre-
chend die Kriimmung Q® (anstelle von Q). Sei jetzt #, eine G-invariante Lagrange-
dichte, die durch L wie oben induziert sei. Dann liefert L die folgende eichinvariante
Lagrangedichte % auf & x .

Zlod)a) = Llap(a). DY) + L, (0)(a)
fir aeM und (0,Q) e o x 5,

Beispiele dazu:

1° Skalarfeld im Minkowski-Raum. Zyle) = a“cp@ - m2¢>$ fiir Skalar-
felder ¢: M —> € ist U(1)-invariant beziiglich der natiirlichen Darstellung p von
UM, oM.z = Az fiir ze C und X € U(1). Llod) = D“¢DT¢ - m¥p§ - §F B
ist die zugehorige eichinvariante Lagrangedichte. Dabei steht Du fiir die kovariante
Ableitung D in Richtung 9, und D" fiir "Dy, sowie F fiir die lokale Feldstirke
zur Krilmmung Q. Die Bewegungsgleichungen stehen mit der Klein-Gordon-Gleichung
in Beziehung (vgl. auch 2.7 ff.).

2° Dirac-Feld im Minkowski—-Raum. Lol == ﬁ(iyuau - m)} fiir Spinor-
felder ¢ : M — ¢* ist U(1)~invariant beziiglich der Darstellung p(A\).p = A, wo-
bei " geeignete Gamma-Matrizen sind (vgl. 2.8 ff insbesondere auch fiir die Bedeu-
tung von ¢). Die zugehtrige Lagrangedichte ist L) = E(iYuDu -m)y -~ %FWFW
(= £ oEp- VEL 2.9).

3° Materiefelder zur Isospingruppe. Die Dichte Loll) = @(17“6‘i - m)¢
fiir ("Isospin-") Felder ¢ : M —> (€*)? ist SU(2)~invariant beziiglich der fundamen-
talen Matrix~Darstellung: o(T)g := (Tjk"pj)k=1,2’ wobei T’;( € C und U € c'. Die zuge-
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4° Allgemeiner sei p: SU(N) —> GL(C ) eine Darstellung, die das her-
mitesche Skalarprodukt von €* erhilt, und sei durch F(T).P = (p(T); lbl)) vk fiir
Spaltenvektoren § = (§)i_, , 1 d, € C*, die zugehorige Darstellung ¢ auf «c* )<
gegeben. Dann sind unter anderem die Terme von der Form q;(w“a - m)¢ oder
o an (p oder $¢ SU(N)-invariant. Sie lassen sich daher mit geeigneten Kopplungs-
konstanten zu einer SU(N)-invarianten Lagrangefunktion L aufaddieren mit zugehori-

ger eichinvarianter Lagrange-Dichte
Lo = Llad(@,Dp(w) - §tr(E F).

Die Lagrangedichte zum Standardmodell besteht zu einem wesentlichen Teil aus Sum-
manden von dieser Form (vgl. 1.3).

5° Fiir allgemeine Matrixgruppen G sind beziiglich der adjungierten Dar-
stellung Ad: G —> GL(g) unter anderem die Terme der Form s(aucp,a‘ﬂp) und
Blg,p) invariant, wobei die Felder ¢ : M —> g ihre Werte in g haben. Hier ist B
wie in 6.2 die nicht ausgeartete, symmetrische UAd-invariante Bilinearform auf g. Auf

diese Weise erhilt man zum Beispiel die folgende eichinvariante Lagrangedichte:
Ploe) = BD,p.D%) — m”Blpp) + Lyp(©).

Die Felder ¢ mit einer solchen Lagrangedichte (wo anstelle von - m?Blgp,p) auch
allgemeinere Potentiale wie zum Beispiel —% (Blop,p) — 1)? von Bedeutung sind) werden

gelegentlich Yang-Mills—Higgs—Felder genannt.
Wesentlich am Prinzip der Eichinvarianz ist der folgende Satz:

Satz. Sei L (bzw. &) G-invariant. Dann ist die zugehérige Lagrangedichte
L. d xF —> 6(M) eichinvariant.

Tatsdchlich ist in der Summe (0,0} = L, DY) + L psl®) jeder der bei-
den Summanden eichinvariant. Sei 1€ % eine Eichtransformation. Dann gibt es eine
dlfferenmerbare Funktion g: M —> G mit t(ah) = (a,g(a)h) (das Prmz1palfaser—
biindel ist als trivial vorausgesetzt worden). Fir s e %, also fir s(a) = (ap(a)), i
dann ts(@) = (a,g '(a)P(a)). Die Eichinvarianz des ersten Summanden bedeutet
La,¢'{a),D'P'(a)) = Lla,d(a) Dd(a)) mit ' =g ' und D' = D™ . Diese Eichinva-
rianz folgt also unmittelbar aus D'¢' = g Y(Dy) = (DY), weil ja L G-invariant ist.
Diese Gleichung ist uns als Eichinvarianz der kovarianten Ableitung aus 5.19 bekannt,
dort allerdings formuliert fiir die invarianten Abbildungen ¢ : P —> F, welche die
Schnitte im Vektorbiindel représentieren. Die Eichinvarianz des zweiten Terms folgt aus

5.32 wegen der Invarianz von B.

Bewegungsgleichungen. Die Bewegungsgleichungen zu der gerade beschrie-

benen Lagrangedichte & lassen sich mit Hilfe der Lagrangefunktion L ausdriicken.
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Dazu sei L = L(a,d;u, Tu «) die Lagrangefunktion, Die Bewegungsgleichungen bestehen
aus den Euler—Lagrange—G]eicbungen:

_ Q9L ) _ 8L _ P o — .
(au Au)(a,ru,‘x) 3. = 0 fir a=12, ... r;
und den inhomogenen Feldgleichungen zum Strom Jm((b) = - (L)Lb :
u 0Ty, /7
8“F = J°.

Diese Bewegungsgleichungen lassen sich wie in 6.2 herleiten. Das Beispiel 5° mit der
Lagrangedichte Llw,p) = B(Duq:,D“cp) - m? Blp,p) + Lyml0) fiihrt 2. B. zq4 den
Bewegungsgleichungen eines Yang—Mills—Higgs—Feldes:

DuD”@ +m% = 0, sowie Dqu = [¢,D el.

Im Falle eines nichttrivialen Prinzipalfaserbiindels behalten die vorangehen-—
den Uberlegungen des Abschnitts 6.10 ihre Gilltigkeit, wenn man alles entsprechend
koordinatenunabhéingig formuliert. Das beginnt damit, daB der Definitionsbereich
M x €' x Hom(R",C") der Lagrangefunktion L durch das zu E = EF> gehorige Jet-
biindel ersetzt wird: Es sei Hom(TM,E) & T*M ® E das Vektorbiinde] der R-linearen
Abbildungen von TQM nach E(1 iiber M. Dann ist JE) = E@ Hom(TM,E) das
koordinatenfreie Analogon von M x € x Hom(R™,C") und heiBt das Jetbiindel zu E.
Die G-Invarianz einer Funktion L auf dem Jetbiindel definiert man wie oben jeweils
lokal; oder global beziiglich von geeigneten Vektorbﬁndelautomorphismen von E. Eine
G-invariante Lagrangefunktion L definiert dann wie oben die Lagrangedichte

Zlos) = LisD%) + £\ (0), (0s)ed x.F,

die sich ebenfalls als eichinvariant erweist. Die BeWegungsgleichungen dazu haben lokal
die gleiche Form wie im trivialen Fall, lassen aber auch eine koordinatenfreie Formulie-
rung zu, bei der die relevanten GroBen durch geeignete Differentialformen ausgedriickt
werden (vgl. [BLE]). Um die oben angegebenen Beispiele libertragen zu konnen, muB im
Falle des dort &fter auftretenden Dirac—-Operators iyuau die Existenz einer Spin-
Struktur auf der Mannigfaltigkeit M verlangt werden, um den Dirac—Operator iiber-
haupt definieren zu kénnen (vgl. [BLE], [LAM] oder [BGV]). Fiir vierdimensionale nicht-
kompakte Lorentzmannigfaltigkeiten M gilt nach einem Satz von Geroch: M hat genau
dann eine Spin-Struktur, wenn M parallelisierbar ist (d.h. wenn das Tangentialbiindel
TM eine globale Trivialisierung hat).

(6.11) Chern—Simons-—Theorie. Eine Eichtheorie, in der keine Metrik der Basis-
mannigfaltigkeit verwendet wird (und die streng genommen nicht ganz eichinvariant
ist, vgl. [NAS]), ist die Chern-Simons~Theorie auf dreidimensionalen Mannigfaltigkeiten
M: Es sei P = M x SU(N) das triviale Prinzipalfaserbiindel mit mit SU(N) als

Chrttlrt1imeritto e~ TN ¥
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Loglo) = - Ltr(ondoe + %w/\ OAB).
Die Bewegungsgleichung der Chern-Simons-Theorie ist dann
Do = 0.

Beweis: Wie in 6.2 geniigt es bei der Variation ad—ESCS(m(e)NE=0 = 0, sich auf Kurven
der Form wle) = w+eB mit Be A 1M, 8u(N))  (evtl. mit Randbedingungen) zu be-

schrinken. Es gilt

& oglo +eB) = ~Ltr((w + eB)ad(w +eB) + £ (0 +eB)A (0 +eB)A (o + eB))
=-1tr(endo + Zorwaw)
- e%tr(BAdm + wndB + %(B/\m/\w + WABA® + 0AOAB))

- e?$tr(BAdB + %(B/\B/\w)r wABAB + BAWAB + eBABAB)).

Also %Scs(w(s))lFO = —} Jtr(Bado + on dB + £ (BAwA® + ©ABA®D + OABA B))
= -%fMtr(Z BAade + 2BAGAW) = - fMtr(BA Do).

Dabei wird insbesondere tr(BAwAw + @ABAG + 0ABA B) = 3tr(BAwAw) verwendet.
Das folgt aus tr(AAA A Aj) = tr(AgA AganAg) fiir Permutationen ¢ € &, und i-
Formen Aj, da allgemein tr(AB) = tr(BA) filr Matrizen A,B e su(N). (Man beachte,
daB im allgemeinen nicht wAB = -Ba w!). AuBerdem wird fMtr(d(mA B)) = 0 bend-
tigt: Diese Bedingung ist iiber den Satz von Stokes entweder eine Folge der Kompaktheit
von M, oder muB andernfalls als eine Randbedingung an die Vergleichsformen B ge-
fordert werden (indem man z.B. nur solche mit kompaktern Trédger zuldBt). Dann hat
man 0 = thr(deB - wadB) wegen d(waB) = dwaB - wAdB (vgl. M.17.6°), und
es folgt fMtr(wA dB) = fMtr(BA dw) wegen tr(dwaB) = tr(Bado) (siehe oben).
Aus fMtr(B/\ Dw) = 0 Ffiir geniigend viele Vergleichsformen ergibt sich Dw = 0 als
Bewegungsgleichung.

Die Bewegungen der Chern-Simons-Theorie sind daher gerade die flachen
Zusammenhinge auf dem Prinzipalfaserbiindel. Es ist klar, daB die Chern-Simons~—
Theorie in besonderer Weise die Topologie der Mannigfaltigkeit widerspiegelt, da sie ja
unabhingig von jeglicher Metrik ist. Aus diesem Grunde wird die zugehorige quantisier—
te Theorie auch als eine topologische Quantenfeldtheorie bezeichnet. Die flachen Zu-
sammenhinge stehen mit der Darstellungstheorie der Fundamentalgruppe 7,(M) in
enger Beziehung. Weiterhin besteht ein interessanter Zusammenhang zwischen der Aus—
gangsmannigfaltigkeit M und Flichen £ c M, die M zerlegen. Eine schéne Anwen-
dung der Chern-Simons-Theorie in der Knotentheorie ist unter Beachtung dieser Ergeb-
nisse von E. Witten vorgeschlagen worden: Der Paralleltransport lings geschlossener
Kurven in M (also auch lings eines Knotens in M) liefert iiber die Quantisierung der
Chern~Simons—Theorie eine geometrische Interpretation der im Jahre 1984 entdeckten
neuen Knoteninvarianten: Der Jones—Polynome. Aus physikalischer Sicht ist diese Inter-
bation hefriedicend (vel. z.B. INAS], [AT2]), aus mathematischer Sicht bleibt jedoch
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einiges zu beweisen, denn die von Witten verwendete Quantisierung basiert auf einem
mathematisch nicht wohldefinierten Pfadintegral,

(6.12) Geometrische Qua.ntisierung. Wir nehmen dag Thema "Geometrische
Quantisierung” wieder auf, obwohl dje Geometrische Quantisierung nicht zy den Eich-
theorien gehért. Aber um die Geometrische Quantisierung allgemein auch Ffiir symplek-
tische Mannigfaltigkeiten ohne ein symplektisches Potentia] durchfiihren zu koénnen,
werden komplexe Geradenbiindel bzw, U(l)—Prinzipalfaserbﬁndel und ihre Geometrie

eine C-lineare Abbildung ¢ auf der (komplexen) Poisson-Algebra & := E(M,C) mit
Werten im Raum Hom (W, W) der linearen Operatoren auf einem geeigneten Vektor-
raum W, mit den folgenden Eigenschaften: olfig) = ip({f,g}) Fiir alle f,.ge 6 und
p(1) = idy, (vgl. 111.2.1 und 2.2). Wenn es ein symplektisches Potential'zu o gibt, also
eine I-Form o auf M mjt de = v, 50 ist mit W = & durch

plf) := - ifo + f+’ot(XF), feg,

dargelegt wird.

Dazu sei L ein komplexes Geradenbiindel iiber M, also ein komplexes Vek-
torbtinde! vom Rang 1. L sej auBerdem mit einer hermiteschen Metrik <, > versehen
und mit einem Zusammenhang D, der die Metrik respektiert, das heiBt fijr alle (diffe-
renzierbaren) Schnitte in L und alle Vektorfelder X auf M gilt

Ly<st> = Dys,t> + <s,Dyt>.

D, (go) = (Lyglo + gDy = (Lyg + i{X)g)o,
wobei ia = A das auf U durch ¢ definierte lokale Eichpotential zu D ist. (vgl.
4.23.2° oder auch 4.4; man kann i« auch iiber das Reperbiindel R —s M zu L ver-

4

stehenals iq = 6*8, wobei © die vorn T o dee:
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Im iibrigen ist R ein U(l)—Prinzipalfaserbiindel, und daher hat 6 seine Werte in
Lie U = u(1) = iR.) Die Kriimmung Fp zu D 148t sich als ein 2-Form auf ganz
M definieren (wegen 4.27 und weil U(1) abelsch ist), und es gilt lokal Fy = dA
(beachte F = dA + AAA nach 4.24.3° und AAA = 0 im eindimensionalen Fall). Es
folgt mit W = ['(M,L), dem Raum aller differenzierbaren Schnitte:

Satz. o(f) = - iDXf+ £. (ML) —> T(M,L), f e &, definjert genau dann
eine Praquantisierung der symplektischen Mannigfaltigkeit (M,w), wenn Fp = io gilt.

Denn aus Fp = io -folgt fiir die weiter oben betrachteten lokalen Eich-
potentiale A = ia: dot = |y o ist also ein lokales symplektisches Potential von ©
und es ist p(f){go) = (fog +ia(Xelg + fg)o fir ge &. Damit zeigen die Ergebnisse
von 111.2.8-10, daB o eine Praquantisierung ist. Umgekehrt zeigen dieselben Rechnun-
gen, daB plf,g) = io({f,g) nur erfiillt sein kann, wenn o lokales symplektisches

Potential ist, und deshalb Fp = iw gilt.

Die entscheidende Frage, ob ein Geradenbiinde! mit Kriimmung iw existiert,
das heiBt ob die symplektische Mannigfaltigkeit (M,©) iiberhaupt eine Praquantisierung
nach der oben beschriebenen Vorschrift zuléBt, ist nach einem Resultat von A, Weil mit
der folgenden "mathematischen” Quantisierungsbedingung beantwortet: Es gibt genau
dann ein hermitesches Geradenbiindel mit Zusammenhang D auf M, so daB Fp = i
erfiillt ist, wenn die Form —Zl_,;m eine ganze Form ist, das heiBt wenn fiir alle kompakten,
orientierten zweidimensionalen Untermannigfaltigkeiten S C M das Integral %Efs“’
stets ganzzahlig ist (vgl. z.B. [WOO, S. 1161).

Zum Verstindnis dieses Resultates ist es hilfreich zu wissen, daB bei einem
vorgegebenen Geradenbiindel L {iber einer Mannigfaltigkeit samtliche Zusammenhiénge
{iber ihre Kriimmungen eng miteinander verbunden sind. Filr je zwei Zusammenhinge D
und D' auf L gilt fiir die entsprechenden Kriimmungsformen Fp und Fp, auf M:
Fp — Fpr ist eine exakte Form, hat also ein Potential « mit do = Fp - Fpo, und das
bedeutet, daB die beiden Kriilmmungen dieselbe de-Rham-Klasse [FD] in H(ZiR(M,IR)
definieren (vgl. z.B. [WAW, Thm. 3.21). Diese de-Rham-Klasse ist bis auf einen Faktor
{namlich %i) gleich der ersten Chern—Klasse von L, welche die Chern-Zah!l ¢,(L) € Z
des Geradenbiindels definiert [WAW]. Aus diesen Tatsachen folgt, daB die angegebene
CGanzheitsbedingung an zumindest notwendig dafiir ist, daB eine symplektische
Mannigfaltigkeit {M,») iiberhaupt eine Praquantisierung von der im Satz angegebenen
Form hat.

Chern-Zahlen sind bereits in den Beispielen 6.7 (Instantonen) und 6.8 (Dirac—
Monopol) aufgetreten. Sie sind Bestandteil einer Klassifikationstheorie der komplexen
Vektorbiindel auf Mannigfaltigkeiten, namlich der Theorie der charakteristischen Klas~

sen (vgl. z.B. [WAW]1), auf die wir hier nicht weiter eingehen kénnen.
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1. Offene Untermannigfaltigkeiten des R™. Das fundamentale Beispiel einer
n—dimensionalen Mannigfaltigkeit mit Modellcharakter ist eine offene Untermannigfal-
tigkeit des R™, das ist einfach eine offene, nichtleere Menge M in R". Wir sind in
diesem Buch nur an differenzierbaren Mannigfaltigkeiten interessiert, daher gehdrt zu
M nicht nur die Topologie (das heiBt hier: der Konvergenzbegriff, den M von R’
erbt), sondern auch die differenzierbare Struktur. Diese wird festgelegt durch Angabe
derjenigen Abbildungen f.U—> V (UCM offen in M C R", VC [Rk offen in
Rk), die als differenzierbar zu gelten haben. Der Einfachheit halber wird in diesem
Anhang unter einer differenzierbaren Abbildung f: U —> VC [Rk eine beliebig oft
differenzierbare Abbildung verstanden. obwohl die meisten der nachfolgenden Erdrte-
rungen auch fiir p-mal (pe€ N) stetig differenzierbare Abbildungen Sinn haben. Also
heiBt eine Abbildung f: U —> VC R¥ im folgenden differenzierbar, wenn die Kom-
ponenten g.u— R, j=1.. k, von f = (fl,fz,... ,fk) beliebig oft partiell
differenzierbare Funktionen sind (vgl. auch Abschnitt 3). Mit &(U,V) bezeichnen wir
die Menge der differenzierbaren Abbildungen f: U — V und mit (W) := E(U,R)
die Menge der differenzierbaren Funktionen.

Unter anderem interessieren wir uns fiir die Diffeomorphismen f:U — v,
das sind bijektive Abbildungen f, fiir die f und die Umkehrabbildung f v — U
differenzierbar sind. In diesem Falle sind U und V vom Standpunkt der differenzier—

baren Mannigfaltigkeiten als gleich anzusehen. (UndesmuB k = n gelten.)

9. Tangentialvektoren. Selbst dieses wohlbekannte Beispiel einer offenen
Menge M C R™ birgt interessante Strukturen, die durch den Differenzierbarkeitsbegriff
automatisch mitgeliefert werden: In M verlaufen zunichst Kurven, das sind (beliebig
oft) differenzierbare Abbildungen yY:1 — R™ auf einem Intervall IcR mit
v(I) c M. Zu jedem Punkt tg € 1 liefert

qlty) = %Y(to) e R"

einen v Geschwindigkeitsvektor”, welcher auch als Tangentialvektor an M im Punkte
v(ty) e M bezeichnet wird. Alle Vektoren aus R™ kommen auf diese Weise als Tan—
gentialvektoren vor und man erhélt R™ als den zu y(tg) gehodrigen " Tangentialraum’.

Ein Vektorfeld ist eine Abbildung X: M — R™. X ordnet also jedem
Punkt a€ M einen Tangentialvektor X{a) ¢ R" zu. Wir sind nur an differenzierbaren
Vektorfeldern interessiert. Mehr iiber Vektorfelder in 12 - 14.

Tensorfelder und Differentialformen auf Mannigfaltigkeiten werden in Ab-
schnitt 16 eingefiihrt.

3. k—dimensionale Untermannigfaltigkeiten des R". Eine k-dimensionale
ntermannigfaltigkeit M in R™ (oder von R™ ) ist eine Teilmenge M C R™ mit der
foleenden EBigenschaft: Zu jedem Punkt ae€ M gibt es eine offene Umgebung U C R"

-k P
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I° MnU=g0) = fxe U: g(x) = o},
2° rgDglx) = n-k fir alle xeMnu.

Die Ableitung Dg(x) wird meistens durch dje Jacobi-Matrix
j
(2% (x))
1<j<n-k , 1<ign,
von g in x représentiert. Deshalb wird die Jacobi-Matrix oft ebenfalls mit Dg(x)
bezeichnet. Dabei steht g fiir die Komponenten von g und q' fir die Koordinaten
von R™. Zup Erinnerung: Nach Definition ist

¢!

aqi ™ = lim §(gx+te) — gl

wobej e = (Bij) der j-te Einheitsvektor in R” ist. Mit der Einfiihrung des Gradienten
of
Vf(x) = grad f(x) = (5500)

fir feg(u » erweist sich 2° a5 dquivalent zy

3° Fir alle x ¢ MNU sind die Gradienten Vgl(x), ng(x), . Ve Ry
linear unabhiéngig, Denn rg Dg(x) ist der Rang der Matrix Dg(x), also die Maximalzahi
linear unabhﬁngiger Zeilenvektoren, das heiBit dje Dimension deg Bildraumes der linearen
Abbildung Dg(x) : R" — 5 ok

Fiir die Beschreibung der differenzierbaren Struktur auf Mannigfaltigkeiten
ganz allgemein und insbesondere aych auf Untermannigfaltigkeiten von R™ sowie zur
Erléiuterung der Rangbedingung in 2%jst der "Umkehrsatz" von fundamentaler Bedeu-
tung. (Einen Beweis findet man z.B. in {BRO, S. 81] oder in [WAR, §.231.)

bare Abbildung mit det Df(a) + ¢ flir einen Punkt a € U. Dann gibt eg eine offene
Umgebung U von aell', U'cyc R™, und eine offene Umgebung V' ¢ Vc Rk,
so daB die Restriktion f’u‘ U —= V' gin Diffeomorphismus ist. Das bedeutet (vgl.
1), daB f’u. U —— V' gine differenzierbare Umkebrabbi]dung (f[u. Loy —> u
hat. Im iibrigen verlangt die Bedingung det Df(a) + 0, das bereits n =k gilt,

Fiir den Fall, daB f eine R-lineare Abbildung ist, also f(x) = Bx,xeR s
fiir eine Matrix B e R(n) gilt, reduziert sich der Umkehrsatz auf ein Resultat der
linearen Algebra: Es ist Df(a) = B fijr alle aep™. Also bedeutet det Df(a) + 0,
daB die Matrix B invertierbar ist. Die inverse Matrix B! liefert dann die auf ganz
R”R" definierte lineare Umkehrabbildung B! . ™ _ . —n Ty
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Ahnlich wie bei der Auflésung von linearen Gleichungssystemen kann der
Umkehrsatz dazu benutzt werden, ein Resultat iber die lokale Auflésung von nichtline-

aren Gleichungssystemen zu erhalten:

5° Satz iiber implizite Funktionen. Ein Gleichungssystem
Flx,y) = 0

sei durch eine Abbildung F e 8(M,Rn), MC RleRn offen, gegeben. {Dabei wird ein
Pupnkt z € M in der Form z = (x,y) mit x€ [Rk und yE€ R geschrieben.) Es sei
(a,b) € M mit Flab) = 0 und der Auflgsungsbedingung det (%%ij(a,b)) 4+ 0. Unter
diesen Voraussetzungen 1Bt sich das Gleichungssystem F(x,y) = 0 in folgendem Sin-
ne nach y auflésen: Es gibt eine offene Umgebung U C R™ von a und eine offene
Umgebung V C R® von b mit WX Vv ¢ M, sowie eine differenzierbare Abbildung
h:U —> V,s0 daB fiir alle (x,y) € U xV stets Flx,h(x) = 0 gilt; umgekehrt folgt

aus Flx,y) = 0 jeweils y = h(x). Anders formuliert:
{x,) e UxV: Fixy) = 0} = {(x,h(x)) : x € u}.

Insbesondere ist diese Menge eine Untermannigfaltigkeit von Rk+n der Di-
mension k; denn es ist {(x,h(x)): xe U} = g '(0), wenn glxy) = ¥y~ h{x) gesetzt
wird fiir (x,y) e UxV, und es gilt rg Dg(x,y) = n fiir alle (x,y) e UxV.

Der Satz iiber implizite Funktionen 1aBt sich direkt aus dem Satz iiber die
Umkehrabbildung folgern, indem man die Abbildung f(x,y) = (x,Flx,y)) von M nach
[RkJrn in einer offenen Umgebung von ¢ = (a,b) invertiert. Das ist nach defn Satz
iiber die Umkehrabbildung méglich, da det Df(c) = det (%I}ij(cx,b)) + 0 gilt.

Eine niitzliche Umformulierung der letzten zwei Sétze ist der Satz vom Rang,
der sich ebenfalls unmittelbar auf den Umkehrsatz zuriickfiihren 148t (vgl. [BRO, S.
2501):

6° Satz vom Rang. Es sei fe g(L,V) (Uc R” offen, VC [Rk offen) von
konstantem Rang, das heiBit rg Df(x) = r fiiralle x e U. Dann gibt es zu jedem a € u
eine offene Umgebung U' ¢ U mit einen Diffeomorphismus ¢ : u' —> U" und eine
offene Umgebung V' CV von f(a) mit einem Diffeomorphismus ¢ : vt — V', s0
daB die Abbildung ¢o fo ot —> VvV gerade die Projektion

pr: " —> V', (x! %, XM (x!,%%,.. X0, ,0)
ist. Abgesehen von geeigneten Koordinatentransformationen bei a und b verhilt sich
f also wie eine solche Projektion. Man erhalt das folgende kommutative Diagramm

(kommutativ heiBt hier prog = Yofl )

uosw et w

(|l e
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Mit dem Satz vom Rang kann man die Definition des Begriffs Untermannig-
faltigkeit ein wenig allgemeiner fassen, denn es 148t sich zeigen:

Eine Teilmenge M c R"™ jst genau dann eine Untermannigfaltigkeit in R",
wenn es zu jedem Punkt ae M eine offene Umgebung U c R™ von a und eine
differenzierbare Abbildung he E(U,R™) gibt, so daB

I' MnU=h"0) = {xeU: h(x) = 0},
2'° rgDh(x) = r fir alle xeMnNU.
Die Dimension von M ist dann n-r.

4. Beispiele. In der Klassischen Mechanik ergeben sich Untermannigfaltigkei-
ten des R” durch holonome Zwangsbedingungen, wie im zweiten Kapitel an verschie-
denen Stellen erldutert wird (z.B. 11.4.3).

Spezielle Beispiele; In Paragraph 4 des zweiten Kapitels werden bereits die
Sphiren $" als n-dimensionale Untermannigfaltigkeiten des R™"' genannt. Leichte
Abwandlungen davon sind Ellipsoide. Allgemein interessiert man sich fiir Hyperflichen
M in R": Das sind (n-1)-dimensionale Untermannigfaltigkeiten des R™ wie zum
Beispiel die fiinfdimensionale Energienieveaufliche beim Keplerproblem (vgl. 11.7.12.3°)
oder die Kurven in der Ebene R2 sowie Fldchen im R® (vgl. Anhang G). Man kann zei-
gen, daB abgeschlossene Hyperflichen M ¢ R immer eine globale definierende Funk-
tion g¢ E(R™R) zulassen mit M = g710) und Vg(x) + 0 fir alle X € M, wie wir
es flir die Sphéren bereits kennen. Neben den "hyperbolischen Schalen”

H o= {xeR™ D2+ 6D+ P2 = (P2 4 4 xM?) = ¢}

(fiir c+ 0) als Verallgemeinerung der Sphéren treten allgemeinere Hyperfldchen hiufig
als Rdnder von geeigneten offenen Mengen des R™ auf.
Jede (n—2)~dimensionale Untermannigfaltigkeit M des R"™ 14Bt sich lokal
auffassen als Durchschnittsmenge zweier Hyperflachen, denn es ist (mit g = (gl,gz))
UNM =g 0) = {xeU: glix) = 0}nixel: g%x) = 0}.
Analog ist eine k~dimensionale Untermannigfaltigkeit des R™ lokal als Durchschnitt
von n-k Hyperflichen darstellbar,

S. Karten. Fiir eine Untermannigfaltigkeit M von R™ werden durch Anwen-
dung des Satzes iiber die Umkehrabbildung (vgl. Abschnitt 3.4°) auf die folgende
Weise Karten induziert: Die Abbildung g: U — R™K (mit 3.1°/2°) kann durch
geeignete differenzierbare Funktionen ol .., (pk € 6(U,R) erginzt werden zu einer
differenzierbaren Abbildung

o:U — R", ¢ = (gh..., g™k ol ..., (pk),
sodaB ®(a) = 0 und det D®(q) + 0 gilt (z.B. tpj = qn-kﬂ), und daher fiir geeig-
nete offene Umgebungen U' von a, U'cU, und Wc R” von 0, die Einschriankung

@lu. Q' — W
ein Diffeomorphismus ist. Sei jetzt
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E={yew:y =y =.. =y =0
das k-dimensionale "ebene Flachenstiick" im R". Wir haben dann eine natlirliche Iden-
tifikation von E mit einer offenen Umgebung V von 0 in |R durch E = {0}xV
und wir erhalten die Einschrankung von & auf W' N M als die Abbildung, an der wir

interessiert sind:
@ = pro@| UM — v,
x — (o), ... o (x) .

¢ ist aufgrund der Wahl von W und V bijektiv und stetig. AuBerdem ist ¢ -1

stetig
und nach Konstruktion auch differenzierbar als Abbildung in den R". SchlieBlich ist die
Menge U” := U' N M abgeschlossen in U' und offen in M, also offene Umgebung
von a.. Eine solche Abbildung ¢ : U" —> V heifit Karte von M in der Umgebung
U" von a. U" ist die Koordinatenumgebung der Karte ¢, und die Umkehrabbildung

@_1 .V —> U" wird Parametrisierung oder gelegentlich ebenfalls Karte genannt.

Die Beschreibung von U" mit Hilfe der Karte ¢ bzw. der Parametrisierung
e o1 1aBt sich so auffassen, daB durch
= ¢lq), 9 = (qi,...qk) eV, bzw. q = ¢(x).
auf U" = U' N M Koordinaten definiert werden: Man sagt auch, daB der Punkt
= ¢(q) € U" die Koordinaten q',... qk hat.

Mit Hilfe des gerade beschriebenen {ibergangs von g liber & nach ¢ 158t
sich zeigen, daB eine Untermannigfaltigkeit auch folgendermaBen beschrieben werden
kann:

Eine Teilmenge M C R™ ist genau dann eine k- dimensionale Untermannig-
faltigkeit von R™, wenn es zu jedem Punkt a e M eine Umgebung U C R™ von a und
eine Abbildung ¢ : UNM — V auf eine offene Umgebung V C R von 0 gibt mit

den folgenden Eigenschaften:
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1° UNM istabgeschlossen in U. .

2° ¢ st bijektiv und stetig, ¢ = ¢7':V — R™ ist differenzierbar.

3° rgDy(q) = k fiir alle qeV.

Jetzt ist man auch in der Lage, die differenzierbaren Abbildungen auf der
Untermannigfaltigkeit M und damit die differenzierbare Struktur anzugeben: Eine
Abbildung f: UNM — R™ ist definitionsgemdB differenzierbar, wenn die Kompo~
sition fod: V —> R™ differenzierbar ist. Entsprechend erhilt man auch den Begriff
der differenzierbaren Abbildung zwischen Untermannigfaltigkeiten iiber geeignete Kar-
ten. (Siehe auch Abschnitt 8 Fiir den allgemeinen Fall.)

6. Tangentialraum. Wie in 2 interessiert man sich flir Kurven vy in der
Untermannigfaltigkeit M von R™ und deren Geschwindigkeitsvektoren. Ist Y eine
solche Kurve, also vy e &(I,R™) mit y(I) € M, so ist Y(ty) € R™ ein Tangentialvektor
an M im Punkte Y(ty) = a. Bei festgehaltenem ae M und Verdnderung der y er-
hélt man alle méglichen Tangentialvektoren an M in a, die man zum Tangential-
raum T_M an M in a zusammenfaBt. T M ist eine Untervektorraum von R™ Mit
den in 3.1° und 3.2° gegebenen Daten gilt

ToM = KerDgla) = {he R™: Dg(a).h = 0}
= {heR™: <Vga),h> = 0 fir i=1, ..nk}

und mit der in Abschnitt 5 gegebenen Karte ¢ und deren Umkehrung ¢ = ¢! gilt
fiir qy = ¢l(a) auch:

TM = ImDi(q,) = {Dd(gy).v: ve R*}.

(Notation: Diglqg,).v ist der Wert der R-linearen Abbildung Di(q,) : R* —— R" in

veRE .) Insbesondere ist (Dll)(qo).ej)1 <isk eine Basis von T_M, wenn (el,... e)

die Standardbasis von RX bezeichnet. Tatsdchlich ist DLp(qo).ej durch die Kurve

Plq, + tej), It] < €, als Geschwindigkeitsvektor gegeben: denn
c%d)(qo + tej)lt=0 = Dn,b(qo).ej.
Jeder Tangentialvektor X e T M hat daher eine Darstellung
k
X=Z X Di(gg) e,
mit eindeutig bestimmten X/ e R, und zwar ergibt sich im Falle Y (to) = X, daB
poxlt) = q, + J.}l:ilqj(t)ej

geschrieben werden kann. Deshalb gilt aufgrund der Kettenregel
Pltg) = Ly +§ Ittre)) = Dilay).( T e, ) )
o) = g dlaq, £ Tte ]t=to— %)-{ 2 @ltgle).

k. . .
Es folgt: X = '}::1 q’(to)Dq;(qo).ej, dh ¢(t) = X,
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Da sich jeder Tangentialvektor X e T M iiber die Definition
Lyfla) = $EG®)] . (mit X = (&)
als Richtungsableitung von Funktionen fe &(U,R) auffassen 14Bt, schreibt man auch

2 (a)

3 8q1|‘1’ an oder einfach 9 anstelle von Dq,l(qo)e

und
O (q) oder afla) statt L f= drog(q, + te)
aq) j Dilag.e; — dt Qo Ple=o
Ergebnis dieser Schreibweise:
ko iof j
Lyfla) = jglx E—j(a) = Xajf(a),

wobei in der letzten Formel die Einsteinsche Summenkonvention verwendet wurde.

7. Tangentialbiindel und Vektorfelder. Als Tangentialbiindel einer k—dimen-

sionalen Untermannigfaltigkeit M von R” bezeichnet man
™ = J{{a}x TMcR"xR™: aeM}.

Es 14Bt sich unter Verwendung der Beschreibung T_M = Ker Dgla) aus 6 direkt er-
kennen, daB TM eine 2Zk-dimensionale Untermannigfaltigkeit von R™ x R® & R*™ ist
und daB die natiirliche Projektion © : TM —> M mit 1 a) = T M eme dlfferen—
zierbare Abbildung ist: Es gilt TM = G~ 1(0), wobei G : R™ x R" —> R x RX durch
Gla,h) = (gla),DG(a).h) definiert ist und rg DG(a,h) = 2rg Dgla) erfiillt. (Vgl.
auch Abschnitt 10.) Die Tangentialblindel haben unter anderem ihre Bedeutung als
natiirliche Phasenrdume der Klassischen Mechanik (vgl. z.B. 11.4.5). Bei den Matrixgrup-
pen habendie Tangentialbiindel eine spezielle Darstellung, die wir fiir das Beispiel SO(3)
in I1.5.6/7 beschreiben (vgl. auch L.4.8°%). AuBerdem sind die Tangentialbiindel wichtige
Beispiele von Vektorbiindeln. SchlieBlich gestatten sie eine ansprechende Definition des
Begriffs "Vektorfeld™

Die Vektorfelder auf M sind definitionsgemaB die differenzierbaren Abbil-
dungen X: M —> TM mit X(a) e T M fiir alle ae M (also die Schnitte im Tan—
gentialblindel im Sinne von V.4). Solche Vektorfelder definieren Richtungsableitungen
auf &(M) vermige Lyf(a) : dtf(Y(t))It t fe §(M), wobeidie Kurve y(t) durch
a (vt = a) wieder den Jewelhgen Vektor X(Cl) durch X({a) = f¥(t,) reprédsentiert.
(L wird auch Lie-Ableitung genannt. Wir kommen auf die Lie- Ableltungen in den
Abschnitten 12 und 14 zurtick.) Mit Karten ¢ : UNM —> V und ¢ = ! als Mittel
zur Beschreibung der lokalen Situation der Mannigfaltigkeit hat man die folgende Dar-
stellung des Vektorfeldes: X(b) = XJ(b)a 5(b) fiir alle be UNM mit eindeutig be-
stimmten "Koeffizientenfunktionen” X e 8((1 N M). Es gilt also

J
Ly f(b) = X(b) (b) Lyf = Xaf.

" PR — e 4 P A WYk okt i NE bttt T F varvrendet
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f

8. Abstrakte Mannigfaltigkeiten. Quotienten. Fine n-dimensionale (differen-
zierbare) Mannigfaltigkeit ist zunichst einmal ein Hausdorffraum M. (M ist also ein
topologischer Raum mit der Eigenschaft, daB es zu je zwei verschiedenen Punkten aus
M disjunkte offene Umgebungen gibt; zum Beispiel hat jeder metrisierbare Raum M
diese Eigenschaft.)

1° Karten. Damit M eine n-dimensionale Mannigfaltigkeit ist, muB es zu je-
dem Punkt ae€ M eine offene Umgebung U und eine bijektive Abbildung ¢ : U —> V
auf eine offene Menge V im R" geben, die stetig ist und fiir die auch cp“l :V—> U
stetig ist. Eine solche Abbildung heiBt wie oben eine Karte. Eine Karte ¢ : U —> V
vermittelt wie in Abschnitt 5 die Koordinaten ql,qz,... ,qn: Der Punkt ae U hat die
Koordinaten (ql,qz,... .q) = q = ¢(a). Je zwei Karten

p: U —> VCR” und 3: U0 —> Vc R"
heiBen (differenzierbar) vertriglich, wenn U N U = Z gilt oder wenn

Foe !l pUNU) —> FUNT)
ein Diffeomorphismus ist. (Man beachte, daB o(UNU) und #(UNU) offene Mengen
in B" sind.)

2° Atlas. Bin (differenzierbarer) Atlas auf M ist eine Kollektion A von
Karten, derart daB M = [J{UC M| ¢ : U ~— V Karte aus A} gilt und je zwei Kar-
tenaus A vertriglich sind. Zwei Atlanten U und A' auf M heiBen dquivalent, wenn
die Vereinigung AUUA' auch ein Atlas ist. Das bedeutet, daB jede Karte aus A mit
jeder Karte aus A' vertriglich ist. Eine n-dimensionale differenzierbare Mannigfaltig-
keit ist nun ein Hausdorffraum M zusammen mit einer Aquivalenzklasse von differen-

zierbaren Atlanten. Diese Aquivalenzklasse von Atlanten heiBt attch die diffaronziorhara
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Struktur der Mannigfaltigkeit M. Wenn im folgenden eine differenzierbare Mannigfal-
tigkeit durch M und eine Aquivalenzklasse [A]l von Atlanten vorgegeben ist und man
von einer Karte spricht, so ist in der Regel immer gemeint, daB diese Karte zu einem
Atlas W' mit A € [X] gehort. Zur Abkiirzung der Sprechweise ist im folgenden mit
einer Mannigfaltigkeit stets eine differenzierbare Mannigfaltigkeit gemeint.

3° Metrisierbare und zusammenhingende Mannigfaltigkeiten. In der Regel
wird bei dem Begriff einer Mannigfaltigkeit M noch vorausgesetzt, daB M metrisier—
bar ist. Das ist fiir zusammenhangende Mannigfaltigkeiten M #quivalent dazu, daB M
abzahlbare Topologie hat und auch dazu, daB M parakompakt ist (vgl. [WAR, §. 8 ff.1).
Allgemein heiBt ein topologischer Raum Y zusammenhédngend, wenn es keine zwei
Mengen A,BCY gibt mit AUB= Y,ANnB = # und A = @ + B, die beide zu-
gleich offen und abgeschlossen in Y sind. Typische zusammenhidngende Raume sind R
und [0,1]; in diesen beiden Fallen ist der Zusammenhang eine Folge der Vollsténdig-
keit der reellen Zahlen. Allgemein gilt fiir stetige Abbildungen ¢ :Y —> X: Ist Y
zusammenhingend, so auch ¢(Y) (in der von X induzierten Topologie). Ein topolo-
gischer Raum Y heiBit wegzusammenhingend, wenn es zu je zwei Punkten x,y €Y eine
stetige Abbildung v :[0,11 —> Y gibt mit v(0) = x und () = y. (v heiBt
"Weg" von x nach y) Es ist leicht zu zeigen, daB ein wegzusammenhidngender Raum
Y immer auch zusammenhingend ist. Denn sonst hitte man eine Zerlegung wie oben
und einen stetigen Weg y von einem Punkt x € A nach ye B, und die Mengen v~ YA
und v Y(B) wiren offen und zusammenhéngend im Widerspruch dazu, da8 [0,1]1 zu-
sammenhingend ist. Die Umkehrung ist aber nicht richtig: Es gibt zusammenhéngende
Riume, die nicht wegzusammenhéngend sind. Zum Beispiel trifft das zu fiir den Raum

= {0y eRE: yeR) U {(x,sinlx) . xeR mit x> 0} mit der von R® induzierten

Topologie. Fiir Mannigfaltigkeiten M gilt aber doch: M ist genau dann zusammenhén-
gend, wenn M wegzusammenhingend ist. Das liegt daran, daB diese Aussage fiir offe-
ne Teilmengen V C R" richtig ist und daher lokal fiir Mannigfaltigkeiten gilt.

4° Differenzierbarkeit. Eine Abbildung f: W —> R™ auf einer offenen
Menge W C M aus einer Mannigfaltigkeit M heiBt differenzierbar, wenn fiir alle Kar-
ten ¢ : U —> V aus einem Atlas der differenzierbaren Struktur mit WnN U + @ die
Abbildung i’"oqa—1 tp(WNnUu) —> R™ auf o(WnU)cC R™ differenzierbar ist. Ent-
sprechend heifit eine Abbildung f: M —> M' zwischen differenzierbaren Mannigfal-
tigkeiten M und M' differenzierbar, wenn <p'ofonp_1 stets differenzierbar ist fiir alle
Karten ¢ auf M und ¢' auf M', fiir die die Komposition o'ofoe ! sinnvoll ist.

M:)u——f——ewa'

b

V———) \A
p'ofop”

f heift Diffeomorphismus, wenn f differenzierbar und bijektiv mit differenzierbarer

o,
o PR P
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Abbildungen von M nach M' und &(W) = &E(W,R) die Menge der differenzierbaren
Funktionen auf W c M.
5° Untermannigfaltigkeiten einer differenzierbaren Mannigfaltigkeit M de-
finiert man wie in 3. analog zu den Untermannigfaltigkeiten des R™.
6° Produktmannigfaltigkeit. Sind M und N differenzierbare Mannigfaltig-
keiten mit Atlanten ¥ auf M und B auf N aus der jeweiligen differenzierbaren
Struktur, so definiert man die Produktmannigfaltigkeit folgendermaBen: Auf der Menge
M X N der Paare (a,b), aeM und be N, definiert man zunichst die Produkttopolo-
gie. Demnach heiBt eine Menge W ¢ M x N genau dann offen, wenn es zu jedem Punkt
(a,b) € M x N offene Umgebungen UC M von @ und V N von b mit UxVcCcW
gibt. M x N mit dieser Topologie heiBt das topologische Produkt. M x N ist ein Haus-
dorffraum, wenn M und N Hausdorffraume sind. Die differenzierbare Struktur auf
dem topologischen Produkt M x N ist dann definitionsgemiB [UA X B, wobei
AKB = {px§: geU und $eB}.
Dabei sei fiir Abbildungen :U—> V und ¢: X —> Y das "Produkt”
Xy UxX — VxY
in natiirlicher Weise durch (p x ¢)(a,b) := (p(a), P(b)) definiert.
7° Quotientenmannigfaltigkeit. Wahrend nach dem Vorangehenden die Pro-
duktmannigfaitigkeit stets existiert, ist das fiir Quotienten keineswegs immer der Fall.
Es sei M eine differenzierbare Mannigfaltigkeit. Auf M sei eine Aquivalenzrelation
"~" gegeben. (Es gilt also fiir alle a,b,ceM: a~a; a~b = b~ a;a~b und b~c
> a ~ c.) Es sei My der Quotientvon M nach "~", also die Menge aller Aquivalenz-
klassen beziiglich "~", zusammen mit der natiirlichen Projektion m : M —> My, die
jedem Punkt ae M seine zugehdrige Aquivalenzklasse zuordnet. M/ hat eine
kanonische Quotiententopologie. Demnach ist eine Menge U aus M/ genau dann
offen, wenn die Urbildmenge n~YU) offen in M ist. Die Quotiententopologie ist
durch die folgende universelle Eigenschaft festgelegt: Eine Abbildung f: M/, — Y
in irgendeinen topologischen Raum Y ist genau dann stetig, wenn die Komposition
fom: M —> Y auf M stetig ist. Im allgemeinen ist nicht gesichert, daB My, mit
der Quotiententopologie ein Hausdorffraum ist. Selbst wenn das der Fall ist, kann kei-
neswegs allgemein erwartet werden, daB es auf dem Quotientenraum M/ eine diffe-
renzierbare Struktur gibt, welche zu der Aquivalenzrelation "~", also zu m paBt.
Definition: Wir sagen, daB der Quotient M /.. als differenzierbare Mannig-
faltigkeit existiert, wenn es auf M/, eine differenzierbare Struktur gibt, fiir die die
folgende universelle Eigenschaft erfiillt ist: Die kanonische Projektion m : M —> My,
ist differenzierbar, und eine Abbildung f : M/, —> Y inirgendeine differenzierbare
Mannigfaltigkeit Y ist genau dann differenzier-
bar, wenn fon : M —> Y auf M differenzier-
nl \\fon bar ist. M/ ist dann ein Hausdorffraum, und
die auf M/ _ gegebene differenzierbare Struktur
heilt die Ouotientenctritbtrrm: timd  AA » Lo sre
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Quotientenmannigfaltigkeit. Es ist klar, daB im Falle der Existenz der Quotientenstruk-
tur diese wegen der universellen Eigenschaft eindeutig bestimmt ist (bis auf Diffeomor-
phismen).

In diesem Sinne existiert zum Beispiel der Quotient R/, als differenzierbare
Mannigfaltigkeit (x ~y ¢ x-y € Z) und ist diffeomorph zu $'. Analoges gilt fiir
den Quotienten lRiz/Zz, der zum "Torus” &' x S! diffeomorph ist. Als weitere Beispiele
finden sich die projektiven Rdume im ndchsten Abschnitt und der ausfiihrlich diskutierte
Bahnenraum zum Keplerproblem (11.7.12). Ein hinreichendes Kriterium fiir die Existenz
des Quotienten als differenzierbare Mannigfaltigkeit fiir den wichtigen Fall, daB "~"
durch eine differenzierbare Wirkung einer Lie—-Gruppe auf M gegeben ist, wird zum
Beispiel in [ABM, §. 262] bewiesen (siehe auch [DIE, 16.10.31): Es geniigt, daB der Graph
R der zugehorigen Aquivalenzrelation R = {{a,b)e Mx M| 3ge G: ga = b} in der
Produktmannigfaltigkeit M x M eine abgeschlossene Untermannigfaltigkeit ist. Ein
niitzliches differentielles Kriterium zur Feststellung, ob eine differenzierbare Struktur
auf My, bereits die Quotientenstruktur ist, wird am Ende des iiberndchsten Abschnitts
{in 10.3°) nach der Einfithrung der Tangentialabbildung einer differenzierbaren Abbil-
dung dargestellt.

Natiirlich sind die in 1. und 3. definierten Untermannigfaltigkeiten des RrR"
Mannigfaltigkeiten in dem Sinne der neu gefaBten Definition. Im wesentlichen kommt
jede n—dimensionale Mannigfaltigkeit M (bis auf Diffeomorphie) als Untermannigfal-
tigkeit eines RN mit geniigend groBem N e N vor. Das gilt aufgrund des Einbettungs-
satzes von Whitney jedenfalls fiir metrisierbare, zusammenhéngende Mannigfaltigkeiten.
Aber nicht jede Mannigfaltigkeit ist als eine solche Untermannigfaltigkeit gegeben; viele
wichtige Mannigfaltigkeiten, wie zum Beispiel Bahnenrdume, sind als Quotienten
definiert. Hier ein Beispiel einer Mannigfaltigkeit, die a priori nicht als Untermannigfal-

. s N R .
tigkeit eines R sondern als Quotient gegeben ist:

9. Der projektive Raum. Sei K ¢ {R,C}. In K™ '\ {0} heiBen zwei Vektoren
a,b e [Knﬂ\{O} dquivalent, wenn sie linear abhéngig sind, das heiBt wenn es A € K mit
a = \b gibt. Aquivalenzklassen beziiglich dieser Aquivalenzrelation werden folgender-
maBen geschrieben: Fiir b = ®° ,bl,... BN e lKnH\{O} setzt man

y(b) = {a: a~b} = (b% bl ...:b™).

Es sei P_(K) die Menge aller Aquivalenzklassen. Auf P _(K) hat man
zunichst die Quotiententopologie (siehe oben). Eine Menge U C P (K) ist also offen,
wenn Y—l(U) C [Knﬂ\{O} offen ist. Auf diese Weise wird [P’n(lK) zu einem metrisierba—
ren Raum. Als Metrik, die diese Topologie erzeugt, kann zum Beispiel

d(y(a@) () = min{lx - yl: x e y(a), yev(b), Ix| = Iyl = 1}
dienen.

Fiir i = 0,1,..n ist insbesondere die Menge

U, = {0 b b # 0} CPLK)
~FFarn 1ind die Abhildiine
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et U — K®, (6% b™ —— L 0°, L b7,

ist bijektiv und stetig mit stetiger Umkehrabbildung. Also ist ¢, : U; —> K" eine

Karte. Je zwei dieser Karten P, und P sind differenzierbar vertriglich:

—~1 ., i+1

Sei etwa i< j . Es ist cpj_l(yﬂ.‘.yn) = (yl-y2~ : j- 1: jﬂ t.. Yy, also
‘P~°‘Pj—1(}’l, oy = —1=(y1, S S s s R
Diffeomorphismus von K™\{y! + 0} nach K \{y + 0}.

Also erhidlt man einen endlichen Atlas U = {Lpi U —> K™: i = 0,..n}

von P (K) mit paarweise vertriglichen Karten und damit eine differenzierbare Struktur

wyy™, und diese Abblldung ist ein

auf P (K) durch die Aquivalenzklasse der zu W &quivalenten Atlanten.
Zur universellen Eigenschaft, die P,(K) als Quotienten im Sinne des letzten
Abschnitts ausweist: Zu jeder Kartenumgebung U C PP (K) betrachte man die Menge
= {(8%bLb% ., b™ e K™ b = 1) in K™ und die Abbildung o Uy —> W,
o).(bo. v 1B™) = ti,j (12, ... b~ 1,b’, bt ™ . W; ist eine (linear-affine) Unterman-
nigfaltigkeit von K™ (mit der Dimension n im Falle K = ® und der Dimension 2n
im Falle K = C). Die Komposition ojoqajfl (K — Wj von o und der Parametri-
sierung cpj_l ist die bijektive und differenzierbare Abbiidung

oLy ™ — Ghyh L Pyt ™

w, ¢ K™'\{0)

%

¢ P ——N

Nach Definition der Differenzierbarkeit auf Mannigfaltigkeiten ist also g U —_—> W
eine differenzierbare Abbildung. Sei jetzt f: [P oK) —> N eine Abblldung in eine
differenzierbare Mannigfaltigkeit N, fiir die die Komposition fory : lKn“\{O} —> N
“N\{0) — P oK) differenzierbar ist.
Dann ist auch die Restriktion f = foy)lw W —> N differenzierbar und daher
auch foo LI —> N fiir alle j=0,1,2,... ,n. Wegen Y(o (b)) = b fiir beLI]
gilt foo = (on)|Woo = f|u Also sind alle f'|LI (j = 0,1,2,... ,n) differenzier-
bar, und deshalb ist schllethh f differenzierbar.
Anmerkungen: 1) Die f sind lokale Schnitte zur Projektion v.

2) Fir K = R gilt Y(S:) = P_(R) und P,(R) kann auch definiert werden als die
Menge der {b,- b}, beS:.Ahnlich fir K = C: 2n+1) = P _(C) mit a~b fir
a,beS™! wenn a = Ab firein AeC,|\| = 1‘ (Vgl. mit V.5.4.4°.) Es folgt, daB
P, (K) kompakt und zusammenhingend ist.

von f mit der kanonischen Projektion v : K

Analog zu dieser Konstruktion wird der Raum aller k~dimensionalen K-line-
aren Teilrdume von K" (k<n) zu einer Mannigfaltigkeit. Diese Mannigfaltigkeit wird

die GraBmann—-Mannigfaltickeit cenannt und mit € (K) heoaichaat 0 (1Y Gar ot
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Beispiel Quotient von M, = {Ae€K(n): rg A = k} unter der Aquivalenzrelation:
A~B & ImA = ImB. Es gilt also mit dieser Notation: P_(K) = G, . (K).

10. Tangentialbiindel und Tangentialabbildung. Sei M eine n-dimensionale
abstrakte Mannigfaltigkeit, deren differenzierbare Struktur durch einen Atlas U gege-
ben sei. Dann wird der Tangentialraum T,M an M in a€ M in Analogie zu Abschnitt
6 unter Benutzung von "Geschwindigkeitsvektoren" von Kurven durch a definiert: Eine
Kurve v durch a ist eine Abbildung v :1-e,el —> M (&> 0) mit v(0) = a, die
differenzierbar ist, das bedeutet, daB fiir eine geeignete Karte ¢ : U —> V von U mit
v(1-g,e) cU ist poy:]-ge[ —> M differenzierbar. (Um y(] -g,e ) CcU zu
gewihrleisten, muB & > 0 eventuell noch verkleinert werden. Fiir das Folgende kommt
es aber nur auf das Verhalten von Kurven in unmittelbarer Nihe von a an.)

Zwei solche Kurven ¥ und ¥ heiBen dquivalent in a, wenn
d d =
(—ELPOY}HO_ dt‘PoYlt=o

gilt. Ein Tangentialvektor an M im Punkte a ist eine Aguivalenzklasse zu dieser
Aquivalenzrelation, und ein durch v gegebener Tangentialvektor, also die durch vy de-
finierte Aquivalenzklasse, wird mit [Y]u bezeichnet. Fiir diesen Tangentialvektor wird
auch Y(0) anstelle von [y], geschrieben. Die Gesamtheit aller Aquivalenzklassen von
Kurven in a ist der Tangentialraum T M an M in a.Durcheine Karte ¢ : U —> V
des Atlanten A mit a e U ist eine Abbildung dp_: T M — Rr" vermoge

de ([v1) = EdE(‘P°Y)|t= 0

gegeben. dp_ ist bijektiv, wie man leicht nachweisen kann. Uiber diese bijektive Abbil-
dung erhalt T_M die Struktur eines n-dimensionalen R-Vektorraums, so daB de,
ein Vektorraumisomorphismus ist: Flir X, Ye T M und X € R setze man

X + Y = (do ) Mde (X) + de(Y)) und
AX = (dey) H(nde (X)),

Diese Vektorraumstruktur auf T _M ist unabhéngig von der speziellen Karte ¢.
Entsprechend der Notation in Abschnitt 6 bezeichnet man die durch die Karte

¢ definierten Basisvektoren (dtpa)—l(ej) mit

9 9 2
aqj(a)’ aql | EFIR

Es gilt dann

aj(a) oder E—)j.

@) = [p ola) + te)],.

1° Tangentialbiindel. Das Tangentialbiindel T™M := |J{T JM: ae M} besitzt
in natiirlicher Weise die Struktur einer 2n-dimensionalen differenzierbaren Mannigfal-
tigkeit, wie im folgenden ausfiihrlich erlautert wird. (Vgl. auch Abschnitt 7 fiir den Fall
von Untermannigfaltickeiten des R™ und die Beispiele in I1.4 — 6.)
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Mit 1:TM —> M wird die natiirliche Projektion bezeichnet: Es ist
©([y],) = a fiir jede Kurve v durch « (also v Y(a) = T M). Sei ¢: U — V

eine Karte aus . Setze TU I (U). Die zugehdrige Bunde]karte P ist

?:TU — VX R", X — (p(1(X)), do (X)), a = (X)),

also fiir X = [yl : $(X) := ((p(a),%gooyltw). Man erhilt das folgende kommutative
Diagramm (das heift got = pr,o $, wobei pr, die Projektion auf den ersten "Faktor”
im Produkt V x R™ bezeichnet):

TU =% v xR®
us—-s v
®

Es 14Bt sich leicht nachpriifen, daB % bijektiv ist. Uiber die Biindelkarten erhilt man
auf TM eine eindeutig bestimmte Topologie, so daB alle & (¢ € A) topologische
Abbildungen sind (das heiBt $ und $—1 sind stetig). In dieser Topologie ist eine
Menge Z C TM genau dann Umgebung eine Tangentialvektors X e TM, wenn es eine
offene Umgebung W C Vx R™ von $(X)e VxR gibt mit 7 Y(wW) c Z.

Zundchst muB gezeigt werden, daB TM mit dieser Topologie ein Hausdorff-
raum ist: Je zwei Tangentialvektoren X,YeTM mit verschiedenen Projektionen
©X) + ©(Y) werden durch offene Umgebungen der Form 1 YU) ¢ T™M getrennt, Ist
aber ©(X) = «Y) = a mit X + Y, so gibt es beziiglich einer Karte e: U ~— V
mit ae U wegen $(X) + B(Y) stets offene W, W'Cc VxR" mit #(X) e W und
#(Y) € W', Diese Umgebungen W, W' kénnen disjunkt gewihlt werden, da ja V x R"
ein Hausdorffraum ist. Deshalb ist $ YW) offene Umgebung von X und $ 1(W")
offene Umgebung von Y mit 3™'(W) n $"Y(W') = g.

Sei jetzt A = {¢: oecU}. Um zu zeigen, daB N eine differenzierbare
Struktur auf TM definiert, geniigt es nachzupriifen, daB je zwei solche Biindelkarten P
und <p differenzierbar vertriglich sind. Seien also p: U —> V, 3:U — V Kar-
tenaus A mit UNU + @. Im folgenden kann dann U = U angenommen werden.
Zu zeigen ist jetzt: Der Kartenwechsel

Fo  VXRY — TxRr®
ist differenzierbar. Fiir {(q,v) € Vx B" ist zunichst

3 Hqv) = lo Mg + tv)],, a = ¢ Yq).

Also gilt mit der Notation @ := gop vV — V.

I

$o97Maw = (oo (q).dp (o (q + tv)] )
(®(a), $50p7 g + tv)],_, )

= (®(q),DdB(q).v).

It

Da nach Voraussetzung & beliebig oft differenzierbar ist (das ist ja gerade die Vertrag-
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differenzierbar. Eine typische Notation fiir die Koordinaten, die durch ® gegeben sind,
ist (q,v) = §(X), XeTU.

2° Tangentialabbildung. Die Ableitung Df(a) : R™ —> R™ einer differen-
zierbaren Abbildung f: U —> R™ auf einer offenen U C R™ als die lineare Appro-
ximation im Punkte a€ U hat eine natiirliche Verallgemeinerung auf differenzierbare
Abbildungen zwischen Mannigfaltigkeiten durch die Tangentialabbildung. Fiir eine
differenzierbare Abbildung f: M — M' zwischen den Mannigfaltigkeiten M,M' ist
die zugehdrige Tangentialabbildung Tf : TM — TM' folgendermaBen definiert: Fiir
[yl,e T M ist

Tf ([Y]Cl) = [fOY]f(G)'

Die Restriktion Taf von Tf auf den Tangentialraum T_M, Tuf: ™M —> Tf(G)M',
ist R-linear. T_f entspricht der Ableitung Df(a). Unter Verwendung von Biindelkarten
148t sich leicht sehen, daB die Tangentialabbildung Tf: TM —> TM' eine differen-
zierbare Abbildung zwischen den Tangentialbiindeln ist. Sie erfiillt T'oTf = for, was
sich auch durch das kommutative Diagramm

™ ——1{9 ™'

ool

Mo M
ausdriicken 14Bt. Fiir eine weitere differenzierbare Abbildung g: M' —> M" in eine
differenzierbare Mannigfaltigkeit M" ist auch die Komposition gof: M — M" dif-
ferenzierbar, und es gilt die Kettenregel, die sich einfach in der Form

T(gof) = TgoTf
schreibt. Fiir Kurven v : 1 —> M wird auch ¥(t;) anstelle von TtOY([tO + t]to) ge-
schrieben, also: Y(t,) = Ttoy([t0 + t]to) = [v(t, + t)]Y(to)'

Mit Hilfe der Tangentialabbildung 148t sich im iibrigen ein niitzliches (hinrei~
chendes) Kriterium formulieren, um festzustellen, ob eine differenzierbare Struktur auf
M/m die Quotientenstruktur ist:

3° satz. Ist die Quotiententopologie auf M/, Hausdorffsch, so ist eine
differenzierbare Struktur auf M/ die Quotientenstruktur, wenn die natiirliche Projek~
tion m: M —> M/ differenzierbar ist und alle Tangentialabbildungen T_m, a€ M,
surjektiv sind. (Eine differenzierbare Abbildung f, fiir die alle Tangentialabbildungen
Tf surjektiv sind, heifit im iibrigen eine Submersion.)

Der Rang rg T m ist dann namlich konstant (= dim M/ ), so daB nach dem
Satz vom Rang (vgl. Abschnitt 3) zu jedem Punkt be M/, und ae 7 (b) offene Um-
gebungen W von a und U von b existieren, sowie eine differenzierbare Abbildung
6: U —> W mit moo = idy. Ist jetzt f: M/ —> Y eine Abbildung in irgend-
e aepp e oaa et obait Y Fiie die die Komposition for : M ——> Y auf
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M differenzierbar ist, 50 ist auch fonos = flu differenzierbar, Also ist f ip einer
geeigneten Umgebung eines jeden Punktes b ¢ M / differenzierbar. Deshalb ist f als
Abbildung von M /~ hach Y differenzierbar, und das bedeutet, dap die auf M /., be-
trachtete differenzierbare Struktur dije Quotientenstruktur ist. Im librigen wurden in
9 zur Beschreibung des projektiven Raumes als Quotienten solche "lokalen Schnitte”
der Projektion explizit alg 0; auf den Koordmatenumgebungen UJ. angegeben,

1. Kotangentialbiindel. Sei Q eine n—dimensijonale differenzierbare Mannig-
faltigkeit. Fijr aeQ jst

T*Q := (T,Q)* = {. T.Q — R| o ist R-linear}

der Kotangentialraum an Q im Punkte a. Die Kotangentialréiume faBt man Zusammen
zum Kotangentialbiindel T*Q = | {T:Q P ae Qf. T*Q ist dhnlich wie TQ in natiir-
licher Weijse eine differenzierbare Mannigfaltigkeit. Die zugehdorigen Bﬁndelkoordinaten,
die in der Klassischen Mechanik aych kanonische Koordinaten heiBen (vgl. 11.9), sollen
hier beschrieben werden: Sei 1, T*Q — Q die Projektion mit r_l(a) = T‘:Q,
a € Q. Fiir eine Karte ¢ . (g —> V seiim folgenden ™U = T™HU). Man hat zy dep

Koordinaten 9= 9@ eU die Basisvektoren aaFL(a) € T,M, gegeben durch

aiqu(a) = [p " ep(a) + teu)]a,
abgekiirzt alg au oder -a‘iu (siehe 6 und 10). Jede Linearform pe (Rk)* hat die Ge-
stalt p = pusul beziiglich der speziellen Linearformen e j¥ - R, E“(ev) = 85.
(e) ist die zu (ev) duale Basijs. Analog hat man zZur Basis (a%u) von T U die dya-
len Basiselemente dq”(a) = dq" in TXu

dq”: T u —s g,

gegeben durch qu(X“L) = X" also dqv(ﬁ) = SS.Jede Linearform « e T;U hat

oqe
daher die Darstellung o = a,dq” beziiglich der Basis (dq”) mjt o, = oz(a'%)) €R.

Die Biindelkarte $:T*u > VX (R™* 4y ¢ ist definjert durch
la) = (:po‘r(oc),oz((aa?‘)eu) = (cpor(oz),ozus )
Es ist leicht zZu sehen, dag ? bijektiv ist. Die Umkehrabbildung ist

A-1 . 13 * _ 92
¢ (q,p) = p,dq” e T U, wenn P = p,".

Tu 92 (R™)*

UW\(Ps \%

Ahnlich wie am SchliuR vmm AL .« .
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und p differenzierbar vertriglich sind. Also definiert fo= {$: peU wie dort die
Struktur einer differenzierbaren Mannigfaltigkeit auf T*M. Typische Biindelkoordina~
ten auf T*U sind
(qp) = §le), € T*U.
Beziiglich {q,p) kann man jetzt fiir FGe £(T*U) die Poissonklammer einfiihren als
8G dF 9G_

. OF oG

{F.G} = q¥ Opy ap, o9+’
und eine kurze Rechnung zeigt, da8 {F,G} unabhéngig von der speziellen Wahl der Blin-
delkarte ist.

12. Vektorfelder als Derivationen. In naheliegender Verallgemeinerung zu Ab-
schnitt 7 sind die Vektorfelder X auf einer offenen Menge WCM einer abstrakten
Mannigfaltigkeit die differenzierbaren Abbildungen

X: W — ™
mit toX = idw (das bedeutet X(a) e T M fiir alle a € W), also die Schnitte im Tan-
gentialb'tindel. Sei p: U — v c R™ eine Karte mit UCW. ¢ definiert fiir v € {1,
9,...n} die Basisvektorfelder é)u auf U iiber au(u) = [«p'i(np(o) + teu)]a, ac Ul
(vgl. 10 und 6). Zu jedem Punkt ae W gibt es daher eindeutig bestimmte Koeffizien~
ten ¥¥(a) € R mit X(a) = Xu(a)au(o).Weil X als differenzierbar vorausgesetzt ist,
sind die Koeffizientenfunktionen a+— ¥Ha), ael, differenzierbar. Es gilt also
X\u = x“au mit eindeutig bestimmten x¥e (W), Im Falle einer weiteren Karte
§:U— V transformieren sich die Koeffizienten folgendermafen:
i 2q' <

wobei die —g—% die Komponenten der Jacobi-Matrix D((po"tﬁ_l) des Kartenwechsels
<po$—1 .Y —> V und T die Koeffizienten von )E beziiglich der Basis (5%3) sind:

_ g - 2 - 2a
X = X g . Das folgt unmittelbar aus g aauai.

1° Lie—Ableitung. Jedes Vektorfeld X auf W definiert die Richtungsablei-
tung oder Lie—Ableitung Lyf fiir Funktionen f € (W) : Ist X(a) = [yl, in der No-
tation von Abschnitt 10, so ist

Lf@ = Sefor®leo:

Offenbar gilt Lyfe £(W). Im Falle von X = au auf U =W schreibt man statt

Lyf auch auf, £, oder gg—u. Es ist also zum Beispiel

-1
A () = oo (o) * te,) = LB (ela) = Fla)-

Die Lie—Ableitung Ly als Abbildung Ly : E(W) —> &(W) st R-lines
und erfiillt die Produktregel: Lx(fg) = (Lyflg+ f(Ly8) fiir alle f,g¢€ E(W).

e . At Timkehrung: Eine Derivation auf der R-Alge



M.12 Vektorfelder als Derivationen 313

D(fg) = (Df)g + f(Dg)
fiir alle f,g e 6(W). (Eine R-Algebra & ist eine R-Vektorraum R, auf dem noch
eine Multiplikation & x & —> R erklirt ist mit einigen Vertréglichkeitsbedingun-
gen wie zum Beispiel: f(g + h) = fg + fh, f(gh) = (fg)h, etc. ; insbesondere ist &
ein Ring.) (W) ist eine R-Algebra beziiglich der punktweisen Addition und Multipli-
kation, die wie folgt definiert sind: Fiir f,g € &(W) und M e R ist

(f+ g)la) = fla) + gla),
Of)@) = A(fla)) und
(fg)la) = fla)gla), aeW.

6(W) ist eine kommutative R—-Algebra mit 1, das heiBt es gilt stets fg = gf und es
gibt eine Element 1 in &(W) mit 1f = f, namlich die Funktion auf W, die konstant
gleich 1 ist. .

Fiir Vektorfelder X ist Ly nach dem Vorangehenden eine Derivation. Um-
gekehrt gilt (vgl. z.B. [ABM, S. 83]):

2° Satz. Zu jeder Derivation D auf &(W) gibt es genau eine Vektorfeld X
auf W mit D = Ly-

3° Lie-Klammer. Mit Hilfe dieses Satzes 4Bt sich die Lie—Klammer zweier
Vektorfelder X, Y auf W definieren: Zwar ist LXOLY zunéchst keine Derivation,
aber es ist

[LyLy] == LyoLy - LyoLy
eine Derivation. Es gibt daher nach dem Satz ein eindeutig bestimmtes Vektorfeld Z
auf W mit L, = [LX,LY]. Dieses Vektorfeld Z heiBt die Lie-Klammer von X,Y und
wird mit [X,Y] bezeichnet, In lokalen Koordinaten beziiglich der Karte ¢ : U —> V
sei X = x“au und Y = Y“av. Dann ergibt sich aus L[ny] = LyoLy = LyoLy. :

[X,Y] = (x*Y’ - ¥*XY )3 . Die Lie-Klammer erfiillt die folgenden Identititen:
n [Thagt:

4° [X,Y] = - [Y,X] und [X,[Y,Z1] + [Y,[ZX]] + [Z[X,Y]] = 0,

fiir beliebige Vektorfelder X,Y,Z auf W.

Die Menge aller Vektorfelder auf W bezeichnen wir mit B(W). (Das
"gotische” V trdgt der Tatsache Rechnung, daB B(W) eine Lie-Algebra ist, wie wir
gleich erldutern werden.) Zun#chst ist B(W) in natiirlicher Weise ein R—Vektorraums:
Fiir X,Y e B(W) und )\ € R werden durch

(X + Y)a) = X(a) + Y(a) und
(AXNa@) = AX(w) , aeWw,

Vektorfelder X +Y und AX auf W definiert. Darliberhinaus gilt fiir Funktionen
fe £(W) und Vektorfelder B(W) sogar fX € B(W), wobei

(X)) = fla)X(a), ae W.

Deshalb ist B(W) ein Modul iiber dem Ring &(W) der differenzierbaren Funktionen

o wxxr
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5% Modulstruktur. Sei ® ein kommutativer Ring mit 1. Ein #-Modu! V
ist eine abelsche Gruppe V zusammen mit einer Multiplikation

R XV —> V,
so daB die zu den Vektorraumaxiomen analogen Regeln giiltig sind: Fiir v,we V und
r,s € R gilt stets

riv+w) = rv+rw, lv = v, (rs)lv = r(sv), (r + 8)v = rv + sv.

6° Lie—Algebra der Vektorfelder. Durch die Lie-Klammer ist auf B(W) ein
Produkt

[, ]:BW)xB(W) — B(W)
gegeben, welches B(W) zu einer Lie-Algebra liber R macht. Das heiBt, die Abbildung
[, 1 ist bilinear beziiglich R und es gelten die Identititen 4° (vgl. auch L.5). DaB mit
der Lie-Klammer tatsdchlich die Struktur einer Lie—Algebra auf B(W) erzeugt wird,
ist leicht einzusehen, wenn man beachtet, daB die Menge der Derivationen auf einer Al-
gebra R (hier: & = &(W)) als Unteralgebra der Algebra Homp(R,R) = Endg(R)
aller Endomorphismen von & nach & mit dem Kommutator [A,B] := AoB - BoA
fiir A,B € End(%) als Lie-Klammer stets eine Lie-Algebra iiber R ist (vgl. L.5.3°).

13. Vektorfelder und autonome Differentialgleichungen auf dem R™. Fiir
offene Mengen M C R™ als Mannigfaltigkeit kann das Tangentialbiindel TM mit
M x R™ identifiziert werden, und die Vektorfelder auf M sind dann die differenzierba-
ren Abbildungen X : M —> R™ (vgl. Abschnitt 2). Ein solches Vektorfeld definiert
eine autonome Differentialgleichung durch

v = X{y),
deren Lésungen gerade die Kurven v:J] —> M in M mit y(t) = X(y(t)) fiir alle
t € J sind. (Die Differentialgleichung heiBt autonom, weil X nur von a€ M und nicht
von der Zeit t abhdngt. y wird auch Integralkurve genannt. J C R ist hier und im
folgenden stets ein nichtleeres Intervall.) Wird vy als eine Bewegung in M aufgefaBit,
so wird iiber die Differentialgleichung v = X(y) durch X die Geschwindigkeit der
Bewegung festgelegt.

Nach allgemeinen Sdtzen iiber Existenz, Eindeutigkeit und differenzierbare
Abhingigkeit von Losungen gewohnlicher Differentialgleichungen (vgl. z.B. [DYS I,
[BRO] oder [WAR, S. 36 ff.1) gilt wegen der Differenzierbarkeit von X :

1° Lokaler FluB zu einem Vektorfeld.

i) Zu jedem ae M gibt es eine Losung vy : Jla) —> M des Anfangs-
wertproblems ¥ = X(y), y(0) = a, welche eindeutig und maximal ist. Das bedeutet,
daB fiir jede weitere Losung B:J —> M von g = X(B), Bl0) = a, gilt: Das Inter-
vall J(a) umfaBt J und es ist Y‘J = B. Jla) ist ein offenes Intervall.

ii) Bs sei © = [ J{J(a) x{a}: ae M}. Dann ist @ eine offene Teilmenge
von R x M. Die in 1° beschriebene maximale L8sung werde mit Y, bezeichnet. Dann
ist die Abbildung

e D) —em S M oanft AaY = A (+Y Fitr ()Y O
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differenzierbar. ¢ heiBt der lokale FluB von X und wird auch mit Py bezeichnet.

ili) Mit den Notationen von 1) und ii) sei fiir jeden Parameterwert t e [R:
M, == {aeM:teJ(a)) sowie o (a) = glta) = Yo(t), falls ae M, . Dann ist M,
offen in M und Pt M — M_, ist ein Diffeomorphismus. AuBerdem gilt neben
Po = idy,

() @ o (a) = Pereld), falls ae Mg MM, und o (a) ¢ M,.

Diese Eigenschaft (*) folgt aus der Eindeutigkeit der L8sungen. Denn fiir festes t sind
s = ¢ o (a) = e(s,p (a)) und s — Pare(@) = o(s + t,a) jeweils Losungen
des Anfangswertproblems Y = X(y), ¥(0) = qa.

2° Definition. Eine lokale 1-Parametergruppe von Diffeomorphismen (p,)
auf M ist durch eine differenzierbare Abbildung ¢ : 0 —> M auf einer offenen
Teilmenge 2 von R x M mit den folgenden Eigenschaften gegeben:

i) {o}xMcaq.

i) ¢, : M, — M., o la) = ¢lt,a), ist ein Diffeomorphismus fiir alle
teR, wobei M, = {aeM: (t,a) e Q).

i) ¢ = M und es gilt (),
(M,¢) mit i) -iii} wird auch dynamisches System genannt.

Es 148t sich unmittelbar zeigen: Ist (p,) eine lokale 1~Parametergruppe, so
ist ¢ bereits der lokale FluB zu einem eindeutig bestimmten Vektorfeld X, namlich zu
X(a) = %go(t,a)lho.

3° Ein Vektorfeld X heiBt vollstindig, wenn ) = R xM ist, wenn also
Jla) = R firalle ae M gilt. Lineare Vektorfelder sind vollstdndig auf M = R™. Ein
einfaches nichtvollstindiges Vektorfeld auf M = R ist durch X(a) = &%, ae R, ge-
geben. Fiir a > 0 ist zum Beispiel J(a) = ]—co,al-[ das maximale Definitionsintervall
mit der Losung Yolt) = (% -7 te Jla). Bs gilt = {(t, @) e RxR: ta <1} und
elt,a) = (é— )™ fiir o + 0 sowie o(t,0) = 0.

14. Vektorfelder auf Mannigfaltigkeiten und dynamische Systeme. Wie im
Falle von offenen Mengen M c R" als Mannigfaltigkeiten (vgl. Abschnitt 13) liefert
ein Vektorfeld auch im Falle abstrakter Mannigfaltigkeiten M eine autonome Differen-
tialgleichung

Y = X{y).
Hier muB nur Y(ty) flir Kurven Y:J —> M (also ye E(JM) und JC R ein Inter-
vall) verstanden werden als

Yitg) = [y(t + ty)], . wobei a = v(ty).
Unter Verwendung der in Abschnitt 10 eingefiihrten Tangentialabbildung 148t sich Y(t,)
auch als Ttoy(l) schreiben, wobei IeTtOR fiir [ty + t]to = [t, + lt]to steht, In
lokalen Koordinaten beziiglich einer Karte ¢: U — VCR" bei a hat man fiir

qlt) = poy(t), te J. die Darstellung
ol ) — Ao oya v o1
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Die Resultate des voranstehenden Abschnitts iibertragen sich unmitteibar
von R™ auf n-dimensionale Mannigfaltigkeiten M: Jedes Vektorfeld X € B(M) de-
finiert iiber die maximalen L&sungen von ¥ = X(y) den zugehorigen lokalen FluB
¢ = ¢y auf einer offenen Teilmenge £ von R x M, so daB

p(t,a) = X(plt,a)) und ¢(0,a) = a
fiir alle (t,a) € Q gilt. Dariiber hinaus liefert der FluB @y iiber die Definition

e la) = p(t,a)
fiir (t,a) € Q, also ae M, = {aeM: (t,a) € Q}, eine Familie {(p,) von Diffeomor-
phismen ¢, : M, — M_, mit den folgenden zwei Eigenschaften: ¢, = idpg und
(¥) wie in 13.1°.

Durch X ist also iiber ¢ = ¢, eine lokale 1-Parametergruppe oder ein
dynamisches System gegeben. (Definition wie in Abschnitt 13, nur daB das dortige M
jetzt fiir eine abstrakte Mannigfaltigkeit steht.) Umgekehrt wird durch jede lokale
1-Parametergruppe (¢ ) ein Vektorfeld X auf M definiert, dessen lokaler FluB gera-
de ¢ ist: X{a) = ¢(0,a) = Lo{t,a)],.

Fiir die Lie-Ableitung (vgl. 7, 10 und 12) ergibt sich damit die folgende For-
mel ("FluBgleichung"):

Lfl@ = Sfopy(tal,.,
und allgemeiner noch
Ly fopy(s,a) = Stfoos(tal .

Im allgemeinen ist @ + Rx M. Vektorfelder, deren maximaler FluB als
Deformationsbereich € = R x M haben, heiflen vollstdndig (vgl. 13.3°). Auf einer
kompakten Mannigfaltigkeit sind alle Vektorfelder vollstindig. Auf einer Lie-Gruppe

sind die linksinvarianten und die rechtsinvarianten Vektorfelder vollstandig (vgl. L.6).

15. Pfaffsche Formen. Sei W eine offene Menge in einer n-dimensionalen
Mannigfaltigkeit M. Eine Pfaffsche Form (man sagt auch: Differentialform vom Grad
{ oder 1-Form) auf W ist ein differenzierbarer Schnitt im Kotangentialbiindel ™M
iiber W, das heiBt eine differenzierbare Abbildung

«: W — T'M
mit toa = idy . Jedem ae W ist also auf differenzierbare Weise eine Linearform
ala) auf dem Tangentialraum T _M zugeordnet. In lokalen Koordinaten, die durch eine
Karte ¢ : U —> V C R™ mit UC W gegeben sind, hat man die Pfaffschen Formen
dqt, dd?, ... ,dg” auf U {vgl. 1) mit dqu(av) = SS‘ Zu jeder 1-Form o auf W gibt
es daher analog zu der Situation bei den Vektorfeldern (vgl. Abschnitt 12) differenzier-
bare Koeffizientenfunktionen o € &(U) mit ot]u = otvdqv. Im Falle einer weiteren
Karte §:U — V transformieren sich diese Koeffizienten folgendermaBen: Gilt
0t|u = 'o?idai bezliglich der durch @ gegebenen Koordinaten ﬁl, ﬁz,‘.. s Gn, s0 ist

oY



M.16 Tensorfelder und Differentialformen 317

wobei die 9_5; die Komponenten der Jacobi~Matrix von Popl:v— ¥ sind. Das
folgt sofort c.allus
_i

43’ = %dqu.

Eine 1-Form o auf W liefert durch &’[TGM = ola), ae W, eine differen-
&:TW — R, deren Restriktionen &ITQM R-linear sind. Jede
Funktion B¢ 6(TW,R) mit linearen B,TQM fiir alle aeWw definiert umgekehrt eine
1-Form.

zierbare Funktion

Eine 1-Form o auf W 148t sich auch auffassen als eine &(W)-lineare Ab-
bildung o : (W) —s E(W) auf dem 6 (W)-Modul B(W), indem

a(XNa) = ala)(X(a))
fiir alle ae W gesetzt wird. Die &(W)-Linearitit von o bedeutet, daB fiir f¢ E(W)
und fiir X,Y e ®(W) stets gilt: «(X + fY) = oal(X) + fa(Y). In lokalen Koordinaten
sei o = ocudq“ und X = x“av. Dann ist «(X) = ocuXu auf U.

Umgekehrt ist jede &(W)-lineare Abbildung B(W) — &E(W)  auf diese
Weise durch eine 1-Form auf W erzeugt. Schreibt man jetzt B(W) fiir den &(W)-
Modul der 1-Formen auf W und BW)* = Hom{(B(W), (W) fiir den zu V(W)
dualen Modui (der &(W)-linearen Abbildungen B(W) —s &(W) ), so haben wir ge-
zeigt, daB die &(W)~Moduln B* (W) und B(W)* in natiirlicher Weise isomorph sind.
Es wird daher oft so gerechnet, als wire B*(W) = BW)Y*. Genauso 4Bt sjch herleij-
ten: V(W) st auBerdem reflexiv in dem Sinne, daB (%*(W))* wieder in natiirlicher
Weise isomorph zu B(W) als &(W)-Modul ist.

Jede Funktion fe E(W) liefert eine 1-Form auf W, nidmlich das totale
Differential df von f ;o df(X) = Lyf. Die Differentiale dq* der Koordinaten
U — R zu einer Karte ¢ : U — v wurden bereits in Abschnitt 11 eingefiihrt.

In lokalen Koordinaten ist

df|y = f,udqu, mit %u = f, wie in Abschnitt 12,

16. Tensorfelder und Differentialformen. Es sei W wieder eine offene Teil-
menge einer n-dimensionalen Mannigfaitigkeit M und es seien r,s € N natiirliche
Zahlen. Ein Tensorfeld t vom Typ (g) auf W ist eine & (W)-multilineare Abbjldung

t: (BW)" x (BW)S —s &(W).

(t kann auch definiert werden als differenzierbarer Schnitt in dem entsprechenden
Tensorbiindel vom Typ (;), vgl. V.4.) Die (‘1))~Tensorfelder auf W sind also gerade
die 1-Formen, wihrend die ((1) )- Tensorfelder den Vektorfeldern entsprechen. Unter den
(g)—Tensorfeldern t sind die nichtausgearteten, symmetrischen Tensorfelder von

besonderem Interesse, weil sie eine semi~Riemannsche Geometrie auf M definieren

Exreel 9 40 7~ ar 9 o~ s
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weil sie mit geeigneten Zusatzbedingungen eine symplektische Struktur auf der Mannig-
faltigkeit M definieren (vgl. Abschnitt 19). Der Riemannsche Kriimmungstensor (vgl.
G.14) R ist ein Beispiel fiir ein Tensorfeld vom Typ (é).

1° Tensorprodukt. Fiir ein weiteres Tensorfeld t' vom Typ (g'-) auf W ist

das Tensorprodukt t®t', ein Tensorfeld vom Typ (gr_:-) auf W, definiert durch

1.2 r r+t r+2 r+r'
L@t (o, %, . L0 00 L0 e s 2y X Xgroe K Xggro Xogr) =

1 .2 r r r+t r+2 r+r'
= tlot, o 00, X Xy, Xt o0 o e 0 Xgppor X

s+s')'
Mit .T:(W) werde der &(W)-Modul der Tensorfelder vom Typ (2) auf W
bezeichnet, und mit (W) = @® JE(W) die direkte Summe Uber alle T W),
In lokalen Koordinaten beziiglich einer Karte ¢ : u—> Vv, UcW, hat

jedes te .T:(W) die eindeutige Darstellung

— btz
qll - tvtvzu.

Hy Vi Va Vs
vs 8u1®6u2®... ®6ur®dq ®dgq *®... ®dg

(Einsteinsche Summenkonvention: {iber gleiche Indizes oben und unten wird von 1 bis

n summiert!), wobei

Willgeer Hp u u u
ghibe Ur = tldgtdg’® e da FL0,9y, e 28yg) € 6
Das Transformationsverhalten bei einem Kartenwechsel beschreibt sich wie folgt: Sei
p: U — ¥ eine weitere Karte und ® = po <p_1 .V —> V der Kartenwechsel. Mit

als Abkiirzungen fiir die Koeffizienten der Matrix D® bzw. Do} gilt

gt e o e T TRLET

929 Differentialformen. Differentialformen sind alternierende Tensorfelder
vom Typ (2). Eine Differentialform n vom Grad s (oder eine s—Form) auf W ist
also eine &(W)-multilineare Abbildung

n: BW)® — (W),
so daB fiir alle Permutationen ¢ von {1,2,... ,s} und alle X, ). SRR X € V(W) gilt

n(X,, Xp e , X)) = sgn{o) (X 1y X2y , X )

o(s)’ "

Mit & °(W) wird der &(W)-Modul der s-Formen auf W bezeichnet. Man
setzt JOW) = A°(W) = E(W) und man weil W) = BW) = BW)"
AuBerdem gilt A5(W) = {0} fiir s> n,daes auf K™ keine bezliglich R s—multi-

e st 11 et . ot bLAarv
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3° AuBeres Produkt. Fijp zwei 1~-Formen a,pe I(W) ist das Sogenannte

definierte 2-Foprm. Also anB(X,Y) = a(X)B(Y) - o YIB(X) Fijr X, Y e B(wW). Allge-
meiner ist fiip 1-Formen cxl,ozz, oot e A w) durch die folgende Formel] eine s-Form
ala aZa v A auf W definiert:

a'aala . A’ = Zceessgn(o)oc"(l)@occ’m)@.‘. ®a°)
Fiir ne A 5(w) und e (W) definiert man schlieBlich,

1
A (‘)(xi""’xsﬂ") = sirl 0€®5+r8gn(c)n(xc(l)""’Xc(s))Q)(Xa(sH)"“’Xc(s+r))

und erhilt ejne (s+r)-Form NN© auf W,
In lokalen Koordinaten beziiglich einer Karte ¢ : 4 — Vomit Ucw hat
jede s~Form ne A S(W) die Darstellung

Mu = M, o daadg®en ndgs,

wobei =, .2 ,.. 9, ) e &) ist. Das Transformationsverhalten der

Ully oo g By’ U, Hs

Koeffizienten nllﬂlz u. bei Kartenwechse] a8t sich aug den entsprechenden Glej-
U

chungen fijr Tensoren (s.o. in1°) ablesen,

4° Pullback. Dag "Pullback" einer Form o ¢ A5 (W) unter einer differenzier-

fiir Xl, <1 X € B(W) gegeben ist, Es gilt o*(an B) = o*un ©*p.

5° Vektorwertige Differentialformen. Sei F ein endlichdimensionaler Vek-
torraum iiber R oder iiber ¢, Die F-wertigen Differentialformen auf WcM vom
Grad s werden analog zum skalaren Fal] definiert alg die é“(W)—multilinearen und
alternierenden Abbildungen

(Siehe auch zy Beginn von V.4.) Mit ds(W,IF) wird entsprechend der &6(W)-Modul der
F-wertigen s-Formen bezeichnet. Fijp eine skalare s=Form 7 ¢ A5W) und fe &(W F)
sei n®Ff die F-wertige s—Form

(X, Xy, .. X)) —— (X, X, .. X F,

fiir Vektorfelder X, €« B(W), Dieses "Tensorprodukt” vermittelt bej der Wahl einer Ba-
sis (bv «aby) von F einen Vektorraumisomorphismus (.ﬂs(W))k —_ &fs(W,lF)
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_ u n n
Bly = eu1u2 usdq tadq"2A . Adg®

mit 9u1u2 g T 9(8u1,8u2, ,aus) e 6(W,F).

6° Lie-Algebra—wertige Differentialformen. Fiir den Fall, daB F auBerdem
noch eine Lie—Algebra g ist (vgl. L.5), iibertragt sich die Lie-Klammer [ , 1 auf die
g-wertigen Differentialformen in der folgenden Weise: Fiir o € AT (W,Q), B¢ A% (W)
und Vektorfelder Xy oo Xprs € V(W) sei

1
[o)(X s v 1 Xprg) = ;—s—!zceeﬁssgn(o)[a(x‘, R O 16 SFRP XD -

Dann ist [«0] eine wohldefinierte (y+s)-Form. Beziiglich einer Basis (Tl, ,Tm) von
g hat jede Form ©¢€ AS(W,F) die eindeutige Darstellung 0 = O‘L®T‘l mit skalar-
wertigen s—Formen g% ¢ & °(W) . Fiir « € AT(W,g), 0¢€ AS(W,g) bat dann das gerade
eingefiithrte Produkt mit Hilfe der Strukturkonstanten cav auch die Beschreibung

g gV _ wo AV

[a,8] = (0" A8 )®[TwTv] = (0" AD )cw®T>\.

Aus den Eigenschaften der Lie—-Klammer auf g folgen die beiden Identitéten:
[00] = — (-7 [0,

(= 1) 50T + (D0 yedd + (=D y,Le01] = O,

wobei v € H Y(W,q) eine weitere g-wertige Differentialform ist. Durch lineare Fort~
setzung von L, 1 auf den Vektorraum A¥(W,g) = @ﬂ‘"(w,g) aller g-wertigen
Differentialformen ergibt sich eine R-bilineare Abbildung

[]: H5(W,g) x HH(Wa) — A*(W,g)
mit den gerade dargestellten Identitaten. (S *(W,g) wird damit zu einer Z-graduierten
Lie-Algebra und eine Lie—Super—A]gebra.)

7° Fiir den Fall, daB g eine Matrix-Lie-Algebra g c C(N) ist, hat man
auBerdem noch das folgende "zuBere" Produkt fiir g-wertige Differentialformen o,
wie oben: Zunachst hat « € AT (W,g) die Darstellung o = (ch) mit otz e AT(W,C)
und entsprechend © = (92). and e .,dﬁs(w,g) ist dann definiert durch

[«] (=} T
(oc/\(-))(D = ocT/\ep.

Im Vergleichzu [, 1 gitt [w,8] = oA — (-1 0A«, also insbesondere fi

1-Formen {0,0] = an® +0aa und [, 0] = 2aAd.

17. AuBere Ableitung und Lemma von Poincaré. Es sei W wieder eine offer
Teilmenge einer n-dimensionalen Mannigfaltigkeit M. Die duBere Ableitung d=¢
ist ein R-linearer Operator

4. oW — J5w,

Har <ich in lokalen Koordinaten schreibt als
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schnitt 15). DaB dje lokale Forme] 1° tatséchlich einen globaler Operator auf & 5(w)
definiert, ergibt sich aug der alternativen, aber dquivalenten Definition:

o S j A
2 dn(XO,Xl,... X)) = j;0(—1) ij(n(Xo,Xl,...,Xj,..A X))+

i+] s
*Z 0 n([xi,xj],xo,xl,...,xi,A..,xj,‘.. .

Dabei bedeutet 5\(1., daB X). jeweils ausgelassen wird,
Von den zahlreichen Formeln fiir d vermerken wir neben
3° d(aAB) = dunp + (-1)%andp
flir o e #*(W) unq
4° d(o*a) = *(de)
fiir differenzierbare ?: M — M, also dop* = p¥od, noch die folgende, die sich
durch Einsetzen direkt aus der Definition ergibt:

s+1 s

5° dod = @ » oder genater d od” = 0,

Ftir vektorwertige Formen wird 4 . A (W,F) — &ls“(W,[F) genauso de-
finiert, und man hat ebenfa]lg die Formel 10,20,3o sowie 50; auBerdem 4° bei Matrix—
Lie-Algebren g:

6° d(xnB) = dung + (-1)°xn do,
wenn o e ﬂs(W,g). Fiir allgemeine endlichdimensionale Lie-Algebren 8 =F gilt
entsprechend )

7° dl0,6] = [du,0] + (-1)°[a,do].

Die Vektorfelder X € B(W) wirken auf den Formen dhnlich wie auf den Funktionen als
Lie—AbIeitung

d
8° Ly == -(R((P:a)’tm’

wobei (<pt) den lokalen FluB von X bezeichnet (vgl. 13.1° und 14). Fijp Lx,d,/\ gel-
ten die Formeln

9° Lyda = dlya,also Lyod = doL,,
10° Lx(ot/\ B) = (ont)/\ﬁ + ot/\LXB.

Ein Zusammenhang zwischen Ly und d wird durch die "Homotopieformel" von
Cartan hergeste]lt;

1° Lya = deot + tyedor.

. o, I i Y
Dabei jst b A —— A5 die Kontraktion definiert dureh + ~ .. n o
Hnd 1 IV v s
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Beweis von 11° durch Induktion nach s:1mFalle s = 0 gilt Lof = df(X),
also Lyf = dliy ) + tcdf wegen 1 f = 0.ImFalle s+1>0 genligt es, 11° fiir For-
men o€ Jﬂsﬂ von der Gestalt « = dfAB zu zeigen mit fed® = & und Be A5
Es ist

I

edor = 1y (ddEA B~ dfAdB) = ~ixc(dfn d8) = — (1, dfAdB + dfAtyde,

d((1ydfIAB - dfa LXB) = (diydfInB + tycdfAdp + dfadiyB.

il

diy o
Also gilt

duyeor + tycdoe = (dedf)/\B + dfadiyB + dfatydf
Lx(df)/\B + dfA (dey B + LXdB)
Lx(df)/\ g+ df ALy P {nach Induktionsvoraussetzung)
Lx(df/\B) = Lya.

I

I

il

12° Definition. Eine s-Form 7€ A5(W) heiBt geschlossen, wenn dn = 0
jst. n heiBt exakt, wenn es eine (s-1)-Form B mit dp = n gibt.

Aufgrund von 5° ist jede exakte s—Form auch geschlossen. Die Umkehrung
ist im allgemeinen falsch. Wieweit auf einer vorgegebenen offenen Menge W die ge-
schlossenen von den exakten s—Formen abweichen, wird durch die de Rhamsche Koho-

mologie gemessen: Fiir s € N ist HZR(W) der Quotient
HE (W) = Kerd® /Im &

der durch d° und &5 ' definierten R-Vektorrdume

Ker d® = {ne d°(W): dn = 0} und

md®" = {neH*(W): Es gibt pe g (W) mit db = nl.
Es gilt HZR(W) = {0} fiir s> n.

13° Bedeutung von HldR(W): Es sei o eine 1-Form auf W. Das iibliche
Wegintegral fYoc von o langs Kurven Y : [to,tl] 5 W ist definiert als

[ = f:ioc(‘f(t))dt.
(]

In lokalen Koordinaten beziiglich einer Karte ¢ : U —> V mit Y([to,tl]) cuUcw
sei oc\u = F“dqu und qlt) = goy(t). Dann hat das Wegintegral fYa die Darstel-
lung . .
_r? gt _ t .
Iy —ftoFu(y(t))q (t)dt = jto<F,q>dt.

Man erkennt in diesem Ausdruck das Arbeitsintegral 1dngs Y des durch die 1-Form ¢
gegebenen "Kraftfeldes” F = (F,Fy ... ,F) _Fiir exakte o ist der Wert von fYoc un
abhingig von der speziellen Kurve von dy = y(tg) nach ;= y(t,}. Denn mit dg =

gilt fiir jede Kurve y in W von d, nach a:

"
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g spielt die Rolle des Potentials vdn F. Die Bedingung do = 0, die ja erfiillt sein muB,
wenn o exakt sein soll, ist in den lokalen Koordinaten nichts anderes als die "Integra-
bilit4tsbedingung” aa“q“Fv = aa—q\,F‘l (u,v € {1,2,... ,n}) fiir das "Kraftfeld" F = (F,F,,
- »F} (andernorts auch rot F = ¢ geschrieben), HldR(W) = {0} ist daher genau
die Eigenschaft an die offene Menge W, die garantiert, daB jede geschlossene 1-Form
auf W wegunabhingig integrierbar ist und daher ein Potential besitzt,
H;R(P) = {0} fiir symplektische Mannigfaitigkeiten P hat deshalb zur
Folge, daB jedes lokal Hamiltonsche Vektorfeld bereits global Hamiltonsch ist (vgl.
11.9).
H:m(W) = {0} gilt zum Beispiel fiir konvexe oder sternférmige offene
Mengen W des R™ und allgemeiner fiir einfach zusammenhingende W. In jedem
Falle gilt H;R(L[) = {0} lokal, das heiBt fiir geeignete offene Umgebungen eines jeden
Punktes einer Mannigfaltigkeit. Das folgt aus dem Lemma von Poincaré:

14° Lemma von Poincaré. Zu jedem Punkt qe M gibt es eine offene Umge-
bung UC M von a mit HZR(U) = {0} firalle s> 0.

5

Zum Beweis: Es geniigt Hyr (B) = {0} fiir offene Kugeln B = B(0,r) des
R™ zu zeigen. Dazu definiert man eine "Homotopie” H: 4 °(B) —> .ﬂs_l(B) mit
doH + Hod = id. Fiir alle ne A5(B) mit dn = 0 folgt dann d(H(n)) = n, also ist
jede geschlossene s~Form auf B exakt.,

Zur Definition von H : Fiir s-Formen 1 = fdq"“ts dq“2a... Adg™s  sei
zZunéchst

A%y = (J:ts_lf(tq)dt)dqu‘/\dquz/\... Adghs,

und es werde A® als eine R-lineare Abbildung & 5(W) — A5 (W) fortgesetzt. Sei
R = q“au € B(B) des radiale Vektorfeld, Fiir eine allgemeine s-Form n auf B ist R
die folgende (s-1)-Form: nR(Xl’XZ"" ’Xs-l) = n(R,Xi,XZ,... ’Xs—l) fiir Vektorfel-
der X, X,,... \X,_, € B(B). H® ist schlieBlich iiber H*(m) = A" 5. fiir s-Formen
n auf B definiert. Es ist Hs(n) € .ﬂsvl(W), und eine ldngere Rechnung zeigt tatsich-
lich d°'oH® + H*'od® = id auf &°(B). Anstelle des allgemeinen Beweises, den
man zum Beispiel in [WAR] findet, soll hier exemplarisch der Fall s=1 nachgerechnet
werden. Es wird also gezeigt, daB fiir jede 1-Form n = fudq“ e A B) mit dn =0
stets d(H'()) = 7 gilt:
Es ist g = fuqu, also gilt

0 1. 1
H'(n(q) = A%y, = SO (kg = Q" [ £, (ta)dt = g(q).
Es folgt
wyft wrl t u
9kg(a) = (3,") [, (ta)dt + q J 0uf, (tartde = Jo (ite@) + ta £, (tq)qH)a
wegen a“fk = akfu. Aus

ih—&‘lc.,.\\, e . s
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ergibt sich schlieBlich
1
9,8lq) = tf, (tq) 0 = f.(Q)

und damit dg = 7.
Mehr iiber die Kohomologiegruppen HZR(W) und iiber weitere Kohomolo-
gietheorien findet man zum Beispiel in [WAR], [BOT] oder [SIT].

18. Orientierung und Integration von Differentialformen. Eine Volumenform
auf einer n-dimensionalen Mannigfaltigkeit M ist ein n-Form n auf M mit nla)+ 0
fiir alle ae M. M heiBt orientierbar, wenn es auf M eine Volumenform gibt.

Beispiele. M = R™ als Mannigfaltigkeit ist orientierbar, weil zum Beispiel
die Determinantenform det : R® — R die folgende (Standard—) Volumenform

WXy XM = det(X (). Xpl@), Xje BR™,
definiert. Esist 1 = dql/\ dqu . A dqn, wenn die Funktionen q’ die iiblichen karte-
sischen Koordinaten bezeichnen, Die offenen Teilmengen einer orientierbaren Mannigfal-
tigkeit und die abgeschlossenen Hyperflichen des R™ sind wieder orientierbare Man-
nigfaltigkeiten. Das M#&biusband im ®® ist nicht orientierbar, ebensowenig wie die pro-
jektive Ebene P,(R), welche als Kompaktifizierung des Mobiusbandes angesehen wer-
den kann.

Da es auf dem R™ bis auf skalare Vielfache nur eine alternierende und be-
ziiglich R n-lineare Abbildung nach R gibt, namlich die Determinantenform, gilt flir
orientierbare Mannigfaltigkeiten M : Zu je zwei Volumenformen 1 und 7' gibt es ein
fe &(M) mit n = fn'. Diese Funktion f erfiilit f(a) + 0 fiir alle ae M.

Zwei Volumenformen 1 und n' heiBen dquivalent, wenn es eine Funktion
fec (M) gibt mit fla) > 0 fiiralle a€ M. Eine Aquivalenzklasse [nl von Volumen-
formen heiBt dann eine Orientierung von M, und das Paar (M,In1} wird orientierte
Mannigfaltigkeit genannt. Eine zusammenhzngende und orientierbare Mannigfaltigkeit
hat genau zwei Orientierungen, namlich [n] und [-n], wenn n eine beliebige Volu-
menform auf M ist. Fiir zusammenhingende Mannigfaltigkeiten gelten die folgenden
zwei Satze (vgl. z.B. [ABM] oder [WAR, $.1381):

1° Satz. Die Mannigfaltigkeit M ist genau dann orientierbar, wenn A7 (M)
als &(M)-Modul eindimensional ist, das heiBt wenn es einen &(M)-Modulisomorphis-
mus §(M) —> & (M) gibt.

2° Satz. M. ist genau dann orientierbar, wenn es einen Atlas A gibt, flir
den simtliche Kartenwechsel positive Funktionaldeterminante haben. Das heift fiir je
zwei Karten ¢ und ¢ aus % gilt: det D(goo ') > 0 oder die Definitionsbereiche von
¢ und ¢ haben keine Punkte gemeinsam. Eine Orientierung wird dann auch durch einen
solchen Atlas festgelegt.

Zur Definition des Integrals einer Differentialform wird eine elementare Inte-

et b haopie auf RT bendtigt. Es geniigt zu wissen, wie das Integral fo(q)dq
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durch das Riemann-Integral). Als ein wesentliches Resultat ist die Transformationsfor-
mel zu nennen, die fiir Diffeomorphismen & . Q —> Q folgendermaBen lautet:

3° [5f(q)dg = fod(q) |det Do(q)|dq.
Q Q

Eine n-Form « auf Q ¢ R® hat die Darstellung o = fdq'a dq®a ... Adg®
mit einer eindeutig bestimmten differenzierbaren Funktion f auf Q. Das Integral von
o tiber Q ist

f Q¥ = f ofda,

falls dieses Integral liberhaupt existiert. Fiir einen Diffeomorphismus & : Q — Q
und o€ & (Q) folgt dann aus der Transformationsformel 3°.

4° faoc = ifQQ*a,
je nachdem, ob det D& > 0 oder det D® < 0 gilt. Denn fiir o = fdg'a ... Adq" st
®*u = fdet D®dg A ... Adq” wegen ®*(dg'a ... Adq™) = det Dddgia ... Adg™.

Sei jetzt M eine n-dimensionale orientierbare Mannigfaltigkeit, die durch
einen Atlas U nach 2° orientiert sei. Fiir eine n-Form 6 auf M und eine Karte
e: U —> Q aus U sei fﬁe = fQ(cp"l)*e. Fiir eine weitere Karte p: U — Q
aus A gilt dann mit & = Foe™t, Q —> Q nach 4° wegen detD® < 0

I88 = I5® ™% = [ a* G = Fole™% = f%0
Daher ist Jud = fﬁe unabhéngig von den Karten aus U und liefert eine Definition
von 6 iiber U. J w0 fiir weitere offen Mengen W c M definiert man dann mit Hiife
einer Teilung der Eins (vgl. z.B. [WAR]).

Die Integralsdtze von GauB und Stokes findet man zum Beispiel in [BRO]
und [WAR].

19. Symplektische Mannigfaltigkeiten. An den Begriff der symplektischen
Struktur, welcher grundlegend fiir die Hamiltonsche Formulierung der Klassischen
Mechanik ist, wird im 9. Paragraphen des 2. Kapitels iiber verschiedene Stationen heran-
gefiihrt. Weil dort aber der Begriff der Mannigfaltigkeit so lange wie méoglich vermieden
wird, und auch Differentialformen nur kurz erwidhnt werden, soll an dieser Stelle ein
kurzer AbriB iiber symplektische Mannigfaltigkeiten gegeben werden. Wir beginnen mit
einer Definition, die von der in I1.9 vorgesteliten abweicht, aber dazu dquivalent ist.

Definition. Eine symplektische Mannigfaltigkeit ist eine Mannigfaltigkeit zu-
Ssammen mit einer geschlossenen, nichtausgearteten 2-Form ¢ AUM). o heiBt die
symplektische Form der symplektischen Mannigfaltigkeit.

Dabei heiBt o nichtausgeartet, wenn fiir jedes Vektorfeld X e B(M) aus
der Bedingung o(X,Y) = 0 fiir alle Y € B(M) bereits X = ¢ folgt. Aquivalent dazu:
© ist nichtausgeartet, wenn fiir alle Punkte ae M die durch o induzierte Bilinearform
wla) : T MXTM ~—— R durch eine Matrix mit nichtverschwindender Determinante
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reprasentiert wird. Ebenfalls aquivalent dazu: Die 2n-Form o = WAWBA ... A0 (n-fach,
mit dim M = 2n) ist eine Volumenform. Insbesondere hat eine symplektische Mannig-
faltigkeit immer eine geradzahlige Dimension, und sie ist orientierbar.

Beispiele: 1) R*® mit der Form w{X,Y) = xT6Y (6 wiein L.4.6° und 1L
9.6). Beziiglich der kartesischen Koordinaten (g,p) = (ql,qz, ,qn,pl,pz, .. Py} von
R =~ R™xR” hat w, die Darstellung w, = dqu/\ dpu. Anhand dieser Darstellung
erkennt man dw, = 0. @, ist die in 1.9 hauptséchlich verwendete symplektische
Form und heiBt auch die Standardform auf R™".

2) Jedes Kotangentialbiindel T*M hat eine natiirliche symplektische Form
», die beziiglich der kanonischen Koordinaten (q,p) von Biindelkarten (vgl. 1) als
“"T*u = dqu/\ dpu definiert ist. Eine Analyse des Kartenwechsels von Biindelkarten
zeigt, daB damit tatsachlich eine globale 2-Form o definiert ist. ist nicht nur ge-
schlossen, sondern sogar exakt: Zum Beispiel wird durch alT*u = - pudqu eine 1-
Form mit do = w definiert. o heiBt symplektisches Potential von w. Das Beispiel
1) ist das Kotangentialbiindel zu R™.

3) Die 2—-Sphére 52 it der iiblichen Volumenform ("Flacheninhalt")  ist
eine symplektische Mannigfaltigkeit, die nicht isomorph zu einem Kotangentialbiindel
ist (denn 5% ist kompakt). o ist automatisch geschlossen, da die 3-Form dw auf der
9-dimensionalen Mannigfaltigkeit 52 verschwindet. © ist nicht exakt, hat also kein
symplektisches Potential o, weil sonst nach dem Satz von Stokes das Integral von ®
iiber &% verschwinden miiBte: fszm = Sgdoc = fagzcx = 0. Ganz analog gibt es

auf jeder kompakten, orientierbaren Fliche § eine symplektische Form ohne Potential.

Der Begriff der symplektischen Mannigfaltigkeit hat formale Verwandtschaft
mit dem Begriff der Riemannschen Mannigfaltigkeit (vgl. G.12). Allerdings ist die symp-
lektische Geometrie stets "flach” im folgenden Sinne:

Satz von Darboux (vgl. z.B. [ABM]). Sei (M,») eine symplektische Mannig-
faltigkeit. Dann gibt es zu jedem Punkt ae M eine offene Umgebung UC M von a
und eine Karte ¢ : U —> V C Rzn, e(b) = (q,p) = (qi,qz, ,qn,pl,pz, ,pn), so
daB w|y = dqu/\dpu.

Fiir Riemannsche Mannigfaltigkeiten M mit einer Riemannschen Metrik g
wiirde eine zum Satz von Darboux analoge Eigenschaft verlangen, daB g beziiglich ge-
niigend vieler Karten ¢ : U — V c R" jeweils die Darstellung glu = Swdqu®dqv
hat {das heiBt g, = Suv ). Diese Eigenschaft ist gleichbedeutend damit, daB die Kriim-
mung der Riemannschen Mannigfaltigkeit (M,g) verschwindet (vgl. G.14.6%), M,g)
also flach ist. Im allgemeinen sind Riemannsche Mannigfaltigkeiten aber keineswegs
flach; schon die Kurven in der Ebene sind nicht flach, es sei denn sie sind Geraden, und
auch die Fldchen im ®® haben in der Regel nichtverschwindende Kriimmung, weil ihre
e e w1 ist (vel. die Beispiele im Anhang G).
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Definition. Eine kanonische Transformation (auch Symplektomorphismus ge-
nannt) ist eine differenzierbare Abbildung ¢ : M —> M' zwischen symplektischen
Mannigfaltigkeiten (M,0) und (M",0'), welche die symplektische Form erhilt, also
¢*0' = o erfiillt. Gleichbedeutend damit ist (X,Y) = o'(Te(X),Te(Y)) fiir alle
Vektorfelder X,Y € B(M).

Insbesondere sind kanonische Transformationen nach dem Umkehrsatz loka-
le Diffeomorphismen. Sie sind aber im allgemeinen weder injektiv noch surjektiv. Die
Komposition von zwei kanonischen Transformationen ist wieder eine kanonische Trans-
formation.

Der Satz von Darboux hat auch die folgende Formulierung: Zu jedem Punkt
ae M einer symplektischen Mannigfaltigkeit (M,0) gibt es eine offene Umgebung
UCM und eine bijektive kanonische Transformation ¢ : U —> V zwischen den
symplektischen Mannigfaltigkeiten (W,0|) und (V,gl+,), wobei V R®™ offen ist
und W, die in Beispiel 1) erwihnte Standardform auf RZ™ ist. ¢ ist insbesondere eine
Karte der differenzierbaren Struktur auf M, und eine solche Karte wird auch kanoni-
sche Karte genannt. Die Kollektion aller kanonischen Karten auf der symplektischen
Mannigfaltigkeit liefert einen Atlas & mit der folgenden Eigenschaft: Fiir je zwei Kar-
ten ¢,9 aus R ist der Kartenwechsel Po¢~! kanonisch beziiglich der Standardstruk-
tur auf R°™ (das heiBt es gilt D(Fop™! )(a) ¢ Sp(2n) fiir alle ae U N U; vgl. 11.9.10
und die Definition davor).

Ein kanonischer Atlas $ einer Mannigfaltigkeit M der Dimension 2n ist
ein Atlas, fiir den die Kartenwechsel Fog ! stets kancnische Transformationen beziig-
lich der Standardstruktur auf R°™ sind. Ein solcher kanonischer Atlas definiert in
natiirlicher Weise eine symplektische Struktur, also eine symplektische Form o auf M:
Dazu setze man fiir jede Karte ¢: U —— V aus & einfach

oy = ‘P*“’o'V'

Filr eine weitere Karte $: 0 —> V aus K gilt (@o«p_i)*mo = 0,, weil ja Fop™!
kanonisch ist, und daraus folgt <p*co0 = cp*($o<p_1)*too = @*wo. Also passen die loka-
len Definitionen zusammen und liefern eine wohldefinierte symplektische Form o auf
der Mannigfaltigkeit M. Im librigen gilt nach Definition von o: “"u = dq"a dp&l flir
alle Kartenumgebungen U des Atlanten K.

Wir haben damit zwei verschiedene Definitionen des Begriffs der symplek-
tischen Mannigfaltigkeit kennengelernt. Wir wollen noch eine dritte Definition vorstel-
len, in der die Poissenklammer im Mittelpunkt steht. Fiir eine symplektische Mannigfal-
tigkeit M 14Bt sich die Poissonklammer {F,G} fiir F,Ge &M) definieren iiber die
Karten eines kanonischen Atlanten & oder mit Hilfe der symplektischen Form. Im
ersten Falle setzt man fiir eine Karte ¢: U —> V aus & einfach

{F’G}‘LI = q:;o{(p_loF,qJ_loG}o,
wobei { | }0 die Poissonklammer beziiglich der Standardstruktur auf Rzn ist, also

{fg}, = 2888 _ Of 9g _ of og _ 3f o9g
8o = 39 9p T 3p 9q = 3q” 9p, ap, 9q¥ ’
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f,ge &(V), VC R®™ offen. {F,G} € &(M) ist wohldefiniert, weil kanonische Transfor-
mationen zwischen offenen Mengen des Rzn die Poissonklammer { , }0 invariant las-
sen {vgl. auch I11.9.10).

Unter Verwendung der symplektischen Form  erhdlt man {F,G} in zwel
Schritten. Zunichst definiert man zu einer Funktion F e 8(M) das Hamiltonsche Vek-
torfeld X durch die Gleichung ®(Xg,Y) = dF(Y) fiir alle Vektorfelder Y € B(M).
AnschlieBend setzt man fiir F,G e §(M) auf koordinatenfreie Weise

{F,G} = 0(XgXg)
Die zwei Definitionen von { , } stimmen liberein. Das folgt zum Beispiel sofort aus

der Beschreibung von X in den Koordinaten einer Karte aus &: Es gilt

JF 9o oF &

XF|U = 9p,oq* ~ 3q” ap,’

denn fiir Y = T ist w(Xg,Y) = 0~ dqu(Y)dp (X) = -dp;(Xp) = ’—i' und analog
fiir Y = 5;7 m(XF,Y) = dq(X )-0 = g;l: D1e so definierte Poxssonklammer macht
1

M zu einer Poisson—-Mannigfaltigkeit in folgendem Sinne:

Definition. Eine Poisson-Mannigfaltigkeit ist eine Mannigfaltigkeit mit einer
R-bilinearen Abbildung { , }: &(M) x 8(M) —> 6&(M) mit den folgenden Eigenschaf-
ten (vgl. 11.9.5):

1° (8(M),{ , }) ist eine Lie-Algebra, d.h. { , } ist alternierend und erfiillt
die Jacobi-Identitt.

2° Es gilt {F,GH) = G{F,H} + {F,G}H fiir alle F,G,He 6(M).

Fiir die Poissonklammer einer symplektischen Mannigfaltigkeit lassen sich
diese Eigenschaften leicht nachweisen; eine symplektische Mannigfaltigkeit ist also im-
mer auch eine Poisson—Mannigfaltigkeit. Aber nicht jede Poisson-Mannigfaltigkeit ist
eine symplektische Mannigfaltigkeit, zum Beispiel definiert die triviale "Poissonklam-
er" {F,G} = 0 fir F,Ge 6(M) auf jeder Mannigfaltigkeit M die Struktur einer
Poisson—Mannigfaltigkeit. Auch auf dem Produkt M X N einer Poisson—-Mannigfaltig-
keit M mit einer beliebigen Mannigfaltigkeit N, auf der ein Punkt y, € N ausgezeich~-
net ist, wird analog durch {F,G} = {F(,y,),G( Yo} die Struktur einer Poisson—-Man-
nigfaltigkeit definiert. Was die symplektischen Mannigfaltigkeiten unter den Poisson-
Mannigfaltigkeiten auszeichnet, ist die Vollsténdigkeit (vgl. [1.9.5.5°):

Satz. Die Poissonklammer einer Poisson-Mannigfaltigkeit (M,{ , }) kommt
genau dann von einer symplektischen Struktur auf M, wenn die folgende Vollsténdig-
keitsbedingung erfiillt ist:

Aus {F,G} = 0 fiir alle Fe 8(M) folgt, daB G lokalkonstant ist.

Den Beweis dieser Aussage findet man z.B. in [LIM, 111.8.11].
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ANHANG G: GEOMETRIE DER FLACHEN UND RIEMANNSCHE MANNIGFALTIG-
KEITEN

Dieser Anhang vermittelt zunéchst in den Abschnitten 1-11 eine FEinfiihrung
in die Geometrie der Flichen im R®. Auch wenn es Skonomischer wire, die geometri-
schen Konzepte von vornherein mdglichst allgemein zu behandeln, soll auf diese Weise
dem Einsteiger die Moglichkeit geboten werden, flir den relativ iibersichtlichen zweidi-
mensionalen Fall die wichtigsten geometrischen Grundbegriffe wie Paralleltransport,
Geodatlsche und Kriimmung kennenzulernen. Der Formalismus ist so aufgebaut, daB
er sich ohne viel Aufwand auf Riemannsche und semi-Riemannsche Mannigfaltigkeiten
und auf die Geometrie von (affinen) Zusammenhéngen auf dem Tangentialbiindel einer
Mannigfaltigkeit iibertrigt,

Zur Ubersicht eine Liste der einzelnen Abschnitte dieses Anhangs:

0. Kurvenin R? und R® 330
1. Flachen im Raum 331
2. Beispiele von Flichen im Raum 333
3. Flacheninhalt 337
4. Bogenlidnge und Geoditische 338
5. Beispiele von Geoditischen 339
6. Weitere Bedeutung der Christoffelsymbole 342
7. Parallelverschiebung auf Fliachen 342
8. Kovariante Ableitung 345
9. Isometrien und Isometriegruppen 346
10. Kriimmungstheorie der Flichen 348
1. Krlimmung und Paralleltransport 353
12. Riemannsche Mannigfaltigkeiten 355
13. Parallelverschiebung auf Riemannschen Mannigfaltigkeiten 356
14. Kriimmung Riemannscher Mannigfaltigkeiten 358
15. Zusammenhang und semi~Riemannsche Geometrie 360
16. Der Hodge-Operator 362
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0. Kurven in R? und K. Unter einer Kurve im [R"™ verstehen wir in der
Regel eine beliebig oft differenzierbare Abbildung

y:J] — R
auf einem Intervall J C R mit der Eigenschaft: ¥(t) := %Y(t) + 0 fiir alle te].
(Solche Kurven werden anderswo reguldre Kurven genannt. Im 7. Abschnitt allerdings
bendtigen wir auch stiickweise differenzierbare Kurven.)

In Bezug auf das iibliche euklidische Skalarprodukt < , > auf R™ und Lan-
ge |X| = 21/<X X> von Vektoren X aus R™ hat eine Kurve vy filr endliche Teilinter-
valle [ty,t,1CJ die Bogenlinge

b .
Blrlpe o3) = ftoiy(t)ldt.

(Vgl. auch: 11.8.8) ~y heiBt natiirlich parametrisiert, wenn [¥(t)] = 1 fiir alle te],

also wenn stets
B =t, -
Oeege,?) = B to

gilt. Jede Kurve besitzt eine natiirliche Parametrisierung: Denn fiir t; €] ist die Funk-
tion B:J —> R, B(t) : fto [¥(0)idr, t e J, differenzierbar und streng monoton
wachsend mit positiver Ableltung B(t) = IY(t)l > 0. Deshalb existiert zu B eine dif-
ferenzierbare Umkehrfunktion o = B~ Ly — J, 1= B(J). Fir die Kurve
¥ == yoo gilt dann:

1) ¥(1) = v(J) und
2 Li5(s) = 1 fiiralle sel,
d = dx do dogy o= 1
denn -y(s) = Clt(<5(s))ds(s) und ds(s) FCOE
Natiirlich parametrisierte Kurven vy haben wegen d%('y,"{) = d%]?lz =0
und a%(?,«'{) = (3> + <5,%> = 24¥%,¥> die Eigenschaft <{y,¥> = 0, das heiBt der
Beschleunigungsvektor ¥ steht stets senkrecht auf dem Geschwindigkeitsvektor ¥.

Y(t3) Y(ts)

§lt,) = 0
¥lt,) ity

Definition. Die Kriimmung einer natiirlich parametrisierten Kurve vy ist defi-
niert als

w(t) == [§(t)], te

Sie beschreibt die lokale Winkelanderung des Geschwindigkeitsvektors ¥(t).
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Beispiele: Die Gerade y(t) = ta+ b, a,be Rn, lal = 1, hat die Kriimmung
x = |9(t)| = 0. Die Kreislinie v(t) = R(cos%,sin-&), t € R, mit Radius R > 0 hat
die Kriimmung x(t) = [4(t)] = %.

Im Falle einer natiirlich parametrisierten Kurve Y in R® sei ¥(t) £ 0.
) e Orthonormalbasis  (v(t),n(t))

¥(t)
von R? gegeben. Das "Zweibein" (v(t),n(t)) erfiillt die Frénetschen Formeln:

Dann ist durch v(t) == {(t) und n(t) :=

V=mxn , N = -uv,

wie man leicht nachrechnet. FaBt man v als Kurve im e auf, deren Bild ganz in R?

liegt, so hat man fiir nicht notwendig natiirlich parametrisierte y die Formel
w = 191735 x 4.
Im dreidimensionalen Fall sei wieder v := Y und n := T%, ¥ *+ 0, fiir

eine natiirlich parametrisierte Kurve y in R®. Dann heiBt b = v x n die Binormale
und (n,v,b) ist Orthonormalbasis von R®. Die Frénetschen Formeln lauten jetzt:

V=xn , h=-1tb-xv , b= 1n,

wobei die Torsion v durch b = tn definiert ist. (Wegen b = vxn + vxi=vx n
und 0 = %Ibl2 = 2<b,b> steht b senkrecht auf v und b, ist daher ein Vielfaches
von n. Flir ebene Kurven ist 1 = 0.) Die zweite Formel ergibt sich dann direkt aus
den anderen beiden: n = bxv und

i=bXv+bxv=1nxv+bxxnc= -tvxn) - xlnxb) = -tb - xv,

da b= vxn, v=nxb.

s .
’ -
e P7
-

1. Flichen im Raum. Unter einer Fldche im R® versteht man eine zweidimen-
sionale Untermannigfaltigkeit £ ¢ R® zusammen mit dem von R® auf ¥ vererbten
Langenbegriff. (Der Raum R® wird dabei als etklidischer Raum mit seinem iiblichen
euklidischen Skalarprodukt < , > aufgefaBt.) Es gibt also zu jedem Punkt ae X eine
offene Umgebung U von a in 3 und eine Karte p: U — Q c R?, Q c R?
offen, mit den folgenden Eigenschaften (vgl. M.5)

1) ¢ ist stetig.
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3) rgDylq) = 2 fiir qe Q, das heiBt die Matrix Dd(q) = (—aﬂ(q))lsjss

ogh s
hat Maximalrang. sus?

Die Umkehrabbildung ¢ = cp_l zur Karte ¢ wird auch Parametrisierung des Fldchen-
stiicks U = ¢(Q) C ¥ genannt.

Der bereits angesprochene Liangenbegriff auf der Flache ist der folgende: Je-
der Tangentialvektor X € T_% an X im Punkte aeX (vgl M.6) ist ein Vektor in &3
und hat dort die euklidische Linge |X| = 21/<X,X> , die als die Linge von X als
Vektor in T X aufgefait wird. Durch Restriktion des Skalarprodukts < , > von R®
auf den 2-dimensionalen Unterraum T_X erhdlt T X also die positiv definite symme-
trische Bilinearform g, = gla) : T 2 X T X —> R

g, (X,Y) = <X,Y> fir X,Ye T % CR.

In der Fliachentheorie heiBt g die erste Fundamentalform von ¥ in a, die oft auch
mit [ bezeichnet wird. Sie definiert eine Riemannsche Metrik g auf X im Sinne von
11.8.10 und Abschnitt 12 dieses Anhangs.

Bezliglich einer Karte ¢ : U —> Q der Fldche bei a¢ X, also ae U, gilt
mit q = ¢(a) fiir die Parametrisierung ¢ = cp-1 :Q — U:

d d
auq;(q) = aiqu(q) = HELP(Q + teu)|t=o, v = 12,

liefert eine Basis von T,% (vgl. auch M.6). Zu X,Y e T_ 5 gibt es also eindeutig
bestimmte X%, Y e R mit X = x“auq;(q) und Y = Y'3 d(q).

Mit der Festsetzung

11°) g, (q) = <3, (a),,0(a)> = g4q)(2,$(a).0,b(@)
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8, ist E=g,, F= g2 = 8y und G = g,, (vgl. z.B. [DFN I, &. 691). In Bezug
auf die tiblichen orthonormalen Basisvektoren €,e,,€; des R® habe ¢ die Kompo-
nenten ¢’,¢Z,¢»3 € 6(Q). Dann gilt

3
. b'e *
g —XZI 0,4%(a)a 0™ (q).
Fiir eine andere Karte 3 : U — Q mit Parametrisierung ¢ = §~!' sej

entsprechend

8,, (@ = <8, ¥(@.0,W@>

1

Dann ist F = oo ':Q —> Q ein Diffeomorphismus mit ¢(q) = PYoF(q). Auf-

grund der Kettenregel

- 0 = - 8¢ Fk _ o k
M) = FeoFoF(q) = GF oqi = kVoF

erkennt man das Transformationsverhalten von 8., unter solchen Kartenwechseln:

£uu@ = By (F()3,F¥a, .
Kurz
—k 4]
(12 g,, = By %ﬁg—;& mit § = F(q), §° = F¥(q).

2. Beispiele von Flichen im Raum

(2.1°) Affine Ebene. ((q) := ¢y + qlc1 + qzcz, q = (g,q) e R%® = Q, mit
Vektoren Cpr€yyCy € [Ra, ¢, und ¢, linear unabhéngig. E = Q) ¢ R® st Flache.
E ist die zu €y X ¢, senkrechte affine Ebene durch den Punkt ¢, - Es gilt

gula) = Iel?® + o, 81y = <cpucp>, 82200 = Ic,)* + 0.

(2.2°) Zylinder. Z = {(x,y,2) | ¥ +y? =R?) ¢ R®, R > 0. Eine Para-



334 Anhang G: Geometrie der Flachen und Riemannsche Mannigfaltigkeiten

Plq) = R(cosqz,sinqz,ql), q = (ql,qz)e RxI1-w,n[ == Q.
Esist $(Q) = Z\{(-1,0,2) | z € R} . Fiir diese Parametrisierung gilt

g,lq) = R, glz(q) = 0, gzz(q) = R%.

(2.3°) Sphire. 3121 = {({x,y,2) | &+ v+ 2?2 = R?} ist die Sphire mit Ra-
dius R> 0.8Sei N = (0,0,R) ¢ Sé.der "Nordpol". Eine Karte auf 5121 ist zum Beispiel
durch die stereographische Projektion

oy = @ SEVIN) — B® = Q

plx,y,2) = T{%—z— (x,v), (xy,2) eSé\{N} = U
gegeben.

2 (x,y)

-1

Die zugehorige Parametrisierung ¢ = ¢ ist

Plx,y) = —XT:%ZTR_Z (2R%x, 2R%y, RGE + 2 - R?))

fir (x,y) € R* = Q. Deshalb gilt filr q = (x,y) e R
_ __ 4R*
gjk(q) = TR? + |qH)2 ajk‘
Eine analoge Karte erhilt man durch die stereographische Projektion vom "Siidpol”

S := (0,0,~R) aus: ¢g: Slzl \ {S} —> RZ. Insbesondere hat man so zwei Karten ge-
funden, die die Sphare iiberdecken: S%\ \{N} n SIZ,\ \{S} = Sé.

(2.4°) Rotationsflichen. Vorgegeben ist die Bahn C = v{1ty,t, [} einer
differenzierbaren Kurve v : 1ty t,[ —> R%, fiir die Cc R, x{0} xR gilt und v in-
jektiv ist. (AuBerdem gelte {(t) + 0 fiir alle telty,t; [.) Die zugehorige Rotations—
fléiche um die z—Achse ist dann die Menge
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% = {(r cose,r sing,s) ¢ R® (r,0,s) € C, p € R}:

y

Ausgangskurve C in
der x-z-Ebene

Unter den angegebenen Voraussetzungen gibt es differenzierbare 0,0 : ]to,tl[ —> R

mit éz + 62 = >0 und o> 0, so daB ¥ vonder Form y = (p,0,0) ist. Durch

dlq) = (p(ql)cosqz,p(qi)sinqz,o(ql)), a€Q = Ity tIx]-n,n[,
ist eine Parametrisierung von I\ {(-x,0,2) | (x,2) € C} gegeben. Man erhilt:

gy = ¥+ 6% =8, g = 0, Bz = 0%,
Wenn die Kurve y natiirlich parametrisiert ist, ergibt sich wegen B =1 noch gy =1.
Die letzten zwei Beispiele sind im wesentlichen Rotationsfldchen. Fiir die Sphére hat
man daher insbesondere auch die bekannte Parametrisierung

$(6,9) = (Rsinbcosep, Rsin®sing, Rcos®), (6,¢) € 10,7 [ x I-n,xl,
durch "Winkelkoordinaten”. Es gilt in diesen Koordinaten q = (0,9):

gyla) = R?, g, =0, gy5(a) = R%sin.

(2.5°) Torus. Es sei T = {{x,y,2) € R%| (Yx2+y2 —RZ+ 22 = 2}, wo-
bei R>r>0. T ist Rotationsfliche zur Kreislinie C = {{x,0,2)| (x~R)% + 2% = r?)
mit p(t) = R+ rcost, o(t) = rsint. Fine Parametrisierung ist daher

P@) = ((R+ rcos@)coso,(R + rcos8) sing,rsind),
fir g = (6,9} el-m,n[x]-n,n[ = Q. Es gilt fiir diese Parametrisierung:

2 2
8y = 1, g. = 0. o = (R v e DY
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(2.6°) Pseudosphiire. IH]é = {(x.y,2) eR®| 220, 2% - “ -yt = R%}, R > 0.
Die "stereographische Projektion" von S = (0,0,-R}) aus liefert die Karte

P : H121 — By, elxy,z) = }—,\—F—Z(x,y), (x,y,2) € Hé,
mit Parametrisierung ¢ := P By — [H]lz,\

P(x,y) = TﬁrRta—gT (2Rx, ZRy,R2 + |q‘2) , g = (x,5) e Bg.

e

R{ pla)

[H]li ist also diffeomorph zur Kreisscheibe Br = {(x,y): x* + yz < R?}. Man benétigt
nur die eine Karte zur Uberdeckung der Pseudosphére. In Abweichung zu unserer
generellen Voraussetzung verdndern wir das euklidische Skalarprodukt auf R® zu dem
Minkowski-Skalarprodukt

£q,q9"y = xx'+yy -zz', q = (x,5,2),q" € R®

Mit gq(X,Y) = X, Y» fir X,Ye TG[Hlli wie oben erhalt man positiv definite Ska-
larprodukte auf TQ[H]2 , A€ [H]121, also eine Riemannsche Metrik. Beziiglich der Parame-
trisierung ¢ gilt fiir B = <<au¢,aV¢>>;
4R*
8@ = TRz - [qp2 dw> A€ Br-
In den natiirlichen Koordinaten als Rotationsflache hat Hg\ {(0,0,R)} die Parametrisie-

rung

{(q) = R(sinh® cos¢,sinh sing,coshl), q = 0,0) € 10,000 x I-m,m(

mit: g, = (Rcosh® cos@)? + (Rcoshe sing)? - (Rsinh6)? = R?
1

g, =0,

8y = R%sinh% 6.

(2.7°) Graph. Es sei f: Q —> R eine differenzierbare Funktion auf einer
offenen Menge Q C R”. Dann ist der Graph G; = {{x,y,2) ¢ R®: z = flxy)} von f
eine Fliache im [R3, welche durch §: Q —> G, lg) = Pxy) = (xyf(xy)) fir
q = (x,y) € Q, parametrisiert wird:
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z = f(x,y)

N
{
N

Jede Fliche % im R® hat lokal die Form eines solchen Graphen, abgesehen von
Vertauschungen der Variablen: Zu jedem Punkt ae ¥ gibt es nach dem Satz iiber
implizite Funktionen (vgl. M.3.5%) eine Umgebung U C ¥ von a, eine differenzierbare
Funktion f: Q — R und eine Vertauschung o : R — R° der Verdnderlichen
(otq',q%q®) = (qu,qT(Z),qT(a)) fiir eine Permutation 1 e 8;),s0daB U = o(Gg).

Fiir diese Parametrisierung gilt: 9, ¢la) = (1,0,8,f(q)), 9,0(q) = (0,1,8,f(q))
und daher

gw(q) = Suv + auf(q)avf(q).

3. Flidcheninhalt. Der Flicheninhalt eines Teils S % der Fliche ¥ in einer
Kartenumgebung Sc U, ¢: U —> Q c ®? ist folgendermaBen definiert:

A(S) = fwm Ydet(g,,(q) dq'dg?

Aufgrund des Transformationsverhaltens der Integrale (vgl. M.18) und der Buy (vgl.
1.2°) ist diese Definition unabhéngig von der speziellen Wahl der Karte. Eine geometri-
sche Interpretation von A(S) wird durch det(gw(q)) = 18,(q) x ach(q)l2 gegeben
(vgl. 11.5.7.14 £)) und damit sind wir schon bei dem ersten der obigen Beispiele:

(3.1°) Fiir die affine Ebene E ist det 8 = Icl X czlz in 2.1°, also gilt zum
Beispiel fiir S := @([0,11x [0,1]): A(S) = e, x ¢, ist der elementargeometrische Fli-
cheninhalt des von ¢, und ¢, aufgespannten Parallelogramms (vgl. 1.4.8°).

(3.2°) Sei S == O([0,kIx1-n,%[) C Z das "Zylinderstiick" der Hthe Rk:
Wegen detgw = R* ist A(S) = f: ffn R%dq'dq® = 2xR%k.

(3.3°) Flir die "Halbsphire” § := S;\{(x,y,z)l x £ 0} gilt unter Verwen-
dung der in 2.4° beschriebenen Parametrisierung durch die Winkel 0,¢:

As) = [7 R*[" sin6dode — 2rR?.

(3.4°) A(Y(Q)) = 2n f:’p(t)dt bei natlirlicher Parametrisierung von C.
(+]
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(3.5°) Fiir den Torus gilt A({(Q)) = fjnfsﬁ rlrcos + R)dpde = 4n’rR.

(3.6°) Im Falle der Pseudosphdre sei h > R, und S es sei die "Kappe"
S = {(x,y,z) € [HI;I z < h}. Dann gibt es genau ein « > 0 mit Rcosha = h und

as) = " R? [*sinhedode = 2Rk ~ 1 = 2nR(h - R).

(37°) AGy = [ 11+ Ve dudy.

Die Integration A(S) = f (5)1/ detg v clqldq2 definiert eine Volumenform
QP
do auf U c X, die es erlaubt, auch andere 2-Formen 1 = fdo, f: U —> R stetig,
zUu integrieren:

fsn = J‘@(S)f(cb(q))]/det v dq'dg® , wobei S c U.

4. Bogenldnge und Geoditische. Fiir eine differenzierbare Kurve vy in der
Fliche £ ¢ R°, v:[ty,t] —> Z,ist

t
Biv) == [, /ey, 1(0) dt

die Bogenlédnge der Kurve, die ja mit der Bogenldnge von y im R® iibereinstimmt (ab-
gesehen von 2.6°). Eine natiirlich parametrisierte Kurve (das heiBt g(¥(t),7(t}) = 1)
heiBt Geoditische, wenn sie stationdr ist beziiglich des Funktionals B. Im Rahmen der
Untersuchungen von kraftefreien Bewegungen mechanischer Systeme wird in 1.8 ge-
zeigt, daB eine natiirlich parametrisierte Kurve y genau dann stationdr ist, wenn sie in
lokalen Koordinaten ¢ : I —> Q in der Notation g = (cpoy)j, j=1,2, jeweils die
Differentialgleichung

(41°) ¢ +T5dd =0, k=12,
erfiillt mit den Christoffelsymbolen

o k 1 ku -
(4'2 ) FlJ =2 B (gig.j + gjuqi gij,“)y

wobei giu'j(q) = a—?ﬂgiu(q)' Aufgrund der Existenz- und Eindeutigkeitssatze fiir
Systeme von gewdhnlichen Differentialgleichungen (vgl. z.B. [DYS. 1] oder [WAR]) gilt:
Zujedem a€ X und jedem ve T % mit glv,v) = 1 gibt es eine eindeutig bestimmte
(maximale) Geoditische v :Jt_t,[ —> = mit y(0} = a, ¥(0) = v und maximalem
Definitionsintervall 1t_,t,[ C R. Aufgrund der Nichtlinearitét von 4.1° lassen sich die-
se Lisungen im allgemeinen nicht auf ganz R fortsetzen. In der Regel kann man sie

nicht durch elementare Funktionen ausdriicken.

(4.3°) Definition. ¥~ C R® heiBt geoditisch vollstindig, wenn alle maxima-
len Geoditischen R als Definitionsbereich haben.
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5. Beispiele von Geodstischen.

(5.1°) Affine Ebene Es ist I‘k 0, da die g konstante Funktionen sind.
Die Differentialgleichungen q =0 haben die Losungen q(t) = at + b mit a,be R?,
wobei die Bedingungen <a,a> = 1 und ae {occ1 + Bc, | B e R} erfiillt sein miissen.
E ist geoddtisch vollstindig. Die punktierte Ebene E\{c,} dagegen ist nicht geoda-
tisch vollsténdig.

(5.2°) Zylinder. Hier gilt ebenfalls I‘k = 0. Die Geoditischen sind daher von
der Form «(t) = ¢(at +b), a,b, ¢ R? mit g(Y,Y) 1. Also sind die Geoditischen
die Kurven

y(t) = R(cos(a t+b,),sin(a,t+ b 2at+b), teR,
mit Qf + a = R7% Das ergibt als Geoditische die Mantellinien ("Meridiane") (a, = 0),
die geschlossenen Kreise {a, = 0) und die Spiralen (a, # 0 * a,) mit der "Steigung"”

——1 . Zwei solche Spiralen mit verschiedener Steigung haben unendlich viele Schnittpunk-
t:e Z ist geoditisch vollsténdig.

(5.3°) Sphire. Fiir die Sphire SR sind die Christoffelsymbole in den Win-
kelkoordinaten (vgl. 2.4°);

F;z = -—sin6 cos@, Ffz = I‘Zz1 = cotB, q = (68,9),

wihrend die iibrigen Illj verschwinden. Es gilt also die Losungen des Systems

6 — sinb cosd o2 = 0
$+2coth b =

zu bestimmen. Mit dem Ansatz Py, = constans ergibt sich § = 0, also 6(t)= at + B
mit geeigneten o, B €R. Um fiir y(t) = ¢(9(t),cp0) auch noch g({,¥) = 1 erfiillt zu
haben, muB « € {R,-—} gewidhlt werden. Damit folgt wegen der Eindeutigkeit der
Lésungen des leferentxalglelchungssystems, daB die Geodstischen durch den Punkt
N = (R,0,0) genau die GroBkreise durch N in der Parametrisierung

y(t) = R(sinti cos cpo,sin—lti sin@o,cos%), teR,

sind, wobei ¢, € [0,2n[. Durch Verdnderung der Orthonormalbasis von [R® oder der
Parametrisierung von SR ergibt sich wegen der Invarianz von B gegeniiber Drehungen
ebenso: Durch jeden Punkt «q e Sz sind die Geod4tischen genau die natiirlich parametri-
sierten GroBkreise (vgl. auch 8.18.2°). Insbesondere ist S geoditisch vollstandig.

Da die stereographische Projektion ¢ : SR\{N} — R Kreise in Kreise
oder Geraden iiberfiihrt, folgt jetzt fiir R® mit der Metrik

- m‘lR__ o).
8 (RZ + g2 uv (vgl. 2.3°):

Samtliche Geoditische von R* als Fliche mit dieser Metrik haben Kreislinien oder Ge-

raden als Bahnen (nidmlich die stereographlschen Projektionen der GroBkreise). Fiir einen

Db L -~ m2 + R el e
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von Geoditischen folgendermaBen beschreiben:

LIst b= 0,s0sei V= {veR?: Ivl = R}, und fiir jedes v sei C_ die
Gerade durch v und O.
2. Ist b+ 0 und /bl £ R, so sei wieder V = {ve ®%: {v| = R}. Fiir
veV sei C diejenige Kreisbahn, die durch v,-v,beC, festgelegt ist. (Im Falle
= X RTT ist C, die Gerade durch b und 0.)
3.Ist |bl = R,sosei V= {veR? <v,b> = 0}, Fiir veV sei Cy dieje-

nige Kreisbahn die durch v, b, - be C, festgelegt ist. (C, ist die Gerade durch b
und 0.)

Mit diesen Bezeichnungen gilt jetzt in jedem Punkt be R?: Fir veV ist
C, Bahn einer Geodstischen durch b und durch {C,:veV} werden samtliche geo-
datische Bahnen durch b beschrieben. FaBt man die geoditischen Bahnen als die "Gera-
den” der jeweiligen Geometrie auf, so hat man auch den Begriff von parallelen Geraden:
Zwei Geraden sind zueinander parallel, wenn sie sich nicht schneiden. Das Beispiel der
"sphérischen Geometrie" zeigt, daB das Parallelenaxiom im folgenden Sinne verletzt ist:
Je zwei Geraden schneiden sich, kénnen also nicht parallel sein (vgl. auch IL8.11).

(5.4°) Rotationsfliche. Aus 2.4° errechnen sich die Christoffelsymbole fiir
eine Rotationsflache als

Fl = % lez = _%g’ I‘122 =‘g'
mit F = 0 fiir die iibrigen Christoffelsymbole. Die Gesamtheit der Geoditischen 148t
sich mcht so einfach wie in den vorangehenden Fillen angeben Aber die Meridiane (d.h.
Py = constans) beschreiben wieder Geodatische: Sei p + & = B = 1, und setze

v(t) = (plt)cosg,.plt)singy,o(t)).
Dann ist ¥ natiirlich parametrisiert und vy ist Geoditische: Denn mit gl(t) = t und
qz(t) = ¢, sind die Gleichungen

g ———-—(qz) =0, § +2p g'¢% = 0 (beachte I‘ill = 0 wegen B = 1),
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Fiir die Breitenkreise y(t) = (p(Go)cosq)(t),p(GO)simp(t),c((-)o)) ist ¥ na-
tiirlich parametrisiert, wenn {p(6,)¢(t)| = 1 gilt, also z.B. wenn o(t) = ct, teR,
mit p(8y)c = 1 ist. Da fiir qltr) = 0, q¥(t) = o(t) = ct die zweite Gleichung
ijz + 2§ q‘ qz = 0 unmittelbar erfiillt ist, ergibt sich: Ein Breitenkreis von % ist ge-
natt dann Bahn einer Geoditischen, wenn ;’)(Go)p(eo)c2 = 0 gilt, also wenn §{8;) = 0
ist. Im allgemeinen ist die Rotationsfldiche ¥ nicht geoditisch vollsténdig. Sie ist aber
vollstindig, wenn Itg.t,[=R.

(5.5°) Torus. Fiir den Torus T hat man fiir die Geoditischen die Differen-

tialgleichungen (vgl. 2.5°)

] +}.—sin6(R + rcos0) c‘pz =0

$-2 ﬁ% P86 =0
als Spezialfall von 4°. Die dort gefundenen Geoditischen haben als Bahnen gerade die
Schnitte von T mit Ebenen, die die z-Achse enthalten. Die zwei Kreisbahnen von T
in der x-y-Ebene sind nach 4° ebenfalls Bahnen von Geoditischen. T ist geoditisch
vollstandig.

(5.6°) Pseudosphire. Der Fall der Pseudosphire Hl‘i ist dem der Sphire

verwandt. Die geoddtischen Gleichungen sind

8 - sinh® cosh® % = 0
f+2cothd ¢ =0

und die Geoddtischen haben als Bahnen die Schnitte von [H]li mit Ebenen E durch 0.
Beziiglich der stereographischen Projektion ¢ : H}i —> By sind die Bilder der Geodi-
tischen wieder Kreise in Bg, und zwar handelt es sich um sdmtliche Kreisbahnen
C N By, die den Rand 0By = {(x,y)| x* +y? = R} von By senkrecht schneiden. Auch
[H]li ist geoditisch vollstdndig. Mit dem Parallelismus von Geraden (siehe 5.3°) hat man
hier zu jeder Geraden durch jeden Punkt auBerhalb der Geraden unendlich viele parallele
Geraden (vgl. 11.8.11).

(5.7°) Graph. Wir wollen hier nur die Christoffelsymbole berechnen. Mit der

1

Determinante A := detguv gilt g = A‘lgzz, g!? = —A_‘glz und g*¥ = A"‘g“.

Wegen g = (Biu + aifauf),j = aijfauf + 8if6ujf (vgl. 2.7°) ist

iw,j

k1 ku _ _ _ ku
Ty =28 (8,f0,f +0,f0,f+0,fo f+0,fo,f-a,Fof 0;f8;,f) = g 0,fa f,

- - 2 -
dh. Ty = A™gy,d,f0,F — g,0,£9,f) = AT, f0,f und T% = A9 fa,f.

Die Differentialgleichungen fiir die Geod#tischen haben daher in der Notation
f, = 9,f, fy = 9,f etc. die folgende Form:

X

o+ EATNE K+ 26 x5+ £ 5% = 0,

N -1 .2 - .2
y+fA Es +2fxyxy+ £,,¥ ) = 0.
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6. Weitere Bedeutung der Christoffelsymbole. Es sei ¢ :U —> Q c R?
eine Karte der Flaiche £ c R®, U c T offen, und es sei g = (p—l die zugehdrige Para-
metrisierung. Fiir

N,(@) = N(@) = %WT—%%{%, 4eQ,
gilt offenbar: IN| = 1 und N(q) ist senkrecht zum Tangentialraum T¢(q)2. N{(q)
heiBt der Normaleneinheitsvektor zu ¢ in q bzw. in ((q). Fiir jede weitere Parame~
trisierung $: Q —> U mit Q) = P(q) gilt stets N_(T) = +N¢(q) oder
Nm(ﬁ) = - Nq,(q) fiir den Normaleneinheitsvektor N_(q) zu ¢.

Zum Beispiel errechnet man fiir die weiter oben erwdhnte Parametrisierung
$(0,p) = R(sinb cos o, sinb sing, cos6) der Sphire: Nw(e,@) = R7'¢(0,p), wihrend fiir
die Parametrisierung §(¢,0) := R(sin6 cos¢, sin sing, cosh), in der im Vergleich zu
¢ nur die Variablen vertauscht sind, gilt: Na(qv,e) = -R'{{p,0) = —Nw(e,<p).

Da (8,4(q),8,0(q),N(q)) fiir jedes q € Q eine Basis von R® ist, laBt sich
der Vektor

aij(b(q) = %&r(q)
eindeutig als Linearkombination beziiglich dieser Basis darstellen. Die Koeffizienten
dieser Darstellung vor 9, ¢(q), k = 1,2 kennen wir bereits. Es 148t sich ndmlich durch
Auswertung von Skalarprodukten leicht nachrechnen, daB

k
b = Td, b+ hyN

gilt mit hij(q) = (aij4)(q),N(q)>.

Wegen <N,d 0> = 0, v=1,2, geniigt es dazu (E)ijgp,é)vtb) = I"iljcgkv fiir
i,j,v € {1,2} nachzupriifen. Das folgt aber sofort aus 8iyj = <Oybh0,0> + <ai¢,aw.q)>
etc. durch Einsetzen:

k, 1 k. - —1 _ -
Ly =28k, 8 (B 5+ 8y~ 8y, = 20855+ 85y 1~ By ) = Oyho 9>
Auf die hi). als die Komponenten der 2. Fundamentalform kommen wir in

Abschnitt 10 zuriick. Fiir die Sphéire ergibt sich beziiglich der mehrfach benutzten Para-

metrisierung $(6,9) = R(sind cos ¢, sind sinp, cosh):
u="R, h, = 0, h,, = -Rsin®.

Fiir einen allgemeinen Graphen G; mit Parametrisierung ¢(x,y) = (x,y,f(x,y)) ist der
Normalenvektor i\l = A—%(—alf,—azf,l), wobei A = detguv. Wegen awnp = (0,0,awf)
folgt huv = A zawa

7. Parallelverschiebung auf Flichen. Es sei v : [ty,t,] —> ¥ Geodstische
auf einer Fliche T im R®. Die Parallelverschiebung eines Tangentialvektors Xje T QOE
{a; = ¥(t,),i = 0,1) lings y bedeutet, den Vektor X, differenzierbar auf der

Kurve v sonach T_ ¥ zu "verschieben", daB die Linge des Vektors und das Skalar-
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Abbildung X : [ty,t,] — ®® gesucht mit X(t) € TY(t)Z fir alle t e [t;,t,], so daB
X(ty) = X, und

8 (o) (X().X(8)) = g (X(t),X(ty)),
By (X(B),7 (1) = Bq,(X(tg),¥(ty)) fiir alle telty,t].

X heiBt dann Parallelfeld lings vy. Das BErgebnis Xy = X)), X, € Tqiz, ist defini-
tionsgemdB der ldngs Y parallel verschobene Vektor. Die Abbildung Xg /> X ist
ein [somorphismus

k4
(719 Py T, E—> T,

mit gao(Xo,Yo) = gal(PZo,tl(XO)’on,t‘(YO))' on,ti ist also eine lineare Isometrie.

!P;{o , heiBt Paralleltransport lings .

(7.2°) Satz. X(t) ist genau dann Parallelfeld lings der Geoditischen v,
wenn in lokalen Koordinaten stets gilt

(73% X*+15a'x) = 0, k = 1,2
(mit qi(t) = (<poy(t))i wie bisher).

Beweis. BEs sei X(t) ein Feld lings vy mit XX+ F;; X = 0, wobei

v(t) = Plg{t)). Dann ist
Vo v -k

gu\)x —1 gu\Jijq X o
- _ 1 ,ve _ Ky
= Buv 28 (Bip * Bjox glf(j,p)q X

b3 Y

2 (= By = Buuk ¥ iy )@ XY

Il

Daher gilt
4 xux) = EXEXY + 25 XOXM =
dt ‘Buv = Bk giv -
_ Skt
- (guv,k T Brun T Evu,k + gkv,u) 4~ X"X
— - sKyrttyy
- (gkv,u gku,v) q XX = 0,

da gkv'uX“X" = gku,VX“X". Also ist die Lange vg(X,X) von X konstant. Ebenso
folgt die Konstanz von g(X,{¥) : Da y Geoditische ist, hat man noch

.. k.
g\,uqu = (- 8uv.k +%guk.\))q qU-

zum FEinsetzen:
_d_ sUNFVY N R TRRY] sl [RTRNAY]
dt (8 dXY) = g, 1 @°Q"XY + g, G"XY + g,,4"X

= - 1 1. _ I TR
- fgu\).k +( guv,k ;Z gu\l)(,\)) +t3 ( gku,v g\)y.,k + g\)k,u)) T aX
= 7 (8ukp ~ 8,0 44X = 0,

da stets gvk,uqkq“ = gw’quq“. Also ist X(t) ein Parallelfeld.
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Sei umgekehrt Y : [to't1] —> ¥ Parallelfeld. Zu Y(to) gibt es dann eine
eindeutig bestimmte Losung X(t) des folgenden (linearen) Systems ‘

XK+TE "X = 0 mit X(tg) = Yty

auf ganz [t;,t,]. Weil die Gleichungen g(X,X) = g(Y,Y) und g(X,{) = g(Y,{) in
jedem Tangentialraum TYME gelten und weil TY(t)Z zweidimensional ist, folgt X = Y

aus der Stetigkeit von X und Y. Also erfiillt Y die Differentialgleichungen 7.3°.

Eine stiickweise differenzierbare Kurve y in X ist eine stetige Abbildung
Y [tovt1] — X, zu der es eine Zerlegung t, = s5 <5, <..<s§ = t, des Intervalls
[ty.t,] gibt, so daB Y|[s- si] ¢ [s,_ ;5] —> 3 (beliebig oft) differenzierbar ist
j-1,5j J 1
fiir j = 1,2,...k. Eine solche Kurve heiBt Geodstische, wenn Y|[s‘ Losil =Y Geoda-
j—1, Sj
tische ist fiir alle je{1,2,...k}. Parallelverschiebung lings vy ist dann entsprechend
auf ganz [ty,t,] definiert, indem X, e TQOZ, a; = y(s;), zunichst lings vy, parallel

u X € Ta12 verschoben wird, dann X; léngs y, parallel zu X, ¢ T%E usw.

(7.4°) Beispiel. Auf T = 52 sei ein "geodidtisches” Dreieck vy gegeben
durch 3 zueinander orthogonalen GroBkreisbdgen v,,v,,Y;. Es werde X, = ¥,{ty)
(a = v,{ty) ist der erste Eckpunkt) parallel verschoben. Parallelverschiebung lédngs
der ersten Kante des Dreiecks liefert zunichst X, = *'{l(sl), denn vy, ist Geoditische.
(Dabei ist jetzt y,(s,) = y,(s)) = b der zweite Eckpunkt.) In R® steht X, senk-
recht zu 7,(s,), und das bleibt so lings v,, so daB X, = f¥,(s,) die Gleichung
X, = = Y3{s,) (in ®®) erfiillt. (c = Yols,) = v,(s,) ist der dritte Eckpunkt.) Also
steht X, = 1,(s;) €T
T

%, die Parallelverschiebung von X, ldngs v, senkrechtin

v(ty)
% zu dem Ausgangsvektor X,.

vitg)
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Der Satz 7.2 gilt entsprechend, nur da X jetzt wie vy lediglich stiickwei-
se differenzierbar ist.

Fiir beliebige stiickweise differenzierbare Kurven Y:ltg,t,] —> 2 werde
vy f{zusammen mit ¥) durch stiickweise Geoditische Y, 8leichm#Big approximiert:
Yo 7> Y und Yy, —> ¥. Zu Xp €T, Z sei X~ (n2>1) das Paralleifeld lings

. Dann konvergiert X,, gegen ein X: [to,t] —— 2. X heiBt dann Parallelfeld
langs Y mit X(t,) = Xo- X erfiillt ebenfalls die Differentialgleichung 7.3° und ist
deshalb beliebig oft differenzierbar auBerhalb der Ausnahmepunkte 84 onaSy -

(7.5°) Definition. Ohne diese Zwischenschritte als Motivationen kann Ffiir
eine stiickweise differenzierbare Kurve ¥ i L[ty t,J — X definiert werden: Eine Abbil-
dung X: [tO’tl] —> R® mit X(t) e TY(UZ fiir alle t ¢ [to,tl] ist Parallelfeld lings
¥ (oder einfach parallel lings ¥), wenn X stiickweise differenzierbar ist und wenn
auBerhalb der Ausnahmepunkte 84,...48,_, in lokalen Koordinaten stets 7.3° erfiillt ist.

8. Kovariante Ableitung. Die Bedeutung der Differentialgleichungen 7.3° 14Bt
sich auch tiber die kovariante Ableitung erldutern. Es sei Y e T,X ein Tangentialvektor,
und es sei X ein Vektorfeld lings einer Kurve v, welche Y definiert. Es ist also
Yil-gel — 2, v(0) = a, ¥(0) = Y, X(t) ¢ Ty )z -Essei ¢: Q —> U Para-
metrisierung mit y(]-¢,e[) c U.

Die Ableitung X(t) ist in R® definjert als %X(t). Im allgemeinen gilt
X(t) ¢ T ()2 Mit v(t) = goq(t) und X(t) = X¥(t)a,d(alt)) ist

X(t) = X<, ¢ + X¥q"9,,,d(a(t))
und nach Abschnitt 6 folgt wegen 9, Jlalt)) = F WOl + h N
X(e) = (XX + I g“X")a,0 + (h, g“X "IN,

Also ist X(t) e T, () nur wenn hwq“x" = 0. Durch
ok
(81°) DyX(0) = (X*+TX ¢"X*) o, 9],.,

wird also genau die orthogonale Projektion von X(0) auf die Tangentialebene T, X
beschrieben. D X(0) heiBt die kovariante Ableitung von X in Richtung Y .(Fiir eine
ordentliche Defmltlon muB allerdings noch gezeigt werden, da (X + Fk “X")aqu|t o
unabhingig von der Wahl von v und von ¢ ist.) Es gilt fiir Felder X langs Kurven v:

X Parallelfeld langs v < DY(t)X(t) = 0.
Y Geodidtische & Y Parallelfeld langs ¥ und vy natiirlich parametrisiert
e DY(t)*'{(t) = 0 und vy natlirlich parametrisiert.

(8.2%) Folgerung. v ist genau dann Geoditische von 3. wenn <(t) | T
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Mit diesem Resultat folgt zum Beispiel sofort, daB die Geoddtischen von Si,\

die natiirlich parametrisierten GroBkreise sind.

(8.3°) Beschleunigung. FaBt man eine Kurve vy in T als eine Bewegung in
¥ auf, so ist die Ableitung Y(t) € TY(t)
die "Beschleunigung” ¥ (t) € ®® kein Vektor in TY(t)E. Als Ersatz dafiir kann D‘{Y

% die Geschwindigkeit. Im allgemeinen ist aber

als diejenige "Beschleunigung” verstanden werden, die man von der Flache aus beobach-
tet, ohne den umliegenden Raum [Rs, in den ¥ eingebettet ist, zu benutzen. In diesem

Sinne sind die Geoditischen gerade die unbeschleunigten Bewegungen auf der Fliche.

Obwohl D X(a) mit Hilfe von lokalen Koordinaten und den zugehdrigen
Christoffelsymbolen definiert ist, liefert dieser Ausdruck als Projektion auf die Tangen-
tialebene doch eine koordinatenunabhingige Abbildung. Es sei W C Z eine offene
Umgebung von a € X. Mit B(W) wird der §(W)-Modul der differenzierbaren Vektor-
felder bezeichnet (vgl. Anhang M.12), also hier:

B(W) = {X: W —> R®|X differenzierbar und Ywe W: X(w) ¢ T,2)

E(W) = {f: W —> R f differenzierbar}.

Fiir X, Y e B(W) ist dann Dy X ¢ B(W) definiert wie in 8.1° .

(Dy X)(w) = (Ly(XK) + T Y¥XY) 9, 4(w),

wobei L f die Ableitung in Richtung Y bezeichnet (Lie-Ableitung, M.12). D hat die
folgenden Eigenschaften:

(8.4°) Dy :BW) —> B(W) ist R-linear
D(fX) = f(DyX) + Ly(D X
Dpy. X = f(DyX) + D, X

fiir X,Y,Z ¢ B(W) und fe &§(W), sowie
(85°) Lyg(Y,Z) = g(DyY,2) + glY,DyZ).

8.4° bedeutet, daB D ein Zusammenhang auf dem Tangentialbiindel ist (vgl. Abschnitt
15 und auch V.4), und 8.5° bedeutet, daB D mit der Metrik vertraglich ist. Fiir die
Eindeutigkeit von D siehe 15.6°.

9. Isometrien und Isometriegruppen. Es seien ¥ und X' Fldchen mit den
zugehorigen Riemannschen Metriken g und g'. Eine differenzierbare Abbildung
d:X —> ' heiBt lokale Isometrie, wenn in allen Punkten a € 2 die Tangentialab-
bildung (vgl. M.10.2°)

™ A T N o 1. — A )
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eine lineare Isometrie der euklidischen Riume TQE, TbE' ist, das heiBt es gilt stets
g(X,Y) = g'(Tqé(X),TQCD(Y))

fir X,Ye T,Z. @ ist also eine lokale Isometrie, wenn es zu jedem Punkt a eine
offene Umgebung U von a und eine Parametrisierung ¢ : Q — U gibt, so daB
P = dod: Q — U, U' = (U), eine Parametrisierung fiir ' ist (Umkehrsatz,
M.3.4°) mit der Eigenschaft

85(a) = gjlq) fir alle q¢ Q.
Denn g(X,Y) = g'(TGCD(X),TQCD(Y)) fiir X,Ye T,Z, a = §(q), bedeutet wegen
Ta¢(3'¢(q)) = T &(T ‘-P(e-)) =T (<I>oq;)(ej) = T d'le) = CRAIEY

(oder T 2®(2; Lb(q)) = D®oDd(q). &; = D(®od)(q). &; = 9;4'(q) unter Verwendung der
Jacobi- Matmzen D®,...) sowie wegen gu(q) <ai¢(q),aj¢(q)> und entsprechend
gij(q) = <3’ (q),ajq) (q)>:

85(2) = ¢'(T2(00(a). T,2(G4(a)) = &'(2,4'(a), 0,4 (@) = gl

Eine lokale Isometrie & :% — 3' heiBt Isometrie, wenn & auBerdem
noch bijektiv ist mit differenzierbarer Umkehrabbildung ¢™': %' — 3. (Oft verlangt
man auBerdem noch, daB die Orientierung erhalten bleibt.)

Einfache Beispiele: In der euklidischen Ebene E = R* ¢ R® als Fliche sind
alle euklidischen Bewegungen & € SO(2) x R? Isometrien von E auf sich. Isometrien
von SR auf sich sind alle Drehungen A e SO(3); aber auch die Punktspiegelung
X+ - x ist eine Isometrie der Sphire, die allerdings die Orientierung umdreht.
Durch die Abbildung ®: F —> Z, ®(x,y) = (cosx,sinx,y) der Ebene auf den Zy-
linder Z (vgl. 2.2°) wird eine lokale Isometrie gegeben, wie sich aus 2.2° ablesen l48t.

Beobachtung. Fiir Isometrien ® und ¥ sind auch ®o¥ und ® ' Isome-
trien. Deshalb ist die Menge

Isom(Z,g) == {®:% —> 5| d Isometrie)
in nattirlicher Weise eine Gruppe, die Isometriegruppe von . Zum Beispiel gilt

Isom (E) = O(2) x [?
Isom ($%) = 0(3)
Isom (H%) = O(2,1)
= {AeR®| CAX,Ay> = <x,y> fiir alle x,y e R%).

Die Isometriegruppe Isom (X, g) ist natiirlich gerade die volle Symmetrie-
gruppe im Sinne von L.3 beziiglich der Struktur "Fliche mit der durch g gegebenen
geometrischen Struktur".

Zwei vorgegebene Flichen ¥ und ', zu denen es eine (lokale) Isometrie
i DD YL | B TV R T, ST & D T L B
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Isometrien erhalten bleiben, heiBen innere GréBen der Geometrie oder auch geometri-
sche Invarianten. Beispielsweise sind die erste Fundamentalform g = 1 und alle davon
abgeleiteten GroBen innere GréBen wie zum Beispiel Bogenlinge, Winkel, Flacheninhalt,

Geoditische, Parallelverschiebung und kovariante Ableitung:
Fiir jede Isometrie ¢ : % —> X' gilt:

B(y) = B(dovy) fiir Kurven v : [ty t, ] —> i
A(S) = A(®(S)) fiir Flachenteile S C ¥}

vy Geoditische & ®oy Geoditische;

T®(DyX) = Dy X' mit Y' = T&(Y), X' = T¥(X).

Dagegen sind zum Beispiel die Normale N = N © und die zweite Fundamen-
talform keine inneren GroBen.
Die sogenannte innere Geometrie der Flachen ist die mathematische Disziplin,

die sich mit der Untersuchung von inneren GriBen der Flachen befalt.

10. Kriimmungstheorie der Flichen. Eine sinnvolle Kriimmungstheorie fiir
Flichen 3 im R® laBt sich mit Hilfe der Kriimmungstheorie solcher Kurven entwik-
keln, die ganz in ¥ verlaufen.

Ein Punkt a € sei vorgegeben. Wir betrachten natiirlich parametrisierte
Kurven v :l[ty,t,] —> Z mit ae Y([to’tl])’ etwa a = y(0) und 0c€ lty,t,[. Die
Kriimmung x(t) von v in v(t) ist x(t) = [5(e)], te [ty,t,], und die Kurvennormale
n(t) ist im Falle »(t) = 0 durch #(t) = x(t)n(t) festgelegt (vgl. Abschnitt 0). Es sei
¢ : Q —> U eine Parametrisierung eines Flichenstiicks U c ¥ mit ae U. Das Defi-
nitionsintervall [ty,t,] sei klein genug gewihlt, so daB Y([to,tl]) c U. Wie oben sei
N(q) = NqJ(q) (vgl. 6) der Normaleneinheitsvektor. Setze N({t) := N(Q)"loy(t)),t € [ty,t,]1.

(10.1°) Definition. xN(t) = w(t)<N(t), n(t)> = <N(t), §(t)> ist die Normal-
kriimmung von y in y(t) € Z.

Die Normalkriimmung »,(t) miBt also den Anteil der Kriimmung von y in
Richtung der Flachennormalen. Bei einer anderen Parametrisierung ¢ mit Na = - Nq,
(vgl. 6) ergibt sich ¥ = — xy. ¥y Ist also eindeutig festgelegt bis auf Vorzeichen
unabhingig von den speziellen Parametrisierung von X (aber abhingig von v).

Fiir eine weitgehend kurvenunabhéngige Beschreibung der Normalkriimmung

benétigt man die zweite Fundamentalform:
(10.2°) Definition, Die zweite Fundamentalform 1l auf T_ X ist durch

IL(X,Y) = h(X'V, X = X'8.d(q), Y = Yaudlq)
a ij 1 J

definiert. Dabei ist hij(q) = (N(q),aijtb(q» wie in 6, und q € Q ist der Parameterwert

WY s
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(Zur Erinnerung: Die erste Fundamentalform ist g=1)
Es ist y(t) = Qoqlt) mit qlt) = ¢ loy: [ty,t,] — Q. Deshalb gilt
¥ = q9,0(q) und ¥ = da,4(q) + qiqjaijcp(q). Wegen <N,8,0> = 0 folgt

L (¥(0),9(1)) = hijqi‘.qj = <N’aij¢(q)fliflj> = <N, ¥(t)>, und daher
Ly () (Y(8),9(8)) = sy (t).

Damit ist gezeigt:

(10.3°) Satz von Meusnier. Alle natiirlich parametrisierten Kurven auf einer
Flache 3, die in einem gegebenen Punkte a¢ ¥ denselben Tangentialvektor X ¢ T, X
haben, besitzen in diesem Punkt dieselbe Normalkriimmung.

Man kann deshalb fiir X ¢ TQE, [X| = 1, von der Normalkriimmung xN(X)
von X sprechen, welche als die Normalkriimmung 1y g(0) = <N(0),4(0)> irgendeiner
in ¥ verlaufenden Kurve Y mit ¥(0) = a und ¥(0) = X definiert ist. Dadurch
wird die geometrische Bedeutung von I hervorgehoben, denn es folgt

n (XD = T_(X,X).

Die Normalkriimmung % y{X) 8Bt sich anschaulich erkldren als die Normal-
kriimmung des Normalschnitts, das ist (im Kleinen) diejenige natiirlich parametrisierte
Kurve v mit ¥(0) = X und ¥(0) = a, deren Bahn der Durchschnitt von 3 und der
von N und X aufgespannten Ebene ist (vgl. Bild).
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(10.40) Beispiele. 1) Im Falle der affinen Ebene gilt »(X) = 0 fiir alle
XeTE, IXi =

2) Im Falle des Zylinders erhilt man zum Beispiel im Punkte b = (R,0, 0)
zu jeder Richtung X e T, Z, X = a 10,(0) + a, 3,0(0) = R(0 ag.a) (vgl. 2.2 °) mit
der Lange IX| = R /01 + Clg 1 eine natiirlich parametrisierte Kurve (vgl. 5. 2°)

¥(t) = Rlcosla,t), sinlayt), a,t)

mit v(0) = b = (R,0,0) und ¥(0) = X. (v ist nicht Normalschnitt.) Es gilt

¥lt) = - R(qicos(azt). agsin(azt),O)
also x(0) = Ra? und n(0) = —(1,0,0). Wegen N(0) = -(1,0,0) folgt
(X)) = Ray.

Aus 1) und 2) ergibt sich: % ist keine innere GriBe der Flichentheorie. Denn E und
7 sind nach 9 lokal isometrisch isomorph.

3) Fiir die Sphare S in der Parametrisierung durch Winkelkoordinaten (vgl.
2.4°) gilt N(¢(q)) = -—d,)(q) Zu ace€ Sz und XeT, SZ mit |X| = 1, hat man die
natiirlich parametrisierte Kurve

y(t) = a cos—:i +RX sinl%
mit v(0) = a, 7(0) = X. (Y ist Geoddtische !} Es ist ¥(t) = ——Y(t) Also gilt
at) = - v(t) und x(t) = §. Es folgt x(0) = xy(X) = L

4) Analog fiir die Pseudosphare lH] boup(X) = - % fiir XeTg [H]; mit

Xl =

Weingarten—Abbildung. Zur Beschreibung aller Normalkriimmungen in einem
Punkte ae ¥ ist die Weingarten—Abbildung W_: T2 — T, % niitzlich. W_ ist
durch Il {lber

W_(X),Y> = IL(X,Y) fir alle X,YeT,Z

definiert. W ist R —linear, und wegen hij = hji ist W, auch symmetrisch (selbst-

adjungiert). Es gibt daher in T_Z ein Orthonormalsystem e, e, und k,k, e R mit

W_le) = ke, j = 12,

e,,e, heilen die Hauptkriimmungsrichtungen in a € X, und die Eigenwerte k. k, sind
die Hauptkriimmungen. Fiir allgemeine Richtungen X e T_Z ist X = cosbe, +sinbe,

fiir ein geeignetes B, wenn |X| = 1. Es folgt die Eulerformel
(10.5°) y(X) = k cos”6 + k,sin®6;

1 IY I (Y Y)Y

|

W IY) XS — (W (cosPe + sinbe,),cosbe, +sinbe,>
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und W_(cos8 e + sin@ e,) = k,cosf + k,sinB. Aus 10.5° folgt fiir k, <k, Lk, k,1
ist die Menge aller Normalkriimmungen im Punkte q e z.

Der wichtigste Kriimmungsbegriff fiir Flachen ist schlieBlich die GauB-
Kriimmung:

10.6°) K = K(a) := kk, in ae3,

Es gilt K = detW_, denn W, hat als Matrix beziiglich der Basis €,,e, Diagonalge-
stalt diag(k,,k,) = W,,. Fiir die Standardbasis (61(,0,32(1)) gilt (jeweils im Parameter-
punkt ge Q mit ¢(q) = a);

W, 0,9),0, 4> = 0 00,0,0) = by,
also mit Wu(aj(b) = wgaunp:
hy = (Wu(aj¢),ak¢) = wj“(au¢,akq)) = wj“guk,

und daher hat W, als Matrix beziiglich der Basis (814),324)) die Koeffizienten

Damit folgt die niitzliche Formel

det (b ) _ det I,

[e] — p—
(10.7°) K = K(a) = det{g, ) = det I,

(10.8°) Beispiel. Die GauB-Kriimmung K soll fiir alle Punkte auf dem Torus
T berechnet werden: Zur Parametrisierung

$0,0) = ((R+rcose)coscp,(R+rcose)sincp,rsin9)
(vgl. 2.5°) werden alle Ableitungen von ¢ bis zur Ordnung 2 benétigt:

9,0 = (-rsinbcose,- rsin@sine,rcos6)

9,0 = (- (R + rcos0)sing, (R + rcos6)cos e, 0)

o, x 90 = - (R + rcose)(rcosecoszp,rcosesin<p,rsin9)
Daher ist N = - (cosecosgo,cosesin@,sine).

U = - rcos@cosp,~ rcosfsing,~r sind)
(- (R+rcos6)cose, - (R+rcose)sin<p,0)

QO
)
N

=
It

O, = (rsinBsing, - rsinfcosg,0)
Durch Einsetzen erhilt man:

h,, = N> =r

h,, = N,0,,0> = (R+rcosb)cosbd

h, =0

Insgesamt:
K06 o)) — HR+rcosBlcosd cos O

12
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Folgerung: Lings der Kreise 6 = in und 6 = - in ist K = 0.Fir 6¢ 1-in,4nl
{also im "AuBenteil”) ist K > 0. Fiir 6 e]-m,— n[U] n,n[ (also im "Innenteil") ist
K < 0.

{10.9°) Beispiel. Fiir Rotationsfléchen, die durch p,0 mit $%2+62 = 1 inder
Parametrisierung ¢(0,9) = (p®)cose, o(0) sing,c(6)) gegeben sind (vgl. 2.4 °), erhilt

man analog
K6, 9) = -%(9), sowie k, = —g—, k, = 66~ 86

AbschlieBend zu diesem Abschnitt wollen wir die Formel

2 U2 © _
(10.10°) Il T v 0L I1121111 = gyK
herleiten: Neben 9, LIJ = I‘k b+ hijN (vgl. 6) gilt N; := —é%iN = - wlf 3 b, wie man

wegen <N, a¢> 0 und h = <N,aijq;> aus
2
0 = Ei(N,ajq» = (N,i,ajd)) + <N,aij¢>
abliest. Eingesetzt in
aqzauq’ 1'31qu
erhdlt man
Fn 203b + T 9,00 + hyN» + by, N

\I+h

Tk B + T d,0 + N,

127y 121

und daraus

k  _ u _ 4 k _ k i _
T, ~ Ty * THTE TUTE = h,wy - hypwy, fir k =12

Die rechte Seite der letzten Gleichung wegen wjk = hjuguk und g
fiir k=2 von der Form

hnwé - hlzwf = (hu(hzxglz + hzzgzz) - hlz(hyuglz + h1zgzz))

1 2
= (detl,) "(~hjhy g, + hy hyogy + hyphygyp = hy,8yy)

detll,
= 8y detl, - Euf

Damit ist 10.10° bewiesen.
(10.11°) Bemerkung (theorema egregium). Die GauBkriimmung ist eine innere

GriBe der Geometrie der Flachen, das heiBt K bleibt bei Isometrien ¢ : ¥ — ' in-
variant: K(a) = K(¢(a)). Das folgt unmittelbar aus 10.10°.
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11. Kriimmung und Paralleltransport. Die geometrische Bedeutung der GauB-
Kriilmmung fiir den Paralleltransport soll in diesem Abschnitt erldutert werden,

Es sei % CR® eine Fliche und aeX. Es sei vy : [ty,t,] —> ¥ eine stiick-
weise differenzierbare geschlossene Kurve mit ylty) = v{t,) = a. Der Paralleltransport

langs v liefert dann eine lineare Isometrie.
= Y .
Py) == Pto,ti T2 —> T2

vgl. 7.1°). P(y) ist Drehung in T2 um einen Winke] 6 = 8(y). Ist y der parame-
trisierte Rand eines stiickweise glatten und orientierten Fléchenteils S c ¥ und zer-
schneidet man S durch eine stiickweise differenzierbare Kurve in zwei Teile Sl, 52 mit
§=3S8vu S5, so gilt fiir die entsprechenden Winkel der Paral]elverschiebung langs der
parametrisierten Rander:

8(8S) = 8(35,) + 6(3S,),

sowie 0(9S) = - 8(05), wenn S den Bereich § mit entgegengesetzter Orientierung
bezeichnet. {Man mache sich diese Eigenschaften an dem Beispiel des geoditischen Drei-
ecks 7.4° klar, wenn das Dreieck in zwei geoditische Dreiecke mit gemeinsamen Eck-
punkt a zerlegt wird.) 6 verhilt sich also wie das Integral iiber eine 2~Form, und es
gibt tatséchlich eine 2-Form Q auf 3 mit

008) = [ Q.

Fiir Vektoren X,Y e TGZ erhédlt man Q(X,Y) folgendermaBen: Beziiglich einer Karte
¢: U —— Q bei ae U, ¢la) = q,sei P == ¢{{q+tX+sY:t,5¢ 10,e(}), also das
Bild des Parallelogramms {q+tX+sY:t,s¢ 10,e[} ¢ Q unter der Parametrisierung
¢ = ¢! Dann setze

a11°) X, Y) = lim Le@p,).
0 € €

@ heiBt die Kriimmungsform zum Paralleltransport. In welcher Beziehung
steht die hier angedeutete Definition zu der letzten Abschnitt dargestellten Theorie von
Hauptkriimmungen und GauB-Kriimmung? 0 ist als 2-Form ein Vielfaches der durch
die Metrik g definierten (lokalen) "Volumenform" do auf U (vgl. 3): Es gibt eine
stetige Funktion f: U —> R mit @ = fds. Die Antwort auf die obige Frage ist nun,
daB dieser Proportionalitatsfaktor f gerade die GauBkriimmung ist: K = f. Auf diese
Weise 148t sich die GauBkriimmung K auch ohne Verwendung der in Abschnitt 10
entwickelten Konzepte einfijhren.,

Statt nun dieses Programm durchzufiihren, bei welchem man wie oben iiber
6(8S) und Q(X,Y) zu K gelangt, zeigen wir direkt:

(11.2°) Satz. Die Form Q = Kdo mit K wie in 10 beschreibt den Parallel-
transport lings Riandern 8§ insofern, als fiir stiickweise glatte Sc U cC X der Paral-

leltransport
PASY . T S _  \ 7 <«
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fiir aedS gerade die Drehung um den Winkel ISQ ist. (Fiir die Definition von do
und dem Integral vgl. 3: Es ist J‘SQ = f¢(S)K(¢(q)) ydetg,, dq'dq?. Siehe auch M.18.)

Beweis. Eine offene Teilmenge S C U heiBt stiickweise glatt, wenn der Ab-
schiu8 § von S (in U) kompakt ist und wenn der Rand 8S von S das Bild einer
stiickweise differenzierbaren Kurve ist, die (abgesehen von den Endpunkten) injektiv
ist. Dabei ist ¢ : U —> Q wie zuvor eine Karte mit zugehoriger Parametrisierung
$p:Q— U (¢ = ¢ 71). Wir setzen dem Spezialfall g, = 0 voraus, um die nach-
folgenden Rechnungen iibersichtlicher zu gestalten. (Tatsachlich gibt es immer Karten
mit glz(q) = 0 auf Q. Es gibt sogar jsotherme Koordinaten, das sind Koordinaten mit
gw(q) = f(q)ﬁw fiir eine geeignete Funktion, vgl. z.B. [DEN I, § 13].) Setze fir q€ Q

E((q) = Ma)ddl@, Ma) = g, und
E,($(@) = X,(@ddla), rya) = gy !

Dann gilt fiir die Vektorfelder E und E, offensichtlich: g(E,E) = 1 = g(E,, E,) und
g(E,E,) = 0 (da ja g4, = 0). Die Drehung um 90° in T_Z =~ R? entspricht der
Multiplikation mit i = +=1 , wenn wir &2 mit C identifizieren. Dann gilt also
E, = iE, also 9,0 = i-/_g;;E , und jedes Vektorfeld auf U 14Bt sich als komplexes
Vielfaches von E schreiben. Fiir jeden Tangentialvektor Y € Tq,(q)z gilt fiir die kova-
riante Ableitung (vgl. 8)

DyE = [Lyh + T Y90 + (I YN 3,0
= (O 2T TR Y + TRy, Y E

Es ist )\’u)\_’ = -1 -——LEggl:l = - r;‘n fiir y = 1,2. Daher gilt mit der Definition
= -T2 822 yu _ u
alY) = Fm By Y¥ = cng ,
D E = 2\, YE = ~ia(VE.

o ist eine 1 — Form, das heiBt aldlq)) : T¢(q,z _— 5 R ist R-linear, und fiir Vektor-
felder Y auf U ist ofY), also q — a(Y(¢(q))), differenzierbar (vgl. M.16).

Es sei jetzt v eine Parametrisierung von 8S und X: [to’t1] —> TZ ein
Parallelfeld lings y mit g(X(to),X(to)) = 1. Wegender Wahl von E hat X(t) die
Form X(t) = (E(t) + in(t))E(y(t)). Aufgrund von g(X(t),X(t)) = 1 gibt es daher
eine differenzierbare Funktion © : [y, — R mit X{t) = e®WE(y(t)). Der ge-
suchte Drehwinkel 6(2S) ist dann e(tl) - e(to), insofern ist die Bezeichnung 6(t) fiir
den Vergleichswinkel zwischen X(t) und E(y(t)) berechtigt. Da X Parallelfeld ist,
gilt D+X = 0, also

D+(eieE) = 10e®E + e®D.(B) = (6 - «({))E = 0.
Es folgt 6 = aly), also

ty
ot ) -6ty = [ al3Ndt = | o.
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Also gilt 6(3S) = fasoc. Nach dem Satz von GauB ( 0s® = fsda) ergibt sich
0s) = [0

mit Q = do als Kriimmungsform. In den lokalen Koordinaten ist o = ocudq“ und
Q= c.)dqlx\ dq® mit © = %y 1 T % 9. SchlieBlich ist

— _r2 [Baz

@, = Ful 2, und daher
g g 892 1841 ~ 81148

_ 2 ]/ 22 211/ 11 (5221811 ~ 811489
%20 = I121,1 By I1212 Byg ( 8,2 )

_ ]/gzz 12 _pe(1Ba2 g By

TV o8y, ( F21,1 P21(2 8y 2 gy, ))

- ]/322 (—F2 -r2 (2 - ))

By 12,0 12 Y T 4yt oo
2

N 2 22 Boa1 2 1
denn es ist ja z. B. I’21 = %g (g22,l +*Bipg = g21,2) = %g—zz—’— wegen g“ = Eon und

8y, = 0. Ebenso:

— /B2 (2 2
%2 = N ( Fu,z Fu (Fzz riz))

Es folgt nach 10.10°: o = /%g“K = K]/ det(g, ), also @ = Kdo.

12. Riemannsche Mannigfaltigkeiten. Eine Riemannsche Mannigfaltigkeit ist
eine differenzierbare Mannigfaltigkeit M der Dimension n > 2 mit einer Riemannschen
Metrik g. Dabei ist eine Riemannsche Metrik g gegeben durch die Festlegung von po-

sitiv definiten, symmetrischen Bilinearformen

By = g(a):TquTqM —> R
fiir jedes a e M, welche differenzierbar zusammenpassen: Fiir differenzierbare Vektor-
felder X,Y auf einer offenen Menge W Cc M ist die Funktion

a > g, (X(a), Y(a)

stets differenzierbar. (Vgl. auch I1.8.19 ff.) In lokalen Koordinaten ¢ : U —s Q ¢ R"
hat man #hnlich wie bei Flichen X c R® . ¢ liefert fiir jedes a = o(q) die Basis
(E?TU lu=1,..n), 5'2‘—“ = [phg + teu)]q (vgl. M.10) und gla) hat die Darstellung

= vV g = x*2_ - y2@
gla)(X,Y) = guv(q)X Y fir X=X Pyt Y=Y Pt

2 2,
ag¥aqy’’
Als Beispiele dienen natiirlich die Flichen im ®3. Ein GroBteil der Geometrie

wobei g, (q) = g_(

der Flichen verallgemeinert sich zundchst auf die Hyperflachen im R™. (Natiirlich
haben die Beispiele aus 2 ihre Verallgemeinerungen, siche auch 14.5°.) Auch allgemeine

. N N L T . . . ; .
Untermannigfaltigkeiten des R™ ' sind automatisch Riemanncche Manmiofales ol e oo
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tiber die induzierte Metrik. Abstrakte Riemannsche Mannigfaltigkeiten ergeben sich bei
Quotienten, wie zum Beispiel die projektiven Raume P_(C) und P_(R). SchlieBlich
haben wir in 11.8 die Matrixgruppen als Riemannsche Mannigfaltigkeiten kennengelernt.
In diesem Fall stimmt die Riemannsche Metrik im allgemeinen nicht mit der durch die
Einbettung G C C(n) = R(2n) induzierten Metrik iiberein.

Aus den vorangehenden Abschnitten iibertragen sich alle diejenigen geome-
trischen GréBen von Flichen X im R® auf allgemeine Riemannsche Mannigfaltigkei-
ten, die unabhingig von der Einbettung X C R® sind, also die inneren GroB8en.

Eine lokale Volumenform do definiert man z.B. wie in Abschnitt 3 fiir § ¢ U:

= -1 1 n
[ tdo = [, to07(@)]/det gl da’...da

iber die Bogenlidnge von Kurven ¥ : [ty,,t,] —> M
te o
B = [ethide  (mit §(tg) = [¥leg+t)l ()

definieren sich der Begriff der natiirlichen Parametrisierung und der Begriff der Geodd-
tischen. Mit Hilfe der wie in 4.2° eingefiihrten Christoffelsymbole I‘il; erhélt man wie

in 4.1° die Differentialgleichung.
g*+ ety =0 k=12..n

als Bedingung dafiir, daB eine natlirlich parametrisierte Kurve y in M mit lokalen
Koordinaten g(t) = (q!{t),...q™(t)) = poy(t) eine Geoditische ist.
Abschnitt 6 14Bt sich nur auf Hyperfldchen M C R™! verallgemeinern.

13. Parallelverschiebung auf Riemannschen Mannigfaltigkeiten. Der in 7 vor-
gestellte geometrische Ansatz zur Definition der Parallelverschiebung auf Flachen
verallgemeinert sich ebenfalls von Flachen auf allgemeine Riemannsche Mannigfaltig-
keiten, allerdings nicht ohne kleine Zusatzanstrengungen:

Es sei also v :[t;,t] —> M eine Geodidtische in M und X € TY(%)M.
Ein Vektorfeld ldngs v ist eine differenzierbare Abbildung X : [ty,t,J — TM (also
eine Kurve im Tangentialbiindel TM von M mit Projektion t:TM —> M (vgl

M.101%)) mit X{t)e T M fiir alle te[ty,t] (also y = toX). Die Bedingungen

v (t)

8y () (XA, XW) = g, (X, Xp), g = 7v(t,),
8,00 (X®, ) = g, (Xo, 1(tg)), X, = X(t),

i

fiir alle t e [to,tl] legen ein solches Feld X im Falle n >3 noch nicht fest (vgl. 7).
Es sei X, = Xlt,) e T“f.(to)
X durch y(t,) mit Ableitung xt,) in der durch X, und Y(t,) aufgespannten

M linear unabhingig von {(t,). Die Geoditischen

Ebene H, definierenbei Y(t;) ein kleines Stiick einer 2-dimensionalen Untermannig-
faltigkeit X, von M. Fiir einen Punkt Y(sl), mit s, — ¢, klein, erhidlt man so eine

Ebene in T M, ndmlich

vis))

IT —F2i0Y - T Ml Ao dee o — 3 5 Aiffaran7ierhar 1nd of0) = ~{c )}
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Mit den Daten v(s;) und H, erhilt man analog eine weitere Fldche Z, C M, welche
im Kleinen durch alle Geodatischen durch v{s,) in Richtung H, definiert wird. Dieser
ProzeB 148t sich wiederholen mit 8y < 8, <...< s = t, und man erhilt zur Geoditischen
Y injedem Punkte y(t) einen zweidimensionalen Unterraum H, von TY(UM, welcher
Y(t) enthdlt. Im allgemeinen wird H, von der Zerlegung {sl,sz, ,sk} und der
Schrittweite A = max{ ;785 lj=1,..k} abhingen. Aber der Grenziibergang
A —> 0 liefert eine eindeutig bestimmte Familie H e TY(t)M von Unterrdumen der
Dimension 2 mit {(t) ¢ H, und X;e¢ Hto'

X{t) heiBt jetzt Parallelfeld ldngs v mit X(ty) = Xy» wenn X(t) e H, fiir

alle telt,,t 1 gilt, neben g(X(t), X)) = 8(Xy, Xy) und g(X(t), ¥(t)) = g(Xy, ¥(tg)).

(13.1°) Satz. X : [to’t1] —> M ist genau dann Parallelfeld ldangs der Geo-
ddtischen vy, wenn die Differentialgleichung

13.2°) Xk + ri‘j‘qixk =0, k =1,..n,
fir alle Karten @ : U — Q c R™ erfiillt ist,

Der Beweis 148t sich auf 7.2° zuriickfiihren.

Durch Approximation allgemeiner stiickweise differenzierbarer Kurven durch
stlickweise Geoditischen {ibertragen sich diese Uberlegungen (vgl. 7) und fithren zu
folgender Definition:

(13.3°) Definition. Fin stiickweise differenzierbares Feld X : [to’tl] —> M

langs v ist genau dann Parallelfeld lings v, wenn (auBerhalb der Ausnahmepunkte)
XF+rfaix! = o

in lokalen Koordinaten gilt.

Zu jeder Vorgabe Xo € TY(tO)M gibt es das eindeutig bestimmte Paralleifeld
X ldngs y mit Xlt,) = Xy, denn xk = (~I‘i1j< c';i)Xj ist ein lineares System von
Differentialgleichungen (mit differenzierbaren Koeffizienten).

Die kovariante Ableitung definiert man genauso wie in Abschnitt 8, aller-
dings ohne Riickgriff auf die Normale N : Fiir X,Y € B(W) setze

k krivjy 0
DyX = (LyX +FinlYJ)a—qjg;

dann sind die Eigenschaften 8.4° und 8.5° erfiillt. (Vgl. auch mit dem Begriff der kova-
rianten Ableitung in allgemeinen Vektorbiindeln in V.4.)

Isometrien definiert man wie in 9 auch fiir allgemeine Riemannsche Mannig-
faltigkeiten, wobei die Isometriegruppe Isom M, g) wieder eine Symmetriegruppe im

Sinne von L3 ist.
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14. Kriimmung Riemannscher Mannigfaltigkeiten. Die Kriimmungstheorie all-
gemeiner Riemannscher Mannigfaltigkeiten wird zuriickgefithrt auf den folgenden
Operator: Fiir X,Y e T_M sei (vgl. auch mit V.4.17)

(141°) F_(X,Y) = [Dy,Dy] - Dy yq-

E_(X,Y) ist also fiir jedes ae M eine lineare Abbildung F_(X,Y): T M —> T M.
Fiir Vektorfelder X,Y,Z auf W C M, W offen, ist

F(X,Y)Z)a) = F_(X(a),Y(@)(Z(@) ,aeW,

ein differenzierbares Vektorfeld. F ist §(W)-linear und daher ein Tensor (vgl. M.16).
F heiBt der Kriimmungsoperator. (Anderswo wird —F als Krtimmung definiert.)

Bine geometrische Interpretation ist die folgende: Paralleltransport ldngs
der Randkurve zu 9P, von P.(X,Y) = ¢{{g + tX +sY | t,s€10,e[}), $q) = a, (vgl.
11.1°) definiert eine lineare Isometrie

P.:T M —> T M

nahe bei der Identitit 1. F(X,Y) ist dann
FX,Y) = lim & (P_—1).
ge—>0 €2 F

folglich ist F(X,Y) schiefsymmetrisch beziiglich g:
(14.2°) g(F(X,V)VZ,Z') + g(Z,F(X,Y)Z') = 0.

In lokalen Koordinaten gilt
d 0,0 )
F(—<, 4 ) -5 = rRE. (q)—=.
Garag) gk = Mo Vo
Riij sind die lokalen Koeffizienten des Riemannschen Kriimmungstensors R vom Typ
1,3, welcher koordinatenfrei durch

R : BOW)* x BIW) x BW) x BW) —> E(W), Rle,X,Y,Z) == alF(Y,Z)X),

gegeben ist. Es gilt ja R(«,X,Y,Z) = RiinkYiZj o, fiir o = audqu, X = xiai, etc.
Die zu 10.10° analoge Beziehung zwischen Kriilmmung und Christoffelsymbo-

len ist

(14.3°) RP(Q) = I, - T2 + THIT — TRIT

Beweis. Wegen [ai,aj] = 0 ist F(ai,aj)ak = [Di,Dj]ak, also
u G

F(0,,0)9; = Dy(I%d,) ~ Dy(I{a,)

o oV, i otV
= Theidy + Thdidy ~ T 24 = Tl

I

m W m m W m
(Fﬂr E BV A RS l—‘ikl—‘iu)arn'

HT] N
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Im zweidimensionalen Fal] gilt also nach 10.10°.
2
g8 K = Rj,,.

. Setze Rijkm = giuR;km' Rijkm sind dann die lokalen Koeffizienten des
durch R(X,Y,Z,Z')) = g(F(Y,2)X,2") gegebenen Tensorfeldes. Rijkm ist antisym-
metrisch in k,m, weil F antisymmetrisch ist, und antisymmetrisch in i,j nach 14.2°,

Fiir Fldchen 4Bt sich aus der vorangehenden Gleichung unter Berticksichti-

gung der Antisymmetrie R1121 = 0 die Formel
Ry, = (det guV)K

herleiten. Diese Relation gibt eine klare Beziehung zwischen der GauB-Kriimmung und
der neuen Kriimmung F bzw. R,

In aeM sei ein 2~dimensionaler Unterraum H c T_M vorgegeben. Die
Gesamtheit aller Geoditischen durch q mit Ableitung in H definiert ein kleines
Fléchenstlick Xn € M. M induziert eine Riemannsche Metrik auf ¥ und somit eine
GauB -Kriimmung Ky (@), die GauB-Kriimmung von %y in o, Fir X,YeH mit
g(X,X) = g(Y,Y) = 1 und gX,Y) = 0 gilt

A
Kyla) = g(FX,Y)X,Y) = R(X,Y,X,Y).

(14.4°) Definition. Ky (@) heiBt die Schnittkriimmung von M in a beziig-
lich H.

Es gilt fiir Hij = span{%,—a—j}: Ky () = hR”—“'—Z

q" 9q ij &ii 855 —8j;

(14.5°) Beispiele: M = R™ mit der liblichen euklidischen Metrik hat die
Kriitmmung F = 0. Insbesondere ist auch die Schnittkriimmung fiir alle Ebenen kon-
stant gleich 0.

Die n-Sphire M = Sa mit Radius R > 0 hat in allen Punkten beziiglich
aller Ebenen H die Kriimmung Kyla) = R7Z S; hat also konstante Schnittkriim-
mung R°Z

Die allgemeine Pseudosphire [H];, R >0, ist folgendermaBen definiert:

n o_ n+l 2
Hy = {xeR"™"| X,

-2 2
l—igilxi = R%und x>0}
als Untermannigfaltigkeit mit induzierter Metrik von der Minkowski-Metrik auf R™!
n
<<X’Y>> = jglxiyi - xn+1yn+l

lH]’l; hat konstante Schnittkriimmung - R~2
Ohne Beweis sei abschlieBend der folgende Satz zitiert (vgl. V.4.16).

(14.6°) Satz. Fiir Riemannsche Mannigfaltigkeit (M, g) sind die folgenden
Aussagen #dquivalent (und (M,g) heiBt dann flach):

Y e o~
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ii) Zu jedem Punkt ae M existiert eine Karte ¢ : U —> QC R™, ael,
mit gij(q) = B fiir alle g€ Q.

iii) Zu jedem Punkt a € M existiert eine Umgebung U C M mit der Eigen-
schaft: In U ist der Paralleltransport wegunabhingig.

15. Zusammenhang und semi—Riemannsche Geometrie. Ein (linearer oder

affiner) Zusammenhang auf einer Mannigfaltigkeit M wird gegeben durch Abbildungen
v : BW) x BW) —> BW) fiir alle offenen WC M

mit den in 8.4° aufgezeigten Eigenschaften: Fur alle X,Y,Z e B(W) undalle fe &(W)
gilt mit VX = V(Y,X):

Vy: BW) —> BW) ist R-linear

VyfX) = L ADX + VX

VX : BW) —> BW) ist §(W)-linear, das heiBt
VigyszpX = VX + VX

VX heifit dann wie frither die kovariante Ableitung von X in bezug auf Y.

Zusammenhinge verallgemeinern den Begriff einer Riemannschen Mannigfal-
tigkeit, und sie stehen in enger Beziehung zur Geometrie von Prinzipalfaserbiindeln mit
GL(n,R) als Strukturgruppe (vgl. V.4 und V.5). Sie liefern ebenfalls die oben eingefithr-
ten geometrischen Begriffe wie Paralleltransport, Geodétische und Kriimmung:

In naheliegender Weise ist eine Geoditische eine natiirlich parametrisierte
Kurve 7y mit V?‘{ — 0. Und der Paralleltransport ldngs Y wird durch VYX =0
definiert. Auch eine zu 14 analoge Kriimmungstheorie mit F und R wie dort ergibt
sich sofort. In lokalen Koordinaten ¢ : U — Q c R™ definiert man die Christoffel-

symbole I‘;; des Zusammenhangs V als die Koeffizienten zu
k . 0

Vaiaj = Fij O (dabei aj = éa-j),

und hat dann die entsprechenden lokalen Ausdriicke wie z.B.
gk ki

V;rX = (X + ;a X) o, .

(15.1°) Beispiel. Es sei M eine parallelisierbare Mannigfaltigkeit, das heiBt
es gibt globale Vektorfelder B,,..B_ € B(M), so daB fiir alle ae M (Bi(a),...Bn(a))
eine Basis von T M ist. Jede solche Basis (Bl,...Bn) des Tangentialbiindels legt auf

die folgende Weise einen Zusammenhang fest: Zu Y € BW), W M offen, gibt es
eindeutige Y¥e 6(W) mit Y = YkBkIW und X € B(W) setzt man

VY = (L Y)Byloy-

Es gilt offenbar: Alle Bj, j = 1,..n, sind Parallelfelder langs jeder Kurve. Insbeson-—
o b o dteansport lokal wegunabhingig und die Kriimmung F = Fy
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erfiillt: F = 0. Im librigen entspricht die Wahl einer Basis (Bl,...Bn) einer globalen
Trivialisierung des Tangentialbiindels, vgl. V.4 und V.5.

(15.2°) Beispiel. Semi- Riemannsche Geometrie. Ausgangspunkt ist wieder
eine Mannigfaltigkeit M mit einer Kollektion von symmetrischen Bilinearformen

g(a):TGMXTaM — R, ae M,

so daB fiir X,Y € B(W) die Abbildung a —> gla)(X(a), Y(a)) differenzierbar ist.
Statt aber wie im Falle der Riemannschen Geometrie zu verlangen, daB jede Bilinearform
positiv definit ist, verallgemeinert man diese Bedingung auf folgende Weise: Es gibt ein
pe{0,1,..n}, so daB gla) in jedem Punkte ae M P positive und n-p negative
Eigenwerte hat. Insbesondere ist gla) nicht ausgeartet. Natiirlich sind Riemannsche
Mannigfaltigkeiten auch semi-Riemannsche Mannigfaltigkeiten mit p = n. Der Stan-
dardfall ist R®'9,

(15.3%) Mit R”'? werde der R™ mit der folgenden Bilinearform bezeichnet:

P n
np(x,y) = n(x,y) = El X, ¥; —i=§)+1xiy‘

Als Spezialfall hat man das Minkowski-Skalarprodukt ( p =1 oder p = n-1, je nach
Konvention). R™° ist der libliche euklidische Raum.

Geeignete Untermannigfaltigkeiten von R*'2 liefern eine Fiille von weijteren
semi-Riemannschen Mannigfaltigkeiten. Zum Beispiel sei in Rp’qﬂ, n=p+q+1, die
verallgemeinerte Sphire S;’q definiert als eine der Zusammenhangskomponenten der
Hyperfliche {x e [Rnﬂl RZ + np(x,x) = 0}. Sg‘q ist im wesentlichen diffeomorph zu
RP x S?. Der Tangentialraum Tusi’q mit der von RPI! induzierten Metrik ist
isometrisch isomorph zu RP'?. Neben 8™ und H® (14.5%) ordnen sich auch die de-
Sitter—-Raumzeiten (vgl. I'V.4) in diese Reihe von semi-Riemannschen Mannigfaltigkeiten
ein.

Die Metrik g liefert im semi—Riemannschen Fall wie fiir Riemannsche Man-
nigfaltigkeiten eine reichhaltige Geometrie, die man zum Beispiel iiber den zugehorigen
Zusammenhang beschreiben kann: Dieser 4Bt sich mit Hilfe der entsprechenden kovari-
anten Ableitung D definieren, welche iiber der Christoffelsymbole Fii( = I‘i}((g) gege-
ben sind: Die I‘;‘ werden wie in 4.2°

(15.4°) T = %g““(gm,j +g

i~ 8 )

i,

gesetzt. Also ist Da.aj = Filjf 0y . Damit hat man auch fiir (M,g) die fundamentalen
1

geometrischen Begriffe wie Geoditische, Paralleltransport, Kriimmung etc. zur Verfii-

gung.

(15.5°) Definition. Ein Zusammenhang heiBt symmetrisch (oder torsionsfrei),
wenn TK — K oitp € ¢ 5 1o f1 v -



362 Anhang G: Geometrie der Flichen und Riemannsche Mannigfaltigkeiten

Der Zusammenhang nach 15.4° ist symmetrisch, wéhrend der Zusammenhang

in dem Beispiel 15.1° im allgemeinen nicht symmetrisch ist.

Die Beziehung zwischen der Geometrie von Zusammenhéngen und der semi-

Riemannschen Geometrie wird schiieBlich durch den folgenden Satz gekldrt:

(15.6°) Fundamentalsatz. Sei (M,g) semi-Riemannsche Mannigfaltigkeit.

Dann gibt es genau einen symmetrischen Zusammenhang V mit
(*) LyelY,Z) = gV Y, Z) + g(Y,VyZ)

fiir alle Vektorfelder X,Y,Z € B(W), W c M offen. V heift der zu g gehorige Levi—

Civita—Zusammenhang.

Beweis. D definiert iiber 15.4° ist ein symmetrischer Zusammenhang und er-
fiillt die zusatzliche Vertraglichkeitsbedingung, wie durch direktes Einsetzen von 15.4°
nachgepriift werden kann. Sei umgekehrt V ein symmetrischer Zusammenhang mit (+).
Aus der Symmetrie folgt fiir alle Vektorfelder X,Y € BM): [X,Y] = V¥ - VX,
Mit

AX,Y,Z) == LyglY,Z) + L, 2(X,Z) - LygX,Y)
gV Y,Z2) + g(Y,VyZ) + gV X,Z2) + g(X,VZ) - g(V;X,Y) ~ g(X,V;Y)
2g(VY,2) - glZ, [X,Y1) - g(Y,{Z,X1) - gX,1Z,Y]) ,

Il

i

also

(Vo Y,Z) = LAY, Z) + g(Z,[X,Y]) +g(Y,[Z,X]) + g(X,[Z,Y]),

folgt, daB V, Y eindeutig bestimmt ist.

16. Der Hodge—Operator. Es sei M eine n-dimensionale, semi-Riemannsche
und orientierbare Mannigfaltigkeit (vgl. M.18 zum Begriff der Orientierung). Auf M
ist also ein symmetrisches, nichtausgeartetes Tensorfeld (vgl. M.16) ge€ fg(M) vorge—

geben. In jedem Punkt ae M ist
gla): T MxTM -—— R

bilinear und symmetrisch mit der folgenden zusétzlichen Eigenschaft: Ist X e T M und
gilt fiir alle Ye T M stets g(a)(X,Y) = 0, so folgt X = 0.

g definiert eine bilineare Abbildung g: ASM) x #3M) —> (M) auf die
folgende Weise: Zu a € M und einer Karte ¢ : U —> V haben g und o,p€ A 5(M)
lokale Darstellungen gl = gwdqu® dq”, dlg = «
ung Blu = 6%“2.;; da’
(g") bezeichnet. g(w,p) wird jetzt auf U gegeben durch

My g ¥z, o s
g usdq Adg 2A T Adg

" dq A dq¥zn ~dg"s. Die zu (guv) inverse Matrix werde mit
S

A 1
g(ot,B)‘u = gguiv‘guzvz... ghsVs

eyl ustin... Vg’
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und diese Definition ist unabhéngig von der speziellen Wahl der Karte wegen des Trans-
formationsverhaltens der involvierten GréBen beim Kartenwechsel (vgl. M.16).

Durch die Wah! einer Volumenform 1 ¢ Q™(M) sei eine Orientierung von
M vorgenommen. Eine Basis (el,ez,...,en) von T_M heiBe positiv orientiert, wenn
n(a)(el,ez,‘.. ,en) > 0 gilt. Eine Basis (el,ez,... ,en) heiBt Orthonormalbasis, wenn
lg(a)(eu,ev)l = Suv gilt. Zu 1 und g gibt es eine Funktion fe &EM), f> 0, so daB
die zu 1y dquivalente Volumenform g = i = fn auf allen positiv orientierten Ortho-
normalbasen (el,ez,... ,en) in allen Punkten a € M den Wert 1 hat.

Der zur Orientierung und zur Metrik g gehorige Hodge-Operator ist der
durch die folgende Vorschrift definierte &(M)~-lineare Operator

*: M) — FM)

Fiir pe o 5(M) ist *B diejenige eindeutig bestimmte (n-s)~Form auf M, die fiir alle
ae A5M) die Bedingung

aA*f = gla,plu
erfiillt.

Beispiele: 1) M = R?® mit der euklidischen Metrik Buy = 8,, und der
Standardvolumenform y = dq A dq beziiglich der iiblichen kartesischen Koordmaten
Esist g(dq" .dq”) = 8. Daraus 148t sich der Hodge-Operator * : (M) —> A 1(M)
sofort bestimmen:

Aus dqlxx*dql = ¢ und dqz/\*dq1 = 0 folgt xdq! = dq®, und aus

dqu *dq2 = g und dql/\ ¥dg? = 0 folgt *dq® = - dql. Insgesamt ergibt sich fiir
B = fidq1 + fquz: *p = fjdq2 - fqul. Insbesondere ist *x = —id auf &NM).
Ferner ist *u = 1 und *1 = y.

2) M = R? = RY! mit der Minkowski~Metrik g11 =1= -g,, By = 0,

und der Standardvolumenform y = dq /\dq .Es ist g{dq" dg”) = g™
Aus dq /\*dq = u und dq A*dq = 0 folgt wieder *dq = dq und aus
dq? /\*dq = —u und dq A*dq = 0 folgt *dq = dq Also *B = fldq +f2dq fiir
B = qu +f, dq®. Insbesondere ist *x = id auf &' (M). AuBerdem: *w=1, 1=
3) Der Hodge-Operator fir M = R* = R'® mit der Minkowski~Metrik
g = diag(1,~1,-1,-1) und der Standardvolumenform §o= dqo/\ dql/\ dqz/\ dq3 wird aus-
fiihrlich im Rahmen der Elektrodynamik beschrieben (vgl. 1I1.1).

Bemerkung. Der Hodge-Operator hangt im wesentlichen nur von der Kon-
formklasse der Metrik g ab: Fiir jede positive differenzierbare Funktion A auf M hat
die Metrik g' = \g den Hodge-Operator *' = ()\%n—s)* auf den s-Formen. Also ist
*' = % auf den k-Formen einer 2k- dlmenslonalen orientierten, seml—Rlemannschen
Mannigfaltigkeit. Die Formel *' = (in %)% folgt aus by = )\% g und g ="°

auf den s-Formen.
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ANHANG L: LIE - GRUPPEN UND LIE - ALGEBREN

In diesem Anhang werden einige Begriffe und Resultate iiber Lie-Gruppen
und ihre Lie-Algebren zusammengestellt, die an verschiedenen Stellen des Buches zur
Sprache kommen. Da es fiir das Buch nicht unbedingt erforderlich ist, den Begriff der
abstrakten Lie-Gruppe in voller Allgemeinheit zur Verfiigung zu haben, werden erst ein-
mal Beispiele von besonders wichtigen Lie-Gruppen behandelt. Anhand dieser Beispiele
wird an die bendtigten Begriffe und Ergebnisse herangefiihrt. Die allgemeine Theorie
wird dann vor allem fiir die Klasse der Matrixgruppen dargestellt. An guten Monogra-
phien zur Lie-Theorie ist kein Mangel, vgl. z.B. [BRD], [FUH], [HIN], [HUM], [KIR],
{LIE].

Zur Ubersicht eine Liste der einzelnen Abschnitte dieses Anhangs:

1. Die Kreisgruppe 364
2. Die spezielle unitdre Gruppe SU(2) 365
3. Die allgemeine lineare Gruppe 366
4. Matrixgruppen 366
5. Lie—Algebren 372
6. Lie—Algebren zu Matrixgruppen und zu Lie-Gruppen 373
7. Homomorphismen von Lie-Gruppen und Lie-Algebren 378
8. Universelle Uberlagerungen von Lie-Gruppen 381
9. Adjungierte und koadjungierte Darstellung 383
10. Halbeinfache Lie~Algebren und Killingform 385

1. Die Kreisgruppe. Sei U(1) := {x e C:|x| = 1}. U(1) mit der von C in-
duzierten Multiplikation, welche fiir A = €® und \' = e durch An' = ell®*¥)
gegeben ist, ist eine abelsche Gruppe, weil stets AX' = X'A gilt. Es ist einfach zu
sehen, daB U(1) als Gruppe isomorph ist zur Gruppe

cost —sint
50(2) = {(smt cost)’ teR}
der Drehmatrizen. Als Teilmenge von € £ R? ist U(1) in natiirlicher Weise auch eine

differenzierbare Untermannigfaltigkeit von ®?, namlich UQ) = s! . Mit der in M.5
eingefiihrten differenzierbaren Struktur auf Untermannigfaltigkeiten im R™ ist flir den
Fall &' klar, daB eine Abbildung f: 5! — 5 R™ immer schon dann differenzierbar

P L TR 7| Ry S -2 e v B Aifforanzierhar ict Daratis
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ergibt sich, daB die Multiplikation

p:stxg! — gt u(e'®,el¥) = HPH¥) _ ole ol
eine differenzierbare Abbildung ist. Ebenso ist die Inversenbildung

jist — gl | el s oTlP,
differenzierbar.

In diesem einfachen Beispiel kommt es auf das Zusammenwirken der Grup-
penstruktur und der differenzierbaren Struktur an, das durch die Differenzierbarkeit
der Gruppenoperationen zum Ausdruck kommt. In natiirlicher Weise 14Bt sich an diese
Beobachtung die Definition des Begriffs Lie~Gruppe anschlieBen. Statt eines Studiums
dieses Begriffs steht unmittelbar nach dieser Definition erst einmal die Beschreibung

von Beispielen im Vordergrund.

Definition: Eine Lie-Gruppe G ist eine Gruppe, die zugleich eine differen-
zierbare Mannigfaltigkeit ist, derart daB die Multiplikation

L:GxG —> G, ulf,g) = fg,
und die Inversenbildung ‘

j:G—> G, jf) = 7

jeweils differenzierbare Abbildungen sind.

2. Die spezielle unitdre Gruppe SU(2). Das nichste Beispiel ist die wichtige
spezielle unitdre Gruppe SU(2). Zunédchst die unitdre Gruppe:

u(?2) = {AeC(2): <Az,Aw> = <z,w> fiir alle z,weC},

1.1 2

wobei <z,w> = Z'w!+ zZw”? das hermitesche Skalarprodukt in €2 ist. Die spezielle

unitdre Gruppe ist
SU(2) == {AeU(2): det A = 1}.

Die Gruppenmultiplikation ist hier die Matrixmultiplikation. SU(2) wund

U(2) sind im Gegensatz zu U(1) nicht abelsch. Beispielsweise gehoren die Matrizen
( 0 -i 0 -1

5 =14 o und T, = 1 o0

zu SU(2). Es ist einerseits
-i 0 .

‘[1‘[2 = O i = ‘[3

und andrerseits TpTy = — Ty, also 1,7, F 1,1, und Ty Ty~ Ty = 2714. (Die o = ity

sind die Pauli-Matrizen, vgl. 6.6°.)
Nach Definition von SU(2) hat eine allgemeine Matrix A € SU(2) die Form

Z w
Az{g x)’
mit |z +Iwl® =1, E = -W und X = Z. Also

su =12 V) 1wl = 1t
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Die Gleichung |z|% + (w|®> = 1 zeigt, daB sich SU(2) vom Standpunkt der Theorie der
Mannigfaltigkeiten als die 3-Sphire $2 in €% & R* auffassen laBt. Daher hat SU(2)
die Struktur einer dreidimensionalen Untermannigfaltigkeit des R* und man kann aus
der Definition der Matrixmultiplikation und der Cramerschen Regel zur Bestimmung der
inversen Matrix leicht ablesen, daB die Gruppenoperationen y und j beziiglich der von
$® induzierten differenzierbaren Struktur differenzierbar sind (vgl. auch die nachfol-

genden Paragraphen). Damit erweist sich auch SU(2) als eine Lie—-Gruppe.

3. Die allgemeine lineare Gruppe. Die Gruppe GL(n,R) aller invertierbaren

n? aller {(nxn)-Matrizen

reellen (nxn)-Matrizen ist in dem R-Vektorraum R(n) & R
eine offene Menge. Das ergibt sich aus

GL(n,R) = {AeR(n): det A % 0},
denn die Abbildung det : R(n) — R ist als polynomiale Abbildung stetig. Die allge-
meine lineare Gruppe GL(n,R) hat also eine einfache differenzierbare Struktur als
offene Teilmenge eines IR{N, N = n? (vgl. M.1). Die Matrixmultiplikation

¢ : GL{n,R) x GL(n,R) — GL(n,R), (A,B) —> AB,
ist in den Koeffizienten (11; und b; der Matrizen A = (al.f) und B = (b;) polyno-
mial vom Grad 2:

3 kv

AB = (Z o by)
Also ist y differenzierbar (sogar analytisch). Ebenso sieht man nach der Cramerschen
Regel, daB} die Inversenbildung

Ar— A
rational in den Koeffizienten der Matrix A ist, also insbesondere differenzierbar. Er-

gebnis: GL(n,R) ist eine Lie-Gruppe. Mit denselben Argumenten zeigt man, daB die

Gruppe GL(n,C) der invertierbaren komplexen (nxn)-Matrizen eine Lie-Gruppe ist.

4. Matrixgruppen. Eine Matrixgruppe (bzw. lineare Lie-Gruppe oder Matrix—
Lie-Gruppe) ist eine abgeschlossene Untergruppe G von GL{n,C) (fiir geeignetes
n € N). Dabei wird die vom R-Vektorraum C(n) = €® = R*™® auf der offenen Teil-
menge GL(n,C) von C(n) induzierte Topologie benutzt: Demnach ist eine Untergruppe
G C GL(n,C) eine Matrixgruppe, wenn fiir jede konvergente Folge (Ak) von Matrizen
A eG mit A= klglga A1< € GL(n,C) stets gilt: Ae G. (A = l(ango Ak gilt, wenn simt-
liche Koeffizienten von Ak gegen die entsprechenden Koeffizienten von A konvergie-
ren.) Als Beispiele hat man damit sofort: GL(n,C) selbst ist eine Matrixgruppe, ebenso
GL{n,R) ¢ GL(n,C), sowie UW(1) c GL{1,C), SU(2) c GL(2,C) und SO(3) c GL(3,R).

Weitere Beispiele von Matrixgruppen.

(41°) Die speziellen linearen Gruppen.

SL{n,R) := {AeR(n): det A = 1}
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Es handelt sich offenbar um Untergruppen von GL(n,C), denn die Determinantenfunk-
tion ist multiplikativ: det (AB) = det A det B. Sie sind abgeschlossene Untergruppen,
denn fiir Ak € GL(n,C) mit Ak — A ¢ GL(n,C) gilt detA = kll.rréo detAk.

SL(Z,C) ist nicht kompake, denn (%) € SL2,C) fur » € £7(0), und die
Menge dieser Matrizen ist nicht beschréinkt in c(2) = ¢*,

SL(2,C) ist zusammenhidngend. Ein direkter, elementarer Nachweis dieser
Eigenschaft ist der folgende (einen anderen Beweis findet man am Ende von Abschnitt
8): Es geniigt, jede Matrix A = (g g) € SL(2,C) mit der Einheitsmatrix 1 durch einen
stetigen Weg v :[0,1] — SL(2,C) zu verbinden. Denn dann kann man auch je zwei
Matrizen aus SL(2,C) durch einen stetigen Weg miteinander verbinden, d.h. SL(2,C) ist
wegweise zusammenhingend und damit auch zusammenhidngend (vgl. M.8.3°). Im Falle
b=c=10 ist d=a' Gilt noch qe 10, [, so wird ein solcher stetiger Weg
Y durch alt) = a+t-a), ot) = b(t) = 0 und d(t) = (a(t))! gegeben.
Gilt a¢10,o[, so ist q = rei(‘o, und A kann durch den Weg alt) := r'ei“_';)(P
und d(t) := (a(t))! mit einer Matrix (6 r91)€ SL(2,C) verbunden werden. Von
dieser kennen wir bereits einen Weg in SL(2,C) nach 1. Im Falle a % 0 wird durch
alt) = a, blt) = bt, c(t) == ct und d(t) = a (1 +bet?) ein Weg in SL(2,0)
angegeben, der (8 agl) mit A verbindet. Daher gibt es auch einen Weg in SL(2,C)
von A nach 1. SchlieBlich gilt im Falle a = 0 wegen det A £ 0: bc + 0, also
insbesondere ¢ + 0. Der folgende Weg verbindet A mit einer Matrix in SL(2,C),
deren erster Koeffizient nicht verschwindet: al(t) = t, b(t) := c'l(td—l), c(t) = ¢
und d(t) = d.

Analog 4Bt sich zeigen, daB SL(n,C) zusammenhéngend ist.

(4.2°) Die orthogonalen und die speziellen orthogonalen Gruppen.
O(n) = {A € R(n): Fiir alle x,y e R™ gilt <Ax,Ay> = <x,y>}

sind die orthogonalen Gruppen, wobei < , > hier das euklidische Skalarprodukt {m R"
bezeichnet. Offensichtlich ist O(n) eine Untergruppe von GL(n,R). Weil die bilineare
Abbildung < , > :R"xR™ — R stetig ist, gilt fiir jede konvergente Folge (Ak)
von Matrizen mit Ak € O(n) und Ak —> A: <AxAy) = klgg’ <Akx,Aky> = <{x,y>
fiir alle x,y € R™. Es folgt A e O(n); also ist O(n) abgeschlossene Untergruppe von
GL(n,R) und damit auch von GL(n,C). Ubrigens gilt

O(n) = {AeGL(n,R): ATA = idgen},

wobei AT die zu A transponierte Matrix ist: Fiir A = (A!) ist AT = (B') mit
B! = AJ ’ !
j i

O(n) ist kompakt, weil die Koeffizienten der Matrizen A € O(n) beschrinkt
sind: IA;I <1 und weil O(n) in C(n) abgeschlossen ist (Satz von Heine-Borel).

Es gilt |det A| = 1 fiir alle A ¢ O(n), und es gibt orthogonale Matrizen A

'l % 1 A a4  ww
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det A = -1 und die Einheitsmatrix e € O(n) kénnen nicht in O(n) durch einen steti-
gen Weg verbunden werden. Ein solcher Weg A : [0,1] — O(n) hitte ja die Eigen-
schaften |det A(t)| = 1, sowie detA(0) = -1 und det A(1) = 1, und das widerspré-
che der Stetigkeit von det A(t).

Analog wird die komplexe orthogonale Gruppe als die folgende Matrixgruppe
definiert:

O(ne) = {AeCn): ATA = id_n).
O(n,C) ist nicht kompakt, aber zusammenhéngend.
Ebenso sind die speziellen orthogonalen Gruppen
S$O(n) := O(n) N SL(n,R) und SO(n,C) := O(n,C) N SL(n,C)

Matrixgruppen. Die Drehgruppe SO(3) wird im 5. Paragraphen des zweiten Kapitels
ausfithrlich behandelt. Die Drehgruppe ist (wie alle Gruppen SO{n)) zusammenhéngend.
Das sieht man an der bekannten Darstellung der Drehmatrizen durch die Eulerwinkel: Sei
R}.(t) = ™ die positive Drehung um die j-te Achse mit dem Winkel t (MJ. wie in
6.9° vgl. auch 11.5.7.3°%). Dann gibt es zu jeder orthogonalen Matrix A die Eulerwinkel
ttyty € R mit A = Ra(tl)Rl(tz)Ra(t3) . Das l4Bt sich ahnlich wie bei der Darstellung
von Lorentztransformationen (siehe 4.4°) zeigen. Die Identitdt A = Ra(t1)R1(t2)R3(t3)
liefert unmittelbar einen stetigen Weg von A zur Einheitsmatrix, indem die Parameter

ttets nacheinander variiert werden. Also ist SO(3) zusammenhéngend.
(4.3%) Die unitire Gruppe und die spezielle unitire Gruppe.
Uln) = {A e GL(n,C): {Az,Aw> = <(z,w> fiir alle z,we c™}
ist die unitdre Gruppe, wobei < , > jetzt das hermitesche Skalarprodukt
{z,w> = E} ziwl
V=1

ist. Es gilt U(n) = {A € GL(n0): A¥A = id}, wobei fiir A = (A) gilt: A* = (B;)
mit B; = Kg,kurz: A* = AT,
Die spezielle unitdre Gruppe ist

SU(n) := {AeU(n): det A = 1}.

Die Gruppen U(n) und SU{n) sind zusammenhingend und kompakt.

(4.4°) Die Lorentzgruppe ist

0(3,1) == {A e R(4): n(Ax,Ay) = nlxy) fir alle x,y¢€ ®*}
= {AcR(4): AThA = 7}
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& ij 4.4
nix,y) = ,Zl xyl - x'y
=

fir x,ye R* gegeben ist. Mit n wird auch (z.B. in der Formel ATnA = 7) die
zugehorige Diagonalmatrix 1 = diag(1,1,1,~1) bezeichnet. (In Kapitel IV und V wird
oft 0O(1,3) anstelle von 0(3,1) verwendet.)

O(3,1) enthalt unter anderem die Matrizen L (t) = (AJ) ("Boosts" in die
k-te Richtung) fiir te &, k =1, 2,3, mit den folgenden Koeffizienten: Auf der Diago-
nalen A"' = All: = cosht sowie AJ 1 fiir j£4 und j+ k; auBerhalb der Diagona-
len sind alle Koeffizienten 0 abgesehen von den folgenden beiden: A Ait = sinht
(vgl. 1.4.9). An diesen Beispielen sieht man, daB die Koeffizienten der Matrizen aus
O(3,1) nicht beschrinkt sind. Daher ist die Lorentzgruppe 0O(3,1) nicht kompakt.

0(3,1) ist nicht zusammenhédngend. Fiir A € O(3,1) gilt |det A| = 1 wegen

= detn = det AT A = det AT det n det A = - (det A)?. Fiir den vierten Einheits—
vektor e4 = (5 ) gilt -1 = n(e4,e) = n(Ae,Ae,) = (A1) + (A") + (A4) (A"')
also (A4) =1+ (A1) + (A4) + (A4) 2 1. Daher sind die folgenden vier Teilmengen
von O(3,1) abgeschlossen und offen in 0(3,1):
L{ = {AcO@BD:detA =1 und AL 21},

Ll == {AeO@D:detA = -1 und Af>1},
Ly = {A€O@B:det A = 1 und Af <1},
LY = {AcO@):det A = -1 und A% <1).

In der Tat sind diese Mengen abgeschlossen direkt nach Definition, denn A ——> A4
und det sind stetige Abbildungen. Sie sind auch offen, weil z.B. L! folgendermaBen
beschrieben werden kann: LT = {Ac O(3,1) : det A ¢ 14,20 und A4 1}, Wieder we-
gen der Stetigkeit ist eine solche Menge offen. Die Lorentzgruppe 148t sich also zerle—
gen in die disjunkten Mengen
OBl =L ULt ULl ULY,

die alle vier zugleich offen und abgeschlossen sind. Daher ist O(3,1) nicht zZusammen-—
hangend (vgl. M.8.3°).

Die eigentliche, orthochrone Lorentzgruppe ist
SO(3,1) = LT = {AcO(31): det A = 1 und Ay 21}

S0(3,1) ist zusammenhingend. Das liegt daran, daB sich jede Matrix A aus
SO(3,1) als Produkt von "Drehungen” R(B) := (g ?), B € SO(3), und Boosts L (t)
darstellen 14Bt. Und zwar gilt A = R(B)L (t)R(B') mit geeigneten B,B' e SO(3) und
j€1{1,2,3} sowie teR. Um das emzusehen, greife man wieder die letzte Spalte Ae,
von A heraus, fiir die wir weiter oben bereits (A4) 1+ (A1) + (A4) + (A4)
hergeleitet haben. Im Falle A;' = A4 A4 = 0 ist A = R(B) mit einer Matrix
B € SO(3), wie man aus der Bedingung A € SO(3,1) unmittelbar ablesen kann. Sind

zwei der drei rdumlichen Komponenten A1 AZ,A verschieden von Null, etwa A1 £ 0

rd A% L O e atht e e TN Ln 1 I f v oem AL
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Produkt A' = RA der Koeffizient A':’ verschwindet, denn es gilt aufgrund der expli-
ziten Form von Ry(a) (vgl. 11.5.7.3°): A"f = cosocA‘lt - sinotA';‘ Sollten bei A' = RA
die Komponenten A'; und A'; beide nicht verschwinden, so findet man entsprechend
eine weitere Drehung R,(¢), so daB fiir A" = R(R (p)R,(x))A jetzt die beiden Koeffi-
zienten A"‘f und A"; Null sind. Wegen (A" :)2 =1+ (A";)2 gibt es ein te R mit
A": = cosht und A"g = sinht. Daher ist filr die Matrix A™ = L {(-tJA" die letzte
Spalte der Einheitsvektor e, (man beachte L3(t)'1 = LS(-t))‘ Das bedeutet, daB es
eine Drehung B' gibt mit A™ = R(B'). Fiir B := (R(p)Ry(a))™! = Ry(-a)R,(~9)
folgt wegen A" = L,(~t)R(R ()R (x))A = L3(-t)R(B-‘)A = R(B') die gewiinschte
Darstellung

A = R(B)L,(t)R(B'}).

Weil SO(3) zusammenhingend ist (vgl. 2°), gibt es einen stetigen Weg vy in SO(3),
der B mit der Einheitsmatrix verbindet, also einen stetigen Weg R(y)L,(t)R(B'} in
SO(3,1), der A mit L3(t)R(B') verbindet und einen weiteren, der La(t)R(B') mit
L3(t) in SO(3,1) verbindet. SchlieBlich 148t sich ganz leicht ein Weg in SO(3,1) fin-
den, der La(t) mit der Einheitsmatrix e = LS(O) verbindet, indem man den Parameter
t variiert. (In [BLE, S. 73] wird gezeigt, daB SO(3,1) diffeomorph zu einem Prinzipal-
faserbiindel P iiber R® mit SO(3) als Strukturgruppe ist und einen globalen Schnitt
zulaBt, also sogar ein triviales Prinzipalfaserbiindel ist. Daher ist SO(3,1) diffeomorph
zt SO(3) x R®. Ein genereller Zugang zu der Frage, welche Matrixgruppen zusammen-
hingend sind, findet sich in [LIE, S. 21 £f.], wo unter anderem die Gruppen GL(n,C),
SL{n,R), SL(n,C), U(n), SU(n), Sp(2n), SO(p,q) untersucht werden.)

Als Ergebnis der vorangehenden {iberlegungen hat man noch die folgende
Charakterisierung von SO(3,1): SO(3,1) ist die groBte zusammenhingende Teilmenge
von O(3,1), welche die Eins 1 = idgzs enthilt (also die Zusammenhangskomponente
der Eins). AuBerdem sind auch die anderen Bestandteile LI,Li und LY in der Zerle-
gung O(3,1) = LT UL? ULY UL! zusammenhdngend, weil sie jeweils diffeomorph zu
L' sind: Zum Beispiel ist LT = {nA: AeLl} und L' = {-A: AeL]}.

(4.5%) Verallgemeinerte orthogonale Gruppen. Fir p,geN,n = p+q,
definiert man iiber die Bilinearform
v . n
Jyd

Wyl - Ty
j=pt1

B(x,y) =

™Mo

(vgl. G.15.3°) die folgenden Matrixgruppen (verallgemeinerte orthogonale Gruppen):

O(p,q) = {AeGL(n,R): Firalle x,y ¢ R” ist B(Ax,Ay) = B(x,y)}
— {AeGL(n,R): ATBA = B}.

Die zugehdorige spezielle orthogonale Gruppe SO(p,q) definiert man in der Regel als

die Zusammenhangskomponente der 1 in O(p,q), also als die groBte zusammenhidngen-—
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(4.60) Symplektische Gruppen. ¢ € R(2n) sei die Matrix ¢ = (_? (1) ), wo-

bei O fiir die (n x n}-Matrix mit lauter Nullen als Koeffizienten und 1 fijr die (nxn)-
Einheitsmatrix steht. ¢ definiert ein "Skalarprodukt"

n . . .
Kyd, = x Yoy =J§1 (xdy ™ _ yiynryy

Die zugehérige Gruppe heiBt die symplektische Gruppe:

Sp(2n) = {A € R(2n) : (Ax,Ay)c = <x,y>, fir alle x,ye¢ Rzn}
={AcR2n): AToA = 4
{AeR@n): A™ = - 5ATy).

I

Man interessiert sich ebenso fiir die komplexe symplektische Gruppe

Sp(2n,€) = {AeC(2n): AToA = o},

Fiir alle diese Untergruppen von GL(n,C) sieht man wie in 1° und 2°, daB
sie abgeschlossen in GL(n,C) und deshalb Matrixgruppen sind.

Mit einiger Miihe kann man zeigen, daB jede Matrixgruppe eine Lie-Gruppe
ist, Weil Matrixmultiplikation und Inversenbildung differenzierbar sind (vgl. Abschnitt
3), geniigt es dazu, den folgenden Satz zu beweisen:

(4.7°) Satz: Eine Matrixgruppe G ¢ GL(n,C) ist eine differenzierbare Unter-
mannigfaltigkeit von R, Allgemeiner gilt: Eine abgeschlossene Untergruppe einer
Lie-Gruppe ist Untermannigfaltigkeit der Lie-Gruppe. (Beweis z.B. in [BRD, $.28] oder
[ABM])

(4.8°) Folgerung. Das Tangentialbiindel TG (vgl. M.7) an eine Matrixgruppe
G C GL(n,C) hat die folgende direkte Beschreibung, wie wir das in I11.5.7.5° bereits fiir
den Fall der Drehgruppe G = $0(3) festgestellt haben:

TG = {(AV) € C(n) xCn): A€G und A lve T G)

= {(A,AX) € C(n) x C(n) ; AeG und Xe T_G}.

Denn ein Tangentialvektor v ¢ TAG C C(n) ist Ableitung v = ¥(0) einer differenzier-
baren Kurve ¥ in G mit Y(0) = A. Daher ist B(t) == A"y (t) eine differenzierbare
Kurve in G mit B(O) = e (Einheitsmatrix) und 8(0) = Alve TeG, Also ist jedes
Element in TG von der Form (Ayv) mit AeG und Alye T ,G. Umgekehrt gilt fiir
jedes Paar (A,v) mit den Bedingungen A e G und Alve T.G: A% wird durch eine
Kurve B in G mit B(O) = e reprasentiert, das bedeutet 80) = A'Yy, Deshalb ist
Y = AB eine differenzierbare Kurve in G mit y(0) = A und 70) = AA™Yy = .,
Also ist (A,v) € TG,

Analog hat TG auch die Beschreibung

TG = {{Aw) €Cn) xC(n): AeG und wA™ ¢ T_G}.
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5. Lie-Algebren. Eine Lie-Algebra iiber Ke{R,C} ist ein K-Vektorraum L
mit einer Abbildung

[,]:LxL — L,
welche die folgenden Eigenschaften hat: Fiir alle X,Y,ZeL und ceK gilt

1. [eX +Y,Z] = c[X,Z] + [y,z] (Linearitit),
2. XY} = - [YX] (Antisymmetrie),
3. [x[v.z1] + [ylzx1] + [zixYl]l=0 (Jacobi-Identitt).

[, ] wird oft als "Lie-Klammer" bezeichnet.

Beispiele.

1% Abelsche Lie-Algebren. Jeder K-Vektorraum L mit [X,Y] = 0 fiir alle
X,Y €L ist eine Lie-Algebra iiber K, die sogenannte triviale oder abelsche Lie—Algebra.

2° Kreuzprodukt. R mit [X,Y] == X xY (Kreuzprodukt) ist eine drei-
dimensionale Lie-Algebra iiber R (vgl. 11.5.7.14° ££.).

3° Die Endomorphismenalgebra. V sei ein K-Vektorraum und

L = Hom(V,V) = EndV
sei der K—Vektorraum aller K-linearen Abbildungen ( Endomorphismen) von V mnach V.
Mit dem "Kommutator” [X,Y] = X°Y - YoX fiir X,Y¢EndV als Lie-Klammer
wird auf End V die Struktur einer Lie—Algebra definiert. L mit o und [, ] heiBt

die Endomorphismenalgebra. Im folgenden werden die Axiome 1-3 nachgepriift:

1. [eX+Y,Z] = (cX+Y)oZ - Zo(cX +Y)
cXoZ + YoZ - ZocX - ZoY
c(XoZ—ZoX) + YaZ - ZoY
= ¢[Xx,Z2] + [Y,Z].

I

2. [X,Y] = XoY - YoX = -(YoX - XoY) = -[Y, X1,

3. [x1v.z] + [xizxi] + [z[x,Y1]

Xol[Y,Z] - [Y,Z]oX + Yo[Z,X]-[Z,X]oY + Zo[X,Y] - [X,Y]oZ
= XoYoZ - XoZoY ~ YoZoX + ZoYoX + YoZoX — YoXoZ +
—ZoXoY + XoZoY + ZoXoY — ZoYoX - XoYoZ + YoXoZ = 0.

Il

4° Die Lie—Algebra der Vektorfelder. Sei M eine Mannigfaltigkeit. Fiir (dif-
ferenzierbare) Vektorfelder X auf M sei Ly ¢ £(M) —> &(M) die Lie-Ableitung
(vgl. Anhang M.12). Zu Vektorfeldern X,Y gibt es ein eindeutig bestimmtes Vektorfeld
Z mit LZ = onLY - LYOLX‘ Setze Z := [X,Y]. Damit wird der R-Vektorraum
der Vektorfelder auf M zu einer unendlichdimensionalen Lie-Algebra B(M) . In loka-
len Koordinaten von M gilt

XYTE = XUy - YUXE.

5° Die Poisson—Algebra. P sei Phasenraum der Hamiltonschen Mechanik, al-
so eine symplektische Mannigfaltigkeit, oder allgemeiner eine Poisson—-Mannigfaltigkeit.
Dann ist &(P) bzgl. der Poissonklammer eine Lie—Algebra (vgl. Paragraph 9 in Kapitel
T ermuria M 10Y
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6. Lie-Algebren zu Matrixgruppen und zu Lie-Gruppen. Fiir eine beliebige
Matrix X e C(n) konvergiert die Exponentialreihe
0
etX — Z 1 X\) ,
v=p VI
und es gilt %% € GL(n,C). Weiter unten zeigen wir in Verallgemeinerung der Untersy-

chungen zur Drehgruppe G = SO(3) inI1.5.7.

(6.1°) Satz: Sei G C GL(n,C) eine Matrixgruppe. Dann ist
9 = LieG = {XeCn): VteR jst eX e g}

eine Lie~Algebra iiber R beziiglich der Lie~-Klammer [X,Y] = XoY - YoX, X,Ye g,

(also eine Unter—Lie—Algebra der Endomorphismenalgebra C(n) & End €") und es gilt
Lie G = {y(0). Y Kurve in G mit y(0) = id., = e}.

g = LieG l4Bt sich also auch auffassen alg Tangentialraum TG an die Eins e der

Matrixgruppe G.

Beispiele zum Satz: Fiir die in 1-4 angegebenen Matrixgruppen erhilt man
mit Hilfe des Satzes die folgenden zugehdrigen Lie-Algebren:

6.2°) ut) = Lie uq).

Es gilt fiir Xe () = C: Xeull) genau dann, wenn "% ¢ U(1) Fiir alle
teR, also letxl = 1. Daher gilt y(1) = {iy : y ¢ R}. Die Lie-Klammer ist fijr diese
eindimensionale Lie-Algebra trivial, d.h. [X.,Y] = 0 fiir alle X,Y e u(1),

(63°) w2 = Lie @) ung 8U(2) = Lie SU(2):
Fiir X e C(2) gilt X e u(2) genau dann, wenn "X ¢ U(2) fiir alle te R,
das heiBt (etX)Tetx = idg2. Differentiation nach t liefert
<T <T
T tX X otX X otX _ 0,
also X7 + X =0, beziehungsweise X+ X = 0. Umgekehrt garantiert diese Bedin-
gung ¢ ¢ UQ) firalle tep, Also:

W2 = {Xec@: XT+x = o).

Fiir X e c(2) gilt dete*X — 1 genau dann, wenn SpurX = 0 (siehe
unten: 8l(n,K) in 6.5°), Also:

2 = Xew@: XT+X = 0 ung Spur X = 0},

Fiir eine Matrix
a b

o d) € 8u(2)

x = |
giltalso @+a = 0 = d+d und C+b =0 wegen ¥ a v _ n .

~ -
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Eine Vektorraumbasis von 2u(2) tber R ist daher durch die in 2 genannten Matrizen
Ty Ty T3 gegeben. (Es ist allerdings nicht typisch, daB fiir Elemente X €g auch
X € G gilt wie in diesem besonderen Beispiel). Nach Abschnitt 2 sind die Kommutatoren

71 dieser Basis: [TPTZ] = 214, [12,13] = 21,, sowie [13,11] = 21,

64°) glnK) = Lie GL(NK) = End(K™):
Natiirlich ist gl{n, K) = K(n), denn es ist det & = eSp“rtx + 0 fir
alle XeK(n) und te R. K(n) entspricht der Endomorphismenalgebra aus 5.3° fir

den n—dimensionalen Fall.

(65°) 8l(nK) = Lie SL(n,K):

Wegen det & = eSpurtX gilt Xe 8l(n,K), also er'X e SL(n,K) fiir alle
t € R, genau dann, wenn Spur X = 0. Daher

2l(n,K) = {XeKln): Spur X = 0}.

(6.67) 81(2,C):
Eine Basis von 81(2,C) (iiber C) ist durch die Pauli-Matrizen

0 1 0 -i 10
°1=(1 o) °z=(i 0\) °a=(o —1)

gegeben. Es gilt o = ity und folglich (vgl. Abschnitt 2)

[61,02,] = -2, = 2igy, [02,03] = 2io,, [03,01] = 2i0,.
Natiirlich ist auch (Tl,TZ,Ta) Basis von 8[(2,C) iber C (vgl. 6.3°).

Im librigen ist 81(2,C) eine komplexe Lie-Algebra, wihrend die Beispiele aus
2° und 3° lediglich Lie—Algebren iiber R sind.

6.7°) o(n) = Lie Oln):

Fiir eine Matrix X € R(n) ist ef'X e O(n) genau dann fiir alle te R, falls
(e';x)-retx = etXTetX = idgn gilt. Durch Differentiation nach t sieht man:

o(n) = (X eRm: X' +X =0},

s(nC) = (XeCm: X' +X = 0} (vel. 4.2°).

(6.8%) 8o(n) = Lie SO(n):
Fir X eo{n) gilt bereits Spur X = O, daher ist 8o(n) = o(n) und eben~
so 8o{n,C) = o{n,C).

(6.9°) ¢0(3) = n(3):

Eine Basis von 80(3) ist durch die drei Matrizen

0 0 0 0 0 1 0 -1 0
M =(0 0-1], M=10 02 M,={1 00
01 0 4 00 0 0 0

o I

e A btk Al
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Verwandtschaft von 80(3) zu gu(2) und 81(2,C)! 60(3) gleicht auBerdem der "Kreuz-
produkt"~Lie-Algebra in 5.2° vgl. 11.5.7.15°.)

(6.10°) 0(3,1) = Lie 0(3,1):

Sei 1 = diag(1,1,1,-1) die Diagonalmatrix mit (1,1,1,-1) als Diagonale.
Wegen OB1) = {AeR(@4): ATA = 1} ist o(31) = {X e R(4) : XTh+nX = o}.
AuBerdem gilt fiir die Lie-Algebra 80(3,1) von SO(3,1): 80(3,1) = 0(3,1). Ebenso mit
0(1,3) = Lie O(1,3) 0(3,1).

(611°) 0(p,q) = Lie O(p,q) = 80(p,q) :
Analog zu 0(3,1) erhilt man Fiir o(p,q) = Lie O(p,q) :
o(p.@) = {XeRn): AT +BA = 0} = golpq)

mit B wie in 4.5° .

(6.12°) 8p(2n) = Lie Sp(2n):
beschreibt man analog als ¢p(2n) = {X ¢ R(2n) : XTG +0X = 0}. Ganz entsprechend
fiir den Fall von komplexen Koeffizienten: 8p(2n,C) = {X e C(Zn): X o+ cX = 0}.

Der zu Beginn dieses Paragraphen zitierte Satz 6.1° iiber die Beschreibung
der Lie-Algebra zu einer Matrixgruppe G ¢ GL(n,C) hat gréBere Bedeutung als in der
obigen Formulierung zum Ausdruck kommt. Die auf .

g =1{XeCl) : e cq fir alle teR)
von C(n) = End C" induzierte Lie-Klammer stimmt nimlich iiberein mit der durch
die Lie-Algebra B(G) der Vektorfelder auf G gegebene Lie-Klammer. Um diesen
Sachverhalt genauer beschreiben zu kénnen, sei zu einer Matrix X ¢ g das zugehorige
linksinvariante Vektorfeld ¥ e B(G) (als Fundamentalfeld, vgl. V.5.8) durch

X = Lae™| - Ax, Acq,
definiert. Dabei ist ganz allgemein im Sinne von M.6 ein Tangentialvektor £ e C(n) an
die Untermannigfaltigkeit G von C(n) = g2 im Punkte A€ G durch eine diffe-
renzierbare Kurve v:] —> G mit Y(0) = A und (0) = £ gegeben; und die Ge~
samtheit dieser Tangentialvektoren an G in A bildet den Tangentialraum T AG. Die
Matrix X e g liefert also fiir jeden Punkt A€ G den Tangentialvektor X(A) e T,G,
der durch die spezielle Kurve t > Ae™X festgelegt wird. ¥ ist aufzufassen als
differenzierbare Abbildung ¥:¢ — C(n) mit X(A) = AX e TAG fiir alle AeG
oder gleich als differenzierbare Abbildung A —— (A,AX) in das Tangentialbiindel
TG c €(n) x C(n), vgl. M.7 und 4.8°. X heift linksinvariant, weil fiir die Linksmulti-
plikationen
£€g:G—9 G, A gA,

4 o
g € G, die Invarianzhedinoiing Faco  mes S
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o o o d X _d
Ko (A) = XigA) = - (gA)e ™| ;= dts’g(A o

1

= ToZ (X(A) = TL oX(A).

Im iibrigen ist fiir jede Matrix Z das entsprechende linksinvariante Vektorfeld 7 auf
ganz GL{n,C) definiert.

Die Lie-Klammer [Y,Z] zweier Vektorfelder Y,Z € B(M) auf einer Man-
nigfaltigkeit M ist definiert durch ihre Wirkung als Richtungsableitung auf beliebigen
Funktionen (vgl. 5.4°und M.12), das heiBt es gilt fiir alle fe &(M):

Ley z9f = Lylzf — LzLyf,

wobei die Richtungsableitung L f(a) im Falle {(0) = Y(a) und ¥(0) = a fiir eine
Kurve y € (J,M) durch die folgende Formel gegeben ist:

d
Lyfa) = SEE)] -

Die oben angesprochene enge Beziehung zwischen der Lie-Klammer auf der
Matrixalgebra ¢ = Lie G und der Lie-Algebra—Struktur auf B(G) kann jetzt folgen-—

dermafBen ausgedriickt werden:

(6.13°) Lemma. In der Situation von Satz 6.1° gilt fiir Matrizen X,Y € ¢ mit
= [X,Yle C(n): [)N(,Y] = 7. Dabei ist [X,Y] zunichst als Kommutator in C(n)
aufzufassen und Z als Vektorfeld auf GL(n,C}.

Beweis. Es ist —(e sX)|s=o — XY - YX = [X,Y]e C(n). Also gilt
d 8, sX tY -sX
2o e ) g am0 = XY

Setze y(s,t) = esxetYe_SX fir s,t € R. Fir fe (G} und AeG ist dann

Ly f(A) = df(AIX.Y]) = a 3t

_ pX tY. _ J 0
B apatf(A Ne-o.t=0 ™ B 00! A®

2 p(Ay(s, t))]t_ =

0,8=0
tY GX)
€ lt:o,c:o ‘

Die letzte Gleichung erhilt man nach der Kettenregel angewandt auf die Komposition

von (s,t) —> (s,t,~s) und (p,t,0) —> f(Aer Y 0X) Auflerdem ist
d d sX tY
Lyl f(A) = Lg{a f(Ae )|t=0 = ga—tf(Ae )lt=0,s=0’

und es gilt eine entsprechende Gleichung fiir LeLg. Eingesetzt in die obere Identitét
ist also Ly = Lgly - ~L~ bewiesen worden, und das bedeutet nach Definition
der Lie— Klammer fiir Vektorfelder gerade die Behauptung 7 = [X.YI1.

Beweis des Satzes 6.1°. Wir zeigen erst einmal: Lie G = T_G. Natiirlich ist
fiir jede Matrix X € C(n) mit etx € G fiir alle te R wegen % txlt_ = X diese
Matrix X ein Tangentenvektor X € T_G, das heiBt es gilt Lie GC T_G. Umgekehrt
definiert jeder Tangentenvektor X e T G em linksinvariantes Vektorfeld X auf G
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Lésungen der autonomen Differentialgleichung ¢ = X((p) auf GL(n,C); denn es gilt
o(t,A) = Ae"¥xX = X(p(t,A)) und ©(0,A) = A.Da X wie jedes Vektorfeld auf G
lokal eindeutig bestimmte Lésungen zu p = Xlp) auf G besitzt, muB Ae™c g
gelten und damit insbesondere e ¢ G. Daher T_G C Lie G.

Fiir je zwei Vektoren X,Y e g sind X und Y Vektorfelder auf G. Deshalb
ist auch [X,Y] ein Vektorfeld auf G mit einem wohldefinierten Tangentenvektor in
der Eins: [X,Y1(e) ¢ T_G. Es gilt [X,¥] = Z nach dem vorangehenden Lemma, wobei
Z = [X,Y]e C(n), und das bedeutet Z = [X,Y] = [X,Y1e) € T,G. Die Behauptung
[X,Y] € Lie G folgt jetzt aus dem gerade Bewiesenen T,G = Lie G.

(6.14°) Lie—Algebren zu abstrakten Lie-Gruppen und Exponentialabbildung.
Einer allgemeinen Lie-Gruppe G wird auf die folgende Weise ebenfalls eine Lie—Alge-
bra g = Lie G zugeordnet: Dazu betrachtet man wieder den Tangentialraum T,G an
G inder Eins e € G und definiert fiir jeden Tangentenvektor X ¢ T,G das linksinva-
riante Vektorfeld X zu X:

X(g) = T ,2.(X),

g € G, wobei wie oben $g : G — G die Linksmultiplikation x +—> gx, X € G, ist.
fé’g ist differenzierbar (weil G Lie-Gruppe ist), daher ist die Tangentialabbildung
T .55’ : T,.G —> T G wohldefiniert. X ist ein Vektorfeld auf der Mannigfaltigkeit
G, und fiir zwei solche linksinvarianten Vektorfelder X und ¥ ist die Lie-Klammer
[X,Y] als Vektorfeld auf G gegeben (vgl. 5.4°). [X,Y] := [X,¥1e) ¢ TG ist daher
ein wohldefinierter Tangentenvektor und es ist leicht zu sehen, daB T,G mit dieser
Klammer [ , 1 zu einer Lie-Algebra wird. T,G mit dieser Lie-Klammer ist die Lie—
Algebra zur Lie-Gruppe G und wird mit LieG oder g bezeichnet.

Analog zur Exponentialreihe = fiir Matrizen X hat man im Falle einer
allgemeinen Lie~Gruppe G die Exponentialabbildung X —— Exp X, Xe T,G. Um
Exp X fiir Xe T,G zu beschreiben, beginne man mit einer Losung der autonomen
D1fferent1algle1chung Y = X(Y) durch e, das heiBt mit y(0) = e. Eine solche Kurve
gibt es aufgrund des Existenzsatzes Fiir Systeme von gewdhnlichen Differentialglei-
chungen zu beliebigen Vektorfeldern auf Mannigfaltigkeiten (vgl. M.14) . Es ist aber im
allgemeinen nicht gesichert, daB die Kurve auf ganz R definiert werden kann (vgl. da-
zu das Beispiel am Ende von Abschnitt M.13). Linksinvariante Vektorfelder X auf einer
Lie-Gruppe haben aber aufgrund der Invarianz doch diese Vollsténdigkeitseigenschaft:
Ist die Kurve y zundchst nur auf dem Intervall J- g,e[ definiert, so ist fir ge G
durch Py (t) == gy(t), —e <t <e¢, eine Kurve durch g definiert mit cp = X((p ).
Denn es 1st (wegen f(t) = [y(t+s)] vty v8l. M.10.2 %)

It

bg(t) [gy(t+s)]Y(t) = TY(t)ng([Y(t+s)]Y(t)) = TY(t)i’g(Y(t))
ToerLg(RUEN) = T (& 0T 2 (X) = T (Lo, (1y)(X)

— T @ UVY — FlkdedY N sy
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Daher definiert fir g = y(}e)

y(t) fiir —e<t<e
(t) =1 -~
Tt @g(t—%e) fir —e+4e<t <e+5e

eine Losung von ¢ = X(y) auf dem Intervall 1-e,e + %e[. (Wegen der Eindeutigkeit
der Lésungen stimmen y(t) und (pg(t -1e) auf l-e+ le,e[ iiberein.) Y, kann man
genauso fortsetzen zu einer Lésung v,, die auf dem Intervall 1-¢,2¢[ definiert ist,
und entsprechend kann man die Losung nach links auf das Intervall 1-2e,2el fort-
setzen. Durch Iteration dieser Prozedur erhilt man fiir jedes Intervall 1-r,r[ eine Lo-
sung von ¥ = X(y), v{0) = e, und das bedeutet, daB es eine Losung v, auf ganz
R gibt. Diese Losung entspricht der oben verwendeten Exponentialreihe etx, und sie
kann zusammengesetzt werden zu der Losungsschar ¢(t,g) == gy (t), (t,g) e RxG,
des Vektorfeldes X. Die linksinvarianten Vektorfelder auf einer Lie-Gruppe sind also
vollstandig (vgl. M.13.3° und M.14)!

Insbesondere ist Exp X := y,(1) = ¢(l,e) € G ein wohldefiniertes Grup-
penelement Exp X € G, und es gilt ExptX = y(t) fiir alle t € R. Die Exponentia]-
abbildung Exp:g —> G ist differenzierbar wegen der differenzierbaren Abhdngig-
keit der Losungen von allen Ausgangsdaten. Wegen X = [Exp tX], entspricht die
Tangentialabbildung T Exp: Tgg & g —> T_G = ¢ der Identitat und ist insbeson-
dere invertierbar., Aufgrund des Umkehrsatzes (M.3.4°) folgt deshalb:

(6.15°) Satz. Es gibt eine offene Umgebung VC g von 0¢€ g und eine offe-
ne Umgebung U C G von e € G, so daB ExplV : V —> U ein Diffeomorphismus ist.
Insbesondere ist (Exp|v)_1 : U — V eine Karte von G.

7. Homomorphismen von Lie—Gruppen und Lie-Algebren.

Definition. Es seien g und ) Lie-Algebren iiber K e {R,C}, und es seien
G,H Lie-Gruppen.

1. Eine Abbildung ¢:gq —> b heiBt Homomorphismus von Lie-Algebren
oder Lie-Algebra-Homomorphismus), wenn ¢ K-linear ist und die Lie-Klammern
erhilt, das heiBt, [p(X),p{Y)] = o([X,Y]) fiir alle X,Y € g erfiillt. Ein Isomorphismus
von Lie-Algebren ist ein bijektiver Lie-Algebra-Homomorphismus p. Die Umkehrung
p~1 ist dann ebenfalls ein Lie-Algebra-Homomorphismus. B ist Lie~Unteralgebra von
g, wenn B ing enthalten ist und die Inklusion § —> g, X —> X fiir XeD ein
Lie—-Algebra-Homomorphismus ist

2. Eine Darstellung der Lie-Algebra ¢ in dem K-Vektorraum V ist ein
Lie~Algebra-Homomorphismus ¢ : ¢ —> End V in die Lie-Algebra der Endomorphis-
men von V (vgl. 5.c)).

3. Ein Homomorphismus von Lie-Gruppen (oder Lie-Gruppen-Homomorphis-
mus) ist ein Gruppenhomomorphismus ¢ : G —> H, der zugleich differenzierbar ist.

Entsprechend: ¢ ist ein Isomorphismus (von Lie-Gruppen), wenn ¢ ein Isomorphis-
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n-dimensionalen K-Vektorraum V: GL(V) und GL(n,K} sind isomorph als Lie-Grup~
pen. In Zeichen: GL(V) 2 GL(n,K).

Bemerkung: Der Begriff der Lie-Untergruppe wird uneinheitlich verwendet.
In der dlteren Literatur ist H C G bereits dann eine Lie-Untergruppe, wenn die Inklu-
sion ein Homomorphismus von Lie-Gruppen ist. Dabei kann die Situation auftreten, daB
H nicht abgeschlossen in G ist und auch keine Untermannigfaltigkeit ist. Beispiels-
weise ist der Torus T := U(1) x U(1) eine (kompakte) Lie-Gruppe. Fiir jeden Wert
aeR ist H, = {(eiut,eit) € U(1) x U(1) : t e R} eine Untergruppe von T. Fiir irra-
tionale « ist aber H_, nicht abgeschlossen in T, weil H, dichtin T ist. Offenbar
kann H_, dann auch keine Untermannigfaltigkeit von T sein. H, ist aber in natiirli-
cher Weise eine Lie~Gruppe, wenn man auf H_ die differenzierbare Struktur betrachtet,
welche von R durch die Abbildung t +—> (eiat,eit) induziert wird. Im Falle a e Q
ist diese Abbildung nicht injektiv, und H_, erweist sich als diffeomorphzu ' = U).
AuBerdem hat H, die von T induzierte Topologie und ist eine abgeschlossene Unter-
mannigfaltigkeit von T.Im Falle « ¢ Q ist die Abbildung t —— (emt, e'®) injektiv,
und die von R induzierte Struktur macht H_ diffeomorph zu R. Die Inklusionsabbil-
dung (eiat,eit) — (em‘t

Topologie auf H_ (die von R kommt) ist echt feiner als die von T induzierte. Ver-

it, R . . .
,e ) ist ein Homomorphismus von Lie-Gruppen, aber die

langt man fiir Lie-Gruppen H C G neben der Bedingung, daB die Inklusion ein Homo-
morphismus von Lie-Gruppen ist zusitzlich noch, daB H abgeschlossen ist (vgl. 4.7°),
soist H mit der von G induzierten Struktur als Gruppe und als Mannigfaltigkeit eine
Lie-Gruppe, die zur urspriinglichen Gruppe H als Lie—Gruppe isomorph ist. Diese
Bedingungen ergeben somit eine eingeschrankten Begriff der Lie-Untergruppe, den der
abgeschlossenen Lie-Untergruppe.

4. Eine Darstellung der Lie-Gruppe G in dem K-Vektorraum V endlicher
Dimension ist ein Lie-Gruppen-Homomorphismus ¢ : G —> GL(V). Eine Darstellung
entspricht einer differenzierbaren Wirkung & : G x V — V, (g.v) — olg)v (vgl.
1.374).

Beispiele und Bemerkungen.

1° Zwischen 8u(2) und 80(3) erhélt man zum Beispiel den folgenden Iso-
morphismus von Lie~Algebren p : 8u(2) — g0(3) durch Angabe von p(E) fiir Basis-
vektoren £ von 8u(2) : o(%tk) =='Mk, k=123 (vgl. 2 und 6.9°). Entsprechend hat
man einen natiirlichen injektiven Lie~Algebra~-Homomorphismus ¢ : 8u(2) —> 8{(2,€)
mit p(rk) = T,. Man sieht: p(8u(2)) erzeugt 8l(2,C) iiber C. 8I(2,C) ist eine
Komplexifizierung von 8u(2). Allerdings ist 8[(2,C) auch eine Komplexifizierung von
8L(2,R), und die Lie-Algebren 8u(2) und 8I(2,R) sind nicht isomorph. Auch die in 5.2°
beschriebene Lie-Algebra ist isomorph zu ¢9(3) (vgl. 11.5.7.15°).

2° Zu jeder endlichdimensionalen Lie-Algebra g gibt es eine injektive
Darstellung p: g —> End V in einem endlichdimensionalen Vektorraum V (Satz
von Ado; vgl. z.B. [FUH], S. 500). Insofern ist jede endlichdimensionale Lie-Algebra als

Lie-Algebra isomorph zu einer Lie~Algebra von (endlichen) Matrizen, das heift zu einer
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Lie-Unteralgebra von C(N) fiir ein geeignetes N ¢ IN. Mit diesem Resultat 148t sich die
Lie—Klammer einer endlichdimensionalen Lie-Algebra stets als Kommutator auffassen.

3° Eine entsprechende Aussage fiir Lie-Gruppen ist falsch. Es gibt Lie-Grup-
pen, die nicht Matrixgruppen sind, und auch zu keiner Matrixgruppe isomorph sind.

4° Aus 2° 14Bt sich herleiten, daB jede endlichdimensionale Lie-Algebra L
isomorph zur Lie-Algebra einer Lie-Gruppe ist. Aus dem Satz von Ado (siehe 2°) folgt
ja, daB L als Lie-Unteralgebra von C{N) aufgefaBt werden kann. Die Exponentialreihe
Exp : C(N) —> GL(N,C) definiert auf der Menge Exp(L) C GL(N,C) die Struktur
einer Lie-Gruppe G mit Lie G = L (vgl. [HIN, S. 47 ff.]). G ist im allgemeinen nicht
abgeschlossen in GL(N,C) und auch keine Untermannigfaltigkeit, daher ist G auch
nicht immer eine Matrixgruppe. Aber die Injektion ist eine Immersion, das heiBt die zu-
gehorige Tangentialabbildung ist in allen Punkten injektiv.

5° Ein Gruppenhomomorphismus zwischen Lie-Gruppen ist bereits dann dif-
ferenzierbar, wenn er stetig ist. Das 14Bt sich mit Hilfe der Exponentialreihe zeigen
(siehe [HIN, S. 209]).

6° Jeder Homomorphismus von Lie~Gruppen ¢ : G —> H induziert einen
Homomorphismus von Lie—Algebren Lie ¢ : Lie G — Lie H iiber die Formel

Le¢e = T_|¢,
also im Falle einer Matrixgruppe G: Lie ¢(X) = H(it“o(etx)lmo fiir X € Lie G. Natlir-
lich ist Lie ¢ als Tangentialabbildung linear. DaB Lie ¢ auch die Lie-Klammern respek-
tiert, folgt im wesentlichen aus dem Lemma in Abschnitt 6 (vgl. [HIN, S. 2061).

Es gilt die funktorielle Eigenschaft Lie o = (Lie ¢)o(Lie ¢} fiir Homo-
morphismen ¢,y von Lie-Gruppen.

7° Aus 5° ergibt sich fiir eine unitire Darstellung R : G —> #(H) einer
Matrixgruppe G in einem endlichdimensionalem Hilbertraum H (vgl. Paragraph 3 in
Kapitel III), daB Lie R : Lie G — Lie #({) als Lie-Algebra—Homomorphismus we-
gen Lie Z (H) = u(n) C End(C™) = EndM eine Darstellung der Lie-Algebra Lie G in
H festlegt, welche ebenfalls mit Lie R bezeichnet wird: LieR:g —> End H.

8° Es seien jetzt Lie-Gruppen G und H mit den zugehérigen Lie-Algebren
g und B gegeben. Jeder Homomorphismus ¢ : G —> H von Lie~Gruppen bestimmt
einen Lie-Algebra—Homomorphismus Lie¢ : g —> ), wie wir in 6° gesehen haben.
Aber nicht jeder Lie-Algebra—Homomorphismus ist von dieser Form. Beispielsweise gibt
es zu dem Isomorphismus o : 80(3) —> 8u(2), M, —> %Tk, also zu der Umkehrab-
bildung von ¢ in 1°, keinen Homomorphismus ¢ : SO{3) —> SU(2) mit Lie¢ = o.
Das 4Bt sich direkt nachpriifen, es folgt aber auch aus allgemeineren Resultaten iiber
die irreduziblen Darstellungen von SO(3) und SU(2) (vgl. Paragraph 3 in Kapitel III).
Fiir einfach zusammenhingende G gilt dagegen (vgl. z.B. [FUH, S. 119]):

9° Satz. Seien G und H Lie-Gruppen, und sei’ G einfach zusammenhin-
gend. Dann gibt es zu jedem Lie-Algebra—Homomorphismus p : Lie G —> Lie H einen
eindeutig bestimmten Lie-Gruppen-Homomorphismus ¢ : G —> H mit p = Lie p.
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8. Universelle tberlagerungen von Lie-Gruppen. Statt einer allgemeinen
Theorie der universellen tiberlagerung, zu der in Paragraph 4 von Kapitel Il ein wenig
zu finden ist, werden hier nur zwei fiir dieses Buch wichtige Beispiele ausfiihrlich behan~
delt (ansonsten vgl. z.B. [0SS], [LIE] oder [HIN]). Vorweg wollen wir feststellen, daB
die Drehgruppe SO(3) auf eine natiirliche Weise durch den injektiven Homomorphismus
A—> (A (1))
gruppe SO(3,1) aufgefaBt werden kann.

=: R(A) als abgeschlossene Untergruppe der eigentlichen Lorentz-

Satz. Es gibt einen Homomorphismus

A SL(2,€) — SO(3,1)
von Lie~Gruppen mit

1° A ist surjektive Submersion, und es gilt A(SU(2)) = S0O(3).

2° KerA = {+1,-1}, wobei 1 die Einheitsmatrix in C(2) bezeichnet.

3° LieA: 8(2,C) —> 80(3,1) ist ein Isomorphismus von Lie-Algebren,
und das gilt auch fiir die Restriktion Lie A gu(2) : 8u(2) — 8o(3).

Bemerkungen: Die Restriktion von A auf SU(2) c SL(2,C), die wieder mit A
bezeichnet werde, A : SU(2) — SO(3), hat im wesentlichen dieselben Eigenschaften
wie die volle Abbildung. Insbesondere gibt es zu jedem A e SO(3,1) (bzw. A e SO(3))
ein Ce SL(2,C) (bzw. Ce SU(2)) mit A"MA) = {C,-C}. Es folgt wegen der Stetig-
keit von A, daB A :SL(2,C) — SO(3,1) (bzw. A : SU(2) —— SO(3)) universelle
Uberlagerung von SO(3,1) (bzw. SO(3)) ist, wenn man noch weiB, daB SU(2)und
SL(2,C) einfach zusammenhéngend sind. Fiir SU(2) ist das klar, da SU(2) als Man-
nigfaltigkeit mit der Sphire 5° identifiziert werden kann, und fiir SL(2,C) wird der
einfache Zusammenhang noch im folgenden zur Sprache kommen. (Im iibrigen ist eine
Submersion eine differenzierbare Abbildung ¢, fiir die sdmtliche Tangentialabbil-
dungen T_¢ surjektiv sind.)

Beweis des Satzes. Es sei
= {AeC2): A"=A)
der R-Vektorraum der hermiteschen 2x2 - Matrizen, AY = KT. H ist vierdimensio-
nal und es gibt einen Vektorraumisomorphismus 1 : R* — H, der folgendermaBen
festgelegt ist: Fir q ¢ R* sei

uUq) = g%, = qo = @+a  q'-ig?
u at+ig? ~qP+qt

Dabei ist 6, = idcz die Einheitsmatrix und o, k=1,2,3, sind die Pauli-Matrizen
(vgl. 6.6°). Die Linearitit und die Bijektivitdt von ¢ sind offensichtlich. Man rechnet
auBerdem leicht nach, daB det qo = - anuqv = ~-<q,q> fiir alle q¢ R* gilt.

Der gesuchte Homomorphismus A(A) = A (R* — R fir Ac SL(2,C)

wird jetzt folgendermaBen definiert: Zunichst stellt man fest, daB mit Be H fiir behe—

s A BT £y oAy " X . a = 'S vy v oy o u
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Fiir A e SL(2,C) und qge R* ist also AL(q)A* € H, und daher gibt es einen eindeutig
bestimmten Vektor A,q = A(Alqe R* in R*, der L(AAq) = AL(q)A* erfiillt.

Wegen Aulq + q’)A* = AL(q)A* + AL(q')A* etc. ist die so definierte Ab-
bildung A, : R* —> R* R-linear. Ferner gilt fiir alle g€ R* die fiir den Beweis
entscheidende Identitat <A,q,A,q> = <q,q>:

CAAQA Q> = —det A, q) = - det AL(q)A* = - det A det l{q) det A* = <q,q>,

wegen det A = 1 = det A" und det ug) = -<q,@. Also ist A(A) = A, eine all-
gemeine Lorentztransformation, das heit A(A) € O(3,1).

Die Abbildung A : SL(2,C) —> O(3,1) ist differenzierbar, weil die Koeffi-
zienten der Matrix A(A) € O(3,1) rationale Funktionen in den Koeffizienten der Matrix
A e SL(2,C) sind. Also ist A insbesondere stetig, und es folgt, daB A(SL(2,C)) in
0(3,1) eine zusammenhingende Menge ist (denn SL(2,C) ist zusammenhangend, vgl.
4.1°). Weil A() = 1 = idgs € 8O(3,1) gilt, und SO{3,1) die groBte zusammenhingen—
de Teilmenge von 0(3,1) ist, welche die Einheitsmatrix 1 enthalt (vgl. 4.40), mufl die
zusammenhingende Menge A(SL(2,C)) in SO(3,1) liegen. Das bedeutet, daB die Abbil-
dung A als eine Abbildung

A SL(2,C) —> SO(3,1)
aufzufassen ist.

A respektiert die Matrizenmultiplikation, ist also ein Homomorphismus von
Lie-Gruppen. Denn fiir Matrizen A,B,C e C(2) gilt ABC(AB)* = A(BCB)A* und
deshalb Aapa = '(ABUQ)(AB)') = = NAuAG(q)A") = A Agla) fir qeR*
und A,B e SL(2,C), das heiBt A(AB) = A(A)JA(B).

Aus A¢ Ker A ergibt sich uq) = AU A" Ffiir alle qe R*, und daraus
148t sich Ker A = {1,-1} durch Einsetzen verschiedener q sogleich herleiten.

Die Tangentialabbildung T,A : 81(2,€) — $0(3,1) ist injektiv: Das sieht
man zum Beispiel, indem man die TlA(Xj) fiir geeignete Xj e T,SL(2,C) als linear un-
abhingig erkennt, z.B. fiir Xj = Gj,j =1,2,3, und X3+j = ioj,j = 1,2,3. Statt A be-
trachte man den Homomorphismus X : SL(2,C) — GL(H), X (A)B := ABA® | der mit
A durch A = t"'oXoL verbunden ist. Fiir X ¢ T, SL(2,C) gilt TAX)B = XB+ BX",
denn fiir X = y(0) ist T MX)B = g—t)\(y(t))‘t=oB = v(0)B + B*'((O)*. Angewandt
auf die Xj zeigt sich, daB die T1)‘(Xj) linear unabhingig sind (mit Hilfe der Kenntnis
von allen 0500, (vgl. 5.6°) stelle man die Beschreibungen der T1>\(XJ.) als (4x4)-
Matrizen beziiglich der Basis (01,02,03,04) von H auf).

T,A ist auch surjektiv, da dim[R gl(2,C) = dimg 80(3,1) = 6 ist. Damit ist
neben 2° auch 3° bewiesen.

Um auch 1° nachzupriifen, stellt man fest, daB TAA fiir alle A e SL(2,C)
bijektiv ist, da TAA = T1$A(A)0T1A0TA$A—1 gilt mit den Linksmultiplikationen
LAt auf SL(2,C) und $A(A) auf SO(3,1). Nach dem Umkehrsatz (M.3.4°) ist da-
her A in allen Punkten A von SL(2,C) lokal umkehrbar als differenzierbare Abbil-
dine und ec fFolet inchesondere daR A(SI(2 €©)) in SO(31) offen ist. Da SO(3.1)
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zusammenhingend ist, muB deshalb A(SL(2,C)) gleich der ganzen Komponente SO(3,1)
von O(3,1) sein, das heiBt A ist surjektiv. (Zum Beweis der Surjektivitat von A kann
man auch die Urbilder der Erzeugenden von SO(3,1) (vgl. 4.4°) ausrechnen.)
SchlieBlich ergibt die Definition von A: A(SU(2)) 80(3). Die Restriktion
von A auf SU(2) ist daher wieder Submersion und insbesondere offen. Wie oben folgt
ASU(2)) = SO(3), da SO(3) zusammenhingend ist. Damit ist der Satz vollstidndig

bewiesen.

Anhand der Projektion = : SL(2,C) —> ¢\ {0}, A —> A((l))’ auf die
zweite Spalte der Matrix A l#Bt sich die topologische Natur von SL(2,C) genauer be-
stimmen. 7 ist ndmlich stetig, surjektiv und hat die Fasern n"Yw) 2 C.Es kann ge-
zeigt werden, daB 7 sich zu einer topologische Abbildung = : SL(2,C) —> C2\{0}xC

ausdehnen 14Bt: Dazu setze man n(g \sz) = (w,z,A\) mit )\ := w"l(a—r“zf), falls
w+ 0,und ) = z ¢+ 2 W), falls z % 0. Dabei ist r® := lz|? + lwi?. (Dieser

Sachverhalt bedeutet, daB = : SL(2,C) —> €3\{0) als Faserbiindel trivial ist.)
SL(2,C) ist also diffeomorph zu €*\{0}xC = $%x 10,0 [ xR% =~ $°xR®. Es folgt:
SL(2,C) ist zusammenhingend (wie in 4.1° gezeigt) und einfach zusammenhidngend,
denn $% und R® sind einfach zusammenhangend. Deshalb ist der im Satz angegebene
Homomorphismus A : SL(2,C) — SO(3,1) die universelle Uberlagerung von SO(3,1).

Ebenso ist A : SU(2) —> SO(3) universelle Uberlagerung von SO(3). Dar-
aus ergibt sich insbesondere, daB SO(3) diffeomorph zum projektiven Raum Py{R) ist.

9. Adjungierte und koadjungierte Darstellung. Zu einer Lie-Algebra L iiber
K e {R,C} mit der Lie-Klammer [ , ] gehoren die adjungierte Darstellung

ad: L — Endy (L), ad, (Y} := [X,Y],
und die koadjungierte Darstellung
ad* ;L —> End,, (L, adx(u)(Y) = u([X,Y]),

flir X,YeL und pel* = Hom (L,K) . Diese Darstellungen sind im allgemeinen nicht
injektiv,

Beispiele. L = K ergibt wegen [X,Y] = 0 die Nullabbildung als adjungier—
te Darstellung. Fiir L = 8[(2,C) (entsprechend 8u(2) iiber R) mit Basis {7, TgrTy)
gilt ade = ZMJ. fir j = 1,2,3 (vgl. 6.3%9°). Insbesondere sind die adjungierte Dar—
stellung ad : $1{2,C) — End(8L(2,C)) und die koadjungierte Darstellung injektiv.

Die Darstellungen ad und ad*® sind auch fiir unendlichdimensionale
Lie-Algebren definiert. Im endlichdimensionalen Fall kommen sie von entsprechenden
Darstellungen einer Lie-Gruppe G mit Lie G = L, wie im folgenden dargelegt wird.

Eine Lie-Gruppe wirkt auf sich selbst durch Konjugation

Ad:GxG —> G, Adlg,x) = Ad (x) == gxg'!

Es gilt Ad oAdh = Adgh, das bedeutet, da.B
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Ad: G — Aut(G), g —> Adg,

ein Gruppenhomomorphismus von G in die Gruppe Aut(G) der Automorphismen von
G nach G ist. Da Adg : G —> G fiir alle ge G differenzierbar ist (G ist ja eine
Lie-Gruppe) und Adg(e) = e erfiillt, wird durch die Ableitung TeAdg fiir jedes g€ G
eine Abbildung

Ud, = TAd, : TG =98 —> ¢

gegeben, die eine Darstellung
Ad: G —> GL(g)

von G in ihrer Lie-Algebra g = Lie G festlegt. Denn ?Ibgo‘lﬁ)h = ?Ibgh folgt nach
der Kettenregel aus Adgo Adh = Adgh, und UAD ist differenzierbar, weil Ad differen-
zierbar ist. AuBerdem ist ‘l[bg : g —> ¢ ein Lie-Algebra-Homomorphismus:

() A ([X,Y]) = [Ad(X),Ad, (Y)1.

Fiir Matrixgruppen G ist ?Ib (X) =T Ad (X) = dtget Nemo = ng“l. Aus die-
ser Beschreibung von QIb (X) erglbt sich die Formel (*) wegen eXYg ! = ngdeg_l
sofort. Im allgemeinen laBt sie sich analog mit Hilfe der Exponentialabbildung beweisen.

Die Ableitung Lie dd: g —> Endg (vgl. 7.6°) von Ub erfiillt

(#+) (Lie )y (Y} = [X,Y],
da
d tX

(Lie W) (V) = SAp(e™))|,, = FeTYe

dat 0 — [X,Y].

e

Lie Abd ist also nichts anderes als die zu Beginn des Abschnitts eingefiihrte
adjungierte Darstellung ad der Lie-Algebra g! Diese Identitdt kann im iibrigen verwen-
det werden, um die Lie-Klammer auf T_G einzufiihren. Da jede endlichdimensionale
Lie-Algebra die Lie-Algebra einer geeigneten Lie-Gruppe G ist (vgl. 7.4°), ergibt sich
die Adjungierte ad als die "zweifache” Ableitung der Konjugation Ad auf G.

Im iibrigen kénnen Ad und Ubd in der Regel kaum verwechselt werden, des-
halb wird die Darstellung Ud h#ufig ebenfalls mit Ad bezeichnet. Wir wollen aber
bei der Unterscheidung bleiben, weil in V.5 zwei verschiedene Biinde! AdP und UbLP
benotigt werden: Sei (P,M,G,n) ein Prinzipalfaserbiindel mit Strukturgruppe G. Dann
ist AdP das zu Ad:G —— Aut(G) assoziierte Bilindel von Gruppen mit der allge-
meinen Faser G, und UDP ist das zu Ab:G ——> GL(g) assoziierte Vektorbiindel
mit der allgemeinen Faser g (vgl. V.5.24).

Analog zu ad = Lie Ab 4Bt sich die koadjungierte Darstellung ad® einer
endlichdimensionalen Lie—Algebra L als Ableitung der "koadjungierten Darstellung”
Ap* von G in ¢* beschreiben: ad® = Lie (AD*) . Die Bahnen der koadjungierten Dar-
stellung AD* : G —> GL(g"¥) in g* sind in natiirlicher Weise symplektische Mannig-
faltigkeiten (mit G als symplektischer Symmetriegruppe), falls sie liberhaupt Unter-
mannigfaltigkeiten sind (vgl. [KIR]). Auf diese Weise wird eine groBe Klasse von sym-

abticrhan Mannicfaltickeiten mit Svmmetrie gegeben.



L.10 Halbeinfache Lie-Algebren und Killingform 385

10. Halbeinfache Lie-Algebren und Killingform.

(10.1°) Definition. Eine endlichdimensionale Lie-Algebra g tiber K heiBt
einfach, wenn sie nicht abelsch ist (d.h. es gibt X,Yeg mit [X,Y] +0) und wenn sie
keine Ideale enthalt auBer den trivialen Idealen {0} und g. Dabei ist ein Ideal von ¢
ein Untervektorraum I C g mit der Eigenschaft: Fiir alle X e g und alle Yel ist
[X,Y] € I. Anders ausgedriickt: ady(I) € 1 fiir alle X € g.

Zum Beispiel ist die Lie-Algebra 8I(2,C) einfach: Wegen fr,1,] + 0 (vgl. 2
und 6.6°) ist $l(2,C) nicht abelsch. Fiir ein Ideal I C 81(2,C) mit {0} + I sei Ye I,
Y = erj #* 0. Dann gilt [TI,Y] = 2Y213 - 2Y3T2 €1 und daher auch [TZ,[‘CI,Y]] el,
d.h. 4erl € 1. Ebenso ist [Ta,[TZ,Y]] = 4Y3T2 € I. Daher gilt im Falle Y? + 0. T, el
und dann auch T, = %[13,11] el sowie Ty = -%[Tz,fl] €l. Im Falle Y® %+ ¢ folgt
analog T3 € I und damit 7,7, € I. Wenn aber Y? = Y3 = ¢ gilt, so ist 1, €1 wegen
Y = erl el mit Y! + 0, und es folgt wie vorher Ty+T5 € L In jedem Fall ist also die
Basis (11,12,13) von 8l(2,C) in I enthalten, so daB [ = 8l(2,C) gilt. Ganz entspre-
chend kann man zeigen, daf gu(2) = 80(3) einfach ist als Lie-Algebra iiber R.

(10.2°) Die einfachen Lie-Algebren iiber € sind gut klassifiziert. Eine voll~
stindige Liste (bis auf Isomorphie) ohne Wiederholungen ist (in eckigen Klammern die
Dimension der jeweiligen Lie-Algebra als Vektorraum tiber C ):

8l(n,C), neN, nx2, [a%-1],

80(Zn+1,C), neN, n>2, [n(2n+ 1],

8p(2n,0), nelN, n23, [n(2n+1)],

80(2n,C), nelN, n2>4, [n(2n- 1,
sowie die fiinf exzeptionellen Lie~Algebren

¢, (78], ¢, [133], ¢, [248], f, (521, g, [141.

(Vgl. z.B. [HUM].)

(10.3°) Definition. Eine endlichdimensionale Lie-Algebra ¢ iiber K heiBt
halbeinfach, wenn sie keine abelschen Ideale auBer {0} hat.

Offenbar sind einfache Lie-Algebren halbeinfach, und ebenso sind endliche
Produkte von einfachen Lie-Algebren halbeinfach. Es gilt auch die Umkehrung, wie man
mit Hilfe der Killingform Zeigen kann.

(10.4°) Definition. Die Killingform »:gxg —> K einer Lie-Algebra g
ist definiert durch

w(X,Y) = Spur(adxoad
fiir X,Y e g. /

v)

{10.5°) Invarianz der Killingform. » ist eine symmetrische Bilinearform, und
x erfiillt die folgende Invarianzbedingung

(¥) %IX Y 71Y — (v V1
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fiir alle X,Y,Z € g. (*) 148t sich auch in der Form x(adY(X),Z) + x(X,adY(Z)) =
ausdriicken.

Die Invarianz (*) ergibt sich aus Vertauschbarkeitseigenschaften fiir Endo-
morphismen unter der Spur: Fiir X',Y',Z'e End g gilt Spur{X'oY') = Spur(Y'oX'"),
also Spur(X'oZ'oY') = Spur(Y'oX'oZ') und deshalb auch

Spur{X',[Y',Z']) = Spur(X'oY'oZ' - X'0Z'oY') =

= Spur(X'oY'oZ' - Y'oX'0Z') = Spur({X',Y'1,Z").
Mit ady = X' etc. folgt (%).

Fine wichtige Folgerung aus (¥) ist, daB fiir Teilmengen 1 c g das "orthogo-
nale” Komplement 1' = {Xeg: u{X,Y) = 0 VYe¢ I} ein Ideal in g ist.

Fiir welche Lie-Algebren g ist die Killingform nichtausgeartet, d.h. fiir
welche g gilt g* = {0}? Natiirlich ist » nichtausgeartet fiir einfache Lie-Algebren
g: Es gilt ¢ # g, sonst wire g abelsch; also folgt g* = {0}, weil g keine echten
Ideale haben kann. Ebenso ist » nichtausgeartet fir halbeinfache Lie—Algebren. Damit
sind wir bei der folgenden Charakterisierung (vgl. z.B. [(HUM]):

{10.6°) Satz. Fiir eine endlichdimensionale Lie-Algebra sind die folgenden
Aussagen #dquivalent:

10

2

3° g ist endliche direkte Summe von Idealen g;cg ist, welche als Lie—

g ist halbeinfach.

® x ist nicht ausgeartet.

Algebren einfach sind: ¢ = ¢,8¢,® ... 8g, und alle 9; einfach.

Im Rahmen der Diskussion iiber die globale Existenz einer Momentenabbil-
dung sind die perfekten Lie-Algebren von Interesse (vgl. 11.9.18), und dazu gehdren die
halbeinfachen Lie—Algebren:

(10.7°) Satz. Jede halbeinfache Lie-Algebra g iiber K ist perfekt, das heiBit
es gilt g = {[X,Y]: X,Ye gl

Beweis. Sei g = ¢,9¢,9 ... 9g, mit einfachen Idealen 9; ¢ g, j=1,2,
k. Fir X = ZX € ¢ mit elndeutlg bestimmten X; € g; und entsprechend Y = ZY
gilt [X,Y] = Z[X Y] denn [X Yol =0 fir j* k. Also geniigt es, die Behaup-
tung des Satzes fiir emfache Lie- Algebren zu zeigen. Zu Z = ZZ gibt es dann ja stets
X; Y € g mit Z; = [X;, Y1, so daB Z = [X,Y] furX—ZX und Y = XY;.
Fiir einfache ¢ 1st I: {[X Y]: X,Y € g) einIdeal *+ {0}, also gllt I=g.

(10.8°) Die Killingform x steht im iibrigen mit den Strukturkonstanten der

Lie—-Algebra ¢ 1n der folgenden Beziehung: Ist (TpTz’ e T ) eine Basis von ¢ und

gilt [T.,,T.] = c“Tk mit den Strukturkonstanten clj so ist (T, T) = cluci) =t Wy
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wie man durch Einsetzen nachpriifen kann. Also hat man wegen der Bilinearitit von X
die Beschreibung ©X)Y) = xinin fiir die Killingform. Fiir das Beispiel gu(2) folgt,
beziiglich der Basis (Tl,Tz,Ta): "(Ti’Ti) = Spur(ZMiOZMi) = ~8. Da Spur('cic'cj) = -2
folgt #(X,Y) = 4 Spur(XoY) fiir X,Y ¢ 8u(2). Allgemein ist #(X,Y) = 2n Spur(X,Y)
fiir die Lie~Algebra gu(n).

heiBt Invariant, wenn
B(?[ng,?Ing) = B(X,Y)

fiiralle g e G und alle X,Ye¢ g gilt. Sie heiBt nichtausgeartet, wenn aus B(X,Y) = ¢
fiir alle Y e g schon X = ¢ folgt. Die Killingform » ist flir halbeinfache d nicht-
ausgeartet nach dem oben zitierten Satz und daher ein interessanter Kandidat fiir eine
solche Bilinearform, Die Killingform ist tatsdchlich immer invariant in Bezug auf zusam-
menhidngende Gruppen G mit Lie G = g.Das folgt aus dem in Abschnitt 9 hergeleite-
ten Zusammenhang zwischen der adjungierten Darstellung Up von G und der Lje—
Klammer auf der zugehérigen Lie-Algebra Lie G Fiir die Kurven 1(t) = % (bzw.
Exp tZ fiir abstrakte Lie-Gruppen @) gilt

d%x(?IbY(,_)X,QIbY(t)Y)jt=o = xadz(X),Y) + x(X,ady()) = o

wegen (%), also ist g ——s x('!lng,?Ing) konstant.,
Fiir Lie-Gruppen @ mit einer halbeinfachen Lie-Algebra Lie G hat man also
immer die Killingform als eine invariante, hichtausgeartete Symmetrische Bilinearform,

(10.10°) Kompakte Lie~Gruppen. Fiir eine kompakte Lie-Gruppe G erhilt
man eine positiv definite und invariante Symmetrische Bilinearform auf g = LieG in
der folgenden Weise: Man beginne mit irgendeinem Skalarprodukt ¢ , > auf der
Lie-Algebra g, also <, >. gxXg — R Symmetrisch, bilinear und positiv definit.
Auf der kompakten Gruppe gibt es ein invariantes MaB dj (also

Jefhydx(n) = I of(hg)dx(h)
fiir alle stetigen Funktionen f . G — R, vgl [HIN, 8. 232 f£.]). Mit Hilfe von dx

stet: Fiir g e G und X, Yeg gilt
BQAb,(X), Wb _(Y)) = fG<2[bh<w>g><),axbhmng»dx(h)
= fGQIbhg(X),QIbhg(Y))d)\(h)
e o
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{JBERSETZUNGEN DER ZITATE

.. My Dear Sir-1 received your paper, and thank you very much for it. I do not say I venture
to thank you for what you have said about "Lines of Force”, because I know you have done it for the
interests of philosophical truth; but you must suppose it is work graceful to me, and gives me much
encouragement 1o think on. I was at first frightened when I saw such mathematical force made to bear

upon the subject, and then wondered to see that the subject stood so well
M. Faraday

.. Mein lieber Herr - Ich habe Thre Arbeit erhalten und danke Ihnen vielmals dafiir, Ich
sage nicht, daB ich es wage, Ihnen zu danken fiir das, was Sie {iber "Kraftlinien” gesagt haben, weil ich
weilB}, daf® Sie es im Interesse der philosophischen Wahrheit getan haben; aber Sie milssen annehmen,
daB die Arbeit mich ehrt und sie mich sehr ermuntert, dariiber nachzudenken. Ich war zunichst
erschrocken, als ich eine solche mathematische Kraft auf den Gegenstand einwirken sah, und dann war
ich erstaunt, den Gegenstand so gut dastehen zu sehen.

How is it possible that mathematics, a product of human thought that is independent of
experience, fits so escellently the objects of physical reality?. . .
A. Einstein

Wie ist es moglich, daB Mathematik, ein Produkt menschlichen Denkens, welches unab-
hingig von Erfahrung ist, so exzellent den Objekten physikalischer Realitit entspricht?

The enormous usefulness of mathematics in the natural sciences is something bordering in
the mysterious and there is no rational explanation for it. It is not at all natural that Maws of nature” exist,
much less that man is able to discover them. The miracle of the language of mathematics for the

formulation of the laws of physics is a wonderful gift which we neither understand nor deserve.
E. Wigner

Die enorme Niitzlichkeit der Mathematik in den Naturwissenschaften ist etwas, das ans
Mysteritse grenzt, und es gibt keine rationale Erklirung dafiir. Es ist iiberhaupt nicht natiirlich, daB es
"Naturgesetze” gibt, und viel weniger ist es natiirlich, daB der Mensch fahig ist, sie zu entdecken. Das
Wunder der mathematischen Sprache fiir die Formulierung der physikalischen Gesetze ist ein phanta-
stisches Geschenk, das wir weder verstehen noch verdienen.

It seems to be one of the fundamental features of nature that fundamental physical laws are
described in terms of great beauty and power ... ‘

As time goes on it becomes increasingly evident that the vules that the mathematician finds
interesting ave the same as those that Nature has chosen. ]
P.A.M. Dirac

Es scheint eine der grundlegenden Eigenschaften der Natur zu sein, da3 fundamentale
physikalische Gesetze in Form von grofer Schonheit und Kraft beschrieben werden ...

Im Laufe der Zeit wird es immer klarer, daf} die Regeln, die die Mathematiker interessant
finden, dieselben sind, die die Natur gewihlt hat.

T believe that mathematical reality lies outside us, that our function is to discover o¥ observe
it, and that the theorems we prove and which we describe grandiloquently as our creations” ave simply

notes of our observations.
G.H. Hardy

Ich glaube, daB die mathematische Realitit auBerhalb von uns liegt, daB es unsere
Aufgabe ist, sie zu entdecken oder zu beobachten, und daB die Theoreme, die wir beweisen und die wir
grofispurig als unsere Schopfungen” beschreiben, einfach Aufzeichnungen unserer Beobachtungen
sind.

My work always tried to unife the true with the beautiful, but when I had to choose one over
the other, ] usually chose the beautiful.
H. Weyl

4o Wahre mit dem Schonen zu vereinen, aber wenn ich
L N v 1
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Kugelfunktion 180

Kummer, EE. 3

Kurve 13, 326

— , regulire 330

— . stiickweise differenzierbare 237, 330,

?

344
— , horizontale 236

Ladung 218

— , magnetische 285

Ladungsdichte 191, 218

Linge 13, 49

—, euklidische 29

Lagrange, J.L. 3

— -Kreisel 154

Lagrange-Mechanik 110

Lagrange-System 58, 88, 91, 110, 118, 134,
135, 140

—, 1-Parametergruppe von Symmetrien des
90, 91

— , infinitesimale Symmetrie des 91, 121

— , lokale 1-Parametergruppe von Symme-
trien des 121

— , natiirtiches 110, 135

Lagrangedichte 203, 222, 287

— , eichinvariante 280

— , Poincaré-Invarianz der 206

Lagrangefunktion 58, 88, 91, 118, 126, 203,
289

— , eichinvariante 289

— , G-invariante 289

— , reguldre 134

— , Wirkung zur 118

Laplace-Beltrami-Operator 200

Laplace-Operator 165, 283

Legendre, A.M. 3

— transformation 134

Leibnizregel 230, 263

Leitmotiv 2, 44

Lemma von Poincaré 139

Levi-Civita-Zusammenhang 211, 238

lichtartig 213

Lichtsignal 209

Lichtstrahlen 47

Lie-Ableitung 2, 139, 302, 312, 321

Lie-Algebra 10, 38, 72, 137, 144, 163, 249,
280, 313, 328, 372, 373

— , Z-graduierte 320

— , abelsche 872

—, affine 10
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— , irreduzible 177

— , einfache 187, 385

— , exzeptionelle 385

— , halbeinfache 283, 385

— , Homomorphismus der 978

— , Isomorphismus der 179, 878

— , komplexe 374 :

— , perfekte 386

— , unendlichdimensionale 383

—, Unter- 164

Lie-Algebra-

— Darstellung 179

— Homomorphismus 878, 384

— Struktur 376

Lie-Gruppe 8, 14, 37, 73, 251, 316, 365, 371,
379

—, Darstellung einer 379

— , einfache 151

— , exzeptionelle 250

— , kompakte 387

— , Lie-Algebra zur 377

— , lineare 366

— , unendlichdimensionale 36, 265

Lie-Gruppen

— universelle Uberlagerung von 381

Lie-Gruppen-Homomorphismus 378

Lie-Klammer 74, 177, 813, 372, 375, 376

— , triviale 146

—— von Vektorfeldern 74

Lie-Super-Algebra 320

Lie-Unteralgebra 978

Lie-Untergruppe §79

— , abgeschlossene 379

Liftung

— , horizontale 236, 238, 246, 260

— , stetige 185

— , unitire 183

Linearisierung 65

Linearitit 187, 372

Linksaktion siehe Gruppenwirkung

Linksdarstellung 7 74

Linksmultiplikation 124, 375

Liouville, J. 3, 152

London, F. 223

Lorentzeichung 1 92, 201

Lorentzgruppe 35, 200, 368

— , eigentliche 188

— , eigentliche orthochrone 969

— mannigfaltigkeit 15, 211

~— metrik 15, 42

— transformation 190, 210, 382
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Lénge, euklidische 332

Mackey, G. 9

Magnetfeld 191

Mannigfaltigkeit 7, 60, 118, 123, 250

— , abstrakte 15

— , differenzierbare 10

— , homogene 38, 56

—— , homogene Riemannsche 37

—, kompakte 316

— , Lorentz- 16, 211

— , n-dimensionale 303

—— , orientierbare 962

— , orientierte 282, 324

— , parallelisierbare 64, 73, 291

— , Riemannsche 36, 123, 326, 355

— , semi-Riemannsche 15

—, Symplektische 150, 170, 293, 323, 325,
384

—, Quotienten von 15, 38, 40, 148, 505

— , unendlichdimensionale 16

—, Unter 14, 305, 355

— — des R", 62

Mantellinie 339

Marsden—Weinstein-Quotient 149

Masse 51, 226

— , gravitative 211

—, trige 211

Massendichte 80

Massenpunkt 51, 57

— , freier 52

Massenschwerpunkt 69

Materiefeld 249, 267, 279

Matrix, 69

— , antisymmetrische 194

— , darstellende 159

T gruppe 24, 124, 144, 173, 249, 274, 279,
302, 366, 371, 380, 384

— — kompakte 176

— , hermitesche 381

—, Jacobi- 71, 147

— multiplikation

— , schiefsymmetrische 72

— , spezielle orthogonale 70

— , transponierte 367

Matrix-Lie-Algebra 320

Matrix—Lie-Gruppe siehe Matrixgruppe

Matrixmultiplikation 274

Maxwell, J. C. 4, 43

Maxwell—Gleichungen 4, 43, 191 f, 201

— , Eichinvarianz der 917



402 Qachwort- und Namensverzeichnis

— , homogene 191, 202 — _sche Bewegungsgleichung 87

— , stationdre 202 Newtons Mechanik 43

— , Poincaré-Invarianz der 201 Noethersche Sitze 122, 218

Maf, invariantes 387 Norm 13, 16, 29, 32, 158

Mehrteilchensystem 156, 165 Normale, duflere 218

Menge, beschrénkte 367 Normaleneinheitsvektor 342, 348

Meridian 339, 340 Normalkriimmung 348, 349

metaplektische Korrektur 171 Normalschnitt 349

Metrik 28, 280, 287 Nukleon 224

— , euklidische 363 Nullmenge 158

— , hermitesche 254, 293

— , hyperbolische 40 Oberflichenintegral 172

— , Konformklasse der 363 Observable 136, 159

— , linksinvariante 133 —, klassische 163, 168

— , Lorentz — , quantenmechanische 159

— , Riemannsche 78 offene fundamentale Menge 173

— , semi-Riemannsche 280 Oktaeder 33

— , sphérische 129 Operator

metrisierbar 304 — — , abgeschlossener 159, 160
” ¢4 MeBprozeB, quantenmach nischer 155 — , beschrinkter 160

Mills, R. L. 8 — , Dirac-

Minkowski, H. 3, 193 — , formal adjungierter 282

Minkowski- ~ — , Hamilton 161

— Metrik 197, 282, 363 — , Hermitescher 164

— Raum 197, 200, 208, 249, 259 —, Laplace 165

— — , Hodge-Operator zum 197 {f — , linearer 157
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Modul 228, 231, 262, 313, 814 — , unbeschrinkter 160

— , dualer 817 — , unitérer 36, 160

— der Tensorfelder 318 — — , 1-Parametergruppe von 161

Mobiusband 324 Operator-

Momentenabbildung 18, 46, 85, 145, 151, — norm 160

266, 386 — produkt 167

— , globale 151 Operatortheorie 8

— , lokale 145 Orbit 40, siche Bahn

Monge, G. 12 orientierbar 324

Monom 179 orientiert 212

Monopol, magnetischer 285 Orientierung 34, 55, 70, 197, 208, 253, 324,

Momnopol 206, 216 347

— , U(1)- 285 — eines Vektorraumes 34

— , SU(2)- 287 Ornament 20, 31

Multiplikation 22 Orxt 50

— , invariant gegeniiber 234 Orthonormalbasis 49, 72, 159

—, Links 27, 73 — , orientierte 253

—, Rechts 73 —— , positiv orientierte 363

Orthonormalsystem

neutrales Element 21 — , orientiertes 97, 103

Neutron 224 Ortsoperator 160

Newton, L. 3, 7, 47, 50 Oszillator

 arhoe Kraftoocetr 57
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~— , harmonischer §7 ff, 86, 89, 94, 117, 126,
134, 142, 147, 150, 153, 165
— , harmonischer eindimensionaler 7 64

parakompakt 293, 304

parallel 236, 340

Parallele 116

Parallelenaxiom von Buklid 116

Parallelepiped 34

Parallelfeld 243, 845, 354

Parallelismus 15

— von Geraden 39, 116, 341

Parallelogramm 75

Paralleltransport 223, 246, 261, 278, 343,
353, 360, 361

—, lokal wegunabhingiger 240, 860

Parallelverschiebung 48, 239, 342, 844, 348

Parametrisierung 108, 113, 800

—, natirliche 774, 123, 830, 356

Paritit 202

Parkettierung 20, 31

Pauli-Matrizen 222, 365, 874

Pendel 61 ff, 172

— , ebenes 126

— , cbenes Doppel 66

— , ebenes mathematisches 61

— , freies sphérisches in beliebiger Dimen-
sion 127

~—, sphirisches 66, 122, 126

— , sphérisches Doppel 66

Penrose, R. 210

— Twistor-Programm von 210

Permutation 318

Pfadintegral 10, 293

Pfaffsche Form siche 1-Form

Phase 219

Phasenfaktor 249, 257, 279

—, Raum der 257, 279

Phasenraum 57, 67, 302, 372

— , der Hamiltonschen Mechanik 149

— , Geschwindigkeits 57

— , Impuls 60, 134

— , interner 278

— , reduzierter 61, 64,71, 73

Phasenrotation

—, globale 219

—, lokale 219

Phasenverschiebung 223, 264

Photonen 215

— , freie 222

— feld 222
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Poincaré-, H. 5,9

— Algebra 43

— Gruppe 188, 189, 200, 208

— Invarianz 200, 207

— — der Maxwell-Gleichungen 201

— — der Wellengleichung 201

— , Lemma von 191, 196, 329

— Modell 116

— Transformation 200, 211

— —, lokale 211

Poinsot, E. 108

Poisson-

~— Algebra 293, 372, 187

— Mannigfaltigkeit 328, 372

— klammer 136, 149, 163, 312, 827, 372

Polarisierung 170

— , holomorphe 171

— , orthogonale 171

Polarkoordinaten 97

Polyakov, A. M. 11

Polyeder 33

Polynom

— , homogenes 180

~— , harmonisches 180

positiv definit 361

Positiv orientiert 363

Potential 86, 110, 126, 323

— , skalares 192

— , symplektisches 170, 172, 293, 326

Poynting-Vektor 205

primitiver Vektor vom Gewicht 178

Prinzipalfaserbiinde] 185, 227, 249, 250, 279,
370, 384

— , Geometrie der 215
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—, dufleres 319, 920

—— gruppe 43, 187

— mannigfaltigkeit 505

— regel 137, 912

— , semidirektes 32, 55, 188

— topologie 305

— von Lie-Gruppen 43

Projektion 242, 256

— , horizontale 233, 244, 255

— , komplementire 262

—, natiirliche 305

— , orthogonale 162

— , stereographische 77 5, 834, 336

Proton 224
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Priiquantisierung 170, 293, 294
Prazession, reguldre 109

Pseudo

— metrik 158, 159

— sphire 40, 336, 338, 341, 350, 359
Pullback 244, 319

Punktspiegelung 347

Quadrik 103

Quantenbedingung, topologische 172
Quantenchromodynamik 226
Quantenelektrodynamik 43

—, Lagrange-Dichte der 222
Quantenfeldtheorie 41, 42, 156, 215
— , topologische 10, 292
Quantengruppe 9, 28, 44
Quantenmechanik 8, 41, 43, 155, 223
— , Axiome der 157 ff

— , relativistische 208
Quantentheorie der Elementarteilchen 42
Quantenzahl 9 i
Quantisierung 44, 216

—_ Geometrische 136, 168 ff

__ kanonische 136, 163 ff, 219, 220
Quantisierungsbedingung 287, 294
Quark 226 :
Quaternionen 254, 284

Quotient 243, 251, 266, 269, 305
Quotienten-

— abbildung 250, 251, 269

— — , kanonische 158

— mannigfaltigkeit 99, 306

— struktur 100, 305

— topologie 99, 158, 305

Raum 45, 47 ff

— , absoluter 51, 208, 210

— , affiner 48 ff, 231, 266, 279
— aller Eichpotentiale 279

— , Bahnen 40, 83, 150

— , dreidimensinaler euklidischer 47, 67
— , euklidischer 32

— , euklidischer affiner 33, 49
— , Hilbert 8, 16, 36

— , homogener 38, 254
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— , hyperbolischer 214

— , Konfigurations 57, 67
—, Lage 57

— , metrischer 28

Oyvte BT

— , Phasen §7

—— —, Geschwindigkeits

— — , Impuls

— , projektiver 39, 84, 158, 181, 209, 254,
306, 311, 383

— , Riemannscher 123

— spiegelung 54

—— , symmetrischer 29, 37
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— , topologischer 27
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250
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— — homomorphismus 26

—— —, orientierter 34

Raum und Zeit 193, 211

Raumformenproblem 214

Raumzeit 42, 208, 211, 249, 278, 279
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— aktion 250, 251

— darstellung 179

Reduktion 15, 60, 107, 1471, 176

— , Marsden-Weinstein- 149

— der Freiheitsgrade 60

— von Phasenrdumen 15

reflexiv 817

regelmaBiges Polygon 30

Regelmifliger Korper (auch: reguldrer Korper

20, 33
Regularisierung 130
Relativitatsprinzip 42, 207, 211
Relativitdtstheorie
— , Allgemeine 8, 41, 42, 43, 207
— , Spezielle 42, 43, 189, 207
Reperbiindel 252, 271
Richtungsableitung 302, 31 2, 376
Riemann, B. 3, 6, 7, 11, 12, 44, 50
— -Integral 325
— s Antrittsvorlesung 6, 50
— sche Flichen 11
— sche Geometrie 8, 15, 36, 110, 277, 355
— sche Mannigfaltigkeit 123, 326, 355
__ sche Metrik 113, 123, 238, 332, 365
— —, Linksvariante 124
— sche Zahlenkugel 209
__ scher Kriimmungstensor 318, 358
— scher Raum 123
. _Stieltjes-Integral 161
__ Uniformierungssatz von 11
Ring 313
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— , kommutativer 314

Rotation siehe Drehung
Rotationsfliche 384, 340, 352
Riickstellkonstante 81,.83, 123
Rubhe, relativ in 51

Ruhelage 122

Runge-Lenz-Vektor 95, 150, 142, 167
Riickwirtslichtkegel 209 213

s-Form siehe k-Form

Salam-Weinberg-Modell 43, 226

Satz

— iiber die Umkehrabbildung 297, 327, 347,
378, 382

— iiber implizite Funktionen'135, 298

— vom Rang 63, 269, 298, 310

— von Ado 379, 380

—— von Bargmann 184, 185, 187, 188

— von Coleman und Mandula 43

— von Darboux 326, 327

— von Gauf} 172, 217

— von Geroch 291

— von Groenwald-van Hove 168
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— von Frobenjus 148

— von Liouville-Arnold 152

— von Meusnier 849
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142, 147, 149, 151

— -, Umkehrung des 152

— von Peter und Weyl 176, 179

— von Stone 161

— von Stokes 292, 326, 325

— von Whitney 306

— von Wigner 183, 184

— von Wigner-Eckart 156

schiefsymmetrisch 358

Schnitt 228, 251

—, differenzierbarer 101, 316

—, globaler 251

—-, horizontaler 237, 246

— , lokaler 307, 311

Schnitte, Raum der 228, 243

Schnittkn’immung 214, 359

Schrédinger, E. 8

— -Gleichung 161, 219, 220

— -Operator 161, 219

Schwerefeld

— , homogenes 126, 127

~— , homogenes und konstantes 131

—, Kreisel in einem homogenen 110

405

Schwer

— kraft 224

— punkt 93

selbstadjungiert 350

selbstdual 284

Selbstwechselwirkung 221, 222

Selbstwechselwirkungsterm 289

semidirektes Produkt 31, 32, 55, 188

semi-Riemannsche

— Geometrie 317

~— Mannigfaltigkeit 367 ff

— Metrik 28, 211

Sequenz, exakte 184, 187

Sibner, L.M. 285

Signatur 283

Skalarprodukt 212, 387

—, euklidisches 13, 29, 32, 49, 113, 330, 367

—, hermitesches 16, 36, 157

—, Minkowski- 15, 200

SO(3)-Invarianz 92, 96, 106

Spaltung 187

Spannungstensor 205
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— maf} 162

— satz 162

— schar 162

Sphire 14, 39, 102, 244, 286, 299, 934, 339,
342, 347, 350, 359

Sphérenbiindel 118, 129

Spiegelung 30, 37

— , Achsen 19

— , Raum 54

—, Zeit 55

Spin 20

Spin der Darstellung 179

Spin-Struktur 291

Spinbiindel 280

Spinor 188, 222

Spirale 339

Standard

— basis 26

— form 326

— modell 17, 41, 42, 43, 290

— volumenform 363

stark stetig 181

starrer Kérper 47, 67 ff

stationdr 58, 119, 166, 204, 281, 287, 338

sternformig 139, 142, 323

Stetigkeitsbedingung 173

Stokes, G.G.

— Integralsatz von 325



406

Sachwort- und Namensverzeichnis

—— Satz von 292, 326

Stringtheorie 44, 156

Stromdichte 191, 196, 221

Struktur 1, 9, 25

— , affine 48

— , algebraische 9, 37

— , auf einer Menge 25

— , differenzierbare 10, 28, 37, 296, 301,
303, 804, 305, 365

— , euklidische 32, 62

— — der Ebene 29

— , exotische 10

— , geometrische 1, 9, 29

— , Geraden 27

— , Gruppen 27

— , interne infinitesimale 43

— , Kausal 42

— , komplexe 209

— , konforme 28, 35, 197

—, leere 26

— , lineare 26

— , metrische 28

— , Modul 228

— , Quotienten 38, 143, 305

, Riemannsche 36

— , Spin- 291

— , symplektische 136, 138, 144, 148, 318

— , topologische, 9, 27

— , unitére 36, 174

_ von Geometrie und Symmetrie 29, 41, 44

— von Raum und Zeit 47

Strukturgleichung 247, 273

Strukturgruppe 40, 249, 251, 279, 370

— Reduktion der 254

— Restriktion der 253

Strukturkonstante 320, 386

stiickweise glatt 354

SU(2)-Eichtransformation

— , globale 224

— , lokale 224

SU(N)-Eichfeldtheorie 282

Submersion 101, 251, 269, 270, 310, 381, 383

Summenkonvention, siehe Finsteinsche Sum-
menkonvention

Supergravitation 44

Superstrings 44

Supersymmetrie 28, 43

Symmetrie 1, 17 #, 21, 25, 37, 86, 89, 1350,
168

— , bilaterale 18

 threchune 43, 215. 226

— der Winkelerhaltung 20

— , diskrete 20

— , externe infinitesimale 43

— geometrischer Strukturen 29

— | infinitesimale 140

— , interne 8, 224

— , konforme 42

-—— , kontinuierliche 20

— , lineare 88

— , lokale 152

__ transformation 21, 31, 38, 159

— , verborgene 20

Symmetriegruppe 1, 25, 29, 37, 65, 90, 174,
209, 212, 232, 357

— der Mechanik 53

—— einer geometrischen Struktur 29

—_ eines Hamilton-Systems 147

— — , abelsche 153

— , interne 42, 43, 250, 279

—, quantenmechanische 156, 183, 188

— , symplektische 44, 150, 384

— , volle 25, 32, 33, 34, 144

symmetrisch 159, 350, 361

symplektische Form 36, 158, 149, 150

symplektische Involution 138

symplektischer Gradient 138

Symplektomorphismus 140, 327

System

— , abgeschlossenes 52

—, dynamisches 154, 315, 316

— , einfaches klassisches 57 ff, 89

— , Hamilton- 46, 134 ff, 150

— , konservatives 82

— , Lagrange- 45, 58

—-— , natiirliches 45, 110 ff

—- von gewohnlichen Differentialgleichungen
57

— — , Lasbarkeit 59

— , natiirliches 110, 124

—, quantenmechanisches 157

— — , Dynamik des 161

— — , Symmetriegruppe des 175, 182

— , vollstindig integrables 46, 152

—— von N Massenpunkten 110

Tangential

— abbildung 90, 244, 310

—biindel 64, 72, 91, 118, 123, 243, 302, 308,
346

— yaum 63, 72, 301, 308

— vektor 296, 801, 308
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Taubes, C. 11
Teilchen

— , nichtrelativistischeg 159

— , relativistisches frejeg 219, 221
—, strukturiertes klassisches 278
Tensorfeld 123, 817

—_, Transformationsverhalten des 318
— , alternierendes 317
Tensorprodukt 156, 918
Tetraeder 20, 33

theorema egregium 12, 952
Topologie 9, 16

-, abzihlbare 304

— , Algebraische 16

— der kompakten Konvergenz 209
— , Differential 16

— , metrische 28

— , starke 173

topologische Abbildung 21, 27
Torsion 331

torsionsfrei 361

Torus 66, 306, 355, 338, 341, 351
totales Differential siehe duflere Ableitung
Totalraum 242, 250, 251, 279
Trégheits

— ellipsoid 79, 80

— moment 79, 80

— tensor 79, 80, 124, 133

— — , Hauptachsen des 79
Transformation

~— , Ahnlichkeits 20

—, affine 27

— , bijektive 181

—, Eich 273, 251

— , kanonische 140, 327

—, konforme 209

— , Kongruenz 20

—  Legendre 134/135

—, Lorentz 190, 210, 382

— , Poincaré- 200

~—, Punkt 151

— , spezielle Galilei- 59

— , Symmetrie 21, 31, 38
Transformationsverhalten 318, 819
Translation 27, 29, 32, 146
Translationsinvariang 92
Transponierte 69, 138

trivial 187, 372

Trivialisierung

— , globale 252

— , lokale 242, 251
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U(1)-Eichinvarianz 223
U(1)-Eichsymmetrie 207
U(1)-Eichtheorie 259, 280
Ubergangsabbildung 242
Ubergangswahrscheinlichkeit 159, 174, 181
Uberlagerung 185, 209

— universelle 183, 185, 213, 383
Uhlenbeck, K. 10, 285

Umbkehrsatz 297, 327, 347, 378, 382
universelle Eigenschaft 101, 305, 307
Unterbiindel 234, 244
Untermannigfaltigkeit 305, 355, 371
— k-dimensionale 294

Unterraum

—, horizontaler 268

— , vertikaler 268

Ursprung 49, 67

Variable

—, kinematische 279

— , zyklische 92

Variation 119

Variations

— ableitung 7121

— bedingung 106

— formel 120

— prinzip 280

Vektorbiindel 64, 227, 234, 242, 256, 302

— , adjungiertes 283

T, assozilertes 270, 277

— , Geometrie auf 245 1

— , Geometrie der assoziierten 279

~— , horizontales 244

— , komplexes 227

—, reelles 227

——, Reperbiindel eines 254

—, triviales 227, 267

Vektorbiindelhomomorphismus 121, 243, 244

Vektorfeld 302

—, Lie-Algebra der Vektorfelder 314, 372

— , linksinvariantes 375, 877

— lings Kurve 956

— , radiales 323

—, vollstdndiges 153, 815, 316

Veltorpotential 797

Verbindungsvektor siehe Verschiebungsvek-
tor

Verklebungsfunktion 242, 258, 271, 277, 286

Vernichtungsoperator 166

Verschiebung

— _ elektrische 7071
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—, horizontale 239 Yang, C. N. 8
Verschiebungsvektor 48, 67, 68 Yang-Mills-

vertragliche Karten 308, 309 — Dichte 283

Vervollstindigung 158 — Eichtheorie 223
Vielteilchensystem 219 —— (leichungen 42, 282, 283, 284
Virasoro-Algebra 44 — Higgs-Feld 290, 291
vollstandig normierter Raum 158 — Lagrangedichte 281, 283
vollstandige Vektorfelder 315, 378 — - Theorie 8, 216
Vollstindigkeit der reellen Zahlen 158,304  — — reine 280, 287

Vollstindigkeit einer Poisson-Mannigfaltigkeit — Wirkung 281, 283
328
Vollstindigkeit linksinvarianter Vektorfelder zeitartig 213

377 Zeit 47 ff, 50

Volumen 34 — inversion 202
__ von Massenpunkten 52 — schicht 54
— von N Massenpunkten 57, 77 — spiegelung 55
Volumenform 172, 197, 253, 280, 324, 326 — unterschied 54
— , lokale 356 Zeitorientierung 208, 212, 213
—-, Standard- 324 Zeittranslation 92

sentrale Erweiterung 183, 186
Wasserstoffatom 95 Zentral(kraft)feld 86 ff, 134, 146, 153
Weber, H. 3 — , konservatives 110
Wechselwirkung 4, 9, 17, 221 7usammenhang 170, 172, 229 ff, 245, 249,
—, elektrodynamische 9, 224 255 I, 346
—, elektroschwache 41, 43, 226 —— , affiner 360
— , fundamentale 17, 41 — , assoziierter 268, 271, 277
— , Gravitations- 9,17 — , flacher 292
— , schwache 9, 42, 215 — , Kriimmung eines 240 ff
— , Selbst 226 — , linearer 360
— , starke 9, 42, 215, 224 — , lokale Beschreibung eines 247
_ zwischen Quarks und Gluonen 41 Zusammenhangs
Wegintegral 322 —_ form 257, 259, 265, 279
wegunabhingig integrierbar 87, 323 — — , lokale 257
Weil, A. 294 — komponente 370
Weingarten-Abbildung 350 Zusammenhénge
Wellenfunktion 159, 173 — , Modulraum der 266
Wellenoperator 192 — , Raum aller 272
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