
Chapter 9
Foundations of Two-Dimensional Conformal
Quantum Field Theory

In this chapter we study two-dimensional conformally invariant quantum field the-
ory (conformal field theory for short) by some basic concepts and postulates – that
is using a system of axioms as presented in [FFK89] and based on the work of Os-
terwalder and Schrader [OS73], [OS75]. We will assume the Euclidean signature
(+,+) on R

2 (or on surfaces), as it is customary because of the close connection
of conformal field theory to statistical mechanics (cf. [BPZ84] and [Gin89]) and its
relation to complex analysis.

We do not use the results of Chap. 8 where the axioms of quantum field theory
are investigated in detail and for arbitrary spacetime dimensions nor do we assume
the notations to be known in order to keep this chapter self-contained. However, the
preceding chapter may serve as a motivation for several concepts and constructions.
In particular, the presentation of the axioms explains why locality for the correlation
functions in Axiom 1 below is expressed as the independence of the order of the in-
dices, and why the covariance in Axiom 2 does not refer to the unitary representation
of the Poincaré group. Moreover, in the light of the results of the preceding chapter
the reconstruction used below on p. 158 is a general principle in quantum field the-
ory relating the formulation based on field operators with an equivalent formulation
based on correlation functions.

9.1 Axioms for Two-Dimensional Euclidean
Quantum Field Theory

The basic objects of a two-dimensional quantum field theory (cf. [BPZ84], [IZ80],
[Gaw89], [Gin89], [FFK89], [Kak91], [DMS96*]) are the fields Φi, i ∈ B0, subject
to a number of properties. These fields are also called field operators or operators.
They are defined as maps on open subsets M of the complex plane C ∼= R

2,0 (or
on Riemann surfaces M). They take their values in the set O = O(H) of (possibly
unbounded and mostly self-adjoint) operators on a fixed Hilbert space H. To be
precise, these field operators are usually defined only on spaces of test functions on
M, e.g. on the Schwartz space S (M) of rapidly decreasing functions or on other
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suitable spaces of test functions. Hence, they can be regarded as operator-valued
distributions (cf. Definition 8.8).

The matrix coefficients 〈v|Φi(z)|w〉 of the field operators are supposed to be well-
defined for v,w ∈ D in a dense subspace D ⊂ H. Here, 〈v,w〉, v,w ∈ H, denotes the
inner product of H and 〈v|Φi(z)|w〉 is the same as 〈v,Φi(z)w〉.

The essential parameters of the theory, which connect the theory with experimen-
tal data, are the correlation functions

Gi1...in(z1, . . . ,zn) := 〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉.

These functions are also called n-point functions or Green’s functions. Here,
Ω ∈ H is the vacuum vector. These correlation functions have to be interpreted as
vacuum expectation values of time-ordered products Φi1(z1) . . .Φin(zn) of the field
operators (time ordered means Re zn > .. . > Re z1, or |zn|> .. . > |z1| for the radial
quantization). They usually can be analytically continued to

Mn := {(z1, . . . ,zn) ∈ C
n : zi �= z j for i �= j},

the space of configurations of n points. (To be precise, they have a continuation to
the universal covering M̃n of Mn and thus they are no longer single valued on Mn, in
general. In this manner, the pure braid group Pn appears, which is the fundamental
group π1(Mn) of Mn.) For simplification we will assume in the formulation of the
axioms that the Gi1...in are defined on Mn.

The positivity of the hermitian form, that is the inner product of H, can be ex-
pressed by the so-called reflection positivity of the correlation functions. This prop-
erty is defined by fixing a reflection axis – which typically is the imaginary axis in
the simplest case – and requiring the correlation of operator products of fields on
one side of the axis with their reflection on the other side to be non-negative (cf.
Axiom 3 below).

Now, the two-dimensional quantum field theory can be described completely by
the properties of the correlation functions using a system of axioms (Axiom 1–6 in
these notes, see below). The field operators and the Hilbert space do not have to be
specified a priori, they are determined by the correlation functions (cf. Lemma 9.2
and Theorem 9.3).

To state the axioms we need a few notations:

M+
n := {(z1, . . . ,zn) ∈Mn : Re z j > 0 for j = 1, . . . ,n},

S +
0 := C,

S +
n := { f ∈S (Cn) : Supp( f )⊂M+

n }.

Here, S (Cn) is the Schwartz space of rapidly decreasing smooth functions, that
is the complex vector space of all functions f ∈C∞(Cn) for which

sup
|α|≤p

sup
x∈R2n

|∂α f (x)|(1+ |x|2)k < ∞,
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for all p,k ∈ N. We have identified the spaces C
n and R

2n and have used the real
coordinates x = (x1, . . . ,x2n) as variables. ∂α is the partial derivative for the multi-
index α ∈N

2n with respect to x. Supp( f ) denotes the support of f , that is the closure
of the set {x ∈ R

2n : f (x) �= 0}.
It makes sense to write z ∈C as z = t + iy with t,y ∈R, and to interpret z = t− iy

as a quantity not depending on z. In this sense one sometimes writes G(z,z) instead
of G(z), to emphasize that G(z) is not necessarily holomorphic. In the notation z =
t + iy, y is the “space coordinate” and t is the (imaginary) “time coordinate”.

The group E = E2 of Euclidean motions, that is the Euclidean group (which
corresponds to the Poincaré group in this context), is generated by the rotations

rα : C→ C, z �→ eiαz, α ∈ R,

and the translations

ta : C→ C, z �→ z+a, a ∈ C.

Further Möbius transformations are the dilatations

dτ : C→ C, z �→ eτz, τ ∈ R,

and the inversion

i : C→ C, z �→ z−1, z ∈ C\{0}.

These conformal transformations generate the Möbius group Mb (cf. Sect. 2.3). All
other global conformal transformations (cf. Definition 2.10) of the Euclidean plane
(with possibly one singularity) are generated by Mb and the time reflection

θ : C→ C, z = t + iy �→ −t + iy =−z.

(cf. Theorems 1.11 and 2.11 and the discussion after Definition 2.12)

Osterwalder–Schrader Axioms ([OS73], [OS75], [FFK89])
Let B0 be a countable index set. For multi-indices (i1, . . . , in) ∈ Bn

0 we also use the
notation i = i1 . . . in = (i1, . . . , in). Let B =

⋃
n∈N0

Bn
0. The quantum field theory is

described by a family (Gi)i∈B of continuous and polynomially bounded correlation
functions

Gi1...in : Mn → C, G /0 = 1,

subject to the following axioms:

Axiom 1 (Locality) For all (i1, . . . , in) ∈ Bn
0,(z1, . . . ,zn) ∈ Mn, and every permuta-

tion π : {1, . . . ,n}→ {1, . . . ,n} one has

Gi1,...,in(z1, . . . ,zn) = Giπ(1)...iπ(n) (zπ(1), . . . ,zπ(n)).

Axiom 2 (Covariance) For every i ∈ B0 there are conformal weights hi,hi ∈ R (hi

is not the complex conjugate of hi, but completely independent of hi), such that for
all w ∈ E and n≥ 1 one has
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Gi1...in(z1,z1, . . . ,zn,zn)

=
n

∏
j=1

(
dw
dz

(z j)
)h j
(

dw
dz

(z j)
)h j

Gi1...in(w1,w1, . . . ,wn,wn), (9.1)

with w j := w(z j), w j := w(z j), h j := hi j .

Here, si := hi−hi is called the conformal spin for the index i and di := hi +hi is
called the scaling dimension.
Furthermore, we assume

hi−hi,hi +hi ∈ Z, i ∈ B0.

As a consequence, there do not occur any ambiguities concerning the exponents.
In particular, this is satisfied whenever

hi,hi ∈
1
2

Z.

See Hawley/Schiffer [HS66] for a discussion of this condition.
The covariance of the correlation functions formulated in Axiom 2 corresponds

to the transformation behavior of tensors or generalized differential forms under
change of coordinates when extended to more general conformal transformations
(see also p. 164).

The covariance conditions severely restricts the form of 2-point functions and
3-point functions. Because of the covariance with respect to translations, all corre-
lation functions Gi1...in for n≥ 2 depend only on the differences zi j := zi− z j, i �= j,
i, j ∈ {1, . . . ,n}. Typical 2-point functions Gi1i1 = G, which satisfy Axiom 2, are

G = const. with h = h = 0,

G(z1,z1,z2,z2) = Cz −2
12 z −2

12 with h = h = 1,

G(z1,z2) = Cz −4
12 with h = 2,h = 0.

A general example is

G(z1,z2) = Cz −2h
12 z −2h

12 with h,h ∈ 1
2

Z.

Hence, for the case h = h,

G(z1,z1,z2,z2) = C|z12|−4h = C|z12|−2d .

Typical 2-point functions G = Gi1i2 with i1 �= i2, for which Axiom 2 is valid, are

G(z1,z1,z2,z2) = Cz −h1
12 z −h2

12 z −h1
12 z −h2

12 .

All these examples are also Möbius covariant.
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For the function F = Gi1i1 with

F(z1,z1,z2,z2) =− log |z12|2

Axioms 1 and 2 hold as well (with arbitrary h,h, h = h). However, this function
is not Möbius covariant because one has e.g., for w(z) = eτz, τ �= 0, and in the case
h = h �= 0,

2

∏
j=1

(
dw
dz

(z j)
)h(dw

dz
(z j)
)h

F(w1,w2)

= (eτ)2h+2h(− loge2τ |z12|2) �=− log |z12|2.

In particular, F is not scaling covariant in the sense of Axiom 4 (see below). A
typical 3-point function is

G(z1,z1,z2,z2,z3,z3)

= z −h1−h2+h3
12 z −h2−h3+h1

23 z −h3−h1+h2
13

z−h1−h2+h3
12 z−h2−h3+h1

23 z−h3−h1+h2
13 , (9.2)

as can be checked easily. It is not difficult to see that this 3-point function is also
Möbius covariant, hence conformally covariant.

We describe a rather simple example involving all correlation functions.

Example 9.1. Let B0 = {1} and n := (1, . . .1) ∈ Bn
0 = {n}. The functions Gn are

supposed to be zero if n is odd and

G2n(z1, . . . ,z2n) =
kn

2nn! ∑σ∈S2n

n

∏
j=1

1
(zσ( j)− zσ(n+ j))2 ,

where SN is the group of permutations of N elements and where k ∈C is a constant.
The weights are h1 = 1, h1 = 0.

If the exponent “2” in the denominator is replaced with 2m we get another exam-
ple with conformal weight h = m instead of 1 and h = 0.

The dependence in z and z can be treated independently, as in the example. The
example can be extended by defining F2n(z,z) = G2n(z)G2n(z), and the resulting
theory has the weights h1 = 1 = h1.

Note that the correlation functions in Example 9.1 are covariant with respect
to general Möbius transformations, even if the z-dependence is included. Möbius
covariance (and hence conformal covariance) holds as well if the exponent 2 is
replaced by 2m.

In the following, we mostly treat only the dependence in z in order to simplify
the formulas. The general case can easily be derived from the formulas respecting
only the dependence on z (see p. 88 for an explanation).
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Next, we formulate reflection positivity (cf. Sect. 8.6). Let S + be the space of
all sequences f = ( fi)i∈B with fi ∈ S +

n for i ∈ Bn
0 and fi �= 0 for at most finitely

many i ∈ B.

Axiom 3 (Reflection Positivity) There is a map ∗ : B0 → B0 with ∗2 = idB0 and a
continuation ∗ : B→ B, i �→ i∗, so that

1. Gi(z) = Gi∗(θ(z)) = Gi∗(−z∗) for i ∈ B, where z∗ is the complex conjugate of z.
2. 〈 f , f 〉 ≥ 0 for all f ∈S +.

Here, 〈 f , f 〉 is defined by

∑
i, j∈B

∑
n,m

∫

Mn+m

Gi∗ j(θ(z1), . . . ,θ(zn),w1, . . . ,wm) fi(z)∗ f j(w)dnzdmw.

In the Example 9.1 for ∗1 = 1 the two conditions of Axiom 3 are satisfied.

Lemma 9.2 (Reconstruction of the Hilbert Space). Axiom 3 yields a positive
semi-definite hermitian form H on S + and hence the Hilbert space H as the com-
pletion of S +/kerH with the inner product 〈 , 〉.

We now obtain the field operators by using a multiplication in S + in the same
way as in the proof of the Wightman Reconstruction Theorem 8.18. Indeed, Φ j

for j ∈ B0 shall be defined on the space S + = S +
1 of distributions with values

in a space of operators on H. Given f ∈ S +
1 and g ∈ S +, g = (gi)i∈B, we define

Φ j( f )([g]) to be the equivalence class (with respect to kerH) of g× f (the expected
value of Φ j at f ), with

g× f = ((g× f )i1...in+1)i1...in+1∈B,

where

(g× f )i1...in+1(z1, . . . ,zn+1) := gi1...in(z1, . . . ,zn) f (zn+1)δ jin+1 .

It can be shown (cf. [OS73], [OS75]) that this construction yields a unitary repre-
sentation U of the group E of Euclidean motions of the plane in H. Moreover, there
exists a dense subspace D⊂H left invariant by the unitary representation such that
the maps Φ j( f ) : [g] �→ [g× f ] are defined on D for all j ∈ B0 and Φ j( f )(D) ⊂ D.
In addition, with the vacuum Ω ∈ H (namely Ω = [ f ], with f /0 = 1 and fi = 0 for
i �= /0) the following properties are satisfied:

Theorem 9.3. (Reconstruction of the Field Operators)

1. For all j ∈ B0 the mapping Φ j : S + → End(D) is linear, and Φ j is a field oper-
ator. Moreover, Φ j(D) ⊂ D, Ω ∈ D, and the unitary representation U leaves Ω
invariant.

2. The fields Φ j transform covariantly with respect to the representation U:

U(w)Φ j(z)U(w)∗ =
(
∂w
∂ z

)hi

Φ j(w(z)).
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3. The matrix coefficients 〈Ω|Φi( f )|Ω〉 can be represented by analytic functions
and for Re zn > .. . > Re z1 > 0 the correlation functions agree with the given
functions

〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉= Gi1...in(z1, . . . ,zn).

Furthermore, if the dependence on z and z is taken into account the corresponding
correlation functions Gi1...in(z1,z1, . . . ,zn,zn) are holomorphic in M>

n ×M>
n , where

M>
n := {z ∈M+

n : Re zn > .. . > Re z1 > 0}.

They can be analytically continued into a larger domain N ⊂C
n×C

n. A general
description of the largest domain (the domain of holomorphy for the Gi1...in) is not
known.

Similar results are true for other regions in C instead of the right half plane

{w ∈ C : Re w > 0},

e.g., for the disc (radial quantization). In this case the points z∈C are parameterized
as z = eτ+iα with the time variable τ and the space variable α , which is cyclic. The
time order becomes |zn|> .. . > |z1|.

The Axioms 1–3 describe essentially a general two-dimensional Euclidian field
theory as in Sect. 8.6 where no conformal invariance is required.

9.2 Conformal Fields and the Energy–Momentum Tensor

A two-dimensional quantum field theory with field operators

(Φi)i∈B0 ,

satisfying Axioms 1–3, is a conformal field theory if the following conditions hold:

• the theory is covariant with respect to dilatations (Axiom 4),
• it has a divergence-free energy–momentum tensor (Axiom 5), and
• it has an associative operator product expansion for the primary fields (Axiom 6).

Axiom 4 (Scaling Covariance) The correlation functions

Gi, i ∈ B,

satisfy (34) also for the dilatations w(z) = eτz, τ ∈ R. Hence

Gi(z1, . . . ,zn) = (eτ)h1+...+hn+h1+...+hn Gi(eτz1, . . . ,e
τzn)

for (z1, . . . ,zn) ∈M, i = (i1, . . . , in) and h j = hi j .

The correlation functions in the Example 9.1 are scaling covariant.
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Lemma 9.4. In a quantum field theory satisfying Axioms 1–4, any 2-point function
Gi j has the form

Gi j(z1,z2) = Ci jz
−(hi+h j)
12 z

−(hi+h j)
12 (z12 = z1− z2)

with a suitable constant Ci j ∈ C. Hence, for i = j,

Gii(z1,z2) = Ciiz
−2h

12 z −2h
12 .

Similarly, any 3-point function Gi jk is a constant multiple of the function G in (9.1):

Gi jk = Ci jkG, with Ci jk ∈ C.

In particular, the 2- and 3-point functions are completely determined by the con-
stants Ci j,Ci jk.

Proof. As a consequence of the covariance with respect to translations, G := Gi j

depends only on z12 = z1−z2, that is G(z1,z2) = Gi j(z1−z2,0). For z = reiα = eτeiα

one has G(z,0) = G(eτ+iα1,0). From Axioms 2 and 4 it follows

G(1,0) = (eτ+iα)hi(eτ−iα)hi(eτ+iα)h j(eτ−iα)h j G(eτ+iα1,0).

This implies G(z,0) = z−(hi+h j)z−(hi+h j)G(1,0), C := G(1,0).
A similar consideration leads to the assertion on 3-point functions. �
The 4-point functions are less restricted, but they have a specific form for all the-

ories satisfying Axioms 1–3 where the correlation functions are Möbius covariant.
To show this, one can use the following differential equations:

Proposition 9.5 (Conformal Ward Identities). Under the assumption that the cor-
relation function G = Gi1...in(z1, . . . ,zn) satisfies the covariance condition (9.1) for
all Möbius transformations the following Ward identities hold:

0 =
n

∑
j=1

∂z j G(z1, . . . ,zn),

0 =
n

∑
j=1

(z j∂z j +h j)G(z1, . . . ,zn),

0 =
n

∑
j=1

(z2
j∂z j +2h jz j)G(z1, . . . ,zn)

Proof. These identities are shown in the same way as Lemma 9.4. We focus on the
third identity. The Möbius covariance applied to the conformal transformation

w = w(z) =
z

1−ζ z
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with a complex parameter ζ yields

G(z1, . . . ,zn) =
n

∏
i=1

(
1

1−ζ zi

)2hi

G(w1, . . . ,wn)

because of
∂w
∂ z

=
1

(1−ζ z)2 ,

where w j = w(z j). The derivative of this equality with respect to ζ is

0 =
n

∏
i=1

(
1

1−ζ zi

)2hi n

∑
j=1

2h j
1

1−ζ z j
z jG(w1, . . . ,wn)

+
n

∏
i=1

(
1

1−ζ zi

)2hi n

∑
j=1

z2
j

(1−ζ z j)2 ∂z j G(w1, . . . ,wn),

from which the identity follows by setting ζ = 0. �

It can be seen that the solutions of these differential equations in the case of n = 4
are of the following form:

G(z1,z2,z3,z4) = F(r(z),r(z))∏
i< j

z
−(hi+h j)+ 1

3 h
i j ∏

i< j
z
−(hi+h j)+ 1

3 h
i j ,

where h = h1 + h2 + h3 + h4 and correspondingly for h, and where F is a holomor-
phic function in the cross-ratio

r(z) := (z12z34)/(z13z24)

of the z12,z34,z13,z24 and in r(z).
Analogous statements hold for the n-point functions, n ≥ 5. As an essential fea-

ture of conformal field theory we observe that the form of the n-point functions can
be determined by using the global conformal symmetry. They turn out to be Laurent
monomials in the zi j,zi j up to a factor similar to F .

Axiom 5 (Existence of the Energy–Momentum Tensor)
Among the fields (Φi)i∈B0 there are four fields Tμν , μ ,ν ∈ {0,1}, with the following
properties:

• Tμν = Tνμ , Tμν(z)∗ = Tνμ(θ(z)),
• ∂0Tμ0 +∂1Tμ1 = 0 with ∂0 := ∂

∂ t , ∂1 := ∂
∂y ,

• d(Tμν) = hμν +hμν = 2, s(T00−T11±2iT01) =±2.
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Theorem 9.6 (Lüscher–Mack). [LM76] The Axioms 1–5 imply

• tr(Tμν) = T μ
μ = T00 +T11 = 0.

Therefore, T := T00 − iT01 = 1
2 (T00 − T11 − 2iT01) is independent of z, that is

∂T = 0. Hence, T is holomorphic . In the same way T := T00 + iT01 is independent
of z, and therefore antiholomorphic. For the corresponding conformal weights we
have h(T ) = h(T ) = 2 and h(T ) = h(T ) = 0.

• By

L−n :=
1

2πi

∮

|ζ |=1

T (ζ )
ζ n+1 dζ , L−n :=

1
2πi

∮

|ζ |=1

T (ζ )
ζ n+1 dζ (9.3)

the operators Ln,Ln on D ⊂ H are defined, which satisfy the commutation rela-
tions of two commuting Virasoro algebras with the same central charge c ∈ C:

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2−1)δn+m,

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2−1)δn+m,

[Ln,Lm] = 0.

• The representations of the Virasoro algebra defined by Ln and Ln, respectively,
are unitary: Ln

∗ = L−n and Ln
∗ = L−n.

Incidentally, the proof given in [LM76] is based on the Minkowski signature.
The Ln, Ln can be interpreted as Fourier coefficients of T , T , since

T (z) = ∑
n∈Z

Lnz−(n+2), T (z) = ∑
n∈Z

Lnz−(n+2). (9.4)

This is how conformal symmetry in the sense of the representation theory of the
Virasoro algebra (cf. Sect. 6) appears in the axiomatic presentation of conformal
field theory. The operators Ln, Ln define a unitary representation of Vir×Vir. In
general, this representation decomposes into unitary highest-weight representations
as follows: ⊕

W (c,h)⊗W (c,h),

where one has to sum over a suitable collection of central charges c and conformal
weights h,h. The theory is called minimal, if this sum is finite.

An important tool in conformal field theory is the operator product expansion
of two operators A and B of the form A = Φ(z1) and B = Ψ(z2), where Φ,Ψ are
field operators. Before we treat operator product expansions in the next section (and
also in the next chapter on vertex algebras) let us briefly note that in the case of
Φ=Ψ= T the product T (z1)T (z2) has the operator product expansion

T (z1)T (z2)∼
c
2

1
(z1− z2)4 +

2T (z2)
(z1− z2)2 +

dT
dz2

(z2)
1

(z1− z2)
. (9.5)

The symbol “∼” signifies asymptotic expansion, that is “=” modulo a regular
function R(z1,z2).
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The validity of (9.5) turns out to be equivalent to the commutation relations of
the Ln, Ln (see also Theorem 9.6 and the formula (10.2) in Sect. 10.2).

9.3 Primary Fields, Operator Product Expansion, and Fusion

The primary fields are distinguished by the property that their correlation functions
have the covariance property as in Axiom 2 for arbitrary local (that is defined on
open subsets of C) holomorphic transformations w = w(z) as well. This covariance
expresses the full conformal symmetry. However, the covariance property (9.1) for
general w only holds “infinitesimally”. This infinitesimal version of (9.1) leads to
the following concept of a primary field.

Definition 9.7 (Primary Field). A conformal field Φi, i ∈ B0, is called a primary
field if

[Ln,Φi(z)] = zn+1∂Φi(z)+hi(n+1)znΦi(z) (9.6)

for all n ∈ Z, where ∂ = ∂
∂ z (and correspondingly for the z-dependence, which we

shall not consider in the following).

The primary field property can be characterized in the following way: the primary
fields are precisely those field operators Φi, i ∈ B0, which have the following op-
erator product expansion (OPE) with the energy–momentum tensor T (cf. Corol-
lary 10.43):

T (z1)Φi(z2)∼
hi

(z1− z2)2Φi(z2)+
1

z1− z2

∂
∂ z2

Φi(z2). (9.7)

(Note that this condition and other formulas used in physics as well as several cal-
culations and formal manipulations become clearer within the formalism of vertex
algebras which we introduce in the next chapter.)

The invariance required by (9.6) can also be interpreted as a formal infinitesimal
version of (9.1) in Axiom 2 for the transformation w = w(z) = z + zn+1. Assume
that there would exist a Virasoro group, that is Lie group for Vir with a reasonable
exponential map (which is not the case, cf. Sect. 5.4), and assume that we would
have a corresponding unitary representation of this symmetry group (or of a central
extension of Diff+(S) according to Chap. 3) denoted by U . This would imply the
formal identity

U(etLn)Φi(z)U(e−tLn) =
(

dwt

dz

)hi

Φi(wt(z)) (9.8)

for wt(z) = z + tzn+1 (here we take Ln = −(zn+1) d
dz , cf. Sect. 5.2). Since U is uni-

tary, the globalized formal analogue of (9.8) for holomorphic transformations leads
to (9.1) for wt :

Gi(z) =
(

dwt

dz

)hi

Gi(wt(z)).
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Applying d
dt

∣
∣
t=0 to the equation (9.8) we obtain

[Ln,Φi(z)]

on the left-hand side and

d
dt

(1+ t(n+1)zn)hiΦi(z)
∣
∣
∣
∣t=0 +

d
dt
Φi(wt(z))

∣
∣
∣
∣
t=0

= hi(n+1)znΦi(z)+ zn+1 ∂
∂ z
Φi(z)

on the right-hand side. This discussion motivates the notion of a primary field, and
in particular (9.6).

The correlation functions of primary fields satisfy more than the three identities
in Proposition 9.5.

Proposition 9.8 (Conformal Ward Identities). For every correlation function G =
Gi1...in(z1, . . . ,zn) where all the fields Φi j are primary the Ward identities

0 =
n

∑
j=1

(zm+1
j ∂z j +(m+1)h jz

m
j )G(z1, . . . ,zn)

are satisfied for all m ∈ Z.

To show these identities one proceeds as in the proof of Proposition 9.5, but with
the conformal transformation w(z) = z+ζ zm+1.

The energy–momentum tensor T is not a primary field, as one can see by com-
paring the expansions (9.5) and (9.7), except for the special case of c = 0 and h = 2.
The deviation from T being primary can be described by the Schwarzian derivative.

From a more geometrical point of view, a primary field with h = 1, h = 0 or bet-
ter its matrix coefficient Gi = 〈Ω,ΦiΩ〉 corresponds to a meromorphic differential
form. In general, it has the transformation property of a quantity like

Gi(z,z)(dz)h(dz)h = Gi(w,w)(dw)h(dw)h,

where w = w(z) is a local conformal transformation. In geometric terms such a Gi

could be understood as a meromorphic section in the vector bundle Kh⊗K
h

where
K is the canonical bundle of the respective Riemann surface.

Let Φi = Φ be a primary field of conformal weight hi = h and assume that the
asymptotic state v = limz→0Φ(z)Ω exists as a vector in the Hilbert space H of states
(v is often denoted by |h〉).

We have [L0,Φ(z)]Ω= L0Φ(z)Ω and [L0,Φ(z)]Ω= z∂Φ(z)Ω+hΦ(z)Ω. There-
fore v is an eigenvector of L0 with eigenvalue h. Moreover, for n > 0 we de-
duce in the same way Lnv = 0 by using LnΦ(z)Ω = [Ln,Φ(z)]Ω = zn+1∂Φ(z)Ω+
h(n+1)znΦΩ. Consequently,

L0v = hv,Lnv = 0,n > 0.
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According to our exposition on Virasoro modules in Chapt. 6 we come to the fol-
lowing conclusion:

Remark 9.9. The asymptotic state v = limz→0Φ(z)Ω of a primary field defines a
Virasoro module

{L−n1 . . .L−nk v : n≥ 0,k ∈ N} ⊂H

with highest-weight vector v.

The states L−n1 . . .L−nk v can be viewed as excited states of the ground state and
they are called descendants of v.

It is in general required that the collection of all descendants of the asymptotic
states belonging to the primary fields has a dense span in the Hilbert space H of
states. In this case, we obtain a decomposition of H into Virasoro modules as de-
scribed above but more concretely given by the primary fields.

Definition 9.10. In a quantum field theory satisfying Axioms 1–5 let

B1 := {i ∈ B0 : Φi is a primary field}.

The associated conformal family [Φi] for i ∈ B1 is the complex vector space gener-
ated by

Φα
i (z) := L−α1(z) . . .L−αN (z)Φi(z) (9.9)

for α = (α1, . . . ,αN) ∈ N
N , α1 ≥ . . .≥ αN > 0, where

L−n(z) :=
1

2πi

∮
T (ζ )

(ζ − z)n+1 dζ

for z ∈ C. The operators Φα
i (z) are called secondary fields or descendants.

The operators L−n(z) are in close connection with the Virasoro generators Ln

because of

L−n =
1

2πi

∮
T (ζ )
ζ n+1 dζ = L−n(0)

(cf. Theorem 9.6). The secondary fields Φα
i can be expressed as integrals as well.

For instance, for Φk
i , k ∈ N,

Φk
i (z) = L−k(z)Φi(z) =

1
2πi

∮
T (ζ )

(ζ − z)k+1Φi(z)dζ .

Moreover, the correlation functions of the secondary fields can be determined in
terms of correlation functions of primary fields by means of certain specific linear
differential equations. It therefore suffices for many purposes to know the correla-
tion functions of the primary fields and in particular the constants Ci jk for i, j,k∈B1.

For any fixed z ∈ C the conformal family [Φi] of a given primary field Φi de-
fines a highest-weight representation with weight (ci,hi) (cf. Sect. 6) in a natural
manner. v := Φi(z) is the highest-weight vector, L0(v) = hiv, Ln(v) := 0 for n ∈ N,
and L−n(v) :=Φn

i (z) for n ∈ N.
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Remark 9.11 (State Field Correspondence). Assume that the asymptotic states
of the primary fields together with their descendants generate a dense subspace V of
H. Then to each state a∈V there corresponds a field Φ such that limz→0Φ(z)Ω= a.

To show this property we only have to observe that for a descendant state of the
form w = L−α1 . . .L−αNΦi(0)Ω with respect to a primary field Φi one has

w = lim
z→0

Φα
i (z)Ω= lim

z→0
L−α1(z) . . .L−αN (z)Φi(z)Ω.

Of course, the remark does not assert that a field corresponding to a state is already
of the form Φi with i∈ B0. It rather means that there is always a suitable field among
the descendants of the primary fields.

Note that the state field correspondence is one of the basic requirements in the
definition of vertex algebras (see Sect. 10.4). If we denote the field Φ(z) in the last
remark by Y (a,z) we are close to a vertex algebra, where Y (a,z) is supposed to be a
formal series with coefficients in End V .

Operator Product Expansion. For the primary fields of a conformal field the-
ory it is postulated (according to the fundamental article of Belavin, Polyakov, and
Zamolodchikov [BPZ84]) that they obey the following operator product expansion
(OPE)

Φi(z1)Φ j(z2)∼ ∑
k∈B0

Ci jk(z1− z2)hk−hi−h jΦk(z2) (9.10)

with the constants Ci jk that occur already in the expression (9.2) of the 3-point func-
tions (cf. Lemma 9.4). Similar expansions hold for the descendants.

The central object of conformal field theory is the determination of

• the scaling dimensions di = hi +hi,
• the central charge ci for the family [Φi], and
• the coefficients Ci jk (structure constants)

from the operator product expansion (9.10) using the conformal symmetry. When
all these constants are calculated one has a complete solution.

Proposition 9.12 (Bootstrap Hypothesis). This can be achieved if the OPE (9.10)
is required in addition to be associative. (See also Axiom 6 below.)

Some comments are due concerning the use of terms like “operator product”
and its “associativity”. First of all, the expansion (9.10) can only be valid for the
corresponding matrix coefficients or better for the vacuum expectation values. In
particular, we do not have an algebra of operators with a nice expansion of the prod-
uct. Therefore the associativity constraint does not refer to the associativity of a true
multiplication in a ring as the term suggests from the mathematical viewpoint, but
simply means that the respective behavior of the expansions of the product of three
or more primary fields is independent of the order the expansions are executed. And
this equality concerns again only the vacuum expectation values and it is restricted
to the singular terms in the expansions.
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Note that in the language of vertex algebras the “associativity” constraint has a
nice and clear formulation, cf. Theorem 10.36. Furthermore, the associativity is a
consequence of the basic properties of a vertex algebra and not an additional postu-
late.

In any case, the associativity of the OPE (9.10) in this sense is strong enough to
determine all generic 4-point functions

Gi1i2i3i4(z1,z2,z3,z4,z1,z2,z3,z4),(i1, i2, i3, i4) ∈ B4
1.

This can be done by using the associativity of the OPE to obtain several expan-
sions of Gi1i2i3i4 differing by the order in which we expand. For instance, one can
first expand with respect to the indices i1, i2 and i3, i4 and then expand the result-
ing two expansions to obtain a series ∑mαmGm or one expands first with respect
to the indices i1, i4 and i2, i3 (here we need locality) and then expand the resulting
expansions to obtain another series ∑mβmGm. Associativity means that the resulting
two expansions are the same. This gives infinitely many equations for the structure
constants Ci jk of the 3-pointfunctions and allows in turn to determine Gi1i2i3i4 .

We know already that such a function depends only on the cross-ratios r(z) :=
(z12z34)/(z13z24) and r(z) (see p. 161). Since these ratios are invariant under global
conformal transformations on the extended plane we can set z1 = ∞,z2 = 1,z3 = z,
and z4 = 0. The above correlation function reduces under this change of coordi-
nates to

G(z,z) = lim
z1,z1→∞

Gi1i2i3i4(z1,1,z,0,z1,1,z,0).

The associativity of the OPE (9.10) allows to represent G with the aid of so-called
(holomorphic and antiholomorphic, respectively) “conformal blocks” F r, F

s
:

G(z,z) = ∑
k∈B1

Ci1i2kCi3i4kF
k(z)F

k
(z),

where the Ci1i2k,Ci3i4k ∈C are the coefficients of the 3-point functions in Lemma 9.4.
The associativity can be indicated schematically in diagrammatic language:

The diagram has a physical interpretation as crossing symmetry.
Note that there is an additional way applying the associativity of the OPE in case

of the 4-point function leading to another diagram and two further equalities.
A conformal field theory can also be defined on arbitrary Riemann surfaces in-

stead of C. Then the F r, F
s

depend only on the complex structure of the sur-
face. Finally, they can be considered as holomorphic sections on the appropriate
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moduli spaces with values in suitable line bundles (cf. [FS87], [TUY89], [KNR94],
[Uen95], [Sor95], [Bea95], [Tyu03*] and Chap. 11).

In any case a conformal field theory has to satisfy – in addition to the Axioms
1–5 – the following axiom:

Axiom 6 (Operator Product Expansion) The primary fields have the OPE (9.10).
This OPE is associative.

Concluding Remarks:

1. All n-point functions of the primary fields can be derived from the Gi for i ∈ B4
1.

2. The expansions (9.10) are the fusion rules, which can be written formally as

[Φi]× [Φ j] = ∑
l∈B1

[Φl ],

or, carrying more information, as

Φi×Φ j =∑
l

Nl
i jΦl ,

where Nl
i j ∈ N0 is the number of occurrences of elements of the family [Φl ] in

the OPE of Φi(z)Φ j(0). The coefficients Nk
i j define the structure of a fusion ring,

cf. Sect. 11.4.
3. We have sometimes passed over to radial quantization, e.g., by using Cauchy

integrals in Sect. 9.2, for instance

L−n(z) =
1

2πi

∮
T (ζ )

(ζ − z)n+1 dζ .

4. To construct interesting examples of conformal field theories satisfying Axioms
1–6 it is reasonable to begin with string theory. On a more algebraic level this
amounts to study Kac–Moody algebras (cf. pp. 65 and 196). This subject is sur-
veyed, e.g., in [Uen95] where an interesting connection with the presentation of
conformal blocks as sections in certain holomorphic vector bundles is described
(cf. also [TUY89] or [BF01*]). For other examples, see [FFK89].

9.4 Other Approaches to Axiomatization

In order to lay down the foundations of conformal field theory introduced in
[BPZ84], Moore and Seiberg proposed the following axioms for a conformal field
theory in [MS89]:
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A conformal field theory is a Virasoro module

V =
⊕

i∈B1

W (ci,hi)⊗W (ci,hi)

with unitary highest-weight modules W (ci,hi), W (ci,hi) (cf. Sect. 6), subject to the
following axioms:

P 1. There is a uniquely determined vacuum vector Ω = |0〉 ∈ V with Ω ∈
W (ci0 ,hi0)⊗W (ci0 ,hi0), hi0 = hi0 = 0. Ω is SL(2,C)×SL(2,C)-invariant.

P 2. To each vector α ∈ V there corresponds a field Φα , i.e. an operator Φα(z)
on V , z ∈ C. Moreover, there exists a conjugate Φα ′ such that the OPE of ΦαΦα ′
contains a descendant of the unit operator.

P 3. The highest-weight vectors α = i = vi of W (ci,hi) determine primary fields
Φi. Similarly for the highest-weight vectors of W (ci,hi).

P 4. Gi(z) = 〈Ω|Φi1(z1) . . .Φin(zn)|Ω〉, |z1|> .. . > |zn|, always has an analytical
continuation to Mn.

P 5. The correlation functions and the one-loop partition functions are modular
invariant (cf. [MS89]).

Another axiomatic description of conformal field theory was proposed by Segal
in [Seg91], [Seg88b], [Seg88a]. The basic object in this ansatz is the set of equiv-
alence classes of Riemann surfaces with boundaries, which becomes a semi-group
by defining the product of two such Riemann surfaces by a suitable fusion or sewing
(cf. Sect. 6.5).

Friedan and Shenker introduced in [FS87] a different, interesting system of ax-
ioms, which also uses the collection of all Riemann surfaces as a starting point.

All these approaches can be formulated in the language of vertex algebras which
seems to be the right theory to describe conformal field theory. In the next chapter
we present a short introduction to vertex algebras and their relation to conformal
field theory.

Along these lines, the course of V. Kac [Kac98*] describes the structure of con-
formal field theories as well as the book of E. Frenkel and D. Ben-Zvi [BF01*].
A more general point of view is taken by Beilinson and Drinfeld in their work on
chiral algebras [BD04*] where the theory of vertex algebras turns out to be a special
case of a much wider theory of chiral algebras.

A comprehensive account of different developments in conformal field theory is
collected in the Princeton notes on strings and quantum field theory of Deligne and
others [Del99*].
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