
Chapter 10
Vertex Algebras

In this chapter we give a brief introduction to the basic concepts of vertex algebras.
Vertex operators have been introduced long ago in string theory in order to describe
propagation of string states. The mathematical concept of a vertex (operator) al-
gebra has been introduced later by Borcherds [Bor86*], and it has turned out to be
extremely useful in various areas of mathematics. Conformal field theory can be for-
mulated and analyzed efficiently in terms of the theory of vertex algebras because
of the fact that the associativity of the operator product expansion of conformal field
theory is already encoded in the associativity of a vertex algebra and also because
many formal manipulations in conformal field theory which are not always easy to
justify become more accessible and true assertions for vertex algebras. As a result,
vertex algebra theory has become a standard way to formulate conformal field the-
ory, and therefore cannot be neglected in an introductory course on conformal field
theory.

In a certain way, vertex operators are the algebraic counterparts of field operators
investigated in Chap. 8 and the defining properties for a vertex algebra have much in
common with the axioms for a quantum field theory in the sense of Wightman and
Osterwalder–Schrader. This has been indicated by Kac in [Kac98*] in some detail.

The introduction to vertex algebras in this chapter intends to be self-contained
including essentially all proofs. Therefore, we cannot present much more than the
basic notions and results together with few examples.

We start with the notion of a formal distribution and familiarize the reader with
basic properties of formal series which are fundamental in understanding vertex al-
gebras. Next we study locality and normal ordering as well as fields in the setting of
formal distributions and we see how well these concepts from physics are described
even before the concept of a vertex algebra has been introduced. In particular, an
elementary way of operator expansion can be studied directly after knowing the
concept of normal ordering. After the definition of a vertex algebra we are inter-
ested in describing some examples in detail which have in parts appeared already at
several places in the notes (like the Heisenberg algebra or the Virasoro algebra) but,
of course, in a different formulation. In this context conformal vertex algebras are
introduced which appear to be the right objects in conformal field theory. Finally,
the associativity of the operator product expansion is proven in detail. We conclude
this chapter with a section on induced representation of Lie algebras because they
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172 10 Vertex Algebras

have been used implicitly throughout the notes and show a common feature in many
of our constructions.

The presentation in these notes is based mainly on the course [Kac98*] and to
some extent also on the beginning sections of the book [BF01*]. Furthermore, we
have consulted other texts like, e.g., [Bor86*], [FLM88*], [FKRW95*], [Hua97*],
[Bor00*], and [BD04*].

10.1 Formal Distributions

Let Z = {z1, . . . ,zn} be a set of indeterminates and let R be a vector space over C. A
formal distribution is a formal series

A(z1, . . . ,zn) = ∑
j∈Zn

A jz
j = ∑

j∈Zn

A j1,..., jn z j1
1 . . .z jn

n

with coefficients A j ∈ R. The vector space of formal distributions will be denoted
by R[[z±1 , . . . ,z±n ]] = R

[[
z1, . . . ,zn,z

−1
1 . . . ,z−1

n

]]
or R [[Z±]] for short. It contains the

subspace of Laurent polynomials

R[z±1 , . . . ,z±n ] = {A ∈ R[[z±1 , . . . ,z±n ]]|
∃k, l : A j = 0 except for k ≤ j ≤ l}.

Here, the partial order on Z
n is defined by i≤ j :⇐⇒ iν ≤ jν for all ν = 1, . . . ,n.

R[[z±1 , . . . ,z±n ]] also contains the subspace

R [[z1, . . . ,zn]] := {A : A = ∑
j∈Nn

A j1,..., jn z j1
1 . . .z jn

n }

of formal power series (here N = {0,1,2, . . .}). The space of formal Laurent series
will be defined only in one variable

R((z)) = {A ∈ R
[[

z±
]]
|∃k ∈ Z ∀ j ∈ Z : j < k ⇒ A j = 0}.

When R is an algebra over C, the usual Cauchy product for power series

AB(z) = A(z)B(z) := ∑
j∈Zn

(

∑
i+k= j

AiBk

)

z j

is not defined for all formal distributions. However, given A,B∈R [[Z±]], the product
is well-defined whenever A and B are formal Laurent series or when B is a Laurent
polynomial. Moreover, the product A(z)B(w) ∈ R [[Z±,W±]] is well-defined.

In case of R = C, the ring of formal Laurent series C((z)) is a field and this
field can be identified with the field of fractions of the ring C [[z]] of formal power
series in z. In several variables we define C((z1, . . . ,zn)) to be the field of fractions
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of the ring C [[z1, . . . ,zn]]. This field cannot be identified directly with a field of
suitable series. For example, C((z,w)) contains f = (z−w)−1, but the following
two possible expansions of f ,

1
z ∑n≥0

z−nwn = ∑
n≥0

z−n−1wn , −w∑
n≥0

znw−n =−∑
n≥0

znw−n−1,

give no sense as elements of C((z,w)). Furthermore, these two series represent two
different elements in C [[z±,w±]]. This fact and its precise description are an essen-
tial ingredient of vertex operator theory. We come back to these two expansions in
Remark 10.16.

Definition 10.1. In the case of one variable z = z1 the residue of a formal distribution
A ∈ R [[z±]], A(z) = ∑

j∈Z

A jz j, is defined to be

ReszA(z) = A−1 ∈ R.

The formal derivative ∂ = ∂z : R [[z±]]→ R [[z±]] is given by

∂

(

∑
j∈Z

A jz
j

)

= ∑
j∈Z

( j +1)A j+1z j.

One gets immediately the formulas

ReszA(z)B(z) = ∑
k∈Z

AkB−k−1,

Resz∂A(z)B(z) =−ReszA(z)∂B(z) = ∑
k∈Z

kAkB−k

provided the product AB is defined. The following observation explains the name
“formal distribution”:

Lemma 10.2. Every A ∈ R [[z±]] acts on C[z±] as a linear map

Â : C[z±]→ R,

given by Â
(

f (z)
)

:= ReszA(z) f (z),φ ∈ C[z±], thereby providing an isomorphism
R [[z±]]→ Hom(C[z±],R).

Proof. Of course, Â ∈ Hom(C[z±],R), and the map A �→ Â is well-defined and
linear. Due to Â( f ) = ∑

j∈Z

A j f−( j+1) for f = ∑ f jz j it is injective. Moreover, any

μ ∈ Hom(C[z±],R) defines coefficients A j := μ(z− j−1) ∈ R, and the distribution
A := ∑A jz j satisfies Â(z− j−1) = A j = μ(z− j−1). Hence, Â = μ and the map A �→ Â
is surjective. �

This lemma shows that Laurent polynomials f ∈ C[z±] can be viewed as to be
test functions on which the distributions A ∈ R [[z±]] act.
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Definition 10.3. The formal delta function is the formal distribution δ ∈C [[z±,w±]]
in the two variables z,w with coefficients in C given by

δ (z−w) = ∑
n∈Z

zn−1w−n = ∑
n∈Z

znw−n−1 = ∑
n∈Z

z−n−1wn.

Note that δ is the difference of the two above-mentioned expansions of (z−w)−1:

δ (z−w) = ∑
n≥0

z−n−1wn−
(

−∑
n≥0

znw−n−1

)

.

We have
δ (z−w)= ∑

k+n+1=0

zkwn =δ (w− z)

and
δ (z−w)=∑Dknzkwn ∈ C

[[
z±,w±
]]

with coefficients Dkn = δk,−n−1. Hence, for all f ∈ R [[z±]], the product f (z)δ (z−
w) is well-defined and can be regarded as a distribution in R [[w±]]) [[z±]]. From the
formula

f (z)δ (z−w) = ∑
n,k∈Z

fkzk−n−1wn = ∑
k∈Z

(

∑
n∈Z

fk+n+1wn

)

zk

for f = ∑ fkzk one can directly read off

Lemma 10.4. For every f ∈ R [[z±]]

Resz f (z)δ (z−w) = f (w)

and
f (z)δ (z−w) = f (w)δ (z−w).

The last formula implies the first of the following related identities. We use the
following convenient abbreviation

D j
w :=

1
j!
∂ j

w

during the rest of this chapter.

Lemma 10.5.

1. (z−w)δ (z−w) = 0,
2. (z−w)Dk+1δ (z−w) = Dkδ (z−w) f or k ∈ N,
3. (z−w)nD jδ (z−w) = D j−nδ (z−w) f or j,n ∈ N,n≤ j,
4. (z−w)nDnδ (z−w) = δ (z−w) f or n ∈ N,
5. (z−w)n+1Dnδ (z−w) = 0 f or n ∈ N, and therefore

(z−w)n+m+1Dnδ (z−w) = 0 f or n,m ∈ N.
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Proof. 3 and 4 follow from 2, and 5 is a direct consequence of 4 and 1. Hence, it
only remains to show 2. One uses δ (z−w) = ∑

m∈Z

z−m−1wm to obtain the expansion

∂ k+1
w δ (z−w) = ∑

m∈Z

m . . .(m− k)z−m−1wm−k−1, and one gets

(z−w)∂ k+1
w δ (z−w) = ∑

m∈Z

m . . .(m− k)(z−mwm−k−1− z−m−1wm−k)

= ∑
m∈Z

((m+1)m . . .(m− k +1))− (m . . .(m− k))z−m−1wm−k

= (k +1) ∑
m∈Z

m . . .(m− k +1)z−m−1wm−k = (k +1)∂ k
wδ (z−w),

which is property 2 of the Lemma. �
As a consequence, for every N ∈ N,N > 0, the distribution (z−w)N annihilates

all linear combinations of ∂ k
wδ (z−w), k = 0, . . . ,N−1, with coefficients in R [[w±]].

The next result (due to Kac [Kac98*]) states that these linear combinations already
exhaust the subspace of R [[z±,w±]] annihilated by (z−w)N .

Proposition 10.6. For a fixed N ∈ N, N > 0, each

f ∈ R
[[

z±,w±
]]

with (z−w)N f = 0

can be written uniquely as a sum

f (z,w) =
N−1

∑
j=0

c j(w)D j
wδ (z−w) , c j ∈ R

[[
w±
]]

.

Moreover, for such f the formula

cn(w) = Resz(z−w)n f (z,w)

holds for 0≤ n < N.

Proof. We have stated already that each such sum is annihilated by (z−w)N accord-
ing to the last identity of Lemma (10.5).

The converse will be proven by induction. In the case N = 1 the condition
(z−w) f (z,w) = 0 for f (z,w) = ∑ fnmznwm ∈ R [[z±,w±]] implies

0 =∑ fnmzn+1wm− fnmznwm+1 =∑( fn,m+1− fn+1,m)zn+1wm+1,

and therefore fn,m+1 = fn+1,m for all n,m ∈ Z. As a consequence, f0,m+1 = f1,m =
fk,m−k−1 for all m,k ∈ Z which implies

f = ∑
m,k∈Z

fk,m−k−1zkwm−k−1 = ∑
m∈Z

f1,mwm ∑
k∈Z

zkw−k−1 = c0(w)δ (z−w)

with c0(w) = ∑ f1,mwm. This concludes the proof for N = 1.
For a general N ∈ N,N > 0, let f satisfy
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0 = (z−w)N+1 f (z,w) = (z−w)N(z−w) f (z,w).

The induction hypothesis gives

(z−w) f (z,w) =
N−1

∑
j=0

d j(w)D jδ (z−w),

hence, by differentiating with respect to z

f +(z−w)∂z f =
N−1

∑
j=0

d j(w)∂zD
jδ (z−w) =−

N−1

∑
j=0

d j(w)( j +1)D j+1δ (z−w).

Here, we use ∂zδ (z−w) = −∂wδ (z−w). Now, applying the induction hypothesis
once more to

∂z((z−w)N+1 f ) = (z−w)N((N +1) f +(z−w)∂z f ) = 0

we obtain

(N +1) f +(z−w)∂z f =
N−1

∑
j=0

e j(w)D jδ (z−w).

By subtracting the two relevant equations we arrive at

N f =
N−1

∑
j=0

e j(w)D j
wδ (z−w)+

N

∑
j=1

jd j−1(w)D jδ (z−w),

and get

f (z,w) =
N

∑
j=0

c j(w)D jδ (z−w)

for suitable c j(w) ∈ R [[w±]].
The uniqueness of this representation of f follows from the formula cn(w) =

Resz(z−w)n f (z,w) which in turn follows from

(z−w)n f (z,w) = cn(w) f (z,w),0≤ n≤ N−1, if f (z,w) =
N−1

∑
j=0

c j(w)D jδ (z,w)

by applying Lemma 10.4. Finally, the identities (z−w)n f (z,w) = cn(w) f (z,w) are
immediate consequences of

(z−w)nD j
wδ (z−w) = 0 for n > j

and
(z−w)nD j

wδ (z−w) = D j−nδ (z−w)

for n≤ j (cf. Lemma 10.5). �
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Analytic Aspects. For a rational function F(z,w) in two complex variables z,w with
poles only at z = 0,w = 0, or |z|= |w| one denotes the power series expansion of F
in the domain {|z|> |w|} by ız,wF and correspondingly the power series expansion
of F in the domain {|z|< |w|} by ıw,zF . For example,

ız,w
1

(z−w) j+1 =
∞

∑
m=0

(
m
j

)
z−m−1wm− j,

ıw,z
1

(z−w) j+1 = −
∞

∑
m=1

(
−m

j

)
zm−1w−m− j.

In particular, as formal distributions

ız,w
1

(z−w)
− ıw,z

1
(z−w)

= ∑
m≥0

z−m−1wm + ∑
m>0

zm−1w−m

= ∑
m∈Z

z−m−1wm = δ (z−w) (10.1)

and similarly for the derivatives of δ ,

D jδ (z−w) = ız,w
1

(z−w) j+1 − ıw,z
1

(z−w) j+1 =∑
(

m
j

)
z−m−1wm− j.

10.2 Locality and Normal Ordering

Let R be an associative C-algebra. On R one has automatically the commutator
[S,T ] = ST −T S, for S,T ∈ R.

Definition 10.7 (Locality). Two formal distributions A,B ∈ R [[z±]] are local with
respect to each other if there exists N ∈ N such that

(z−w)N [A(z),B(w)] = 0

in R [[z±,w±]].

Remark 10.8. Differentiating (z−w)N [A(z),B(w)] = 0 and multiplying by (z−w)
yields (z−w)N+1[∂A(z),B(w)] = 0. Hence, if A and B are mutually local, ∂A and B
are mutually local as well.

In order to formulate equivalent conditions of locality we introduce some no-
tations. For A = ∑Amzm we mostly write A = ∑A(n)z

−n−1 such that we have the
following convenient formula:

A(n) = A−n−1 = ReszA(z)zn.

We break A into

A(z)− := ∑
n≥0

A(n)z
−n−1 , A(z)+ := ∑

n<0
A(n)z

−n−1.
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This decomposition has the property

(∂A(z))± = ∂ (A(z)±),

and conversely, this property determines this decomposition.

Definition 10.9. The normally ordered product for distributions A,B∈R [[z±]] is the
distribution

:A(z)B(w): := A(z)+B(w)+B(w)A(z)− ∈ R
[[

z±,w±
]]

.

Equivalently,

:A(z)B(w): = ∑
n∈Z

(

∑
m<0

A(m)B(n)z
−m−1 + ∑

m≥0
B(n)A(m)z

−m−1

)

w−n−1,

and the definition leads to the formulas

A(z)B(w) = +[A(z)−,B(w)]+ :A(z)B(w): ,

B(w)A(z) = −[A(z)+,B(w)]+ :A(z)B(w): .

With this new notation the result of Proposition 10.6 can be restated as follows.

Theorem 10.10. The following properties are equivalent for A,B ∈ R [[z±]] and
N ∈ N:

1. A,B are mutually local with (z−w)N [A(z),B(w)] = 0.

2. [A(z),B(w)] =
N−1
∑
j=0

C j(w)D jδ (z−w) for suitable C j ∈ R [[w±]].

3. [A(z)−,B(w)] =
N−1
∑
j=0

ız,w 1
(z−w) j+1 C j(w),

−[A(z)+,B(w)] =
N−1
∑
j=0

ıw,z
1

(z−w) j+1 C j(w)

for suitable C j ∈ R [[w±]].

4. A(z)B(w) =
N−1
∑
j=0

ız,w 1
(z−w) j+1 C j(w)+ :A(z)B(w): ,

B(w)A(z) =
N−1
∑
j=0

ıw,z
1

(z−w) j+1 C j(w)+ :A(z)B(w):

for suitable C j ∈ R [[w±]].

5. [A(m),B(n)] =
N−1
∑
j=1

(m
j

)
C j

(m+n− j), m,n ∈ Z, for suitable C j = ∑
k∈Z

C j
(k)w

−k−1

∈ R [[w±]].
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The notation of physicists for the first equation in 4 is

A(z)B(w) =
N−1

∑
j=0

C j(w)
(z−w) j+1 + :A(z)B(w):

with the implicit assumption of |z|> |w| in order to justify

1
(z−w) j+1 = ız,w

1
(z−w) j+1 .

Another frequently used notation for this circumstance by restricting to the singular
part is

A(z)B(w)∼
N−1

∑
j=0

C j(w)
(z−w) j+1 .

Here, ∼ denotes as before (Sect. 9.2, in particular (9.5)) the asymptotic expansion
neglecting the regular part of the series. This is a kind of operator product expansion
as in Sect. 9.3, in particular (9.13).

As an example for the operator product expansion in the context of formal dis-
tributions and vertex operators, let us consider the Heisenberg algebra H and its
generators an,Z ∈ H, with the relations (cf. (4.1) in Sect. 4.1)

[am,an] = mδm+nZ , [am,Z] = 0

for m,n∈Z. Let U(H) denote the universal enveloping algebra (cf. Definition 10.45)
of H. Then A(z) = ∑

n∈Z

anz−n−1 defines a formal distribution a ∈ U(H) [[z±]]. It is

easy to see that
[A(z),A(w)] = ∂δ (z−w)Z,

since

∑
m,n∈Z

[am,an]z−m−1w−n−1 = ∑
m∈Z

mz−m−1wm−1Z.

As a result, the distribution A is local with respect to itself. Because of C1(w) = Z
and C j(w) = 0 for j �= 1 in the expansion of A(z)A(w) according to 4 in Lemma 10.5
the operator product expansion has the form

A(z)A(w)∼ Z
(z−w)2 .

Another example of a typical operator product expansion which is of particular
importance in the context of conformal field theory can be derived by replacing the
Heisenberg algebra H in the above consideration with the Virasoro algebra Vir. As
we know, Vir is generated by Ln,n ∈ Z, and the central element Z with the relations

[Lm,Ln] = (m−n)Lm+n +
m
12

(m2−1)δm+nZ , [am,Z] = 0,
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for m,n ∈ Z. We consider any representation of Vir in a vector space V with Ln ∈
End V and Z = cidV . Then

T (z) = ∑
n∈Z

Lnz−n−2

defines a formal distribution (with coefficients in End V ). A direct calculation (see
below) shows

[T (z),T (w)] =
Z
12
∂ 3δ (z−w)+2T (w)∂wδ (z−w)+∂wT (w)δ (z−w)

and, therefore, according to our Theorem 10.5 with N = 4 the following OPE holds
(observe the factor 3! = 6 in the first equation of property 4 of the theorem):

T (z)T (w)∼ c
2

1
(z−w)4 +

2T (w)
(z−w)2 +

∂wT (w)
(z−w)

, (10.2)

which we have encountered already in (9.5).
In order to complete the derivation of this result let us check the identity for

[T (z),T (w)] stated above:

[T (z),T (w)] =∑
m,n

[Lm,Ln]z−m−2w−n−2

=∑
m,n

(m−n)Lm+nz−m−2w−n−2 +∑
m

m
12

(m2−1)z−m−2wm−2Z.

Substituting k = m+n in the first term and then l = m+1 we obtain

∑
m,n

(m−n)Lm+nz−m−2w−n−2

=∑
k,m

(2m− k)Lkz−m−2w−k+m−2

=∑
k,l

(2l− k−2)Lkz−l−1w−k+l−3

= 2∑
k,l

Lkw−k−2lz−l−1wl−1 +∑
k,l

(−k−2)Lkw−k−3z−l−1wl

= 2T (w)∂wδ (z−w)+∂wT (w)δ (z−w).

The second term is (substituting m+1 = n)

Z
12∑n

n(n−1)(n−2)z−n−1wn−3 =
Z
12
∂ 3

wδ (z−w).

Note that the expansion (10.2) can also be derived by using property 5 in
Lemma 10.5 by explicitly determining the related C j

(n) to obtain C j(w).
Without proof we state the following result:
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Lemma 10.11 (Dong’s Lemma). Assume A(z),B(z),C(z) are distributions which
are pairwise local to each other, than the normally ordered product :A(z)B(z): is
local with respect to C(z) as well.

10.3 Fields and Locality

From now on we restrict our consideration to the case of the endomorphism al-
gebra R = EndV of a complex vector space consisting of the linear operators
b : V →V defined on all of V . The value b(v) of b at v ∈V is written b(v) = b.v or
simply bv.

Definition 10.12. A formal distribution

a ∈ EndV
[[

z±
]]

,a =∑a(n)z
−n−1,

is called a field if for every v ∈ V there exists n0 ∈ N such that for all n ≥ n0 the
condition

a(n)(v) = a(n).v = a(n)v = 0

is satisfied.

Equivalently, a(z).v =∑(a(n).v)z−n−1 is a formal Laurent series with coefficients
in V , that is a(z).v ∈ V ((z)). We denote the vector space of fields by F (V ). As a
general rule, fields will be written in small letters a,b, . . . in these notes whereas
A,B, . . . are general formal distributions.

We come back to the example given by the Heisenberg algebra and replace
the universal enveloping algebra by the Fock space S = C[T1,T2, . . .] (cf. (7.12) in
Sect. 7.2) in order to have the coefficients in the endomorphism algebra End S and
also to relate the example with our previous considerations concerning quantized
fields in Sect. 7.2. Hence, we define

Φ(z) := ∑
n∈Z

anz−n−1,

where now the an : S → S are given by the representing endomorphisms an =
ρ(an) ∈ End S: For a polynomial P ∈ S and n ∈ N,n > 0, we have

an(P) =
∂
∂Tn

P,

a0(P) = 0,

a−n(P) = nTnP,

Z(P) = P.

The calculation above shows that Φ is local with respect to itself, and it satisfies
the operator product expansion
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Φ(z)Φ(w)∼ 1
(z−w)2

with the understanding that a scalar λ ∈C (here λ = 1) as an operator is the operator
λ idS. Moreover, Φ is a field: Each polynomial P ∈ S depends on finitely many
variables Tn, for example on T1, . . . ,Tk and, hence, anP = 0 for n > k. Consequently,

Φ(z)P = ∑
n∈Z

an(P)z−n−1 = ∑
n≤k

an(P)z−n−1 = ∑
m≥−k−1

a−m−1(P)zm

is a Laurent series. The field Φ is the quantized field of the infinite set of harmonic
oscillators (cf. Sect. 7.2) and thus represents the quantized field of a free boson.

In many important cases the vector space V has a natural Z-grading

V =
⊕

n∈Z

Vn

with Vn = {0} for n < 0 and dimVn < ∞. An endomorphism T ∈ End V is called
homogeneous of degree g if T (Vn)⊂Vn+g. A formal distribution a = ∑a(n)z

−n−1 ∈
End V [[z±]] is called homogeneous of (conformal) weight h∈Z if each a(k) : V →V
is homogeneous of degree h− k− 1. In this case, for a given v ∈ Vm it follows that
a(k)v ∈Vm+h−k−1, and this implies a(k)v = 0 for m+h−k−1 < 0, that is k≥m+h.
Therefore, ∑

k≥m+h
(a(k)v)z−k−1 is a Laurent series and we have shown the following

assertion:

Lemma 10.13. Any homogeneous distribution a ∈ End V [[z±]] is a field.

In our example of the free bosonic fieldΦ∈End S [[z±]] there is a natural grading
on the Fock space S given by the degree

deg(λTn1 . . .Tnm) :=
m

∑
j=1

n j

of the homogeneous polynomials P = λTn1 . . .Tnm :

Sn := span{P : P homogeneous with deg(P) = n}

with S =
⊕

Sn, Sn = {0} for n < 0 and dimSn < ∞. Because of deg(a(k)P) =
deg(P)− k if a(k)P �= 0 (a(k) = ak in this special example) we see that a(k) is ho-
mogeneous of degree −k and the field Φ is homogeneous of weight h = 1.

Remark 10.14. The derivative ∂a of a field a ∈ F (V ) is a field and the normally
ordered product :a(z)b(z): of two fields a(z),b(z) is a field as well. Because of
∂ (a(z)±) = (∂a(z))±, the derivative ∂ : F (V ) → F (V ) acts as a derivation with
respect to the normally ordered product:

∂ (:a(z)b(z):) = :(∂a(z))b(z): + :a(z)(∂b(z)): .
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Moreover, using Dong’s Lemma 10.11 we conclude that in the case of three pairwise
mutually local fields a(z),b(z),c(z) the normally ordered product :a(z)b(z): is a
field which is local with respect to c(z). The corresponding assertion holds for the
normally ordered product of more than two fields a1(z),a2(z), . . . ,an(z) which is
defined inductively by

:a1(z) . . .an(z)an+1(z): := :a1(z) . . . :an(z)an+1(z): . . . : .

It is easy to check the following behavior of the weights of homogeneous fields.

Lemma 10.15. For a homogeneous field a of weight h the derivative ∂a has weight
h + 1, and for another homogeneous field b of weight h′ the weight of the normally
ordered product :a(z)b(z): is h+h′.

We want to formulate the locality of two fields a,b ∈F (V ) by matrix coefficients.
For any v ∈V and any linear functional μ ∈V ∗ = Hom(V,C) the evaluation

〈μ ,a(z).v〉= μ(a(z).v) =∑μ(a(n).v)z
−n−1

yields a formal Laurent series with coefficients in C, i.e., 〈μ ,a(z).v〉 ∈ C((z)). The
matrix coefficients satisfy 〈μ ,a(z)b(w).v〉 ∈ C [[z±,w±]] in any case, since they are
formal distributions. A closer inspection regarding the field condition for a and b
shows

〈μ ,a(z)b(w).v〉= ∑
n<n0

μ(a(z)b(n).v)w
−n−1 ∈ C((z))((w)) .

Similarly,
〈μ ,b(w)a(z).v〉 ∈ C((w))((z)) .

In which sense can such matrix coefficients commute? Commutativity in this
context can only mean that the equality

〈μ ,a(z)b(w).v〉= 〈μ ,b(w)a(z).v〉

holds in the intersection of C((z))((w)) and C((w))((z)). Consequently, these ma-
trix coefficients of the fields a,b to μ ,v commute if and only if the two series are ex-
pansions of one and the same element in C [[z±,w±]] [z−1,w−1]. Fields a,b ∈F (V )
whose matrix coefficients commute in this sense for all μ ,v are local to each other,
but locality for fields in general as given in Definition 10.7 is a weaker condition as
stated in the following proposition.

Before formulating the proposition we want to emphasize that it is particularly
important to be careful with equalities of series regarding the various identifications
or embeddings of spaces of series. This is already apparent with our main example,
the delta function. Observe that we have two embeddings

C((z,w)) ↪→ C((z))((w)) ,C((z,w)) ↪→ C((w))((z))

of the field of fractions C((z,w)) of C [[z,w]] induced by the natural embeddings
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C [[z,w]] ↪→ C((z))((w)) ,C [[z,w]] ↪→ C((w))((z))

and the universal property of the field of fractions C((z,w)). Moreover, the two
spaces C((z))((w)) and C((w))((z)) both have a natural embedding into
C [[z±,w±]] the full space of formal distributions in the two variables z,w. Now,
for a Laurent polynomial P(z,w)∈C[z±,w±] considered as an element in C((z,w))
the two embeddings of P agree in C [[z±,w±]]. However, this is no longer true for
general elements f ∈ C((z,w)).

Remark 10.16. For example, the element f = (z−w)−1 ∈ C((z,w)) induces the
element

δ−(z−w) = ∑
n≥0

z−n−1wn = ız,w
1

(z−w)

in C((z))((w)) and the element −δ+(z−w) in C((w))((z)) where

δ+(z−w) = ∑
n>0

w−nzn−1 = ıw,z
1

(z−w)
.

Hence their embeddings in C [[z±,w±]] do not agree; the difference δ− − δ+ is, in
fact, the delta distribution δ (z−w) = ∑

n∈Z

z−n−1wn, cf. (10.1).

If we now multiply f by z−w we obtain 1 which remains 1 after the embedding
into C [[z±,w±]]. Therefore, if we multiply δ− and−δ+ by z−w we obtain the same
element 1 in C [[z±,w±]]. We are now ready for the content of the proposition.

Proposition 10.17. Two fields a,b ∈ F (V ) are local with respect to each other if
and only if for all μ ∈ V ∗ and v ∈ V the matrix coefficients 〈μ ,a(z)b(w).v〉 and
〈μ ,b(w)a(z).v〉 are expansions of one and the same element fμ,v ∈ C [[z,w]] [z−1,
w−1,(z−w)−1)] and if the order of pole in z−w is uniformly bounded for the μ ∈
V ∗,v ∈V .

Proof. When N ∈ N is a uniform bound of the order of pole in z−w of the fμ,v

one has (z−w)N fμ,v ∈ C [[z±,w±]] [z−1,w−1] uniformly for all μ ∈ V ∗,v ∈ V . The
expansion condition implies

(z−w)N〈μ ,a(z)b(w).v〉= (z−w)N fμ,v = (z−w)N〈μ ,b(w)a(z).v〉.

Consequently, (z−w)N〈μ , [a(z),b(w)].v〉= 0, and therefore

(z−w)N [a(z),b(w)].v = 0,

and finally (z−w)N [a(z),b(w)] = 0.

Conversely, if the fields a,b are local with respect to each other, that is if they
satisfy (z−w)N [a(z),b(w)] = 0 for a suitable N ∈ N, we know already by property
4 of Theorem 10.10 that
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a(z)b(w) =
N−1

∑
j=0

ız,w
1

(z−w) j+1 c j(w)+ :a(z)b(w): ,

b(w)a(z) =
N−1

∑
j=0

ıw,z
1

(z−w) j+1 c j(w)+ :a(z)b(w):

for suitable fields c j ∈ R [[w±]] given by Resz(z−w) j[a(z),b(w)]. This shows that
〈μ ,a(z)b(w).v〉 and 〈μ ,b(w)a(z).v〉 are expansions of

N−1

∑
j=0

1
(z−w) j+1 μ(c j(w).v)+μ(:a(z)b(w):v).

�

10.4 The Concept of a Vertex Algebra

Definition 10.18. A vertex algebra is a vector space V with a distinguished vector
Ω (the vacuum vector)1, an endomorphism T ∈ End V (the infinitesimal transla-
tion operator)2, and a linear map Y : V → F (V ) to the space of fields (the vertex
operator providing the state field correspondence)

a �→ Y (a,z) = ∑
n∈Z

a(n)z
−n−1,a(n) ∈ End V,

such that the following properties are satisfied: For all a,b ∈V

Axiom V1 (Translation Covariance)

[T,Y (a,z)] = ∂Y (a,z),

Axiom V2 (Locality)

(z−w)N [Y (a,z),Y (b,w)] = 0

for a suitable N ∈ N (depending on a,b),

Axiom V3 (Vacuum)

TΩ= 0,Y (Ω,z) = idV ,Y (a,z)Ω|z=0 = a.

The last condition Y (a,z)Ω|z=0 = a is an abbreviation for a(n)Ω = 0,n ≥ 0 and
a(−1)Ω= a when Y (a,z) = ∑a(n)z

−n−1. In particular,

Y (a,z)Ω= a+ ∑
n<−1

(a(n)Ω)z−n−1 = a+∑
k>0

(a(−k−1)Ω)zk ∈V [[z]] .

1 We keep the notation Ω for the vacuum in accordance with the earlier chapters although it is
common in vertex algebra theory to denote the vacuum by |0〉.
2 Not to be mixed up with the energy–momentum tensor T (z).
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Several variants of this definition are of interest.

Remark 10.19. For example, as in the case of Wightman’s axioms (cf. Remark 8.12)
one can adopt the definition to the supercase in order to include anticommuting
fields and therefore the fermionic case. One has to assume that the vector space V is
Z/2Z-graded (i.e., a superspace) and the Locality Axiom V2 is generalized accord-
ingly by replacing the commutator with the anticommutator for fields of different
parity. Then we obtain the definition of a vertex superalgebra.

Remark 10.20. A different variant concerns additional properties of V since in
many important examples V has a natural direct sum decomposition V =

⊕∞
n=0 Vn

into finite-dimensional subspaces Vn. In addition to the above axioms one requires
Ω to be an element of V0 or even V0 = CΩ, T to be homogeneous of degree 1 and
Y (a,z) to be homogeneous of weight m for a ∈Vm. We call such a vertex algebra a
graded vertex algebra.

Remark 10.21. The notation in the axioms could be reduced, for example, the in-
finitesimal translation operator T can equivalently be described by Ta = a(−2)Ω for
all a ∈V .

Proof. In fact, the Axiom V1 reads for Y (a,z) = ∑a(n)z
−n−1:

∑[T,a(n)]z
−n−1 =∑(−n−1)a(n)z

−n−2 =∑−na(n−1)z
−n−1.

Hence, [T,a(n)] =−na(n−1). Because of TΩ= 0, this implies Ta(n)Ω=−na(n−1)Ω.
For n = −1 we conclude a(−2)Ω = Ta(−1)Ω = Ta, where a(−1)Ω = a is part of the
Vacuum Axiom V3. �

Vertex Algebras and Quantum Field Theory. To bring the new concept of a vertex
algebra into contact to the axioms of a quantum field theory as presented in the last
two chapters we observe that the postulates for a vertex algebra determine a structure
which is similar to axiomatic quantum field theory.

In fact, on the one hand a field in Chap. 8 is an operator-valued distribution

Φa : S → End V

indexed by a ∈ I with V = D a suitable common domain of definition for all the
operators Φ( f ), f ∈ S . On the other hand, a field in the sense of vertex algebra
theory is a formal series Y (a,z) ∈ End V [[z±]] , a ∈V , which acts as a map

Ŷ (a, ) : C
[[

z±
]]
→ End V

as has been shown in Lemma 10.2. This map resembles an operator-valued distribu-
tion with C [[z±]] as the space of test functions.

Locality in the sense of Chap. 9 is transferred into the locality condition in Ax-
iom V2. The OPE and its associativity is automatically fulfilled in vertex algebras
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(see Theorem 10.36 below). However, the reflection positivity or the spectrum con-
dition has no place in vertex algebra theory since we are not dealing with a Hilbert
space. Moreover, the covariance property is not easy to detect due to the absence
of an inner product except for the translation covariance in Axiom V2. Finally, the
existence of the energy–momentum tensor as a field and its properties according to
the presentation in Chap. 9 is in direct correspondence to the existence of a confor-
mal vector in the vertex algebra as described below in Definition 10.30.

Under suitable assumptions a two-dimensional conformally invariant field theory
in the sense of Chap. 9 determines a vertex algebra as is shown below (p. 190).

We begin now the study of vertex algebras with a number of consequences of
the Translation Covariance Axiom V1. Observe that it splits into the following two
conditions:

[T,Y (a,z)±] = ∂Y (a,z)±.

The significance of Axiom V1 is explained by the following:

Proposition 10.22. Any element a ∈V of a vertex algebra V satisfies

Y (a,z)Ω = ezT a,

ewTY (a,z)e−wT = Y (a,z+w),
ewTY (a,z)±e−wT = Y (a,z+w)±,

where the last equalities are in End V [[z±]] [[w]] which means that (z + w)n is re-
placed by its expansion ιz,w(z+w)n = ∑k≥0

(n
k

)
zn−kwk ∈ C [[z±]] [[w]].

For the proof we state the following technical lemma which is of great impor-
tance in the establishment of equalities.

Lemma 10.23. Let W be a vector space with an endomorphism S∈ End W. To each
element f0 ∈ W there corresponds a uniquely determined solution

f = ∑
n≥0

fnzn ∈W [[z]]

of the initial value problem

d
dz

f (z) = S f (z), f (0) = f0.

In fact, f (z) = eSz f0 = ∑ 1
n! Sn f0zn.

Proof. The differential equation means ∑(n + 1) fn+1zn = ∑S fnzn, and therefore
(n+1) fn+1 = S fn for all n≥ 0, which is equivalent to fn = 1

n! Sn f0. �

Proof. (Proposition 10.22) By the translation covariance we obtain for f (z) =
Y (a,z)Ω (∈V [[z]] by the Vacuum Axiom) the differential equation ∂ f (z) = T f (z).
Applying Lemma 10.23 to W = V and S = T yields f (z) = eT za = ezT a. This
proves the first equality. To show the second, we apply Lemma 10.23 to W =
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End V [[z±]] and S = adT . We have ∂w(ewTY (a,z)e−wT ) = [T,ewTY (a,z)e−wT ] =
adT (ewTY (a,z)e−wT ) by simply differentiating, and ∂wY (a,z+w) = [T,Y (a,z+w)]
by translation covariance. Because of Y (a,z) = Y (a,z+w)|w=0 the two solutions of
the differential equation ∂w f = (adT )( f ) have the same initial value f0 = Y (a,z) ∈
End V [[z±]] and thus agree. The last equalities follow by observing the splitting
[T,Y (a,z)±] = ∂Y (a,z)±. �

In order to describe examples the following existence result is helpful:

Theorem 10.24 (Existence). Let V be a vector space with an endomorphism T and
a distinguished vector Ω ∈V . Let (Φa)a∈I be a collection of fields

Φa(z) =∑a(k)z
−k−1 = a(z) ∈ End V

[[
z±
]]

indexed by a linear independent subset I ⊂V such that the following conditions are
satisfied for all a,b ∈ I:

1. [T,Φa(z)] = ∂Φa(z).
2. TΩ= 0 and Φa(z)Ω|z=0 = a.
3. Φa and Φb are local with respect to each other.
4. The set {a1

(−k1)a
2
(−k2) . . .a

n
(−kn)Ω : a j ∈ I,k j ∈ Z,k j > 0} of vectors along with Ω

forms a basis of V .

Then the formula

Y (a1
(−k1) . . .a

n
(−kn)Ω,z): = :Dk1−1Φa1(z) . . .Dkn−1Φan(z): (10.3)

together with Y (Ω,z) = idV defines the structure of a unique vertex algebra with
translation operator T , vacuum vector Ω, and

Y (a,z) =Φa(z) for all a ∈ I.

Proof. First of all, we note that the requirement Φa(z)Ω|z=0 = a in condition 2,
that is ∑a(n)(Ω)z−n−1|z=0 = a, implies that a = a(−1)Ω for each a ∈ I. Therefore,
Y (a,z) = Y (a(−1)Ω,z) = :D0Φa(z): =Φa(z) for a ∈ I if everything is well-defined.
According to condition 4 the fields Y (a,z) will be well-defined by formula (10.3).

To show the Translation Axiom V1 one observes that for any endomorphism
T ∈ End V the adjoint adT : F (V )→F (V ) acts as a derivation with respect to the
normal ordering:

[T, :a(z)b(z): ] = : [T,a(z)]b(z): + :a(z)[T,b(z)]: .

Moreover, adT commutes with Dk,k ∈ N. Since the derivative ∂ is a derivation
with respect to the normal ordering as well (cf. Remark 10.14) commuting with Dk,
and since adT and ∂ agree on all Φa,a∈ I, by condition 1, they agree on all repeated
normally ordered products of the fields DkΦa(z) for all a ∈ I,k ∈ N, and hence on
all Y (b,z),b ∈V, because of condition 4 and the formula (10.3).

To check the Locality Axiom V2 one observes that all the fields
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DkΦa(z), a ∈ I,k ∈ N,

are pairwise local to each other by condition 3 and Remark 10.8. As a consequence,
this property also holds for arbitrary repeated normally ordered products of the
Dkφa(z) by and Dong’s Lemma 10.11 and Remark 10.14.

Finally, the requirements of the Vacuum Axiom V3 are directly satisfied by as-
sumption 2 and the definition of Y . �

The condition of being a basis in Theorem 10.24 can be relaxed to the re-
quirement that {a1

(−k1)a
2
(−k2) . . .a

n
(−kn)Ω : a j ∈ I,k j ∈ Z,k j > 0} ∪ {Ω} spans V

(cf. [FKRW95*]). With this result one can deduce that in a vertex algebra the field
formula (10.3) holds in general.

Heisenberg Vertex Algebra. Let us apply the Existence Theorem 10.24 to de-
termine the vertex algebra of the free boson. In Sect. 10.3 right after the Defini-
tion 10.12 we have already defined the generating field

Φ(z) =∑anz−n−1

with an ∈ End S. We use the representation H → End S = C[T1,T2, . . .] of the
Heisenberg Lie algebra H in the Fock space S which describes the canonical quan-
tization of the infinite dimensional harmonic oscillator (cf. p. 114). The vacuum
vector is Ω = 1, as before, and the definition of the action of the an on S yields
immediately anΩ= 0 for n ∈ Z,n≥ 0. It follows

Φ(z)Ω= ∑
n<0

(anΩ)z−n−1 = ∑
k≥0

(a−k−1Ω)zk.

Consequently, Φ(z)Ω|z=0 = a−1Ω. Hence, to apply Theorem 10.24 we set Φa =
Φ with a := a−1Ω= T1 ∈ S and I = {a}. We know that the properties 3 and 4 of the
theorem are satisfied.

In order to determine the infinitesimal translation operator T we observe that T
has to satisfy

[T,an] =−nan−1,TΩ= 0,

by property 1 and the first condition of property 2. This is a recursion for T deter-
mining T uniquely. We can show that

T = ∑
m>0

a−m−1am. (10.4)

In fact, the endomorphism

T ′ = ∑
m>0

a−m−1am ∈ End H

is well-defined and has to agree with T since T ′Ω = 0 and T ′ satisfies the same
recursion [T ′,an] = −nan−1: If n > 0 then aman = anam and [a−m−1,an] = (−m−
1)δn−m−1 for m > 0, hence [a−m−1am,an] = [a−m−1,an]am = −(m + 1)δn−m−1am,
and therefore
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[T ′,an] = ∑
m>0

−(m+1)δn−m−1am =−nan−1.

Similarly, if n < 0 we have [am,an] = mδm+n and a−m−1an = ana−m−1 for m > 0,
hence [a−m−1am,an] = mδm+na−m−1, and therefore again [T ′,an] =−nan−1.

Now, the theorem guarantees that with the definition of the vertex operation as

Y (a,z) :=Φ(z) for a = T1 and

Y (Tk1 . . .Tkn ,z): = :Dk1−1Φ(z) . . .Dkn−1Φ(z):

for k j > 0 we have defined a vertex algebra structure on S, the vertex algebra associ-
ated to the Heisenberg algebra H. This vertex algebra will be called the Heisenberg
vertex algebra S.

In the preceding section we have introduced the natural grading of the Fock
space S =

⊕
Sn and we have seen that Φ(z) is homogeneous of degree 1. Using

Lemma 10.15 on the weight of the derivative of a homogeneous field it follows
that Dk−1Φ(z) is homogeneous of weight k for k > 0 and therefore, again using
Lemma 10.15 on the weight of a normally ordered product of homogeneous fields,
that Y (Tk1 . . .Tkn ,z) has weight k1 + . . . + kn = deg(Tn1 . . .Tkn). As a consequence,
for b ∈ Sm the vertex operator Y (b,z) is homogeneous of weight m and thus the re-
quirements of Remark 10.20 are satisfied. The Heisenberg vertex algebra is a graded
vertex algebra.

Vertex Algebras and Osterwalder–Schrader Axioms. Most of the models satis-
fying the six axioms presented in Chap. 9 can be transformed into a vertex algebra
thereby yielding a whole class of examples of vertex algebras. To sketch how this
can be done we start with a conformal field theory given by a collection of correla-
tion functions satisfying the six axioms in Chap. 9. According to the reconstruction
in Theorem 9.3 there is a collection of fields Φa defined as endomorphisms on a
common dense subspace D⊂H of a Hilbert space H with Ω ∈ D.

Among the fields Φa in the sense of Definition 9.3 we select the primary fields
(Φa)a∈B1 . We assume that the asymptotic states a :=Φa(z)Ω|z=0 ∈D exist. Without
loss of generality we can assume, furthermore that {a : a ∈ B1} is linearly indepen-
dent. Otherwise, we delete some of the fields.

The operator product expansion (Axiom 6 on p. 168) of the primary fields allows
to understand the fields Φa as fields

Φa(z) =∑a(n)z
−n−1 ∈ End D

[[
z±
]]

in the sense of vertex algebras. We define V ⊂ D to be the linear span of the set

E := {a1
(−k1)a

2
(−k2) . . .a

n
(−kn)Ω : a j ∈ B1,k j ∈ Z,k j > 0}∪{Ω}

and obtain the fields Φa,a ∈ B1, as fields in V by restriction

Φa(z) =∑a(n)z
−n−1 ∈ End V

[[
z±
]]

.
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Now, using the properties of the energy–momentum tensor T (z) =∑Lnz−n−2 we
obtain the endomorphism L−1 : V → V with the properties [L−1,Φa] = ∂Φa (the
condition of primary fields (9.6) for n =−1) and L−1Ω= 0. Moreover, the fields Φ
are mutually local according to the locality Axiom 1 on p. 155.

We have thus verified the requirements 1–3 of the Existence Theorem where L−1

has the role of the infinitesimal translation operator. If the set E ⊂ V is a basis of
V we obtain a vertex algebra V with Φa(z) = Y (a,z) according to the Existence
Theorem reflecting the properties of the original correlation functions. If D is not
linear independent we can use the above-mentioned generalization of the Existence
Theorem (cf. [FKRW95*]) to obtain the same result.

We conclude this section by explaining in which sense vertex algebras are natural
generalizations of associative and commutative algebras with unit.

Remark 10.25. The concept of a vertex algebra can be viewed to be a generalization
of the notion of an associative and commutative algebra A over C with a unit 1. For
such an algebra the map

Y : A→ End A, Y (a).b := ab for all a,b ∈ A,

is C-linear with Y (a)1 = a and Y (a)Y (b) =Y (b)Y (a). Hence, Y (a,z) =Y (a) defines
a vertex algebra A with T = 0 and Ω= 1.

Conversely, for a vertex algebra V without dependence on z, that is Y (a,z) =
Y (a), we obtain the structure of an associative and commutative algebra A with 1 in
the following way. The multiplication is given by

ab := Y (a).b, for a,b ∈ A := V.

Hence, Ω is the unit 1 of multiplication by the Vacuum Axiom. By locality
Y (a)Y (b) = Y (b)Y (a), and this implies ab = Y (a)b = Y (a)Y (b)Ω= Y (b)Y (a)Ω=
ba. Therefore, A is commutative. In the same way we obtain a(cb) = c(ab):

a(cb) = Y (a)Y (c)Y (b)Ω= Y (c)Y (a)Y (b)Ω= c(ab),

and this equality suffices to deduce associativity using commutativity: a(bc) =
a(cb) = c(ab) = (ab)c.

Another close relation to associative algebras is given by the concept of a holo-
morphic vertex algebra.

Definition 10.26. A vertex algebra is holomorphic if every Y (a,z) is a formal power
series Y (a,z) ∈ End V [[z]] without singular terms.

The next result is easy to check.

Proposition 10.27. A holomorphic vertex algebra is commutative in the sense that
for all a,b ∈ V the operators Y (a,z) and Y (b,z) commute with each other. Con-
versely, this kind of commutativity implies that the vertex algebra is holomorphic.
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For a holomorphic vertex algebra the constant term a(−1) ∈ End V in the
expansion

Y (a,z) = ∑
n<0

a(n)z
−n−1 = ∑

k≥0

a(−(k+1))z
k = a(−1) +∑

k>0

a(−(k+1))z
k

determines a multiplication by ab := a(−1)b. Now, for a,b ∈ V one has [Y (a,z),
Y (b,z)] = 0 and this equality implies a(−1)b(−1) = b(−1)a(−1). In the same way as
above after Remark 10.25 the multiplication turns out to be associative and commu-
tative with Ω as unit.

The infinitesimal translation operator T acts as a derivation. By Axiom V1
[T,a(−1))] = a(−2). Because of (Ta)(−1) = a(−2) which can be shown directly but
also follows from a more general formula proven in Proposition 10.34 we obtain

T (ab) = Ta(−1)b = a(−1)T b+(Ta)(−1)b = a(T b)+(Ta)b.

Proposition 10.28. The holomorphic vertex algebras are in one-to-one correspon-
dence to the associative and commutative unital algebras with a derivation.

Proof. Given such an algebra V with derivation T : V →V we only have to construct
a holomorphic vertex algebra in such a way that the corresponding algebra is V . We
take the vacuum Ω to be the unit 1 and define the operators Y (a,z) by

Y (a,z) := ezT a = ∑
n≥0

T na
n!

zn.

The axioms of a vertex algebra are easy to check. Moreover,

Y (a,z) = a+∑
n>0

T na
n!

zn,

hence a(−1) = a which implies that by ab = a(−1)b we get back the original algebra
multiplication. �

Note that T may be viewed as the generator of infinitesimal translations of z on
the formal additive group. Thus, holomorphic vertex algebras are associative and
commutative unital algebras with an action of the formal additive group. As a con-
sequence, general vertex algebras can be regarded to be “meromorphic” generaliza-
tions of associative and commutative unital algebras with an action of the formal
additive group. This point of view can be found in the work of Borcherds [Bor00*]
and has been used in another generalization of the notion of a vertex algebra on the
basis of Hopf algebras [Len07*].

10.5 Conformal Vertex Algebras

We begin this section by completing the example of the generating field
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L(z) =∑Lnz−n−2

associated to the Virasoro algebra for which we already derived the operator product
expansion (10.2) in Sect. 10.2:

L(z)L(w)∼ c
2

1
(z−w)4 +

2L(w)
(z−w)2 +

∂wL(w)
(z−w)

. (10.5)

(We have changed the notation from T (z) to L(z) in order not to mix up the notation
with the notation for the infinitesimal translation operator T .)

Now, we associate to Vir another example of a vertex algebra.

Virasoro Vertex Algebra. In analogy to the construction of the Heisenberg vertex
algebra in Sect. 10.4 we use a suitable representation Vc of Vir where c ∈ C is the
central charge. This is another induced representation, cf. Definition 10.49. Vc is
defined to be the vector space with basis

{vn1...nk : n1 ≥ . . .nk ≥ 2,n j ∈ N,k ∈ N}∪{Ω}

(similar to the Verma module M(c,0) in Definition 6.4 and its construction in
Lemma 6.5) together with the following action of Vir on Vc (n,n j ∈ Z,n1 ≥ . . .nk ≥
2,k ∈ N):

Z := cidVc ,

LnΩ := 0 , n≥−1 , n ∈ Z,

L0vn1...nk := (
k

∑
j=1

n j)vn1...nk ,

L−nΩ := vn,n≥ 2, and L−nvn1...nk := vnn1...nk , n≥ n1.

The remaining actions Lnv,v ∈ Vc, are determined by the Virasoro relations, for
example L−1vn = (n−1)vn+1 or Lnvn = 1

12 cn(n2−1)Ω if n > 1, in particular L2v2 =
1
2 cΩ, since

L−1vn = L−1L−nΩ= L−nL−1Ω+(−1+n)L−1−nΩ= (n−1)vn+1,

and Lnvn = LnL−nΩ= L−nLnΩ+2nL0Ω+ c
12 n(n2−1)Ω with LnΩ= L0Ω= 0. The

definition L(z) =∑Lnz−n−2 directly yields that L(z) is a field, since for every v ∈Vc

there is N such that Lnv = 0 for all n≥ N.
Observe that Vc as a vector space can be identified with the space C[T2,T3, . . .] of

polynomials in the infinitely many indeterminates Tj, j ≥ 2.
To apply Theorem 10.24 with L(z) as generating field we evaluate, first of all,

the “asymptotic state” L(z)Ω|z=0 =: a ∈ S. Because of LnΩ = 0 for n > −2 and
L−nΩ= vn for n≥ 2 we obtain

a = L(z)Ω|z=0 = ∑
m≤−2

LmΩz−m−2|z=0 = L−2Ω= v2.
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We set I = {a} = {v2} and Φa(z) := L(z) in order to agree with the notation in
Theorem 10.24.

Proposition 10.29. The field Φa(z) = L(z),a = v2, generates the structure of a ver-
tex algebra on Vc with L−1 as the infinitesimal translation operator. Vc is called the
Virasoro vertex algebra with central charge c.

Proof. Property 3 of Theorem 10.24 is satisfied, since the field Φa = L is local
with itself according to (10.5), and property 4 holds because of the definition of
Vc. As the infinitesimal translation operator T we take T := L−1, so that property
2 is satisfied as well. Finally, [L−1,L(z)] = ∂L(z) (which is [T,Φ(z)] = ∂Φ(z) )
can be checked directly: [L−1,L(z)] = ∑[L−1,Ln]z−n−2 = ∑(−1− n)Ln−1z−n−2 =
∑(−n−2)Lnz−n−3 = ∂L(z).

As a consequence,

Y (v2,z) = L(z),

Y (vn1...nk ,z) = :Dn1−2T (z) . . .Dnk−2T (z):

define the structure of a vertex algebra which will be called the Virasoro vertex
algebra with central charge c. The central charge can be recovered by L2a = 1

2 cΩ.�

Vc has the grading Vc =
⊕

VN with VN generated by the basis elements {vn1...nk :
∑n j = N} (∑n j = N = deg vn1...nk ), V0 = CΩ. The finite-dimensional vector sub-
space VN can also be described as the eigenspace of L0 with eigenvalue N: VN =
{v ∈Vc : L0v = Nv}. The translation operator T = L−1 is homogeneous of degree 1
and the generating field has weight 2 since each Ln−1 = T(n) has degree 2− n− 1.
Hence, Vc is a graded vertex algebra and L0 is the degree.

This example of a vertex algebra motivates the following definition:

Definition 10.30. (Conformal Vertex Algebra) A field L(z) = ∑Lnz−n−2 with the
operator expansion as in (10.5) will be called a Virasoro field with central charge c.

A conformal vector with central charge c is a vector ν ∈ V such that Y (ν ,z) =
∑ν(n)z

−n−1 = ∑Lνn z−n−2 is a Virasoro field with central charge c satisfying, in ad-
dition, the following two properties:

1. T = Lν−1
2. Lν0 is diagonalizable.

Finally, a conformal vertex algebra (of rank c) is a vertex algebra V with a distin-
guished conformal vector ν ∈V (with central charge c). In that case, the field Y (ν ,z)
is also called the energy–momentum tensor or energy–momentum field of the vertex
algebra V .

Examples. 1. The Virasoro vertex algebras Vc are clearly conformal vertex algebras
of rank c with conformal vector ν = v2 = L−2Ω. L(z) = Y (v2,z) is the energy–
momentum tensor.
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2. The vertex algebra associated to an axiomatic conformal field theory in the
sense of the last chapter (cf. p. 190 under the assumptions made there) has L−2Ω as
a conformal vector and T is the energy–momentum tensor.

3. The Heisenberg vertex algebra S has a one-parameter family of conformal
vectors

νλ :=
1
2

T 2
1 +λT2 , λ ∈ C.

To see this, we have to check that the field Y (νλ ,z) = ∑Lλn z−n−2 is a Virasoro
field, that T = Lλ−1, and that Lλ0 is diagonalizable.

That the Lλn satisfy the Virasoro relations and therefore determine a Virasoro
field can be checked by a direct calculation which is quite involved. We postpone
the proof because we prefer to obtain the Virasoro field condition as an application
of the associativity of the operator product expansion, which will be derived in the
next section (cf. Theorem 10.40).

The other two conditions are rather easy to verify. By the definition of the vertex
operator we have Y (T 2

1 ,z) = :Φ(z)Φ(z): and Y (T2,z) = ∂Φ(z), hence

Y (T 2
1 ,z) = ∑

k �=0
∑

n+m=k

anamz−k−2 +2∑
n>0

a−nanz−2,

where Φ(z) = ∑anz−n−1 with the generators an of the Heisenberg algebra H acting
on the Fock space S, and

Y (T2,z) =∑(−k−1)akz−k−2,

and therefore,

Y (νλ ,z) =
1
2 ∑k �=0

(

∑
n+m=k

anam−λ (k +1)ak

)

z−k−2 +∑
n>0

a−nanz−2. (10.6)

(Recall that we defined a0 to satisfy a0 = 0 in this representation of H.) Conse-
quently,

L0 = Lλ0 = ∑
n>0

a−nan

and
L−1 = Lλ−1 = ∑

n>0
a−n−1an,

and both these operators turn out to be independent of λ . Now, on the monomials

Tn1 . . .Tnk we have L0(Tn1 . . .Tnk) =
k
∑
j=1

n j = deg(Tn1 . . .Tnk) and L0 is diagonalizable

with L0v = deg(v)v = nv for v ∈Vn. Finally, we have already seen in (10.4) that the
infinitesimal translation operator is ∑

n>0
a−n−1an = L−1.

4. A fourth example of a conformal vertex algebra is given by the Sugawara
vector as a conformal vector of the vertex algebra associated to a Lie algebra g.
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(This example appears also in the context of associating a vertex algebra to a con-
formal field theory with g-symmetry in the sense of Chap. 9, but there we have
not introduced the related example of a conformal field theory corresponding to a
Kac–Moody algebra.)
At first, we have to describe the corresponding vertex algebra.

Affine Vertex Algebra. As a fourth example of applying the Existence The-
orem 10.24 to describe vertex algebras we now come to the case of a finite-
dimensional simple Lie algebra g and its associated vertex algebra Vk(g),k ∈ C,
which will be called affine vertex algebra.

In the list of examples of central extensions in Sect. 4.1 we have introduced the
affinization

ĝ = g[T,T−1]⊕CZ

of a general Lie algebra g equipped with an invariant bilinear form ( , ) as the central
extension of the loop algebra Lg = g[T±] with respect to the cocycle

Θ(am,bn) = m(a,b)δm+nZ,

where we use the abbreviation am = T ma = T m⊗a,bn = T nb for a,b∈ g and n∈Z.
The commutation relations for a,b ∈ g and m,n ∈ Z are therefore

[am,bn] = [a,b ]m+n +m(a,b)δm+nZ, [am,Z] = 0.

In the case of a finite-dimensional simple Lie algebra g any invariant bilinear
symmetric form ( , ) is unique up to a scalar (it is in fact a multiple of the Killing
form κ) and the resulting affinization of g is called the affine Kac–Moody algebra
of g where the invariant form is normalized in the following way: The Killing form
on g is κ(a,b) = tr(ad a ad b) for a,b ∈ g, where ad : g → Endg, ad a(x) = [a,x]
for x ∈ g is the adjoint representation. The normalization in question now is

(a,b) :=
1

2h∨
κ(a,b),

where h∨ is the dual Coxeter number of g (see p. 221).
As before, we need to work in a fixed representation of the Kac–Moody algebra ĝ.

Let {Jρ : ρ ∈ {1, . . . ,r}} be an ordered basis of g. Then {Jρn : 1≤ ρ ≤ r = dimg,n∈
Z}∪{Z} is a basis for ĝ.

We define the representation space Vk(g),k ∈ C, to be the complex vector space
with the basis

{vρ1...ρm
n1...nm

: n1 ≥ . . .nm ≥ 1,ρ1 ≤ . . .≤ ρm}∪{Ω},

and define the action of ĝ on V = Vk(g) by fixing the action as follows (n > 0):

Z = kidV , Jρn Ω= 0,

Jρ−nΩ= vρn , Jρ−nvρ1...ρm
n1...nm

= vρρ1...ρm
nn1...nm

,
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if n ≥ n1 and ρ ≤ ρ1. The remaining actions of the Jρn on the basis of Vk(g) are
determined by the commutation relations

[Jρm,Jσn ] = [Jρ ,Jσ ]m+n +m(Jρ ,Jσ )kδm+n.

The resulting representation is called the vacuum representation of rank k. It is
again an induced representation, cf. Sect. 10.7.

The generating fields are

Jρ(z) =∑Jρn z−n−1 ∈ End Vk(g)
[[

z±
]]

,1≤ ρ ≤ r.

In view of the commutation relations one has

Jρn vρ1...ρm
n1...nm

= 0

if n > n1. Therefore, these formal distributions are in fact fields. Because of Jρn Ω= 0
for every n ∈ Z,n≥ 0, we obtain

Jρ(z)Ω= ∑
n<0

Jρn Ωz−n−1 = ∑
m≥0

vm+1zm,

and thus Jρ(z)Ω|z=0 = vρ1 . Hence, to match the notation of the Existence Theo-
rem 10.24 we should set I = {vρ1 : 1≤ ρ ≤ r} and

Φa(z) := Jρ(z) if a = vρ1 .

Proposition 10.31. The fields Φa(z),a ∈ I, resp. Jρ(z),1≤ ρ ≤ r, generate a vertex
algebra structure on Vk(g). Vk(g) is the affine vertex algebra of rank k.

Proof. In order to check locality we calculate [Jρ(z),Jσ (w)]:

[Jρ(z),Jσ (w)] = ∑
m,n

[Jρm,Jσn ]z−m−1w−n−1

= ∑
m,n

[Jρ ,Jσ ]m+nz−m−1w−n−1 +∑
m

m(Jρ ,Jσ)kz−m−1wm−1

= ∑
l

[Jρ ,Jσ ]lw−l−1∑
m

z−m−1wm +(Jρ ,Jσ )k∑
m

mz−m−1wm−1

= [Jρ ,Jσ ](w)δ (z−w)+(Jρ ,Jσ )k∂δ (z−w).

This equality implies by Theorem 10.5 that the operator product expansion is

Jρ(z)Jσ (w)∼ [Jρ ,Jσ ](w)
z−w

+
(Jρ ,Jσ )k
(z−w)2 , (10.7)
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and that the fields Jρ(z),Jσ (z) are pairwise local with respect to each other. We thus
have established property 3 of the Existence Theorem 10.24, and by the construction
of the space Vk(g) and the definition of the action of the Jρn property 4 is satisfied
as well.

It remains to determine the infinitesimal translation operator T which will again
be defined recursively by

TΩ= 0, [T , Jρn ] =−nJρn−1.

T ∈End Vk(g) is well-defined and satisfies evidently [T,Jρ(z)] = ∂Jρ(z). Therefore,
the Existence Theorem applies yielding a vertex algebra structure given by

Y (vρ1...ρm
n1...nm

,z) = :Dn1−1Jρ1(z) . . .Dnm−1Jρm(z): .

�
In order to determine a conformal vector of the affine vertex algebra Vk(g) by

the Sugawara construction we denote the elements of the dual basis with respect to
{J1, . . .Jr} by Jρ ∈ g satisfying (Jσ ,Jρ) = δρσ . Then it can be shown that the vector

S :=
1
2

r

∑
ρ=1

Jρ,−1Jρ−1Ω ∈Vk(g)

is independent of the choice of the basis. We call

ν :=
1

k +h∨
S

the Sugawara vector.

Proposition 10.32. Assume k �= −h∨. Then the Sugawara vector ν is a conformal
vector of Vk(g) with central charge

c = c(k) =
k dimg

k +h∨
.

Proof. (sketch) Using the associativity of the OPE (see Theorem 10.36 in the next
section) one can deduce for Y (ν ,z) = L(z) = ∑Lnz−n−2 (Ln = Lνn ) the OPE

L(z)Jρ(w)∼ Jρ(w)
(z−w)2 +

∂Jρ(w)
z−w

,

and hence the following commutation relations

[Lm,Jρn ] =−nJρm+n,m,n ∈ Z,1≤ ρ ≤ r.

These relations imply L−1 = T and the diagonalizability of L0 immediately.
Moreover, Lnν = 0 for n > 2. Therefore, according to the above-mentioned criterion
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in Theorem 10.40 ν is a conformal vector of central charge c where c is determined
by L2ν = 1

2 cΩ. Finally,

L2ν =
1

2(k +h∨)
L2∑Jρ,−1Jρ−1Ω

=
1

2(k +h∨)∑Jρ,1Jρ−1Ω

=
k dimg

2(k +h∨)
Ω.

We conclude c = k dimg

k+h∨ . Details are in [Kac98*] and [BF01*]. �
Altogether, the coefficients Ln of the Virasoro field

Y (ν ,z) =
1

2(k +h∨)

r

∑
ρ=1

:Jρ(z)Jρ(z):

yield an action of the Virasoro algebra with central charge c(k) on the space Vk(g).

Many more vertex algebras are known and many of them are not constructed by
using a Lie algebra representation. It is not in the scope of this book to survey other
interesting classes of vertex algebras. Instead we refer to the course of Kac [Kac98*]
where the last third of the book is devoted to describe such vertex algebras as lattice
vertex algebras, coset constructions, W -algebras, various Z/2Z-graded (or super)
vertex algebras to include also the anticommutator in the considerations, and many
more examples.

Examples are presented in the book of Frenkel and Ben-Zvi [BF01*], too, where
the vertex algebras are related to algebraic curves. The first step in doing this is
to formulate a theory of vertex algebras being invariant against coordinate changes
z �→ w(z). This leads eventually to vertex algebra bundles and moduli spaces as well
as chiral algebras. In contrast to this local approach to algebraic curves in [Lin04*]
an attempt has been made to study “global” vertex algebras on Riemann surfaces
which turns out to be connected to Krichever–Novikov algebras.

Let us mention also the approach of Huang [Hua97*] who relates the alge-
braic approach to vertex algebras as presented here to the more geometrically
and topologically inspired description of conformal field theory of Segal [Seg88a],
[Seg91].

10.6 Associativity of the Operator Product Expansion

We begin with the uniqueness result of Goddard.

Theorem 10.33 (Uniqueness). Let V be a vertex algebra and let f ∈ End V [[z±]]
be a field which is local with respect to all fields Y (a,z), a ∈ V. Moreover, as-
sume that



200 10 Vertex Algebras

f (z)Ω= ezT b

for a suitable b ∈V . Then f (z) = Y (b,z).

Proof. By locality we have (z−w)N [ f (z),Y (a,w)] = 0, in particular,

(z−w)N f (z)Y (a,w)Ω= (z−w)NY (a,w) f (z)Ω.

We insert the assumption f (z)Ω= ezT b, and the equalities Y (a,w)Ω= ewT a and
Y (b,z)Ω= ezT b (according to Proposition 10.22), and we obtain

(z−w)N f (z)ewT a = (z−w)NY (a,w)ezT b = (z−w)NY (a,w)Y (b,z)Ω.

Since Y (a,z) and Y (b,z) are local to each other we have (for sufficiently large N)

(z−w)N f (z)ewT a = (z−w)NY (b,z)Y (a,w)Ω= (z−w)NY (b,z)ewT a.

Letting w = 0 we conclude zN f (z)a = zNY (b,z)a for all a∈V which implies f (z)a =
Y (b,z)a and hence f (z) = Y (b,z). �

The Uniqueness Theorem yields immediately the following result:

Proposition 10.34. The identity

Y (Ta,z) = ∂Y (a,z)

holds in a vertex algebra.

Proof. For f (z) = ∂Y (a,z) we have

f (z)Ω= ∑
n≥0

(n+1)a(−n−2)Ωzn

and therefore f (z)Ω|z=0 = a(−2)Ω = Ta. Using translation covariance we have
∂ ( f (z)Ω) = ∂TY (a,z)Ω = T ( f (z)Ω) and we conclude f (z)Ω = ezT Ta
by Lemma 10.23. By Theorem 10.33 it follows that f (z) = Y (Ta,z). �

In a similar way as the Uniqueness Theorem 10.33 one can prove the following:

Proposition 10.35 (Quasisymmetry). The equality

Y (a,z)b = ezTY (b,−z)a

holds in V ((z)).

Proof. Since Y (a,z),Y (b,z) are local to each other by the Locality Axiom there
exists N ∈ N with

(z−w)NY (a,z)Y (b,z)Ω= (z−w)NY (b,z)Y (a,z)Ω.
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By Y (a,z)Ω)ezT a (Proposition 10.22) and analogously for b this implies

(z−w)NY (a,z)ewT b = (z−w)NY (b,z)ezT a.

By Proposition 10.22 we also have ezTY (b,w)e−T z = Y (b,z + w), hence, ezTY
(b,w− z) = Y (b,z)ezT . Consequently,

(z−w)NY (a,z)ewT b = (z−w)NezTY (b,w− z)a,

where (w−z)−1 has to replaced by the expansion (w−z)−1 = ∑
n≥0

znw−n−1. Let N be

large enough such that on the right-hand side of the above formula there appear no
negative powers of (w− z). Then it becomes an equality in V ((z)) [[w]], and we can
put w = 0 again and divide by zN to obtain the desired identity of quasisymmetry.�

We now come to the associativity of the operator product expansion (OPE for
short). To motivate the result we apply Proposition 10.22 repeatedly to obtain

Y (a,z)Y (b,w)Ω= Y (a,z)ewT b = ewTY (a,z−w)b, and

ewTY (a,z−w)b = Y (Y (a,z−w)b,w)Ω,

where the last expression Y (Y (a,z−w)b,w)Ω is defined by

Y (Y (a,z−w)b,w) := ∑
n∈Z

Y (a(n)b,w)(z−w)−n−1.

One is tempted to apply the Uniqueness Theorem 10.33 to the equality

Y (a,z)Y (b,w)Ω= Y (Y (a,z−w)b,w)Ω

to deduce
Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w)

which is the desired “associativity” of the OPE. However, the theorem cannot be
applied directly: we first have to make precise where the equality should hold. Ob-
serve that for b ∈ V there exists n0 such that a(n)b = 0 for n ≥ n0. Consequently,
Y (Y (a,z−w)b,w) = ∑Y (a(n)b,w)(z−w)−n−1 is a series in End V [[w±]] ((z−w)).
Replacing

(z−w)−k �→ δ k
− = (∑

n≥0
z−n−1wn)k,k > 0,

we obtain an embedding

End V
[[

w±
]]

((z−w)) ↪→ End V
[[

w±,z±
]]

.

The following equalities have to be understood as identities in End V [[w±,z±]]
using this embedding.

Theorem 10.36 (Associativity of the OPE). For any vertex algebra V the follow-
ing associativity property is satisfied:
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Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w) = ∑
n∈Z

Y (a(n)b,w)(z−w)−n−1

for all a,b ∈V . More specifically,

Y (a,z)Y (b,w) = ∑
n≥0

Y (a(n)b,w)(z−w)−n−1 + :Y (a,z)Y (b,w): ,

and, equivalently,

[Y (a,z),Y (b,w)] = ∑
n≥0

Dn
wδ (z−w)Y (a(n)b,w).

Proof. We use the attempt described earlier and start with

Y (a,z)Y (b,w)Ω= ewTY (a,z−w)b = Y (Y (a,z−w)b,w)Ω,

where the last equality can be shown in a similar way as the corresponding equality
in the proof of Proposition 10.22. For arbitrary c ∈V we obtain the equality

Y (c, t)Y (a,z)Y (b,w)Ω= Y (c, t)Y (Y (a,z−w)b,w)Ω

in End [[z±,w±]]. For sufficiently large M,N ∈ Z we have by locality

(t− z)M(t−w)NY (a,z)Y (b,w)Y (c, t)Ω

= (t− z)M(t−w)NY (c, t)Y (a,z)Y (b,w)Ω

and

(t− z)M(t−w)NY (c, t)Y (Y (a,z−w)b,w)Ω

= (t− z)M(t−w)NY (Y (a,z−w)b,w)Y (c, t)Ω.

Consequently,

(t− z)M(t−w)NY (a,z)Y (b,w)Y (c, t)Ω

= (t− z)M(t−w)NY (Y (a,z−w)b,w)Y (c, t)Ω,

and by the Vacuum Axiom Y (c, t)Ω|t=0 = c we obtain

zMwNY (a,z)Y (b,w)c = zMwNY (Y (a,z−w)b,w)c,

which implies
Y (a,z)Y (b,w) = Y (Y (a,z−w)b,w).

The other two equalities follow by using the fundamental Theorem 10.5. �
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Corollary 10.37. Each of the expansion in Theorem 10.36 is equivalent to each of
the following commutation relations due to Borcherds

[a(m),b(n)] = ∑
k≥0

(
m
k

)
(a(k))(m+n−k)

or, equivalently,

[a(m),Y (b,z)] = ∑
k≥0

(
m
k

)
Y (a(k)b,z)zm−k.

We conclude that the subspace of all coefficients a(n) ∈ End V,a ∈V,n ∈ Z, is a
Lie algebra Lie V with respect to the commutator.

Another direct consequence of the associativity of the OPE is the following: Note
that a vertex subalgebra of a vertex algebra V is a vector subspace U ⊂V containing
Ω such that a(n)U ⊂U for all a ∈U and n ∈ Z. Of course, a vertex subalgebra is
itself a vertex algebra by restricting a(n) to U :

aU
(n) = a(n)|U : U →U

with vertex operators YU (a,z) = ∑aU
(n)z

−n−1.

Corollary 10.38. Let V be a vertex algebra.

1. a(0)b = 0⇐⇒ [a(0),Y (b,z)] = 0.
2. ∀k ≥ 0 : a(k)b = 0⇐⇒ [Y (a,z),Y (b,w)] = 0.
3. a(0) is a derivation V →V for each a∈V , and thus kera(0) is a vertex subalgebra

of V .
4. The centralizer of the field Y (a,z)–the subspace

C(a) = {b ∈V : [Y (a,z),Y (b,w)] = 0} ⊂V

–is a vertex subalgebra of V .
5. The fixed point set of an automorphism of V with respect to the vertex algebra

structure is vertex subalgebra.

Proof. The first two properties follow from the second equality in Corollary 10.37.
Property 3 follows from the first equality in the above Corollary 10.37 for m = 0. 4
is implied by 2, and 5 is obvious. �

Remark 10.39. Through Corollary 10.38 the associativity of the OPE provides the
possibility of obtaining new vertex algebras as subalgebras of a given vertex algebra
V which are related to some important constructions of vertex algebra in physics
and in mathematics.

1. The centralizer of a vector subspace U ⊂V

CV (U) = {b ∈V |∀a ∈U : [Y (a,z),Y (b,w)] = 0}
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is a vertex subalgebra of V by property 4 of Corollary 10.38 called the coset
model.

2. For any subset A⊂V the intersection
⋂
{kera(0) : a ∈ A}

is a vertex subalgebra by property 3 of Corollary 10.38 called a W -algebra.
3. For a subset I ⊂V the linear span of all the vectors

a1
(n1)a

2
(n2) . . .a

k
(nk
Ω,a j ∈ I,n j ∈ Z,k ∈ N,

is a vertex subalgebra of V generated by the fields Y (a,z),a ∈ I.
4. Given a group G of automorphisms of a vertex algebra, the fixed point set V G

is a vertex subalgebra of V by property 5 of Corollary 10.38 called an orbifold
model in case G is a finite group.

We finally come to the application of the associativity of the OPE to check the Vira-
soro field condition for the Heisenberg vertex algebra and the affine vertex algebras.

Theorem 10.40. For a vector ν ∈ V denote L(z) := Y (ν ,z) = ∑
n∈Z

Lnz−n−2, that is

Ln = Lνn = ν(n+1). Suppose, L(z) and c ∈ C satisfy

L−1 = T , L2ν =
c
2
Ω , Lnν = 0 for n > 2 , L0ν = 2ν .

Then L(z) is a Virasoro field with central charge c. If, in addition, L0 is diagonaliz-
able on V , then ν is a conformal vector with central charge c.

Proof. By the OPE (Theorem 10.36)

Y (ν ,z)Y (ν ,w)∼ ∑
n≥0

Y (ν(n)ν ,w)
(z−w)n+1 = ∑

n≥−1

Y (Lnν ,w)
(z−w)n+2 .

By the assumptions on Lnν we obtain

L(z)L(w)∼ 1
2

c
Y (Ω,w)
(z−w)4 +

Y (L1ν ,w)
(z−w)3 +

Y (2ν ,w)
(z−w)2 +

Y (Tν ,w)
(z−w)

.

It remains to show that the term Y (L1ν ,z) vanishes, because in that case by insert-
ing Y (Tν ,z) = ∂Y (ν ,w) (according to Corollary 10.34) and using Y (Ω,w) = idV ,
one obtains the desired expansion

L(z)L(w)∼ 1
2

c
1

(z−w)4 +
2L(w)

(z−w)2 +
∂L(w)
(z−w)

.

In order to show a(z) := Y (L1ν ,z) = 0 one interchanges z and w and obtains

L(w)L(z)∼ 1
2

c
1

(z−w)4 −
a(z)

(z−w)3 +
2L(z)

(z−w)2 −
∂L(z)
(z−w)

,
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hence, by Taylor expansion

L(w)L(z)∼ 1
2

c
1

(z−w)4 −
a(w)+Da(w)(z−w)+D2a(w)(z−w)2

(z−w)3

+2
L(w)+DL(w)(z−w)

(z−w)2 − ∂L(w)
(z−w)

.

By locality, the two expansions of L(z)L(w) and L(w)L(z) have to be equal and
this implies

a(w)
(z−w)3 = 0

and thus a(z) = 0. �
We are now in the position to apply the associativity of the OPE in order to show

that the vectors νλ resp. νk are conformal vectors in our examples of the Heisenberg
vertex algebra S resp. of the affine vertex algebra Vk(g).

We focus on the Heisenberg case since the corresponding equalities for the affine
vertex algebra have been established already on page 198. We already know that
L0 = deg and L1 = T . It remains to show that L(z) = ∑Lnz−n−2,Ln = Lνn , is a Vira-
soro field which means by Theorem 10.40 that only L2νλ = 1

2 cΩ and Lnνλ = 0 for
n≥ 3 have to be checked. By using the expansion (10.6) of Y (νλ ,z) we obtain

Ln =
1
2 ∑m∈Z

an−mam−λ (n+1)an.

Now, a2(νλ ) = 2λΩ and an−mam(νλ ) = 0 for m > 2 or m < n− 2 (because then
n−m > 2). In the case of n > 2 we have an(νλ ) = 0 and only for n = 3,n = 4
there exist m with n− 2 ≤ m ≤ 2. It follows that Lnνλ = 0 for n ≥ 5. Because of
a2a1νλ = 0 and a2a2νλ = 0 we also have L3νλ = 0 = L4νλ . For n = 2 we get
L2νλ = 1

2 a1a1(νλ ) + a2a0(νλ )− 6λ 2Ω = ( 1
2 − 6λ 2)Ω, and the central charge is

c = 1−12λ 2. �
Remark 10.41. The Fock space representations of the Virasoro algebra which we
have studied in the context of the quantization of the bosonic string on p. 116 are in
perfect analogy with the observation that the 1

2 T 2
1 +λT2 are conformal vectors. We

can show that

L−2Ω=
1
2

+2μT2

for

L−2 =
1
2

a2
−1 +∑

k>0

a−k−1ak−1,

where μ is the eigenvalue of a0 to Ω. This yields another way of construct-
ing a vertex algebra from the Heisenberg algebra using the calculations made
there.

Indeed, a2
−1Ω= T 2

1 and ∑
k>0

a−k−1ak−1Ω= a−2a0Ω= 2μT2, hence
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L−2Ω=
1
2

T 2
1 +2μT2.  !

Primary Fields. The conformal vector ν of a conformal vertex algebra V provides,
in particular, the diagonalizable endomorphism L0 : V → V . For each eigenvector
a ∈V of L0 with L0a = ha the OPE (cf. Theorem 10.36) yields

Y (ν ,z)Y (a,w)∼ ∑
n≥−1

Y (Lna,w)
(z−w)n+2 ,

and therefore begins with the following terms

Y (ν ,z)Y (a,w)∼ ∂Y (a,w)
(z−w)

+
hY (a,w)
(z−w)2 + . . . .

Here, we use L−1 = T and Y (Ta,w) = ∂Y (a,w) (according to Corollary 10.34)
and L0a = ha.

Definition 10.42 (Primary Field). A field Y (a,z) of a conformal vertex algebra V
with conformal vector ν is called primary of (conformal) weight h if there are no
other terms in the above OPE, that is

Y (ν ,z)Y (a,w)∼ ∂Y (a,w)
(z−w)

+
hY (a,w)
(z−w)2 .

Equivalently, Y (Lna,z) = 0 for all n > 0.

The following is in accordance with Definition 9.7.

Corollary 10.43. The field Y (a,z) is primary of weight h if and only if one of the
following equivalent conditions holds:

1. L0a = ha and Lna = 0 for all n > 0.

2. [Ln,Y (a,z)] = zn+1∂Y (a,z)+h(n+1)znY (a,z) for all n ∈ Z.

3. [Ln,a(m)] =
(
(h−1)n−m

)
a(m+n) for all n,m ∈ Z.

Proof. We have already stated the equivalence with 1. To show the second property
for a primary field Y (a,z) we compare

[Y (ν ,z)Ya,w)] = ∑
n∈Z

[Ln,Y (a,w)]z−n−2
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with

[Y (ν ,z)Ya,w)] = ∂Y (a,w)δ (z−w)+hY (a,w)∂δ (z−w) =

= ∑
m∈Z

(−m−1)a(m)w
−m−2 ∑

n∈Z

z−n−1wn

+h ∑
m∈Z

a(m)w
−m−1 ∑

n∈Z

nz−n−1wn−1

= ∑
m∈Z

∑
n∈Z

(−m−1+h(n+1))a(m)w
n−m−1z−n−2,

and obtain for all n ∈ Z

[Ln,Y (a,w)] = (−m−1+h(n+1))a(m)w
n−m−1

= wn+1 ∑
m∈Z

(−m−1)a(m)w
−m−2 +wnh(n+1) ∑

m∈Z

a(m)w
−m−1

= wn+1∂Y (a,w)+ znh(n+1)Y (a,z).

Hence, a primary field Y (a,z) satisfies 2, and the converse is true since the im-
plications above can be reversed.

To deduce 3 from 2 we use

[Ln,Y (a,z)] = ∑
m∈Z

[Ln,a(m)]z
−m−1

= zn+1 ∑
m∈Z

a(m)z
−m−2 + znh(n+1) ∑

m∈Z

a(m)z
−m−1

= ∑
m∈Z

(−m−n−1+h(n+1))a(m+n)z
−m−1

to obtain [Ln,a(m)] = ((h−1)(n−1)−m)a(m+n) by comparing coefficients. Hence,
2 implies 3 and vice versa. �

Correlation Functions. Let us end this short introduction to vertex algebra theory
by presenting the fundamental properties of correlation functions of a vertex algebra
which have not been discussed so far although they play an important role in the
axiomatic theory of quantum field theory and of conformal field theory as explained
in Sections 8 and 9.

Let V ∗ denote the dual of V that is the space of linear functions μ : V →C. Given
a1, . . . ,an ∈V and v ∈V we consider

〈μ ,Y (a1,z1) . . .Y (an,zn)v〉 := μ(Y (a1,z1) . . .Y (an,zn)v)

as a formal power series in C
[[

z±1 , . . . ,z±m
]]

. These series are called n-point func-
tions or correlation functions. Since v = Y (v,z)|z=0Ω it is enough to study the case
of v =Ω only.

Theorem 10.44. Let (V,Y,T,Ω) be a vertex algebra and let μ ∈ V ∗ be a linear
functional on V . For any a1, . . . ,an ∈V there exists a series
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f μa1...an
(z1, . . . ,zn) ∈ C [[z1 . . .zn]] [(zi− z j)−1, i �= j]

such that the following properties are satisfied:

1. For any permutation π of {1, . . . ,n} the correlation function

〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

is the expansion in C
((

zπ(1)
))

. . .
((

zπ(n)
))

of f μa1...an(z1, . . . ,zn).
2. For i < j we have

f μa1...an
(z1, . . .zn) = f(Y (ai,zi−z j)a j)a1...âi...â j ...an(z1 . . . ẑi . . .z j . . .zn),

where (zi − z j)−1 has to be replaced by its expansion ∑
k≥0

z−k−1
i zk

j into positive

powers of
z j
zi

.
3. For 1≤ j ≤ n we have

∂z j f μa1...an
(z1, . . .zn) = f μa1...Ta j ...an

(z1, . . .zn).

Proof. Since Y (a,z) is a field by the defining properties of a vertex algebra we have
〈μ ,Y (a,z)v〉 ∈ C((z)) for all a,v ∈V , and by induction

〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉 ∈ C
((

zπ(1)
))

. . .
((

zπ(n)
))

.

By the Locality Axiom V2 there exist integers Ni j > 0 such that

(zi− z j)Ni j [Y (ai,zi),Y (a j,z j)] = 0.

Hence, the series

∏
i< j

(zi− z j)Ni j〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

is independent of the permutation π . Moreover, it contains only non-negative powers
of all the variables zi,1≤ i≤ n, because of Y (a,z)Ω ∈V [[z]] (Vacuum Axiom V3).
Consequently,

∏
i< j

(zi− z j)Ni j〈μ ,Y (π(a1),zπ(1)) . . .Y (π(an),zπ(n))Ω〉

coincides with

∏
i< j

(zi− z j)Ni j〈μ ,Y (a1,z1) . . .Y (an,zn)Ω〉 ∈ C [[z1, . . . ,zn]]

as a series in C [[z1, . . . ,zn]]. Dividing this series by ∏i< j(zi− z j)Ni j yields the series
f μa1...an ∈ C [[z1 . . .zn]] [(zi− z j)−1, i �= j] with property 1.

The second property follows directly from 1 and the associativity of the OPE
(Theorem 10.36). For example, in the case of n = 2 it has the form
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f μa1a2
(z1,z2) = f(Y (a1,z1−z2)a2)(z2)

and this equality is the same as

〈μ ,Y (a1,z1)Y (a2,z2)Ω〉= 〈μ ,Y (Y (a1,z1− z2)a2,z2)Ω〉.

The third property is a consequence of the equality Y (Ta,z) = ∂Y (a,z) proven in
Corollary 10.34. �

10.7 Induced Representations

In the course of these notes we have used Fock spaces and representation spaces for
Lie algebras which all look very similar to each other and mostly have been given as
vector spaces of polynomials. The unifying principle behind this observation is that
all these representation spaces can be understood as certain induced representations
which are mostly induced by a one-dimensional representation of a Lie subalgebra
of the Lie algebra in question. This has to do with the fact that our representation
spaces are cyclic in the sense that they can be generated by a suitable vector.

In order to describe induced representations we use the concept of a universal
enveloping algebra. For any associative algebra A let L(A) denote the Lie algebra
with A as the underlying vector space and with the commutator as the Lie bracket.

Definition 10.45. A universal enveloping algebra of a Lie algebra g is a pair (U, i)
of an associative algebra U with unit 1 and a Lie algebra homomorphism i : g →
L(U), such that the following universal property is fulfilled. For any associative
algebra A with unit 1 and any Lie algebra homomorphism j : g→ L(A) there exists
a unique algebra homomorphism h : U → A with h(1) = 1 such that h◦ i = j.

Observe that a representation of the Lie algebra g, that is a Lie algebra homo-
morphism g → L(End W ) (where End W is considered as an associative algebra)
has a natural extension to U(g) as a homomorphism of associative algebras by the
universal property. Conversely, a homomorphism U(g)→ End W of associative al-
gebras can be restricted to g in order to obtain a Lie algebra homomorphism, that
is a representation. We have shown:

Lemma 10.46. The representations g→ End W are in one-to-one correspondence
with the representations U(g)→ End W.

Lemma 10.47. To each Lie algebra there corresponds a universal enveloping alge-
bra unique up to isomorphism.

Proof. The uniqueness of such a pair (U, i) is easy to show. In order to establish the
existence let

T (W ) =
∞⊕

n=0

W⊗n
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be the tensor algebra of a vector space W , where W⊗n is n-fold tensor product of
W with itself. The tensor algebra has the universal property that every linear map
W → A into an associative algebra A with unit has a unique extension T (W ) → A
as an algebra homomorphism sending 1 to 1. Let J ⊂ T (g) be the two-sided ideal
generated by the elements of the form a⊗ b− b⊗ a− [a,b], a,b ∈ g. Let U(g) :=
T (g)/J be the quotient algebra with projection p : T (g)→U(g). The map i is then
defined by the restriction of p to g with respect to its natural embedding g⊂U(g).

To show that (U(g), i) fulfills the universal property, let A be an associative al-
gebra with unit 1 and let j : g → L(A) be a Lie algebra homomorphism. Then,
by the universal property of the tensor algebra T (g), there exists a unique al-
gebra homomorphism H : T (g) → A extending the linear map j and satisfying
H(1) = 1. Each generating element a⊗ b− b⊗ a− [a,b] of J is annihilated by H
since H(a⊗b−b⊗a) = H(a)H(b)−H(b)H(a) = j(a) j(b)− j(b) j(a) = j([a,b]) =
H([a,b]). Hence, the ideal J is contained in the kernel of H. Consequently, H has a
factorization h through p, that is there is an algebra homomorphism h : U(g)→ A
respecting the units with H = h◦ p and thus j = H|g = h◦ p|g = h◦ i. �

Neither the definition nor the above proof yields the injectivity of i. However,
using the construction of U(g) this follows from the Poincaré–Birkhoff–Witt theo-
rem which can be found in many books, e.g., [HN91]. We state one essential conse-
quence of this theorem which is of special interest regarding the various descriptions
of representation spaces.

Proposition 10.48 (Poincaré–Birkhoff–Witt). Let (ai)i∈I be an ordered basis of
the Lie algebra g. Then the elements p(ai1 ⊗ . . .⊗aim),m∈N, i1 ≤ . . .≤ im, together
with 1 form a basis of U(g).

As a consequence we obtain an isomorphism of vector spaces from the symmet-
ric algebra

S(g) :=
∞⊕

n=0

g�n −→U(g)

to U(g), where W�n is the n-fold symmetric product of a vector space, that is the
subspace of symmetric tensors in W⊗n. S(W ) can also be understood as the quotient
T (W )/S with respect to the two-sided ideal S ⊂ T (W ) generated by all elements of
the form v⊗w−w⊗v, v,w ∈W . So far S(g) is the enveloping algebra of an abelian
Lie algebra g.

Note that the symmetric algebra S(W ) can be identified with the algebra of poly-
nomials C[Ti : i ∈ I] whenever (ai)i∈I is an ordered basis of the vector space W .

Consequently, as a vector space the universal enveloping algebra U(g) of g is
isomorphic to the vector space C[Ti : i ∈ I] of polynomials:

1 �→ 1, Ti1 . . .Tim �→ p(ai1 ⊗ . . .⊗aim), m ∈ N, i1 ≤ . . .≤ im,

provides an isomorphism.
Now, let b be a Lie subalgebra of the Lie algebra g and let π : b→ End W a Lie

algebra homomorphism, that is a representation of b in the vector space W .
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Definition 10.49. The induced representation (induced by π) is given by the in-
duced g-module

Indg

b
= U(g)⊗U(b) W,

that is

Indg

b
= (U(g)⊗W )/U(g){b⊗w−1⊗π(b)w : (b,w) ∈ b×W},

where g acts by left multiplication in the first factor.

It is straightforward to check that this prescription defines a representation. In
fact, the action of a ∈ U(g) on U(g)⊗W, x⊗w �→ ax⊗w, descends to a linear
action ρ(a) ∈ End (Indg

b
) since Jπ := U(g){b⊗w−1⊗π(b)w : (b,w) ∈ b×W} is

a left ideal, in particular a(Jπ) ⊂ Jπ . In addition, ρ(a)([x⊗w]) = [ax⊗w] defines
a homomorphism a �→ ρ(a) of associative algebras, again since Jπ a left ideal in
U(g)⊗W . The restriction of ρ to g is therefore a Lie algebra homomorphism.

An elementary example is the Fock space representation of the Heisenberg alge-
bra described on p. 114. The Heisenberg algebra H is generated by an,n∈Z, and the
central element Z. The inducing representation π is defined on the abelian Lie sub-
algebra B⊂H generated by the an,n≥ 0 and Z, with W = C, and this representation
π : P→ End C∼= C is determined by

ρ(Z) = idC = 1,ρ(a0) = μ idC = μ , ρ(an) = 0 for n > 0.

Let Ω := 1⊗ 1. Then an ∈ Jpi for n > 0, since anΩ = an⊗ 1 = 1⊗π(an)1 = 0,
a0Ω= a0⊗1 = 1⊗μ = μΩ, and Z(Ω) = 1⊗π(Z) =Ω. Hence, an ∈ Jπ ,n > 0, and
a0,Z depend on Ω modulo Jπ .

Consequently, Indg

b
(C) is generated by the classes

[ai1 ⊗ . . .⊗aimΩ],m ∈ N, i1 ≤ . . .≤ im < 0,

and Ω according to Proposition 10.48. These elements remain linearly independent,
since the a−n,a−m commute with each other for m,n≥ 0, so that Indg

b
(C) is isomor-

phic to the vector space C[Tn : n > 1] with the action ρ(a−n)Ω= Tn for n > 0, and,
more generally,

ρ(a−n)P = TnP,

for any polynomial P ∈ C[Tn : n > 1]. Similarly, because of the other commutation
relations, for n > 0 we obtain ρ(an)Tm = 0 if n �= m and ρ(an)Tn = nΩ, and, more
generally, ρ(an)P = n∂Tn P. This, of course, is exactly the representation on p. 114.

The example is typical, in the cases considered in these notes, we have W = C

and an ordered basis (ai)i∈I with a division I = I+∪ I− such that ai, i ∈ I+ is a basis
of Jπ and Indg

b
(C) is isomorphic to the space of polynomials C[Tn : n ∈ I−]. The

action of the ai, i ∈ I, is then essentially determined by aiΩ = Ti if i ∈ I− and the
commutation relations of all the ai.

In this way we obtain similarly the description of a Verma module with respect to
given numbers c,h ∈C on p. 94, the representation of the string algebra on p. 119,
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the representation Vc of the Virasoro algebra Vir used for the Virasoro vertex al-
gebras on p. 193, the representation of the Kac–Moody algebras on p. 196, and in
a certain sense even the free boson representation on p. 136 where, however, the
Hilbert space structure has to be respected as well. Analogously, the fermionic Fock
space on p. 52 can be described as an induced representation. To do this, we have
to extend the consideration to the case of Lie superalgebras in order to include the
anticommutation relations.
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