
Chapter 8
Axioms of Relativistic Quantum Field Theory

Although quantum field theories have been developed and used for more than
70 years a generally accepted and rigorous description of the structure of quan-
tum field theories does not exist. In many instances quantum field theory is ap-
proached by quantizing classical field theories as for example elaborated in the
last chapter on strings. A more systematic specification uses axioms. We present
in Sect. 8.3 the system of axioms which has been formulated by Arthur Wightman
in the early 1950s. This chapter follows partly the thorough exposition of the subject
in [SW64*]. In addition, we have used [Simo74*], [BLT75*], [Haa93*], as well as
[OS73] and [OS75].

The presentation of axiomatic quantum field theory in this chapter serves several
purposes:

• It gives a general motivation for the axioms of two-dimensional conformal field
theory in the Euclidean setting which we introduce in the next chapter.

• It explains in particular the transition from Minkowski spacetime to Euclidean
spacetime (Wick rotation) and thereby the transition from relativistic quantum
field theory to Euclidean quantum field theory (cf. Sect. 8.5).

• It explains the equivalence of the two descriptions of a quantum field theory using
either the fields (as operator-valued distributions) or the correlation functions
(resp. correlation distributions) as the main objects of the respective system (cf.
Sect. 8.4).

• It motivates how the requirement of conformal invariance in addition to the
Poincaré invariance leads to the concept of a vertex algebra.

• It points out important work which is known already for about 50 years and still
leads to many basic open problems like one out of the seven millennium problems
(cf. the article of Jaffe and Witten [JW06*]).

• It gives the opportunity to describe the general framework of quantum field the-
ory and to introduce some concepts and results on distributions and functional
analysis (cf. Sect. 8.1).

The results from functional analysis and distributions needed in this chapter can be
found in most of the corresponding textbooks, e.g., in [Rud73*] or [RS80*].
First of all, we recall some aspects of distribution theory in order to present a precise
concept of a quantum field.
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122 8 Axioms of Relativistic Quantum Field Theory

8.1 Distributions

A quantum field theory consists of quantum states and quantum fields with various
properties. The quantum states are represented by the lines through 0 (resp. by the
rays) of a separable complex Hilbert space H, that is by points in the associated
projective space P = P(H) and the observables of the quantum theory are the self-
adjoint operators in H.

In a direct analogy to classical fields one is tempted to understand quantum fields
as maps on the configuration space R

1,3 or on more general spacetime manifolds
M with values in the set of self-adjoint operators in H. However, one needs more
general objects, the quantum fields have to be operator-valued distributions. We
therefore recall in this section the concept of a distribution with a couple of results
in order to introduce the concept of a quantum field or field operator in the next
section.

Distributions. Let S (Rn) be the Schwartz space of rapidly decreasing smooth
functions, that is the complex vector space of all functions f : R

n → C with con-
tinuous partial derivatives of any order for which

| f |p,k := sup
|α|≤p

sup
x∈Rn

|∂α f (x)|(1+ |x|2)k < ∞, (8.1)

for all p,k ∈ N. (∂α is the partial derivative for the multi-index α = (α1, . . . ,αn) ∈
N

n with respect to the usual cartesian coordinates x = (x1,x2, . . . ,xn) in R
n.)

The elements of S = S (Rn) are the test functions and the dual space contains
the (tempered) distributions.

Observe that (8.1) defines seminorms f �→ | f |p,k on S .

Definition 8.1. A tempered distribution T is a linear functional T : S → C which
is continuous with respect to all the seminorms | |p,k defined in (8.1), p,k ∈ N.

Consequently, a linear T : S →C is a tempered distribution if for each sequence
( f j) of test functions which converges to f ∈S in the sense that

lim
j→∞

| f j− f |p,k = 0 for all p,k ∈ N,

the corresponding sequence (T ( f j)) of complex numbers converges to T ( f ). Equiv-
alently, a linear T : S → C is continuous if it is bounded, that is there are p,k ∈ N

and C ∈ R such that
|T ( f )| ≤C| f |p,k

for all f ∈S .
The vector space of tempered distributions is denoted by S ′ = S ′(Rn). S ′ will

be endowed with the topology of uniform convergence on all the compact subsets
of S . Since we only consider tempered distributions in these notes we often call a
tempered distribution simply a distribution in the sequel.

Some distributions are represented by functions, for example for an arbitrary
measurable and bounded function g on R

n the functional
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Tg( f ) :=
∫

Rn
g(x) f (x)dx, f ∈S ,

defines a distribution. A well-known distribution which cannot be represented as a
distribution of the form Tg for a function g on R

n is the delta distribution

δy : S → C, f �→ f (y),

the evaluation at y ∈ R
n. Nevertheless, δy is called frequently the delta function at y

and one writes δy = δ (x− y) in order to use the formal integral

δy( f ) = f (y) =
∫

Rn
δ (x− y) f (x)dx.

Here, the right-hand side of the equation is defined by the left-hand side.
Distributions T have derivatives. For example

∂
∂q j T ( f ) :=−T (

∂
∂q j f ),

and ∂αT is defined by

∂αT ( f ) := (−1)|α|T (∂α f ), f ∈S .

By using partial integration one obtains ∂αTg = T∂αg if g is differentiable and
suitably bounded.

An important example in the case of n = 1 is TH( f ) :=
∫ ∞

0 f (x)dx, f ∈S , with

d
dt

T ( f ) =−
∫ ∞

0
f ′(x)dx = f (0) = δ0( f ).

We observe that the delta distribution δ0 has a representation as the derivative of a
function (the Heaviside function H(x) = χ[0,∞[) although δ0 is not a true function.
This fact has the following generalization:

Proposition 8.2. Every tempered distribution T ∈S ′ has a representation as a fi-
nite sum of derivatives of continuous functions of polynomial growth, that is there
exist gα : R

n → C such that

T = ∑
0≤|α|≤k

∂αTgα .

Partial Differential Equations. Since a distribution possesses partial derivatives
of arbitrary order it is possible to regard partial differential equations as equations
for distributions and not only for differentiable functions. Distributional solutions in
general lead to results for true functions. This idea works especially well in the case
of partial differential equations with constant coefficients.

For a polynomial P(X) = cαXα ∈ C[X1, . . . ,Xn] in n variables with complex co-
efficients cα ∈ C one obtains the partial differential operator
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P(−i∂ ) = cα(−i∂ )α =∑c(α1,...,αn)∂
α1
1 . . .∂αn

n ,

and the corresponding inhomogeneous partial differential equation

P(−i∂ )u = v,

which is meaningful for functions as well as for distributions. As an example, the
basic partial differential operator determined by the geometry of the Euclidean space
R

n = R
n,0 is the Laplace operator

Δ= ∂ 2
1 + . . .+∂ 2

n ,

with Δ= P(−i∂ ) for P =−(X2
1 + . . .+X2

n ).
In the same way, the basic partial differential operator determined by the geom-

etry of the Minkowski space R
1,D−1 is the wave operator (the Laplace–Beltrami

operator with respect to the Minkowski-metric, cf. 1.6)

� = ∂0
2− (∂ 2

1 + . . .+∂ 2
D−1) = ∂ 2

0 −Δ,

and � = P(−i∂ ) for P =−X2
0 +X2

1 + . . .+X2
D−1.

A fundamental solution of the partial differential equation P(−i∂ )u = v is any
distribution G satisfying

P(−i∂ )G = δ .

Proposition 8.3. Such a fundamental solution provides solutions of the inhomoge-
neous partial differential equation P(−i∂ )u = v by convolution of G with v:

P(−i∂ )(G∗ v) = v.

Proof. Here, the convolution of two rapidly decreasing smooth functions u,v ∈S ,
is defined by

u∗ v(x) :=
∫

Rn
u(y)v(x− y)dy =

∫

Rn
u(x− y)v(y)dy.

The identity ∂ j(u∗v) = (∂ ju)∗v = u∗∂ jv holds. The convolution is extended to the
case of a distribution T ∈S ′ by T ∗ v(u) := T (v∗u). This extension again satisfies

∂ j(T ∗ v) = (∂ jT )∗ v = T ∗∂ jv.

Furthermore, we see that

δ ∗ v(u) = δ (v∗u) =
∫

Rn
v(y)u(y)dy,

thus δ ∗v = v. Now, the defining identity P(−i∂ )G = δ for the fundamental solution
implies P(−i∂ )(G∗ v) = δ ∗ v = v. �

Fundamental solutions are not unique, the difference u of two fundamental solu-
tions is evidently a solution of the homogeneous equation P(−i∂ )u = 0.
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Fundamental solutions are not easy to obtain directly. They often can be derived
using Fourier transform.

Fourier Transform. The Fourier transform of a suitably bounded measurable func-
tion u : R

n → C is
û(p) :=

∫

Rn
u(x)eix·pdx

for p = (p1, . . . , pn) ∈ (Rn)′ ∼= R
n whenever this integral is well-defined. Here, x · p

stands for a nondegenerate bilinear form appropriate for the problem one wants to
consider. For example, it might be the Euclidean scalar product or the Minkowski
scalar product in R

n = R
1,D−1 with x · p = xμηνμ pν = x0 p0−x1 p1− . . .−xD−1 pD−1.

The Fourier transform is, in particular, well-defined for a rapidly decreasing
smooth function u ∈S (Rn) = S and, moreover, the transformed function F (u) =
û is again a rapidly decreasing smooth function F (u) ∈ S . The inverse Fourier
transform of a function v = v(p) is

F−1v(x) := (2π)−n
∫

Rn
v(p)e−ix·pd p.

Proposition 8.4. The Fourier transform is a linear continuous map

F : S →S

whose inverse is F−1. As a consequence, F has an adjoint

F ′ : S ′ →S ′,T �→ T ◦F .

On the basis of this result we can define the Fourier transform F (T ) of a tem-
pered distribution T as the adjoint

F (T )(v) := T (F (v)) = F ′(T )(v),v ∈S ,

and we obtain a map F : S ′ →S ′ which is linear, continuous, and invertible. Note
that for a function g ∈ S the Fourier transforms of the corresponding distribution
Tg and that of g are the same:

F (Tg)(v) = Tg(v̂) =
∫

Rn

∫

(Rn)′
g(x)v(p)eix·pd pdx = TF (g)(v).

Typical examples of Fourier transforms of distributions are

F (H)(ω) =
∫ ∞

0
eitωdt =

i
ω+ i0

,

F (δ0) =
∫

RD
δ0(x)eix·pdx = 1,

F−1(eip·y) = (2π)−D
∫

RD
eip·(y−x)d p = δ (x− y).
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The fundamental importance of the Fourier transform is that it relates partial
derivatives in the xk with multiplication by the appropriate coordinate functions pk

after Fourier transformation:

F (∂ku) =−ipkF (u)

by partial integration

F (∂ku)(p) =
∫
∂ku(x)eix·pdx =−

∫
u(x)ipkeix·pdx =−ipkF (u)(p),

and consequently,
F (∂αu) = (−ip)αF (u).

This has direct applications to partial differential equations of the type

P(−i∂ )u = v.

The general differential equation P(−i∂ )u = v will be transformed by F into the
equation

P(p)û = v̂.

Now, trying to solve the original partial differential equation leads to a division
problem for distributions. Of course, the multiplication of a polynomial P = P(p)
and a distribution T ∈ S ′ given by PT (u) := T (Pu) is well-defined because
Pu(p) = P(p)u(p) is a function Pu ∈S for each u ∈S . Solving the division prob-
lem, that is determining a distribution T with PT = f for a given polynomial P and
function f , is in general a difficult task.

For a polynomial P let us denote G = GP the inverse Fourier transform F−1(T )
of a solution of the division problem PT = 1, that is PĜ = 1. Then G is a fundamen-
tal solution of P(−i∂ )u = v, that is

P(−i∂ )G = δ

since F (P(−i∂ )G) = P(p)Ĝ = 1 and F−1(1) = δ .

Klein–Gordon Equation. We study as an explicit example the fundamental solu-
tion of the Klein–Gordon equation. The results will be used later in the description
of the free boson within the framework of Wightman’s axioms, cf. p. 135, in order
to construct a model satisfying all the axioms of quantum field theory.

The dynamics of a free bosonic classical particle is governed by the Klein–
Gordon equation. The Klein–Gordon equation with mass m > 0 is

(�+m2)u = v,

where � is the wave operator for the Minkowski space R
1,D−1 as before. A funda-

mental solution can be determined by solving the division problem
(
−p2 +m2)T = 1:
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A suitable
T is
(
m2− p2)−1

as a distribution given by

T (v) =
∫

RD−1

(
PV
∫

R

v(p)
ω(p)− p2

0

d p0

)
dp,

where PV
∫

is the principal value of the integral. The corresponding fundamental
solution (the propagator) is

G(x) = (2π)−D
∫

RD
(m2− p2)−1e−ix·pd p.

G can be expressed more concretely by Bessel, Hankel, etc., functions.
We restrict our considerations to the free fields which are the solutions of the

homogeneous equation
(�−m2)φ = 0.

The Fourier transform φ̂ satisfies

(p2−m2)φ̂ = 0,

where p2 = 〈p, p〉= p2
0−(p2

1 + . . .+ p2
D−1). Therefore, φ̂ has its support in the mass-

shell {p ∈ (R1,D−1)′ : p2 = m2}. Consequently, φ̂ is proportional to δ (p2−m2) as
a distribution, that is φ̂ = g(p)δ (p2 −m2), and we get φ by the inverse Fourier
transform

φ(x) = (2π)−D
∫

RD
g(p)δ (p2−m2)e−ip·xd p.

Definition 8.5. The distribution

Dm(x) := 2πiF−1((sgn(p0)δ (p2−m2))(x)

is called the Pauli–Jordan function.

(sgn(t) is the sign of t, sgn(t) = H(t)−H(−t).) Dm generates all solutions of the
homogeneous Klein–Gordon equation. In order to describe Dm in detail and to use
the integration

Dm(x) = 2πi(2π)−D
∫

RD
sgn(p0)δ (p2−m2)e−ip·xd p

for further calculations we observe that for a general g the distribution

φ̂ = g(p)δ (p2−m2)

can also be written as

φ̂ = H(p0)g+(p)δ (p2−m2)−H(−p0)g−(p)δ (p2−m2)



128 8 Axioms of Relativistic Quantum Field Theory

taking into account the two components of the hyperboloid {p ∈ (R1,D−1)′ : p2 =
m2}: the upper hyperboloid

Γm := {p ∈ (R1,D−1)′ : p2 = m2, p0 > 0}

and the lower hyperboloid

−Γm = {p ∈ ((R1,D−1))′ : p2 = m2, p0 < 0}.

Here, the g+, g− are distributions on the upper resp. lower hyperboloid, which in
our situation can be assumed to be functions which simply depend on p ∈R

D−1 via
the global charts

ξ± : R
D−1 →±Γm,p �→ (±ω(p),p),

where ω(p) :=
√

p2 +m2 and p = (p1, . . . , pD−1), hence p2 = p2
1 + . . .+ p2

D−1.
Let λm be the invariant measure on Γm given by the integral

∫

Γm

h(ξ )dλm(ξ ) :=
∫

RD−1
h(ξ+(p))(2ω(p))−1dp

for functions h defined on Γm and analogously on −Γm. Then for v ∈ S (RD) the
value of δ (p2−m2) is

δ (p2−m2)(v) =
∫

Γm

v(ω(p),p)dλm +
∫

−Γm

v(−ω(p),p)dλm.

Here, we use the identity δ (t2−b2) = (2b)−1(δ (t−b)+δ (t +b)) in one variable
t with respect to a constant b > 0.

These considerations lead to the following ansatz which is in close connection to
the formulas in the physics literature. We separate the coordinates x ∈ R

1,D−1 into
x = (t,x) with t = x0 and x = (x1, . . . ,xD−1). Let

φ(t,x) := (2π)−D
∫

RD−1
(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))dλm(p)

for arbitrary functions a,a∗ ∈ S (RD−1) in D− 1 variables. Then φ(t,x) satis-
fies (� + m2)φ = 0 which is clear from the above derivation (because of a(p) =
g+(ω(p),p),a∗(p) = g−(−ω(p),p) up to a constant). That φ(t,x) satisfies (� +
m2)φ = 0 is in fact very easy to show directly: With the abbreviation

k(t,x,p) := (2π)−D(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))

we have

∂ 2
0 φ(t,p) =

∫

γm

i2ω(p)2k(t,x,p)dλm and

∂ 2
j φ(t,p) =

∫

γm

i2 p2
j k(t,x,p)dλm for j > 0.
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Hence,

�φ(t,p) =−
∫

γm

(ω(p)2−p2)k(t,x,p)dλm =−m2φ(t,x).

We have shown the following result:

Proposition 8.6. Each solution φ ∈ S of (� + m2)φ = 0 can be represented
uniquely as

φ(t,x) := (2π)D
∫

RD−1
(a(p)ei(p·x−ω(p)t) +a∗(p)e−i(p·x−ω(p)t))dλm(p)

with a,a∗ ∈S ((RD−1)′). The real solutions correspond to the case a∗ = a.

8.2 Field Operators

Operators and Self-Adjoint Operators. Let S O = S O(H) denote the set of self-
adjoint operators in H and O = O(H) the set of all densely defined operators in H.
(A general reference for operator theory is [RS80*].) Here, an operator in H is a pair
(A,D) consisting of a subspace D = DA ⊂H and a C-linear mapping A : D→H, and
A is densely defined whenever DA is dense in H. In the following we are interested
only in densely defined operators. Recall that such an operator can be unbounded,
that is sup{‖A f‖ : f ∈ D,‖ f‖ ≤ 1} = ∞, and many relevant operators in quantum
theory are in fact unbounded. As an example, the position and momentum operators
mentioned in Sect. 7.2 in the context of quantization of the harmonic oscillator are
unbounded.

If a densely defined operator A is bounded (that is sup{‖A f‖ : f ∈DA,‖ f‖≤ 1}<
∞), then A is continuous and possesses a unique linear and continuous continuation
to all of H.

Let us also recall the notion of a self-adjoint operator. Every densely defined
operator A in H has an adjoint operator A∗ which is given by

DA∗ := { f ∈H|∃h ∈H ∀g ∈ DA : 〈h,g〉= 〈 f ,Ag〉},
〈A∗ f ,g〉= 〈 f ,Ag〉, f ∈ DA∗ ,g ∈ DA.

A∗ f for f ∈ DA∗ is thus the uniquely determined h = A∗ f ∈H with 〈h,g〉= 〈 f ,Ag〉
for all g ∈ DA.

It is easy to show that the adjoint A∗ of a densely defined operator A is a closed
operator. A closed operator B in H is defined by the property that the graph of B,
that is the subspace

Γ(B) = {( f ,B( f )) : f ∈ DB} ⊂H×H

of H×H, is closed, where the Hilbert space structure on H×H∼= H⊕H is defined
by the inner product
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〈( f , f ′),(g,g′)〉 := 〈 f ,g〉+ 〈 f ′,g′〉.

Hence, an operator B is closed if for all sequences ( fn) in DB such that fn → f ∈
H and B fn → g ∈H it follows that f ∈DB and B f = g. Of course, every continuous
operator defined on all of H is closed. Conversely, every closed operator B defined
on all of H is continuous by the closed graph theorem. Note that a closed densely
defined operator which is continuous satisfies DB = H.

Self-adjoint operators are sometimes mixed up with symmetric operators. For
operators with domain of definition DB = H the two notions agree and this holds
more generally for closed operators also. A symmetric operator is a densely defined
operator A such that

〈A f ,g〉= 〈 f ,Ag〉, f ,g ∈ DA.

By definition, a self-adjoint operator A is an operator which agrees with its ad-
joint A∗ in the sense of DA = DA∗ and A∗ f = A f for all f ∈DA. Clearly, a self-adjoint
operator is symmetric and it is closed since adjoint operators are closed in general.
Conversely, it can be shown that a symmetric operator is self-adjoint if it is closed.
An operator B is called essentially self-adjoint when it has a unique continuation to
a self-adjoint operator, that is there is a self-adjoint operator A with DB ⊂ DA and
B = A|DB .

For a closed operator A, the spectrum σ(A)= {λ ∈C : (A−λ idH)−1does not exist
as a bounded operator} is a closed subset of C. Whenever A is self-adjoint, the spec-
trum σ(A) is completely contained in R.

For a self-adjoint operator A there exists a unique representation U : R→ U(H)
satisfying

lim
t→0

U(t) f − f
t

=−iA f

for each f ∈ DA according to the spectral theorem. U is denoted U(t) = e−itA and
A (or sometimes −iA) is called the infinitesimal generator of U(t). Conversely (cf.
[RS80*]),

Theorem 8.7 (Theorem of Stone). Let U(t) be a one parameter group of unitary
operators in the complex Hilbert space H, that is U is a unitary representation of
R. Then the operator A, defined by

A f := lim
t→0

i
U(t) f − f

t

in the domain in which this limit exists with respect to the norm of H, is self-adjoint
and generates U(t) : U(t) = e−itA, t ∈ R.

With the aid of (tempered) distributions and (self-adjoint) operators we are now
in the position to explain what quantum fields are.

Field Operators. The central objects of quantum field theory are the quantum fields
or field operators. A field operator is the analogue of a classical field but now in
the quantum model. Therefore, in a first attempt, one might try to consider a field
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operator Φ to be a map from M to S O assigning to a point x ∈M = R
1,D−1 a self-

adjoint operator Φ(x) in a suitable way. However, for various reasons such a map is
not sufficient to describe quantum fields (see also Proposition 8.15). For example,
in some classical field theories the Poisson bracket of a field φ at points x,y ∈ M
with x0 = y0 (at equal time) is of the form

{φ(x),φ(y)}= δ (x− y),

where x := (x1, . . . ,xD−1), the space part of x = (x0,x1, . . . ,xD−1). This equation has
a rigorous interpretation in the context of the theory of distributions.

As a consequence, a quantum field will be an operator-valued distribution.

Definition 8.8. A field operator or quantum field is now by definition an operator-
valued distribution (on R

n), that is a map

Φ : S (Rn)→ O

such that there exists a dense subspace D⊂H satisfying

1. For each f ∈S the domain of definition DΦ( f ) contains D.
2. The induced map S → End(D), f �→Φ( f )|D, is linear.
3. For each v ∈ D and w ∈ H the assignment f �→ 〈w,Φ( f )(v)〉 is a tempered

distribution.

The concept of a quantum field as an operator-valued distribution corresponds
better to the actual physical situation than the more familiar notion of a field as a
quantity defined at each point of spacetime. Indeed, in experiments the field strength
is always measured not at a point x of spacetime but rather in some region of space
and in a finite time interval. Therefore, such a measurement is naturally described
by the expectation value of the field as a distribution applied to a test function with
support in the given spacetime region. See also Proposition 8.15 below.

As a generalization of the Definition 8.8, it is necessary to consider operator-
valued tensor distributions also. Here, the term tensor is used for a quantity which
transforms according to a finite-dimensional representation of the Lorentz group L
(resp. of its universal cover).

8.3 Wightman Axioms

In order to present the axiomatic quantum field theory according to Wightman we
need the notion of a quantum field or field operator Φ as an operator-valued dis-
tribution which we have introduced in Definition 8.8 and some informations about
properties on geometric invariance which we recall in the sequel.

Relativistic Invariance. As before, let M = R
1,D−1 D-dimensional Minkowski

space (in particular the usual four-dimensional Minkowski space M = R
1,3 or the

Minkowski plane M = R
1,1) with the (Lorentz) metric
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x2 = 〈x,x〉= x0x0−
D−1

∑
j=1

x jx j,x = (x0, . . . ,xD−1) ∈M.

Two subsets X ,Y ⊂M are called to be space-like separated if for any x ∈ X and
any y ∈ Y the condition (x− y)2 < 0 is satisfied, that is

(x0− y0)2 <
D−1

∑
j=1

(x j− y j)2.

The forward cone is C+ := {x ∈ M : x2 =< x,x >≥ 0,x1 ≥ 0} and the causal
order is given by x≥ y⇐⇒ x− y ∈C+.

Relativistic invariance of classical point particles in M = R
1,D−1 or of classical

field theory on M is described by the Poincaré group P := P(1,D−1), the identity
component of the group of all transformations of M preserving the metric. P is
generated by the Lorentz group L, the identity component L := SO0(1,D− 1) ⊂
GL(D,R) of the orthogonal group O(1,D− 1) of all linear transformations of M
preserving the metric. (L is sometimes written SO(1,D− 1) by abuse of notation.)
In fact, the Poincaré group P is the semidirect product (see Sect. 3.1) L�R

n ∼= P of
L and the translation group M = R

D.
The Poincaré group P preserves the causal structure and the space-like separate-

ness. Observe that the corresponding conformal group SO(2,D) (cf. Theorem 2.9)
which contains the Poincaré transformations also preserves the causal structure, but
not the space-like separateness.

The Poincaré group acts on S = S (RD), the space of test functions, from the
left by h · f (x) := f (h−1x) with g ·(h · f ) = (gh) · f and this left action is continuous.
It is mostly written in the form

(q,Λ) f (x) = f (Λ−1(x−q)),

where the Poincaré transformations h are parameterized by (q,Λ) ∈ L � M,q ∈ M,
Λ ∈ L.

The relativistic invariance of the quantum system with respect to Minkowski
space M = R

1,D−1 is in general given by a projective representation P → U(P(H))
of the Poincaré group P, a representation in the space P(H) of states of the quantum
system as we explain in Sect. 3.2. By Bargmann’s Theorem 4.8 such a represen-
tation can be lifted to an essentially uniquely determined unitary representation of
the 2-to-1 covering group of P, the simply connected universal cover of P. This
group is isomorphic to the semidirect product Spin(1,D−1)�R

D for D > 2 where
Spin(1,D−1) is the corresponding spin group, the universal covering group of the
Lorentz group L= SO(1,D− 1). In the sequel we often call these covering groups
the Poincaré group and Lorentz group, respectively, and denote them simply again
by P and L.
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Note that in the two-dimensional case, the Lorentz group L is isomorphic to the
abelian group R of real numbers (cf. Remark 1.15) and therefore agrees with its
universal covering group.

We thus suppose to have a unitary representation of the Poincaré group P which
will be denoted by

U : P→ U(H),(q,Λ) �→U(q,Λ),

(q,Λ) ∈M×L = L � M.
Since the transformation group M ⊂ P is abelian one can apply Stone’s Theo-

rem 8.7 in order to obtain the restriction of the unitary representation U to M in
the form

U(q,1) = exp iqP = exp i(q0P0−q1P1− . . .−qD−1PD−1), (8.2)

q ∈ R
1,D−1, with self-adjoint commuting operators P0, . . . ,PD−1 on H. P0 is inter-

preted as the energy operator P0 = H and the Pj, j > 0, as the components of the
momentum.

We are now in the position to formulate the axioms of quantum field theory.

Wightman Axioms. A Wightman quantum field theory (Wightman QFT) in dimen-
sion D consists of the following data:

– the space of states, which is the projective space P(H) of a separable complex
Hilbert space H,

– the vacuum vector Ω ∈H of norm 1,
– a unitary representation U : P → U(H) of P, the covering group of the Poincaré

group,
– a collection of field operators Φa,a ∈ I (cf. Definition 8.8),

Φa : S (RD)→ O,

with a dense subspace D⊂H as their common domain (that is the domain Da( f )
of Φa contains D for all a ∈ A, f ∈S ) such that Ω is in the domain D.

These data satisfy the following three axioms:

Axiom W1 (Covariance)

1. Ω is P-invariant, that is U(q,Λ)Ω = Ω for all (q,Λ) ∈ P, and D is P-invariant,
that is U(q,Λ)D⊂ D for all (q,Λ) ∈ P,

2. the common domain D ⊂ H is invariant in the sense that Φa( f )D ⊂ D for all
f ∈S and a ∈ I,

3. the actions on H and S are equivariant where P acts on End(D) by conjugation.
That is on D we have

U(q,Λ)Φa( f )U(q,Λ)∗ =Φ((q,Λ) f ) (8.3)

for all f ∈S and for all (q,Λ) ∈ P.
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Axiom W2 (Locality) Φa( f ) and Φb(g) commute on D if the supports of f ,g ∈S
are space-like separated, that is on D

Φa( f )Φb(g)−Φb(g)Φa( f ) = [Φa( f ),Φb(g)] = 0. (8.4)

Axiom W3 (Spectrum Condition) The joint spectrum of the operators Pj is con-
tained in the forward cone C+.

Recall that the support of a function f is the closure of the points x with f (x) �= 0.
If one represents the operator-valued distribution Φa symbolically by a function

Φa =Φa(x) ∈O the equivariance (8.3) can be written in the following form:

U(q,Λ)Φa(x)U(q,Λ)∗ =Φa(Λx+q).

This form is frequently used even if Φa cannot be represented as a function, and the
equality is only valid in a purely formal way.

Remark 8.9. The relevant fields, that is the operators Φa( f ) for real-valued test
functions f ∈ S , should be essentially self-adjoint. In the above axioms this has
not been required from the beginning because often one considers a larger set of
field operators so that only certain combinations are self-adjoint. In that situation it
is reasonable to require Φ∗a to be in the set of quantum fields, that is Φ∗a =Φa′ for a
suitable a′ ∈ A (where a = a′ if Φa( f ) is essentially self-adjoint).

Remark 8.10. Axiom W1 is formulated for scalar fields only which transform un-
der the trivial representation of L. In general, if fields have to be considered which
transform according to a nontrivial (finite-dimensional) complex or real representa-
tion R : L → GL(W ) of the (double cover of the) Lorentz group (like spinor fields,
for example) the equivariance in (8.3) has to be replaced by

U(q,Λ)Φ j( f )U(q,Λ)∗ =
m

∑
k=1

R jk(Λ−1)Φk((q,Λ) f ). (8.5)

Here, W is identified with R
m resp. C

m, and the R(Λ) are given by matrices(
R jk(Λ)
)
. Moreover, the fields Φa are merely components and have to be grouped

together to vectors (Φ1, . . . ,Φm).

Remark 8.11. In the case of D = 2 there exist nontrivial one-dimensional represen-
tations R : L→ GL(1,C) = C

× of the Lorentz group L, since the Lie algebra Lie L
of L is R and therefore not semi-simple. In this situation the equivariance (8.3) has
to be extended to

U(q,Λ)Φa( f )U(q,Λ)∗ = R(Λ−1)Φa((q,Λ) f ). (8.6)

Remark 8.12. Another generalization of the axioms of a completely different na-
ture concerns the locality. In the above axioms only bosonic fields are considered.
For the fermionic case one has to impose a grading into even and odd (see also Re-
mark 10.19), and the commutator of odd fields in Axiom W2 has to be replaced with
the anticommutator.
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Remark 8.13. The spectrum condition (Axiom W3) implies that for eigenvalues pμ
of Pμ the vector p = (p0, . . . , pD−1) satisfies p ∈C+. In particular, with the interpre-
tation of P0 = H as the energy operator the system has no negative energy states:
p0 ≥ 0. Moreover, P2 = P2

0 −P2
1 − . . .−P2

D−1 has the interpretation of the mass-
squared operator with the condition p2 ≥ 0 for each D−tuple of eigenvalues pμ of
Pμ in case Axiom W3 is satisfied.

Remark 8.14. In addition to the above axioms in many cases an irreducibility or
completeness condition is required. For example, it is customary to require that the
vacuum is cyclic in the sense that the subspace D0 ⊂ D spanned by all the vectors

Φa1( f1)Φa2( f2) . . .Φam( fm)Ω1

is dense in D and thus dense in H.

Moreover, as an additional axiom one can require the vacuum Ω to be unique:

Axiom W4 (Uniqueness of the Vacuum) The only vectors in H left invariant by
the translations U(q,1), q ∈M, are the scalar multiples of the vacuum Ω.

Although the above postulates appear to be quite evident and natural, it is by no
means easy to give examples of Wightman quantum field theories even for the case
of free theories. For the case of proper interaction no Wightman QFT is known so
far in the relevant case of D = 4, and it is one of the millennium problems discussed
in [JW06*] to construct such a theory. For D = 2, however, there are theories with
interaction (cf. [Simo74*]), and many of the conformal field theories in two dimen-
sions have nontrivial interaction.

Example: Free Bosonic QFT. In the following we sketch a Wightman QFT for
a quantized boson of mass m > 0 in three-dimensional space (hence D = 4, the
considerations work for arbitrary D ≥ 2 without alterations). The basic differential
operator, the Klein–Gordon operator �+m2 with mass m, has already been studied
in Sect. 8.1. We look for a field operator

Φ : S = S (R4)−→S O(H)

on a Hilbert space H such that for all test function f ,g ∈ S :

1. Φ satisfies the Klein–Gordon equation in the following sense:

Φ(� f +m2 f ) = 0 for all f ∈S .

2. Φ obeys the commutation relation

[Φ( f ),Φ(g)] =−i
∫

R4×R4
f (x)Dm(x− y)g(y)dxdy.

1 As before, we write the composition B ◦C of operators as multiplication BC and similarly the
value B(v) as multiplication Bv.
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Here, Dm is the Pauli–Jordan function (cf. Definition 8.5)

Dm(x) := i(2π)−3
∫

RD
sgn(p0)δ (p2−m2)e−ip·xd p.

The construction of such a field and the corresponding Hilbert space is a Fock
space construction. Let H1 = S (Γm)∼= S (R3). The isomorphism is induced by the
global chart

ξ : R
3 → Γm,p �→ (ω(p),p),

where ω(p) =
√

p2 +m2. We denote the points in Γm by ξ or ξ j in the following:
H1 is dense in H1 := L2(Γm,dλm), the complex Hilbert space of square-integrable

functions on the upper hyperboloid Γm. Furthermore, let HN denote the space of
rapidly decreasing functions on the N-fold product of the upper hyperboloid Γm

which are symmetric in the variables (p1, . . . ,pN) ∈ ΓN
m. HN has the inner product

〈u,v〉 :=
∫

ΓN
m

u(ξ1, . . . ,ξN)v(ξ1, . . . ,ξN)dλm(ξ1) . . .dλm(ξN).

The Hilbert space completion of HN will be denoted by HN . HN contains the
N-fold symmetric product of H1 and this space is dense in HN and thus also in HN .
Now, the direct sum

D :=
∞⊕

N=0

HN

(H0 = C with the vacuum Ω := 1 ∈ H0) has a natural inner product given by

〈 f ,g〉 := f0g0 + ∑
N≥1

1
N!
〈 fN ,gN〉,

where f = ( f0, f1, . . .),g = (g0,g1, . . .)∈D. The completion of D with respect to this
inner product is the Fock space H. H can also be viewed as a suitable completion of
the symmetric algebra

S(H1) =
⊕

H�N
1 ,

where H�N
1 is the N-fold symmetric product

H�N
1 = H1� . . .�H1.

The operators Φ( f ), f ∈S , will be defined on g = (g0,g1, . . .) ∈ D by

(Φ( f )g)N(ξ1, . . . ,ξN) :=
∫

Γm

f̂ (ξ )gN+1(ξ ,ξ1, . . . ,ξN)dλm(ξ )

+
N

∑
j=1

f̂ (−ξ j)gN−1(ξ1, . . . ξ̂ j . . . ,ξN),
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where ξ̂ j means that this variable has to be omitted. This completes the construction
of the Wightman QFT for the free boson.

The various requirements and axioms are not too difficult to verify. For example,
we obtain Φ(� f −m2 f ) = 0 since

F (� f −m2 f ) = (−p2 +m2) f̂

vanishes on Γm, and similarly we obtain the second requirement on the commutators
the formula

[Φ( f ),Φ(g)] =−i
∫

R4×R4
f (x)Dm(x− y)g(y)dxdy.

Furthermore, we observe that the natural action of the Poincaré group on R
1,3

and on S (R1,3) induces a unitary representation U in the Fock space H leaving
invariant the vacuum and the domain of definition D. Of course, Φ is a field operator
in the sense of our Definition 8.8 with Φ( f )D⊂D and, moreover, it can be checked
that Φ is covariant in the sense of Axiom W1 and that the joint spectrum of the
operators Pj is supported in Γm hence in the forward light cone (Axiom W3). Finally,
the construction yields locality (Axiom W2) according to the above formula for
[Φ( f ),Φ(g)].

We conclude this section with the following result of Wightman which demon-
strates that in QFT it is necessary to consider operator-valued distributions instead
of operator-valued mappings:

Proposition 8.15. Let Φ be a field in a Wightman QFT which can be realized as a
map Φ : M →O and where Φ∗ belongs to the fields. Moreover, assume that Ω is the
only translation-invariant vector (up to scalars). Then Φ(x) = cΩ is the constant
operator for a suitable constant c ∈ C.

In fact, it is enough to require equivariance with respect to the transformation
group only and the property that Φ(x) and Φ(y)∗ commute if x− y is spacelike.

8.4 Wightman Distributions and Reconstruction

Let Φ = Φa be a field operator in a Wightman QFT acting on the space S =
S (R1,D−1) of test functions

Φ : S −→ O(H).

We assume Φ( f ) to be self-adjoint for real-valued f ∈ S (cf. 8.9), hence
Φ( f )∗ =Φ( f ) in general. Then for f1, . . . , fN ∈S one can define

WN( f1, . . . , fN) := 〈Ω,Φ( f1) . . .Φ( fN)Ω〉

according to Axiom W1 part 2. Since Φ is a field operator the mapping
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WN : S ×S . . .×S −→ C

is multilinear and separately continuous. It is therefore jointly continuous and one
can apply the nuclear theorem of Schwartz to obtain a uniquely defined distribution
on the space in DN variables, that is a distribution in S ′((RD)N) = S ′(RDN). This
continuation of WN will be denoted again by WN .

The sequence (WN) of distributions generated by Φ is called the sequence of
Wightman distributions. The WN ∈ S ′(RDN) are also called vacuum expectation
values or correlation functions.

Theorem 8.16. The Wightman distributions associated to a Wightman QFT satisfy
the following conditions: Each WN ,N ∈ N, is a tempered distribution

WN ∈S ′(RDN)

with

WD1 (Covariance) WN is Poincaré invariant in the following sense:

WN( f ) = WN((q,Λ) f ) f or all (q,Λ)) ∈ P.

WD2 (Locality) For all N ∈ N and j,1≤ j < N,

WN(x1, . . . ,x j,x j+1, . . . ,xN) = WN(x1, . . . ,x j+1,x j, . . . ,xN),

if (x j - x j+1)2 < 0.)

WD3 (Spectrum Condition) For each N > 0 there exists a distribution
MN ∈S ′(RD(N−1)) supported in the product (C+)N−1 ⊂R

D(N−1) of forward cones
such that

WN(x1, . . . ,xN) =
∫

RD(N−1)
MN(p)ei∑ p j ·(x j+1−x j)d p,

where p = (p1, . . . , pn−1) ∈ (RD)N−1 and d p = d p1 . . .d pN−1.

WD4 (Positive Definiteness) For any sequence fN ∈S (RDN)N ∈N one has for all
m ∈ N:

k

∑
M,N=0

WM+N( f M ⊗ fN)≥ 0.

f ⊗g for f ∈S (RDM),g ∈S (RDN) is defined by

f ⊗g(x1, . . . ,xM+N) = f (x1, . . . ,xM)g(xM+1, . . . ,xM+N).

Proof. WD1 follows directly from W1. Observe that the unitary representation of
the Poincaré group is no longer visible. And WD2 is a direct consequence of W2.
WD4 is essentially the property that a vector of the form
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k

∑
M=1

Φ( fM)Ω ∈H

has a non-negative norm where Φ( fM)Ω is defined as follows: The map

( f1, . . . , fM) �→Φ( f1) . . .Φ( fM)Ω,( f1, . . . , fM) ∈S (RD)M,

is continuous and multilinear by the general assumptions on the field operator Φ
and therefore induces by the nuclear theorem a vector-valued distribution ΦM :
S (RDM)→H which is symbolically written as ΦM(x1, . . . ,xM). Now, Φ( fM)Ω :=
ΦM( fM)Ω and

0 ≤
∥
∥
∥
∥
∥

k

∑
M=1

Φ( fM)Ω

∥
∥
∥
∥
∥

2

≤
〈

k

∑
M=1

Φ( fM)Ω,
k

∑
N=1

Φ( fN)Ω

〉

≤ ∑
M,N

〈Ω,Φ( fM)∗Φ( fN)Ω〉= ∑
M,N

WM+N( f M ⊗ fN).

WD3 will be proven in the next proposition. �

In the sequel we write the distributions Φ and WN symbolically as functions Φ(x)
and WN(x1, . . . ,xN) in order to simplify the notation and to work more easily with
the supports of the distributions in consideration.

The covariance of the field operator Φ implies the covariance

WN(x1, . . . ,xn) = WN(Λx1 +q, . . . ,ΛxN +q)

for every (q,Λ) ∈ P. In particular, the Wightman distributions are translation-
invariant:

WN(x1, . . . ,xn) = WN(x1 +q, . . . ,xN +q).

Consequently, WN depends only on the differences

ξ1 = x1− x2, . . . ,ξN−1 = xN−1− xN .

We define
wN(ξ1, . . . ,ξN−1) := WN(x1, . . . ,xN).

Proposition 8.17. The Fourier transform ŵN has its support in the product (C+)N−1

of the forward cone C+ ∈ R
D. Hence

WN(x) = (2π)−D(N−1)
∫

RD(N−1)
ŵN(p)e−i∑ p j ·(x j−x j+1)d p.

Proof. Because of U(x,1)∗ = U(−x,1) = e−ix·P for x ∈ R
D (cf. 8.2) the spectrum

condition W2 implies ∫

RD
eix·pU(x,1)∗vdx = 0
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for every v ∈H if p /∈C+. Since wN(ξ1, . . . ,ξ j +x,ξ j+1, . . . ,ξN−1) = WN(x1, . . . ,x j,
x j+1− x, . . . ,xN − x) the Fourier transform of wN with respect to ξ j gives

∫

RD
wN(ξ1, . . . ,ξ j + x,ξ j+1, . . . ,ξN−1)eip j ·xdx

=
〈
Ω,Φ(x1) . . .Φ(x j)

∫

RD
Φ(x j+1− x) . . .Φ(xN − x)eip j ·xΩdx

〉

=
〈
Ω,Φ(x1) . . .Φ(x j)

∫

RD
eix·p jU∗(x,1)Φ(x j+1) . . .Φ(xN)Ωdx

〉
= 0,

where the last identity is a result of applying the above formula to v = Φ(x j+1) . . .
Φ(xN)Ω whenever p j /∈C+. Hence,

ŵN(p1, . . . , pN−1) = 0

if p j /∈C+ for at least one index j. �
Having established the basic properties of the Wightman functions we now ex-

plain how a sequence of distributions with the properties WD 1–4 induce a Wight-
man QFT by the following:

Theorem 8.18. (Wightman Reconstruction Theorem) Given any sequence (WN),
WN ∈S ′(RDN), of tempered distributions obeying the conditions WD1–WD4, there
exists a Wightman QFT for which the WN are the Wightman distributions.

Proof. We first construct the Hilbert space for the Wightman QFT. Let

S :=
∞⊕

N=0

S (RDN)

denote the vector space of finite sequences f = ( fN) with fN ∈S (RDN) =: SN . On
S we define a multiplication

f ×g := (hN),hN :=
N

∑
k=0

fk(x1, . . . ,xk)gN−k(xk+1, . . . ,xN).

The multiplication is associative and distributive but not commutative. Therefore,
S is an associative algebra with unit 1 = (1,0,0, . . .) and with a convolution γ( f ) :=
( f N) = f . γ is complex antilinear and satisfies γ2 = id.

Our basic algebra S will be endowed with the direct limit topology and thus
becomes a complete locally convex space which is separable. (The direct limit
topology is the finest locally convex topology on S such that the natural inclu-
sions S (RDN)→S are continuous.) The continuous linear functionals μ : S →C

are represented by sequences (μN) of tempered distributions μN ∈S ′
N : μ(( fN)) =

∑μN( fN).
Such a functional is called positive semi-definite if μ( f × f ) ≥ 0 for all f ∈S

because the associated bilinear form ω = ωμ given by ω( f ,g) := μ( f ×g) is pos-
itive semi-definite. For a positive semi-definite continuous linear functional μ the
subspace
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J = { f ∈S : μ( f × f ) = 0}
turns out to be an ideal in the algebra S .

It is not difficult to show that in the case of a positive semi-definite μ ∈S ′ the
form ω is hermitian and defines on the quotient S /J a positive definite hermitian
scalar product. Therefore, S /J is a pre-Hilbert space and the completion of this
space with respect to the scalar product is the Hilbert space H needed for the recon-
struction. This construction is similar to the so-called GNS construction of Gelfand,
Naimark, and Segal.

The vacuum Ω ∈ H will be the class of the unit 1 ∈S and the field operator Φ
is defined by fixing Φ( f ) for any test function f ∈S on the subspace D = S /J of
classes [g] of elements of S by

Φ( f )([g]) := [g× f ],

where f stands for the sequence (0, f ,0, . . . ,). Evidently,Φ( f ) is an operator defined
on D depending linearly on f . Moreover, for h,g ∈S the assignment

f �→ 〈[h],Φ( f )([g])〉= μ(h× (g× f ))

is a tempered distribution because μ is continuous. This means that Φ is a field
operator in the sense of Definition 8.8. Obviously, Φ( f )D⊂ D and Ω ∈ D.

So far, the Wightman distributions WN have not been used at all. We consider now
the above construction for the continuous functional μ := (WN). Because of prop-
erty WD4 this functional is positive semi-definite and provides the Hilbert space H

constructed above depending on (WN) together with a vacuum Ω and a field oper-
ator Φ. The properties of the Wightman distributions which eventually ensure that
the Wightman axioms for this construction are fulfilled are encoded in the ideal

J = { f = ( fN) ∈S :∑WN( f × f ) = 0}.

To show covariance, we first have to specify a unitary representation of the
Poincaré group P in H. This representation is induced by the natural action f �→
(q,Λ) f of P on S given by

(q,Λ) fn(x1, . . . ,xn) := f (Λ−1(x1−q), . . . ,Λ−1(xn−q))

for (q,Λ) ∈ L � M ∼= P. This action leads to a homomorphism P → GL(S ) and the
action respects the multiplication. Now, because of the covariance of the Wightman
distributions (property WD1) the ideal J is invariant, that is for f ∈ J and (q,Λ) ∈ P
we have (q,Λ) f ∈ J. As a consequence, U(q,Λ)([ f ]) := [(q,Λ) f )] is well-defined
on D⊂H with

〈U(q,Λ)([ f ]),U(q,Λ)([ f ])〉= 〈[ f ], [ f ]〉.
Altogether, this defines a unitary representation of P in H leaving Ω invariant

such that the field operator is equivariant. We have shown that the covariance axiom
W1 is satisfied.
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In a similar way, one can show that property WD2 implies W2 and property WD3
implies W3. Locality (property WD2) implies that J includes the ideal Jlc generated
by the linear combinations of the form

fN(x1, . . . ,xN) = g(x1, . . . ,x j,x j+1, . . . ,xN)−g(x1, . . . ,x j+1,x j, . . . ,xN)

with g(x1, . . . ,xN) = 0 for (x j+1−x j)2 ≥ 0. And property WD3 (spectrum condition)
implies that the ideal

Jsp := {( fN) : f0 = 0, f̂ (p1, . . . , pN) = 0 in a neighborhood of CN},

where CN = {p : p1 + . . .+ p j ∈C+, j = 1, . . . ,N}, is also contained in J. �

As a result of this section, in an axiomatic approach to quantum field theory the
Wightman axioms W1–W3 on the field operators can be replaced by the equivalent
properties or axioms WD1–WD4 on the corresponding correlation functions WN ,
the Wightman distributions. This second approach is formulated without explicit
reference to the Hilbert space.

In the next section we come to a different but again equivalent description of
the axiomatics which is formulated completely in the framework of Euclidean
geometry.

8.5 Analytic Continuation and Wick Rotation

In this section we explain how the Wightman axioms induce a Euclidean field theory
through analytic continuation of the Wightman distributions.

We first collect some results and examples on analytic continuation of holomor-
phic functions. Recall that a complex-valued function F : U →C on an open subset
U ⊂ C

n is holomorphic or analytic if it has complex partial derivatives ∂
∂ z j F = ∂ jF

on U with respect to each of its variables z j or, equivalently, if F can be expanded
in each point a ∈U into a convergent power series ∑cαzα such that

F(a+ z) = ∑
α∈Nn

cαzα

for z in a suitable open neighborhood of 0. The partial derivatives of F in a of any
order exist and appear in the power series expansions in the form ∂αF(a) = α!cα .

A holomorphic function F on a connected domain U ⊂ C
n is completely deter-

mined by the restriction F |W to any nonempty open subset W ⊂U or by any of its
germs (that is power series expansion) at a point a ∈U . This property leads to the
phenomenon of analytic continuation, namely that a holomorphic function g on an
open subset W ⊂ C

n may have a so-called analytic continuation to a holomorphic
F : U → C, that is F |W = g, which is uniquely determined by g.
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A different type of analytic continuation occurs if a real analytic function g :
W → C on an open subset W ⊂ R

n is regarded as the restriction of a holomorphic
F : U → C where U is an open subset in C

n with U ∩R
n = W . Such a holomorphic

function F is obtained by simply exploiting the power series expansions of the real
analytic function g: For each a∈W there are cα ∈C and r j(a) > 0, j = 1, . . . ,n, such
that g(a+ x) = ∑α cαxα for all x with |x j|< r j(a). By inserting z ∈ C, |z j|< r j(a),
instead of x into the power series we get such an analytic continuation defined on
the open neighborhood U = {a+ z ∈ C

n : a ∈W, |z j|< r j(a)} ⊂ C
n of W .

Another kind of analytic continuation is given by the Laplace transform. As an
example in one dimension let u : R+ → C be a polynomially bounded continuous
function on R+ = {t ∈ R : t > 0}.

Then the integral (“Laplace transform”)

L (u)(z) = F(z) :=
∫ ∞

0
u(t)eitzdt, Im z ∈ R+,

defines a holomorphic function F on the “tube” domain U = R×R+ ⊂C such that,

lim
y↘0

F(x+ iy) = g(x) where g(x) :=
∫ ∞

0
u(t)eitxdt.

In this situation the g(x) are sometimes called the boundary values of F(z). The
analytic continuation is given by the Laplace transform.

Of course, the integral exists because of |u(t)eitz| = |u(t)e−ty| ≤ |u(x)| for z =
x + iy ∈U and t ∈ R+. F is holomorphic since we can interchange integration and
derivation to obtain

d
dz

F(z) = F ′(z) = i
∫ ∞

0
tu(t)eitzdt.

We now present a result which shows how in a similar way even a distribution
T ∈S (Rn)′ can, in principle, be continued analytically from R

n into an open neigh-
borhood U ⊂ C

n of R
n and in which sense T is a boundary value of this analytic

continuation.
Let C ⊂ R

n be a convex cone with its dual C′ := {p ∈ R
n : p · x≥ 0∀ x ∈C} and

assume that C′ has a nonempty interior C◦. Let T := R
n × (−C◦) be the induced

open tube in C
n. Here, the dot “·” represents any scalar product on R

n, that is any
symmetric and nondegenerate bilinear form.

The particular case in which we are mainly interested is the case of the forward
cone C = C+ in R

D = R
1,D−1 with respect to the Minkowki scalar product. Here,

the cone C is self-dual C′ = C and C◦ is the open forward cone

C◦ =
{

x ∈ R
1,D−1 : x2 =<x,x> > 0,x0 > 0

}

and T = R
n× (−C◦) is the backward tube.

Theorem 8.19. For every distribution T ∈S (Rn)′ whose Fourier transform has its
support in the cone C there exists an analytic function F on the tube T ⊂ C

n with
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• |F(z)| ≤ c(1 + |z|)k(1 + de(z,∂T ))−m for suitable c ∈ R, k,m ∈ N. (Here, de is
the Euclidean distance in C

n = R
2n.)

• T is the boundary value of the holomorphic function F in the following sense.
For any f ∈S and y ∈ −C◦ ⊂ R

n:

lim
t↘0

∫

Rn
f (x)F(x+ ity)dx = T ( f ),

where the convergence is the convergence in S ′.

Proof. Let us first assume that T̂ is a polynomially bounded continuous function
g = g(p) with support in C. In that case the (Laplace transform) formula

F(z) := (2π)−n
∫

Rn
g(p)e−ip·zd p, z ∈T ,

defines a holomorphic function fulfilling the assertions of the theorem. Indeed, since
the exponent −ip · z = −ip · x + p · y has a negative real part p · y < 0 for all z =
x + iy ∈ T = R

n× (−C◦) the integral is well-defined. F is holomorphic in z since
one can take derivatives under the integral. To show the bounds is straightforward.
Finally, for y ∈ −C◦ and f ∈S (Rn) the limit of

∫
f (x)F(x+ ity)dx =

∫
f (x)
(

(2π)−n
∫

g(p)e−ip·xet p·yd p

)
dx

for t ↘ 0 is
∫

f (x)F−1g(x)dx = T ( f ).
Suppose now that T̂ is of the form P(−i∂ )g for a polynomial P ∈ C[X1, . . . ,Xn]

and g a polynomially bounded continuous function with support in C. Then

F(z) = P(z)(2π)−n
∫

Rn
g(p)e−ip·zd p,z ∈T ,

satisfies all conditions since F (P(x)F−1g) = P(−i∂ )g = T̂ .
Now the theorem follows from a result of [BEG67*] which asserts that for any

distribution S ∈ S ′ with support in a convex cone C there exists a polynomial P
and a polynomially bounded continuous function g with support in C and with S =
P(−i∂ )g. �

We now draw our attention to the Wightman distributions.

Analytic Continuation of Wightman Functions. Given a Wightman QFT with
field operator Φ : S (R1,D−1) −→ O (cf. Sect. 8.3) we explain in which sense and
to which extent the corresponding Wightman distributions (cf. Sect. 8.4)

WN ∈S ′(RDN)

can be continued analytically to an open connected domain UN ⊂ C
DN of the com-

plexification
C

DN ∼= R
DN ⊗C
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of R
DN .

The Minkowski inner product will be continued to a complex-bilinear form on
C

D by 〈z,w〉= z ·w = z0w0−∑D−1
j=1 z jw j.

An important and basic observation in this context is the possibility of identifying
the Euclidean R

D with the real subspace

E := {(it,x1, . . . ,xD−1) ∈ C
D : (t,x1, . . . ,xD−1) ∈ R

D}

the “Euclidean points” of C
D, since

〈(it,x1, . . . ,xD−1),(it,x1, . . . ,xD−1)〉=−t2−
D−1

∑
j=1

x jx j.

The Wightman distributions WN will be analytically continued in three steps into
open subsets UN containing a great portion of the Euclidean points EN , so that the
restrictions of the analytically continued Wightman functions WN to UN ∩EN define
a Euclidean field theory.
We have already used the fact that WN is translation-invariant and therefore depends
only on the differences ξ j := x j− x j+1, j = 1, . . . ,N−1:

wN(ξ1, . . . ,ξN−1) := WN(x1, . . . ,xN).

Each wN is the inverse Fourier transform of its Fourier transform ŵN , that is

wN(ξ1, . . . ,ξN−1) =

(2π)−D(N−1)
∫

RD(N−1)
ŵN(ω1, . . . ,ωN−1)e−i∑kωk·ξk dω1 . . .dωN−1 (8.7)

with

ŵN(ω1, . . . ,ωN−1) =
∫

RD(N−1)
w(ξ1, . . . ,ξN−1)ei∑kωk·ξk dξ1 . . .dξN−1.

By the spectrum condition the Fourier transform ŵN(ω1, . . . ,ωN−1) vanishes if
one of the ω1, . . . ,ωN−1 lies outside the forward cone C+ (cf. 8.17).

If we now take complex vectors ζk = ξk + iηk ∈C
D instead of the ξk in the above

formula for wN , then the integrand in (8.7) has the form

ŵN(ω)e−i∑kωk·ξk e∑kωk·ηk ,

and the corresponding integral will converge if ηk fulfills ∑kωk ·ηk < 0 for all ωk in
the forward cone. With the N-fold backward tube TN = (RD× (−C◦))N ⊂ (CD)N

this approach leads to the following result whose proof is similar to the proof of
Theorem 8.19.

Proposition 8.20. The formula

wN(ζ ) = (2π)−D(N−1)
∫

ŵN(ω)e−i∑kωk·ζk dω,ζ ∈TN−1,
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provides a holomorphic function in TN−1 with the property

lim
t↘0

wN(ξ + itη) = wN(ξ )

if ξ + iη ∈TN−1 and where the convergence is the convergence in S ′(RD(N−1)).

As a consequence, the Wightman distributions have analytic continuations to
{z ∈ (CD)N : Im(z j+1− z j) ∈C◦}.

This first step of analytic continuation is based on the spectrum condition. In a
second step the covariance is exploited.

The covariance implies that the identity

wN(ζ1, . . . ,ζN−1) = wN(Λζ1, . . . ,ΛζN−1) (8.8)

holds for (ζ1, . . . ,ζN−1)∈ (RD)N−1 and Λ∈ L. Since analytic continuation is unique
the identity also holds for (ζ1, . . . ,ζN−1) ∈TN−1 for those (ζ1, . . . ,ζN−1) satisfying
(Λζ1, . . . ,ΛζN−1) ∈TN−1.

Moreover, the identity (8.8) extends to transformations Λ in the (proper) complex
Lorentz group L(C). This group L(C) is the component of the identity of the group
of complex D×D-matrices Λ satisfying Λz ·Λw = z ·w with respect to the complex
Minkowski scalar product. This follows from the covariance and the fact that

Λ �→ wN(Λζ1, . . . ,ΛζN−1)

is holomorphic in a neighborhood of id
CD in L(C). By the identity (8.8) one obtains

an analytic continuation of wN to (Λ−1(TN−1))N−1.
Let

T e
N =
⋃
{Λ(TN) : Λ ∈ L(C)}

be the extended tube whereΛ(TN) = {(Λζ1, . . . ,ΛζN) : (ζ1, . . . ,ζN)∈TN}. We have
shown

Proposition 8.21. wN has an analytic continuation to the extended tube T e
N−1.

While the tube TN has no real points (that is points with only real coordinates
z j ∈ R

D) as is clear from the definition of the tube, the extended tube contains real
points.

For example, in the case N = 1 let x ∈ R
D be a real point with x · x < 0. We can

assume x2 = x3 = . . . = xD−1 = 0 with |x1|> |x0| by rotating the coordinate system.
The complex Lorentz transformation w = Λz, w0 = iz1,w1 = iz0 produces w = Λx
with Im w0 = x1, Im w1 = x0, thus Im w · Im w = (x1)2− (x0)2 > 0 and Λx ∈C◦ if
x1 < 0. In the case x1 > 0 one takes the transformation w = Λ′z,w0 = −iz1,w1 =
−iz0. These two transformations are indeed in L(C) since they can be connected
with the identity by Λ(θ) acting on the first two variables by
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Λ(θ) =
(

cosh iθ sinh iθ
sinh iθ cosh iθ

)
=
(

cosθ isinθ
isinθ cosθ

)

and leaving the remaining coordinates invariant.
We have proven that any real x with x · x < 0 is contained in the extended tube

T e
1 . Similarly, one can show the converse, namely that a real x point of T e

1 satisfies
x · x < 0. In particular, the subset R

D∩T e
1 is open and not empty.

For general N, we have the following theorem due to Jost:

Theorem 8.22. A real point (ζ1, . . . ,ζN) lies in the extended tube T e
N if and only if

all convex combinations

N

∑
j=1

t jζ j,
N

∑
j=1

t j = 1, t j ≥ 0,

are space-like, that is (∑N
j=1 t jζ j)2 < 0.

In the third step of analytic continuation we exploit the locality. For a permutation
σ ∈ SN , that is a permutation of {1, . . . ,N}, let Wσ

N denote the Wightman distribution
where the coordinates are interchanged by σ :

Wσ
N (x1, . . . ,xN) := WN(xσ(1), . . . ,xσ(N)),

and denote wσ
N(ξ1, . . . ,ξN−1) = WN(xσ(1), . . . ,xσ(N)),ξ j = x j− x j+1.

Proposition 8.23. Let wN and wσ
N be the holomorphic functions defined on the ex-

tended tube T e
N−1 by analytic continuation of the Wightman distributions wN and

wσ
N according to Proposition 8.21. Then these holomorphic functions wN and wσ

N
agree on their common domain of definition, which is not empty, and therefore de-
fine a holomorphic continuation on the union of their domains of definition.

This result will be obtained by regarding the permuted tube σT ′
N−1 which is

defined in analogy to ΛTN−1. The two domains T e
N−1 and σT e

N−1 have a nonempty
open subset V of real points ξ with ξ 2 < 0 in common according to Theorem 8.22.
Since all ξ j = x j − x j+1 are space-like, this implies that wN and wσ

N agree on this
open subset V and therefore wN and wσ

N agree in the intersection of the domains of
definition.

We eventually have the following result:

Theorem 8.24. wN has an analytic continuation to the permuted extended tube
T pe

N−1 =
⋃{σT e

N−1 : σ ∈ SN} and similarly WN has a corresponding analytic con-
tinuation to the permuted extended tube T pe

N . Moreover this tube contains all non-
coincident points of EN.

Here E is the space of Euclidean points, E := {(it,x1, . . . ,xD−1)∈C
D : (t,x1, . . . ,

xD−1) ∈ R
D}, and the last statement asserts that EN \Δ is contained in T pe

N where
Δ= {(x1, . . . ,xN) ∈ EN : x j = xk for some j �= k}.
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As a consequence the WN have an analytic continuation to EN \Δ and define the
so-called Schwinger functions

SN := WN |EN\Δ.

8.6 Euclidean Formulation

In order to state the essential properties of the Schwinger functions SN we use the
Euclidean time reflection

θ : E → E,(it,x1, . . . ,xD−1) �→ (−it,x1, . . . ,xD−1)

and its action Θ on

S+(RDN) = { f : EN → C : f ∈S (EN) with support in QN
+},

where

QN
+ = {(x1, . . . ,xN) : x j = (it j,x

1
j , . . . ,x

D−1
j ),0 < t1 < .. . < tN} :

Θ : S+(RDN)→S (RDN), Θ f (x1, . . . ,xN) := f (θx1, . . . ,θxN).

Theorem 8.25. The Schwinger functions SN are analytic functions SN : EN \Δ→C

satisfying the following axioms:

S1 (Covariance) SN(gx1, . . . ,gxN) = SN(x1, . . . ,xN) for Euclidean motions g =
(q,R),q ∈ R

D,R ∈ SO(D) (or R ∈ Spin(D)).

S2 (Locality) SN(x1, . . . ,xN) = SN(xσ(1), . . . ,xσ(N)) for any permutation σ .

S3 (Reflection Positivity)

∑
M,N

SM+N(Θ fM ⊗ fN)≥ 0

for finite sequences ( fN), fN ∈S+(RDN), where, as before,

gM ⊗ fN(x1, . . . ,xM+N) = gM(x1, . . . ,xM) fN(xM+1, . . . ,xM+N).

These properties of correlation functions are called the Osterwalder–Schrader
axioms.

Reconstruction. Several slightly different concepts are called reconstruction in the
context of axiomatic quantum field theory when Wightman’s axioms are involved
and also the Euclidean formulation (Osterwalder–Schrader axioms) is considered.
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For example from the axioms S1–S3 one can deduce the Wightman distributions
satisfying WD1–WD4 and this procedure can be called reconstruction. Moreover,
after this step one can reconstruct the Hilbert space (cf. Theorem 8.18) with the rel-
ativistic fields Φ as in W1–W3. Altogether, on the basis of Schwinger functions and
its properties we thus have reconstructed the relativistic fields and the corresponding
Hilbert space of states. This procedure is also called reconstruction.

But starting with S1–S3 one could, as well, build a Euclidean field theory by con-
structing a Hilbert space directly with the aid of S3 and then define the Euclidean
fields as operator-valued distributions similar to the reconstruction of the relativistic
fields as described in Sect. 8.4, in particular in the proof of the Wightman Recon-
struction Theorem 8.18. Of course, this procedure is also called reconstruction. In
the next chapter this kind of reconstruction is described with some additional details
in Sects. 9.2 and 9.3 in the two-dimensional case.

8.7 Conformal Covariance

The theories described in this chapter do not incorporate conformal symmetry, so
far. Let us describe how the covariance with respect to conformal mappings can be
formulated within the framework of the axioms. Recall (cf. Theorem 1.9) that the
conformal mappings not already included in the Poincaré group resp. the Euclidean
group of motions are the special conformal transformations

q �→ qb =
q−〈q,q〉b

1−2〈q,b〉+ 〈q,q〉〈b,b〉 , q ∈ R
n,

where b ∈ R
n, and the dilatations

q �→ qλ = eλq,q ∈ R
n,

where λ ∈ R.
The Wightman Axioms 8.3 are now extended in such a way that one requires U

to be a unitary representation U = U(q,Λ,b) of the conformal group SO(n,2) or
SO(n,2)/{±1} (cf. Sect. 2.2), resp. of its universal covering, such that in addition
to the Poincaré covariance

U(q,Λ)Φa(x)U(q,Λ)∗ =Φa(Λx),

the following has to be satisfied:

U(0,E,b)Φa(x)U(0,E,b)∗ = N(q,b)−haΦa(xb),

where N(x,b) = 1− 2〈q,b〉+ 〈q,q〉〈b,b〉 is the corresponding denominator and
where ha ∈R is a so-called conformal weight of the field Φa. Moreover, the confor-
mal covariance for the dilatations is
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U(λ )Φa(x)U(λ )∗ = eλdaΦa(xλ ),

with a similar weight da. Observe that N(x,b)−n resp. enλ is the Jacobian of the
transformation xb resp. xλ .

We now turn our attention to the two-dimensional case. Since the Lorentz
group of the Minkowski plane is isomorphic to the abelian group R (cf. Re-
mark 1.15) and the rotation group of the Euclidean plane is isomorphic to S, the
one-dimensional representations of the isometry groups are no longer trivial (as in
the higher-dimensional case). Consequently, in the covariance condition, in princi-
ple, these one-dimensional representations could occur, see also Remark 8.11. As
an example, one can expect that the Lorentz boosts

Λ=
(

coshχ sinhχ
sinhχ coshχ

)
, χ ∈ R,

in the two-dimensional case satisfy the following covariance condition:

U(Λ)Φa(x)U(Λ)∗ = eχsaΦa(Λx),

where sa would represent a spin of the field. Similarly, in the Euclidean case

U(Λ)Φa(x)U(Λ)∗ = eiαsaΦa(Λx),

if α is the angle of the rotation Λ.
It turns out that in two-dimensional conformal field theory this picture is even

refined further when formulating the covariance condition for the other confor-
mal transformations. The light cone coordinates are regarded separately in the
Minkowski case and similarly in the Euclidean case the coordinates are split into
the complex coordinate and its conjugate.

With respect to the Minkowski plane one first considers the restricted conformal
group (cf. Remark 2.16) only which is isomorphic to SO(2,2)/{±1} and not the full
infinite dimensional group of conformal transformations. With respect to the light
cone coordinates the restricted conformal group SO(2,2)/{±1} acts in the form of
two copies of SL(2,R)/{±1} (cf. Proposition 2.17). For a conformal transformation
g = (A+,A−),A± ∈ SL(2,R),

A+ =
(

a+ b+
c+ d+

)
, A− =

(
a− b−
c− d−

)
,

with the action

(A+,A−)(x+,x−) =
(

a+x+ +b+

c+x+ +d+
,

a−x−+b−
c−x−+d−

)
,

the covariance condition now reads
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U(g)Φa(x)U(g)∗ =
(

1
(c+x+ +d+)2

)h+
a
(

1
(c−x−+d−)2

)h−a
Φa(gx),

where the conformal weights h+
a ,h−a are in general independent of each other. Note

that the factor
1

(c+x+ +d+)2

is the derivative of

x+ �→ A+(x+) =
a+x+ +b+

c+x+ +d+
,

and therefore essentially the conformal factor.
The boost described above is given by g = (A+,A−) with a+ = exp 1

2χ =
d−,d+ = exp− 1

2χ = a−, the bs and cs being zero. By comparison we obtain

sa = h+
a −h−a ,

for the spins sa and, similarly, for the weights da related to the dilatations:

da = h+
a +h−a .

In the Euclidean case one writes the general point in the Euclidean plane as z =
x+ iy or t + iy and z = x− iy. The conformal covariance for the rotation w(z) = eiαz
will correspondingly be formulated by

U(Λ)Φa(z)U(Λ)∗ =
(

dw
dz

)ha
(

dw
dz

)ha

Φa(w),

where again ha,ha are independent. Equivalently, one writes

U(Λ)Φa(z,z)U(Λ)∗ =
(

dw
dz

)ha
(

dw
dz

)ha

Φa(w,w),

emphasizing the two components of z resp. w (cf. the Axiom 2 in the following
chapter). This is the formulation of covariance for other conformal transformations
as well.

References

[BLT75*] N.N. Bogolubov, A.A. Logunov, and I.T. Todorov. Introduction to Axiomatic Quantum
Field Theory. Benjamin, Reading, MA, 1975.

[BEG67*] J. Bros, H. Epstein, and V. Glaser. On the connection between analyticity and Lorentz
covariance of Wightman functions. Comm. Math. Phys. 6 (1967), 77–100.

[Haa93*] R. Haag. Local Quantum Physics. Springer-Verlag, Berlin, 2nd ed., 1993.



152 8 Axioms of Relativistic Quantum Field Theory

[JW06*] A. Jaffe and E. Witten. Quantum Yang-Mills theory. In: The Millennium Prize Prob-
lems, 129–152. Clay Mathematics Institute, Cambridge, MA, 2006.

[OS73] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions I. Comm.
Math. Phys. 31 (1973), 83–112.

[OS75] K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions II. Comm.
Math. Phys. 42 (1975), 281–305.

[RS80*] M. Reed and B. Simon. Methods of modern Mathematical Physics, Vol. 1: Functional
Analysis. Academic Press, New York, 1980.

[Rud73*] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.
[Simo74*] B. Simon. The P(φ)2 Euclidian (Quantum) Field Theory. Princeton Series in Physics,

Princeton University Press, Princeton, NJ, 1974.
[SW64*] R. F. Streater and A. S. Wightman. PCT, Spin and Statistics, and All That. Princeton

University Press, Princeton, NJ, 1964 (Corr. Third printing 2000).


