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The term “conformal field theory” stands for a variety of different formulations and
slightly different structures. The aim of the second part of these notes is to describe
some of these formulations and structures and thereby contribute to answering the
question of what conformal field theory is.

Conformal field theories are best described either by the way they appear and are
constructed or by properties and axioms which provide classes of conformal field
theories. The most common theories by examples are

• free bosons or fermions (σ -models on a torus),
• WZW-models1 for compact Lie groups and gauged WZW-models,
• coset and orbifold constructions of WZW-models.

Systematic descriptions of conformal field theory emphasizing the fundamental
structures and properties comprise

• various combinatorical approaches like the axioms of Moore–Seiberg [MS89],
Friedan–Shenker [FS87], or Segal [Seg88a].

• the Osterwalder–Schrader axioms with conformal invariance [FFK89],
• the vertex algebras or chiral algebras [BD04*] as their generalizations,

A common feature and essential point of all these approaches to conformal field
theory is the appearance of representations of the Virasoro algebra which play a
central role. The simple reason for this major role of the Virasoro is based on the
fact that the elements of the Virasoro algebra are symmetries of the quantum system
and these elements are regarded as the most important observables in conformal
field theory. In this context the generators Ln can be compared in their physical
significance to the momentum or angular momentum in conventional one-particle
quantum mechanics.

Since the Witt algebra W is a generating subalgebra of the infinitesimal clas-
sical conformal transformations of the Minkowski plane in each of the two light
cone variables (cf. Corollary 2.15 and Sect. 5.1), the set of all observables of con-
formal field theory contains the direct product Vir×Vir of two copies of the Vi-
rasoro algebra. (Note that after quantization, the Witt algebra has to be replaced
by its nontrivial central extension, the Virasoro algebra Vir, cf. Chaps. 3 and 4.)
In general, one assumes the full set Atot of observables to form an algebra which
decomposes into a direct product of algebras A ×A ′ containing the Virasoro alge-
bras Vir⊂A ,Vir⊂A ′. The two components of the full algebra of observables are
called chiral halves or holomorphic/antiholomorphic or similar.

As a consequence of the product structure, for many purposes one can restrict
the investigations to one “chiral half” of the theory in such a way that only Vir⊂A
resp. Vir ⊂ A ′ is studied. The restrictions to one chiral half requires among other
things to regard the light cone variables t+ and t− as completely independent vari-
ables, and, in the same way, the complex variables z and z as completely indepen-
dent. The identification of z with the complex conjugate only takes place when the
two chiral halves of the conformal field theory are combined.

1 WZW = Wess–Zumino–Witten



Restricting now to one chiral half A and, furthermore, restricting to the subalge-
bra Vir we are led, first of all, to study the representations of the Virasoro algebra.

In a certain way one could claim now that conformal field theory is the represen-
tation theory of the Virasoro algebra and of certain algebras (namely chiral algebras)
containing the Virasoro algebra. Therefore, in this second part of the notes we first
describe the representations of the Virasoro algebra (Chap. 6) and explain as an
example how the quantization of strings leads to a representation of the Virasoro
algebra (Chap. 7). Next we discuss the axiomatic approach to quantum field theory
according to Wightman as well as the Euclidean version according to Osterwalder–
Schrader (Chap. 8) and treat the case of two-dimensional conformal field theory
in a separate chapter (Chap. 9). In Chap. 10 we connect all these with the theory
of vertex algebras, and in Chap. 11 we present as an example of an application of
conformal field theory to complex algebraic geometry the Verlinde formula in the
context of holomorphic vector bundles and moduli spaces.





Chapter 6
Representation Theory of the Virasoro Algebra

Most of the results in this chapter can be found in [Kac80]. A general treat-
ment of the Virasoro algebra and its significance in geometry and algebra is given
in [GR05*].

6.1 Unitary and Highest-Weight Representations

Let V be a vector space over C.

Definition 6.1 (Unitary Representation). A representation ρ : Vir→ EndCV (that
is a Lie algebra homomorphism ρ) is called unitary if there is a positive semi-
definite hermitian form H : V ×V → C, so that for all v,w ∈V and n ∈ Z one has

H(ρ(Ln)v,w) = H(v,ρ(L−n)w),

H(ρ(Z)v,w) = H(v,ρ(Z)w).

Note that this notion of a unitary representation differs from that introduced in
Definition 3.7 where a unitary representation of a topological group G was defined
to be a continuous homomorphism G → U(H) into the unitary group of a Hilbert
space. This is so, because we do not consider any topological structure in Vir.

One requires that ρ(Ln) is formally adjoint to ρ(L−n), to ensure that ρ maps the
generators d

dθ , cos(nθ) d
dθ , sin(nθ) d

dθ (cf. Chap. 5) of the real Lie algebra Vect(S)
to skew-symmetric operators. Since

d
dθ

= iL0, cos(nθ)
d

dθ
= − i

2
(Ln +L−n), and

sin(nθ)
d

dθ
= −1

2
(Ln−L−n),

it follows from H(ρ(Ln)v,w) = H(v,ρ(L−n)w) that

H(ρ(D)v,w)+H(v,ρ(D)w) = 0
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for all

D ∈
{

d
dθ

,cos(nθ)
d

dθ
,sin(nθ)

d
dθ

}
.

So, in principle, these unitary representations of Vir can be integrated to pro-
jective representations Diff+(S)→ U(P(H)) (cf. Sect. 6.5), where H is the Hilbert
space given by (V,H).

Definition 6.2. A vector v∈V is called a cyclic vector for a representation ρ : Vir→
End(V ) if the set

{ρ(X1) . . .ρ(Xm)v : Xj ∈ Vir for j = 1, . . .m ,m ∈ N}

spans the vector space V .

Definition 6.3. A representation ρ : Vir→ End(V ) is called a highest-weight repre-
sentation if there are complex numbers h,c ∈ C and a cyclic vector v0 ∈V , so that

ρ(Z)v0 = cv0,

ρ(L0)v0 = hv0,and

ρ(Ln)v0 = 0 for n ∈ Z,n≥ 1.

The vector v0 is then called the highest-weight vector (or vacuum vector) and V
is called a Virasoro module (via ρ) with highest weight (c,h), or simply a Virasoro
module for (c,h).

Such a representation is also called a positive energy representation if h ≥ 0.
The reason of this terminology is the fact that L0 often has the interpretation of
the energy operator which is assumed to be diagonalizable with spectrum bounded
from below. With this assumption any representation ρ respecting this property sat-
isfies ρ(Ln)v0 = 0 for all n ∈ Z ,n > 0, if v0 is an eigenvector of ρ(L0) with lowest
eigenvalue h ∈ R. This follows from the fact that w = ρ(Ln)(v0) is an eigenvec-
tor of ρ(L0) with eigenvalue h− n or w = 0 as can be seen by using the relation
L0Ln = LnL0−nLn:

ρ(L0)(w) = ρ(Ln)ρ(L0)v0−nρ(Ln)v0 = ρ(Ln)(hv0)−nw = (h−n)w .

Now, since h is the lowest eigenvalue of ρ(L0), w has to vanish for n > 0.
The notation often used by physicists is |h〉 instead of v0 and Ln|h〉 instead of

ρ(Ln)v0 so that, in particular, L0|h〉= h|h〉.

6.2 Verma Modules

Definition 6.4. A Verma module for c,h ∈C is a complex vector space M(c,h) with
a highest-weight representation
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ρ : Vir→ EndC(M(c,h))

and a highest-weight vector v0 ∈M(c,h), so that

{ρ(L−n1) . . .ρ(L−nk)v0 : n1 ≥ . . .≥ nk > 0 , k ∈ N}∪{v0}

is a vector space basis of M(c,h).

Every Verma module M(c,h) yields a highest-weight representation with highest
weight (c,h). For fixed c,h ∈ C the Verma module M(c,h) is unique up to isomor-
phism. For every Virasoro module V with highest weight (c,h) there is a surjective
homomorphism M(c,h)→V , which respects the representation. This holds, since

Lemma 6.5. For every h,c ∈ C there exists a Verma module M(c,h).

Proof. Let

M(c,h) := Cv0⊕
⊕

C{vn1...nk : n1 ≥ . . .≥ nk > 0 , k ∈ Z, k > 0}

be the complex vector space spanned by v0 and vn1,...,nk , n1 ≥ . . .≥ nk > 0. We define
a representation

ρ : Vir→ EndC(M(c,h))

by

ρ(Z) := c idM(c,h),

ρ(Ln)v0 := 0 for n ∈ Z,n≥ 1,

ρ(L0)v0 := hv0,

ρ(L0)vn1...nk :=
(
∑k

j=1 n j +h
)

vn1...nk ,

ρ(L−n)v0 := vn for n ∈ Z,n≥ 1,

ρ(L−n)vn1...nk := vnn1...nk for n≥ n1.

For all other vn1...nk with 1 ≤ n < n1 one obtains ρ(L−n)vn1...nk by permutation,
taking into account the commutation relations [Ln,Lm] = (n−m)Ln+m for n �= m,
e.g., for n1 > n≥ n2:

ρ(L−n)vn1...nk

= ρ(L−n)ρ(L−n1)vn2...nk

= (ρ(L−n1)ρ(L−n)+(−n+n1)ρ(L−(n+n1)))vn2...nk

= vn1nn2...nk +(n1−n)v(n1+n)n2...nk
.

So
ρ(L−n)vn1...nk := vn1nn2...nk +(n1−n)v(n1+n)n2...nk

.

Similarly one defines ρ(Ln)vn1...nk for n ∈ N taking into account the commutation
relations, e.g.,
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ρ(Ln)vn1 :=

⎧
⎪⎨

⎪⎩

0 for n > n1

(2nh+ n
12 (n2−1)c)v0 for n = n1

(n+n1)vn1−n for 0 < n < n1.

Hence, ρ is well-defined and C-linear. It remains to be shown that ρ is a repre-
sentation, that is

[ρ(Ln),ρ(Lm)] = ρ([Ln,Lm]).

For instance, for n≥ n1 we have

[ρ(L0),ρ(L−n)]vn1...nk

= ρ(L0)vnn1...nk −ρ(L−n)
(
∑n j +h

)
vn1...nk

=
(
∑n j +n+h

)
vnn1...nk −

(
∑n j +h

)
vnn1...nk

= nvnn1...nk

= nρ(L−n)vn1...nk

= ρ([L0,L−n])vn1...nk

and for n≥ m≥ n1

[ρ(L−m),ρ(L−n)]vn1...nk

= ρ(L−m)vnn1...nk − vnmn1...nk

= vnmn1...nk +(n−m)v(n+m)n1...nk
− vnmn1...nk (s.o.)

= (n−m)v(n+m)n1...nk

= (n−m)ρ(L−(m+n))vn1...nk

= ρ([L−m,L−n])vn1...nk .

The other identities follow along the same lines from the respective definitions. �

M(c,h) can also be described as an induced representation, a concept which is
explained in detail in Sect. 10.49. To show this, let

B+ := C{Ln : n ∈ Z,n≥ 0}⊕CZ.

B+ is a Lie subalgebra of Vir. Let σ : B+ → EndC(C) be the one-dimensional
representation with σ(Z) := c, σ(L0) := h, and σ(Ln) = 0 for n ≥ 1. Then the rep-
resentation ρ described explicitly above is induced by σ on Vir with representation
module

U(Vir)⊗U(B+) C∼= M(c,h).

(U(g) is the universal enveloping algebra of a Lie algebra g, see Definition 10.45.)

Remark 6.6. Let V be a Virasoro module for c,h ∈C. Then we have the direct sum
decomposition V =

⊕
N∈NVN , where V0 := Cv0 and VN for N ∈ N is, N > 0, the

complex vector space generated by
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ρ(L−n1) . . .ρ(L−nk)v0

with n1 ≥ . . .≥ nk > 0 ,
k

∑
j=1

n j = N , k ∈ N, k > 0.

The VN are eigenspaces of ρ(L0) for the eigenvalue (N +h), that is

ρ(L0) |VN = (N +h)idVN .

This follows from the definition of a Virasoro module and from the commutation
relations of the Lm.

Lemma 6.7. Let V be a Virasoro module for c,h∈C and U a submodule of V . Then

U =
⊕

N∈N0

(VN ∩U).

A submodule of V is an invariant linear subspace of V , that is a complex-linear
subspace U of V with ρ(D)U ⊂U for D ∈ Vir.

Proof. Let w = w0⊕ . . .⊕ws ∈U , where w j ∈Vj for j ∈ {1, . . . ,s}. Then

w = w0 + . . . + ws,
ρ(L0)w = hw0 + . . . + (s+h)ws,

...
ρ(L0)s−1w = hs−1w0 + . . . + (s+h)s−1ws.

This is a system of linear equations for w0, . . . ,ws with regular coefficient matrix.
Hence, the w0, . . . ,ws are linear combinations of the w, . . . ,ρ(L0)s−1w∈U . So w j ∈
Vj ∩U . �

6.3 The Kac Determinant

We are mainly interested in unitary representations of the Virasoro algebra, since the
representations of Vir appearing in conformal field theory shall be unitary. To find a
suitable hermitian form on a Verma module M(c,h), we need to define the notion of
the expectation value 〈w〉 of a vector w∈M(c,h): with respect to the decomposition
M(c,h) =

⊕
VN according to Lemma 6.7, w has a unique component w′ ∈ V0. The

expectation value is simply the coefficient 〈w〉 ∈C of this component w′ for the basis
{v0}, that is w′ = 〈w〉v0. (〈w〉 makes sense for general Virasoro modules as well.)

Let M = M(c,h), c,h ∈ R, be the Verma module with highest-weight represen-
tation ρ : Vir → EndC(M(c,h)) and let v0 be the respective highest-weight vector.
Instead of ρ(Ln) we mostly write Ln in the following. We define a hermitian form
H : M×M → C on the basis {vn1...nk}∪{v0}:
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H(vn1...nk ,vm1...m j) := 〈Lnk . . .Ln1 vm1...m j〉
= 〈Lnk . . .Ln1 L−m1 . . .L−m j v0〉.

In particular, this definition includes

H(v0,v0) := 1 and H(v0,vn1...nk) := 0 =: H(vn1...nk ,v0).

The condition c,h ∈ R implies H(v,v′) = H(v′,v) for all basis vectors

v,v′ ∈ B := {vn1...nk : n1 ≥ . . .≥ nk > 0}∪{v0}.

The elementary but lengthy proof of this statement consists in a repeated use of
the commutation relations of the Lns. Now, the map H : B×B→R has an R-bilinear
continuation to M×M, which is C-antilinear in the first and C-linear in the second
variable:

For w,w′ ∈ M with unique representations w = ∑λ jw j, w′ = ∑μkw′k relative to
basis vectors w j,w′k ∈ B, one defines

H(w,w′) :=∑∑λ jμkH(w j,w
′
k).

H : M×M→C is a hermitian form. However, it is not positive definite or positive
semi-definite in general. Just in order to decide this, the Kac determinant is used. H
has the following properties:

Theorem 6.8. Let h,c ∈ R and M = M(c,h).

1. H : M×M →C is the unique hermitian form satisfying H(v0,v0) = 1, as well as
H(Lnv,w) = H(v,L−nw) and H(Zv,w) = H(v,Zw) for all v,w ∈M and n ∈ Z.

2. H(v,w) = 0 for v ∈ VN, w ∈ VM with N �= M, that is the eigenspaces of L0 are
pairwise orthogonal.

3. kerH is the maximal proper submodule of M.

Proof.

1. That the identity
H(Lnv,w) = H(v,L−nw)

holds for the hermitian form introduced above can again be seen using the com-
mutation relations. The uniqueness of such a hermitian form follows immedi-
ately from

H(vn1...nk ,vm1...m j) = H(v0,Lnk . . .Ln1 vm1...m j).

2. For n1 + . . . + nk > m1 + . . . + m j the commutation relations of the Ln imply
that Lnk . . .Ln1 L−m1 . . .L−m j v0 can be written as a sum ∑Plv0, where the op-
erator Pl begins with an Ls, s ∈ Z, s ≥ 1, that is Pl = QlLs. Consequently,
H(vn1...nk ,vm1...m j) = 0.

3. kerH := {v ∈ M : H(w,v) = 0 ∀w ∈ M} is a submodule, because v ∈ kerH
implies Lnv ∈ kerH since H(w,Lnv) = H(L−nw,v) = 0. Naturally, M �= kerH
because v0 /∈ kerH. Let U ⊂M be an arbitrary proper submodule. To show U ⊂
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kerH, let w∈U . For n1 ≥ . . .≥ nk > 0 one has H(vn1...nk ,w)= H(v0,Lnk . . .Ln1 w).
Assume H(vn1...nk ,w) �= 0. Then 〈Lnk . . .Ln1 w〉 �= 0. By Lemma 6.7 this implies
v0 ∈ U (because Lnk . . .Ln1 w ∈ U), and also vm1...m j ∈ U , in contradiction to
M �= U . Similarly we get H(v0,w) = 0, so w ∈ kerH. �

Remark 6.9. M(c,h)
/

kerH is a Virasoro module with a nondegenerate hermitian
form H. However, H is not definite, in general.

Corollary 6.10. If H is positive semi-definite then c≥ 0 and h ≥ 0.

Proof. For n ∈ N, n > 0, we have

H(vn,vn) = H(v0,LnL−nv0)
= H(v0,ρ([Ln,L−n])v0)

= 2nh+
n
12

(n2−1)c.

H(v1,v1)≥ 0 implies h≥ 0. Then, from H(vn,vn)≥ 0 we get 2nh+ n
12 (n2−1)c≥ 0

for all n ∈ N, hence c≥ 0. �

Definition 6.11. Let P(N) := dimCVN and {b1, . . . ,bP(N)} be a basis of VN . We
define matrices AN by AN

i j := H(bi,b j) for i, j ∈ {1, . . . ,P(N)}.

Obviously, H is positive semi-definite if all these matrices AN are positive semi-
definite. For N = 0 and N = 1 one has A0 = (1) and A1 = (h) relative to the bases
{v0} and {v1}, respectively. V2 has {v2,v1,1} (v2 = L−2v0 and v1,1 = L−1L−1v0) as
basis. For instance,

H(v2,v2) = 〈L2L−2v0〉 = 〈L−2L2v0 +4L0v0 +
2

12
3cv0〉

= 4h+
1
2

c,

H(v1,1,v1,1) = 8h2 +4h,

H(v2,v1,1) = 6h.

Hence, the matrix A2 relative to {v2,v1,1} is

A2 =
(

4h+ 1
2 c 6h

6h 8h2 +4h.

)

A2 is (for c≥ 0 and h≥ 0) positive semi-definite if and only if

detA2 = 2h(16h2−10h+2hc+ c)≥ 0.

This condition restricts the choice of h ≥ 0 and c ≥ 0 even more if H has to be
positive semi-definite. In the case c = 1

2 , for instance, h must be outside the interval
] 1

16 , 1
2 [. (Taking into account the other AN , h can only have the values 0, 1

16 , 1
2 ; for

these values H is in fact unitary, see below.)
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Theorem 6.12. [Kac80] The Kac determinant det AN depends on (c,h) as follows:

det AN(c,h) = KN ∏
p,q∈N

pq≤N

(h−hp,q(c))P(N−pq),

where KN ≥ 0 is a constant which does not depend on (c,h), the P(M) is an in
Definition 6.11, and

hp,q(c) :=
1

48
((13− c)(p2 +q2)+

√
(c−1)(c−25)(p2−q2)

−24pq−2+2c).

A proof can be found in [KR87] or [CdG94], for example.
To derive detAN(c,h) > 0 for all c > 1 and h > 0 from Theorem 6.12, it makes

sense to define

ϕq,q := h−hq,q(c),
ϕp,q := (h−hp,q(c))(h−hq,p(c)), p �= q.

Then by Theorem 6.12 we have

det AN(c,h) = KN ∏
p,q∈N

pq≤N,p≤q

(ϕp,q)P(N−pq).

For 1≤ p,q≤ N and c > 1, h > 0 one has

ϕq,q(c) = h+
1
24

(c−1)(q2−1) > 0,

ϕp,q(c) =

(

h−
(

p−q
2

)2
)2

+
1

24
h(p2 +q2−2)(c−1)

+
1

576
(p2−1)(q2−1)(c−1)2

+
1
48

(c−1)(p−q)2(pq+1) > 0.

Hence, det AN(c,h) > 0 for all c > 1, h > 0.
So the hermitian form H is positive definite for the entire region c > 1, h > 0 if

there is just one example M(c,h) with c > 1, h > 0, such that H is positive definite.
We will find such an example in the context of string theory (cf. Theorem 7.11).

The investigation of the region 0 ≤ c < 1, h ≥ 0 is much more difficult. The
following theorem contains a complete description:

Theorem 6.13. Let c,h ∈ R.

1. M(c,h) is unitary (positive definite) for c > 1,h > 0.
1a. M(c,h) is unitary (positive semi-definite) for c≥ 1,h≥ 0.
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2. M(c,h) is unitary for 0 ≤ c < 1 , h > 0 if and only if there exists some m ∈
N, m > 0, so that c = c(m) and h = hp,q(m) for 1≤ p≤ q < m with

hp,q(m) :=
((m+1)p−mq)2−1

4m(m+1)
, m ∈ N,

c(m) := 1− 6
m(m+1)

, m ∈ N\{1}.

For the proof of 2: Using the Kac determinant, Friedan, Qiu, and Shenker have
shown in [FQS86] that in the region 0≤ c < 1 the hermitian form H can be unitary
only for the values of c = c(m) and h = hp,q(m) stated in 2. Goddard, Kent, and Olive
have later proven in [GKO86], using Kac–Moody algebras, that M(c,h) actually
gives a unitary representation in all these cases.

If M(c,h) is unitary and positive semi-definite, but not positive definite, we let

W (c,h) := M(c,h)/kerH.

Now W (c,h) is a unitary highest-weight representation (positive definite).

Remark 6.14. Up to isomorphism, for every c,h ∈ R there is at most one positive
definite unitary highest-weight representation, which must be W (c,h). If ρ : Vir→
EndC(V ) is a positive definite unitary highest-weight representation with vacuum
vector v′0 ∈V and hermitian form H ′, the map

v0 �→ v′0, vn1...nk �→ ρ(L−n1 . . .L−nk)v0,

defines a surjective linear homomorphism ϕ : M(c,h)→V , which respects the her-
mitian forms H and H ′:

H ′(ϕ(v),ϕ(w)) = H(v,w).

Therefore, H is positive semi-definite and ϕ factorizes over W (c,h) as a homomor-
phism ϕ : W (c,h)→V .

6.4 Indecomposability and Irreducibility of Representations

Definition 6.15. M is indecomposable if there are no invariant proper subspaces
V,W of M, so that M = V ⊕W . Otherwise M is decomposable.

Definition 6.16. M is called irreducible if there is no invariant proper subspace V of
M. Otherwise M is called reducible.
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Theorem 6.17. For each weight (c,h) we have the following:

1. The Verma module M(c,h) is indecomposable.
2. If M(c,h) is reducible, then there is a maximal invariant subspace I(c,h), so that

M(c,h)
/

I(c,h) is an irreducible highest-weight representation.
3. Any positive definite unitary highest-weight representation (that is W(c,h), see

above) is irreducible.

Proof.

1. Let V,W be invariant subspaces of M = M(c,h), and M =V⊕W . By Remark 6.7,
we have the direct sum decompositions

V =
⊕

(Mj ∩V ) and W =
⊕

(Mj ∩W ).

Since dimM0 = 1, this implies (M0 ∩V ) = 0 or (M0 ∩W ) = 0. So the highest-
weight vector v0 is contained either in V or in W . From the invariance of V and
W it follows that V = M or W = M.

2. Let I(c,h) be the sum of the invariant proper subspaces of M. Then I(c,h) is
an invariant proper subspace of M and M(c,h)

/
I(c,h) is an irreducible highest-

weight representation.
3. Let V be a positive definite unitary highest-weight representation and U � V be

an invariant subspace. Then

U⊥ = {v ∈V : H(u,v) = 0 ∀u ∈U}

is an invariant subspace as well, since

H(u,Lnv) = H(L−nu,v) = 0

and U ⊕U⊥ = V . So 3 follows from 1. �

6.5 Projective Representations of Diff+(S)

We know the unitary representations ρc,h : Vir → End(Wc,h) for c ≥ 1,h ≥ 0 or
c = c(m), h = hp,q(m) from the discrete series, where Wc,h := W (c,h) is the unique
unitary highest-weight representation of the Virasoro algebra Vir described in the
preceding section. Let H := Ŵc,h be the completion of Wc,h with respect to its her-
mitean form. It can be shown that there is a linear subspace W̃c,h ⊂H, Wc,h ⊂ W̃c,h,
so that ρc,h(ξ ) has a linear continuation ρc,h(ξ ) on W̃c,h for all ξ ∈ Vir∩ (Vect(S)),
where ρc,h(ξ ) is an essentially self-adjoint operator. The representation ρc,h is inte-
grable in the following sense:

Theorem 6.18. [GW85] There is a projective unitary representation Uc,h : Diff+(S)
→U(P(H)), so that
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γ̂(exp(ρc,h(ξ ))) = Uc,h(exp(ξ ))

for all ξ ∈ Vect(S), that is for all real vector fields ξ in S. Furthermore, for X ∈
Vect(S)⊗C and ϕ ∈ Diff+(S) one has

Uc,h(ϕ)ρc,h(X) = (ρc,h(TϕX)+ cα(X ,ϕ))Uc,h(ϕ)

with a map α on Vect(S)×Diff+(S). Here, the Uc,h(ϕ) are suitable lifts to H of the
original Uc,h(ϕ) (cf. Chap. 3).

Further investigations in the setting of conformal field theory lead to representa-
tions of

• “chiral” algebras A ×A with Vir ⊂ A , Vir ⊂ A (here Vir is an isomorphic
copy of Vir and A as well as A are further algebras), e.g., A = U(ĝ) (univer-
sal enveloping algebra of a Kac–Moody algebra), but also algebras, which are
neither Lie algebras nor enveloping algebras of Lie algebras. (Cf., e.g., [BPZ84],
[MS89], [FFK89], [Gin89], [GO89].)

• Semi-groups E ×E with Diff+(S)⊂ E , Diff+(S)⊂ E . One discusses semi-group
extensions Diff+(S), because there is no complex Lie group with VectC(S) as
the associated Lie algebra (cf. 5.4). Interesting cases in this context are the semi-
group of Shtan and the semi-group of Neretin which are considered, for instance,
in [GR05*].

We just present a first example of such a semi-group here (for a survey cf.
[Gaw89]):

Example 6.19. Let q ∈ C, τ ∈ C, q = exp(2πiτ), |q| < 1, and Σq = {z ∈ C||q| ≤
|z| ≤ 1} be the closed annulus with outer radius 1 and inner radius |q|. Let g1,g2 ∈
Diff+(S) be real analytic diffeomorphisms on the circle S. Then one gets the fol-
lowing parameterizations of the boundary curves of Σq:

p1(eiθ ) := qg1(eiθ ), p2(eiθ ) := g2(eiθ ).

The mentioned semi-group E is the quotient of E0, where E0 is the set of pairs
(Σ , p′) of Riemann surfaces Σ with exactly two boundary curves parameterized by
p′ = (p′1, p′2), for which there is a q ∈ C and a biholomorphic map ϕ : Σq → Σ
(where p1, p2 is a parameterization of ∂Σq as above), so that ϕ ◦ p j = p′j. As a
set one has E = E0

/
∼, where ∼ means biholomorphic equivalence preserving the

parameterization. The product of two equivalence classes [(Σ , p′)], [(Σ ′, p′′)] ∈ E is
defined by “gluing” Σ and Σ ′, where we identify the outer boundary curve of Σ with
the inner boundary curve of Σ ′ taking into account the parameterizations.
The ansatz

Ac,h([Σq, p]) := const Uc,h(g−1
2 )qexp(ρc,h(L0))Uc,h(g1)

leads to a projective representation of E using Theorem 6.18.
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More general semi-groups can be obtained by looking at more general Riemann
surfaces, that is compact Riemann surfaces with finitely many boundary curves,
which are parameterized and divided into incoming (“in”) and outgoing (“out”)
boundary curves. The semi-groups defined in this manner have unitary representa-
tions as well (cf. [Seg91], [Seg88b], and [GW85]). Starting with these observations,
Segal has suggested an interesting set of axioms to describe conformal field theory
(cf. [Seg88a]).
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