
Chapter 4
Central Extensions of Lie Algebras
and Bargmann’s Theorem

In this chapter some basic results on Lie groups and Lie algebras are assumed to be
known, as presented, for instance, in [HN91] or [BR77]. For example, every finite-
dimensional Lie group G has a corresponding Lie algebra Lie G determined up to
isomorphism, and every differentiable homomorphism R : G → H of Lie groups
induces a Lie algebra homomorphism Lie R = Ṙ : Lie G → Lie H. Conversely, if
G is connected and simply connected, every such Lie algebra homomorphism ρ :
Lie G → Lie H determines a unique smooth Lie group homomorphism R : G → H
with Ṙ = ρ .

In addition, for the proof of Bargmann’s Theorem we need a more involved result
due to Montgomory and Zippin, namely the solution of one of Hilbert’s problems:
every topological group G, which is a finite-dimensional topological manifold (that
is every x ∈ G has an open neighborhood U with a topological map ϕ : U → R

n), is
already a Lie group (cf. [MZ55]): G has a smooth structure (that is, it is a smooth
manifold), such that the composition (g,h) → gh and the inversion g → g−1 are
smooth mappings.

4.1 Central Extensions and Equivalence

A Lie algebra a is called abelian if the Lie bracket of a is trivial, that is [X ,Y ] = 0
for all X ,Y ∈ a.

Definition 4.1. Let a be an abelian Lie algebra over K and g a Lie algebra over K

(the case of dimg = ∞ is not excluded). An exact sequence of Lie algebra homo-
morphisms

0−→ a−→ h
π−→ g−→ 0

is called a central extension of g by a, if [a,h] = 0, that is [X ,Y ] = 0 for all X ∈ a

and Y ∈ h. Here we identify a with the corresponding subalgebra of h.

For such a central extension the abelian Lie algebra a is realized as an ideal in h

and the homomorphism π : h→ g serves to identify g with h/a.
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Examples:

• Let
1−→ A

I−→ E
R−→ G−→ 1

be a central extension of finite-dimensional Lie groups A, E, and G with differen-
tiable homomorphisms I and R. Then, for İ = Lie I and Ṙ = Lie R the sequence

0−→ Lie A
İ−→ Lie E

Ṙ−→ Lie G−→ 0

is a central extension of Lie algebras.
• In particular, every central extension E of the Lie group G by U(1)

1−→ U(1)−→ E
R−→ G−→ 1

with a differentiable homomorphism R induces a central extension

0−→ R−→ Lie E
Ṙ−→ Lie G−→ 0

of the Lie algebra Lie G by the abelian Lie algebra R∼= i R∼= Lie U(1).
• This holds for infinite dimensional Banach Lie groups and their Banach Lie al-

gebras as well. For example, when we equip the unitary group U(H) with the
norm topology it becomes a Banach Lie group as a real subgroup of the com-
plex Banach Lie group GL(H) of all bounded and complex-linear and invertible
transformations H→H. Therefore, the central extension

1−→ U(1)−→ U(H)
γ̂−→ U(P)−→ 1

in Lemma 3.4 induces a central extension of Banach Lie algebras

0−→ R−→ u(H)−→u(P)−→ 0,

where u(H) is the real Lie algebra if bounded self-adjoint operators on H, and
u(P) is the Lie algebra of U(P)

In the same manner we obtain a central extension

0−→ R−→ u∼res(H)−→ures(H)−→ 0

by differentiating the corresponding exact sequence of Banach Lie groups
(cf. Proposition 3.17).

• A basic example in the context of quantization is the Heisenberg algebra H which
can be defined as the vector space

H := C[T,T−1]⊕CZ

with central element Z and with the algebra of Laurent polynomials C[T,T−1].
(This algebra can be replaced with the algebra of convergent Laurent series C(T )
or with the algebra of formal series C

[[
T,T−1
]]

to obtain the same results as for
C[T,T−1].) H will be equipped with the Lie bracket
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[ f ⊕λZ,g⊕μZ] :=∑k fkg−k Z,

f ,g ∈ C[T,T−1],λ ,μ ∈ C, where f = ∑ fnT n,g = ∑gnT n for the Laurent poly-
nomials f ,g ∈ C[T,T−1] with fn,gn ∈ C. (All the sums are finite and therefore
well-defined, since for f = ∑ fnT n ∈ C[T,T−1] only finitely many of the coeffi-
cients fn ∈ C are different from zero.)

One can easily check that the maps

i : C→ H, λ �→ λZ,

and
pr1 : H→ C[T,T−1], f ⊕λZ �→ f ,

are Lie algebra homomorphisms with respect to the abelian Lie algebra structures
on C and on C[T,T−1]. We thus have defined an exact sequence of Lie algebra
homomorphisms

0−→ C
i−→ H

pr1−→ C[T,T−1]−→ 0 (4.1)

with [λZ,g] = 0. As a consequence, the Heisenberg algebra H is a central exten-
sion of the abelian Lie algebra of Laurent polynomials C[T,T−1] by C.

Note that the Heisenberg algebra is not abelian although it is a central exten-
sion of an abelian Lie algebra.
The map

Θ : C[T,T−1]×C[T,T−1]→ C,( f ,g) �→∑k fkg−k,

is bilinear and alternating.Θ is called a cocycle in this context (cf. Definition 4.4),
and the significance of the cocycle lies in the fact that the Lie algebra structure
on the central extension H is determined by Θ since [ f +λZ,g+μZ] =Θ( f ,g)Z.
The cocycle Θ can also be described by the residue of f g′ at 0 ∈ C:

Θ( f ,g)=−Resz=0 f (z)g′(z).

This can be easily seen by using the expansion of the product f g′:

f g′(T ) = ∑
n∈Z

(

∑
k∈Z

(n− k +1) fkgn−k+1

)

T n.

To describe H in a slightly different way observe that the monomials an := T n,n∈
Z, form a basis of C[T,T−1]. Hence, the Lie algebra structure on the Heisenberg
algebra H is completely determined by

[am,an] = mδm+nZ, [Z,am] = 0.

Here, δk is used as an abbreviation of Kronecker’s δ 0
k .

• Another example which will be of interest in Chap. 10 in order to obtain relevant
examples of vertex algebras is the affine Kac–Moody algebra or current algebra
as a non-abelian generalization of the construction of the Heisenberg algebra. We
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begin with a Lie algebra g over C. For any associative algebra R the Lie algebra
structure on R⊗g is given by

[r⊗a,s⊗b] = rs⊗ [a,b] or [ra,sb] = rs[a,b].

Two special cases are R = C[T,T−1], the algebra of complex Laurent poly-
nomials, and R = C(T ), the algebra of convergent Laurent series. The follow-
ing construction and its main properties are valid for both these algebras and in
the same way also for the algebra of formal Laurent series of C(T ), which is
used in Chap. 10 on vertex algebras. Here, we treat the case R = C[T,T−1] with
the Lie algebra g[T,T−1] = C[T,T−1]⊗ g which is sometimes called the loop
algebra of g.

We fix an invariant symmetric bilinear form on g, that is a symmetric bilinear

(,) : g×g→ C, a,b �→ (a,b),

on g satisfying

([a,b],c) = (a, [b,c]).

The affinization of g is the vector space

ĝ := g[T,T−1]⊕CZ

endowed with the following Lie bracket

[T m⊗a,T n⊗b] := T m+n⊗ [a,b]+m(a,b)δm+nZ,

[T m⊗a,Z] := 0,

for a,b ∈ g and m,n ∈ Z. Using the abbreviations

am := T ma, bn := T nb,

this definition takes the form

[am,bn] = [a,b]m+n +m(a,b)δm+nZ.

It is easy to check that this defines a Lie algebra structure on ĝ and that the two
natural maps

i : C→ ĝ, λ �→ λZ,

pr1 : ĝ→ g[T,T−1], f ⊗a+μZ �→ f ⊗a,

are Lie algebra homomorphisms. We have defined an exact sequence of Lie
algebras

0−→ C
i−→ ĝ

pr1−→ g[T,T−1]−→ 0. (4.2)
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This exact sequence provides another example of a central extension, namely
the affinization ĝ of g as a central extension of the loop algebra g[T,T−1].

In the case of the abelian Lie algebra g = C we are back in the preceding
example of the Heisenberg algebra. As in that example there is a characterizing
cocycle on the loop algebra

Θ : g[T,T−1] × g[T,T−1]→ C,

(T ma,T nb) �→ m(a,b)δn+mZ,

determining the Lie algebra structure on ĝ.
In the particular case of a simple Lie algebra g there exists only one nonvan-

ishing invariant symmetric bilinear form on g (up to scalar multiplication), the
Killing form. In that case the uniquely defined central extension ĝ of the loop
algebra g[T,T−1] is called the affine Kac–Moody algebra of g.

• In a similar way the Virasoro algebra can be defined as a central extension of the
Witt algebra (cf. Chap. 5).

Definition 4.2. An exact sequence of Lie algebra homomorphisms

0−→ a−→ h
π−→ g−→ 0

splits if there is a Lie algebra homomorphism β : g→ h with π ◦β = idg. The ho-
momorphism β is called a splitting map. A central extension which splits is called
a trivial extension, since it is equivalent to the exact sequence of Lie algebra homo-
morphisms

0−→ a−→ a⊕g−→ g−→ 0.

(Equivalence is defined in analogy to the group case, cf. Definition 3.18.)

If, in the preceding examples of central extensions of Lie groups, the exact se-
quence of Lie groups splits in the sense of Definition 3.19 with a differentiable
homomorphism S : G → E as splitting map, then the corresponding sequence of
Lie algebra homomorphisms also splits in the sense of Definition 4.2 with splitting
map Ṡ. In general, the reverse implication holds for connected and simply connected
Lie groups G only. In this case, the sequence of Lie groups splits if and only if the
associated sequence of Lie algebras splits. All this follows immediately from the
properties stated at the beginning of this chapter.

Remark 4.3. For every central extension of Lie algebras

0−→ a−→ h
π−→ g−→ 0,

there is a linear map β : g→ h with π ◦β = idg (β is in general not a Lie algebra
homomorphism). Let

Θ(X ,Y ) := [β (X),β (Y )]−β ([X ,Y ]) f or X ,Y ∈ g.

Then β is a splitting map if and only if Θ= 0.
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It can easily be checked that the map Θ : g×g→ a (depending on β ) always has
the following properties:

1◦ Θ : g×g→ a is bilinear and alternating.
2◦ Θ(X , [Y,Z])+Θ(Y, [Z,X ])+Θ(Z, [X ,Y ]) = 0.

Moreover, h∼= g⊕a as vector spaces by the linear isomorphism

ψ : g×a→ h, X ⊕Y = (X ,Y ) �→ β (X)+Y.

Finally, with the Lie bracket on g⊕a given by

[X ⊕Z,Y ⊕Z′]h := [X ,Y ]g +Θ(X ,Y )

for X ,Y ∈ g and Z,Z′ ∈ a the map ψ is a Lie algebra isomorphism.
The Lie bracket on h can also be written as

[β (X)+Z,β (Y )+Z′] = β ([X ,Y ])+Θ(X ,Y ).

Here, we treat a as a subalgebra of h again.

Definition 4.4. A map Θ : g× g→ a with the properties 1◦ and 2◦ of Remark 4.3
will be called a 2-cocycle on g with values in a or simply a cocycle.

The discussion in Remark 4.3 leads to the following classification.

Lemma 4.5. With the notations just introduced we have

1. Every central extension h of g by a comes from a cocycle Θ : g×g→ a as in 4.3.
2. Every cocycle Θ : g×g→ a generates a central extension h of g by a as in 4.3.
3. Such a central extension splits (and this implies that it is trivial) if and only if

there is a μ ∈ HomK(g,a) with

Θ(X ,Y ) = μ([X ,Y ])

for all X ,Y ∈ g.

Proof.

1. is obvious from the preceding remark.
2. Let h be the vector space h := g⊕a. The bracket

[X ⊕Z,Y ⊕Z′]h := [X ,Y ]g⊕Θ(X ,Y )

for X ,Y ∈ g and Z,Z′ ∈ a is a Lie bracket if and only if Θ is a cocycle. Hence, h

with this Lie bracket defines a central extension of g by a.
3. Let σ : g → h = g⊕ a a splitting map, that is a Lie algebra homomorphism

with π ◦ σ = idg. Then σ has to be of the form σ(X) = X + μ(X), X ∈ g,
with a suitable μ ∈ HomK(g,a). From the definition of the bracket on h,
[σ(X),σ(Y )] = [X ,Y ]+Θ(X ,Y ) for X ,Y ∈ g. Furthermore, since σ is a Lie al-
gebra homomorphism, [σ(X),σ(Y )] = σ([X ,Y ]) = [X ,Y ]+μ([X ,Y ]). It follows
that Θ(X ,Y ) = μ([X ,Y ]). Conversely, if Θ has this form, it clearly satisfies 1◦
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and 2◦. The linear map σ : g→ h = g⊕a defined by σ(X) := X +μ(X), X ∈ g,
turns out to be a Lie algebra homomorphism:

σ([X ,Y ]) = [X ,Y ]g +μ([X ,Y ])
= [X ,Y ]g +Θ(X ,Y )
= [X +μ(X),Y +μ(Y )]h
= [σ(X),σ(Y )]h.

Hence, σ is a splitting map.

Examples of Lie algebras given by a suitable cocycle are the Heisenberg algebra
and the Kac–Moody algebras, see above, and the Virasoro algebra, cf. Chap. 5.

As in the case of groups, the collection of all equivalence classes of central ex-
tensions for a Lie algebra is a cohomology group.

Definition 4.6.

Alt2(g,a) := {Θ : g×g→ a|Θ satisfies condition 1◦}.
Z2(g,a) := {Θ ∈ Alt2(g,a)|Θ satisfies condition 2◦}.
B2(g,a) := {Θ : g×g→ a|∃μ ∈ HomK(g,a) : Θ= μ̃}.
H2(g,a) := Z2(g,a)/B2(g,a).

Here, μ̃ is given by μ̃(X ,Y ) := μ([X ,Y ]) for X ,Y ∈ g.

Z2 and B2 are linear subspaces of Alt2 with B2 ⊂ Z2. The above vector spaces
are, in particular, abelian groups. Z2 is the space of 2-cocycles and H2(g,a) is called
the second cohomology group of g with values in a. We have proven the following
classification of central extensions of Lie algebras.

Remark 4.7. The cohomology group H2(g,a) is in one-to-one correspondence with
the set of equivalence classes of central extensions of g by a.

Cf. Remark 3.27 for the case of group extensions.

4.2 Bargmann’s Theorem

We now come back to the question of whether a projective representation can be
lifted to a unitary representation.

Theorem 4.8 (Bargmann [Bar54]). Let G be a connected and simply connected,
finite-dimensional Lie group with

H2(Lie G,R) = 0.
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Then every projective representation T : G → U(P) has a lift as a unitary repre-
sentation S : G→U(H), that is for every continuous homomorphism T : G→U(P)
there is a continuous homomorphism S : G→ U(H) with T = γ̂ ◦S.

Proof. By Theorem 3.10, there is a central extension E of G and a homomorphism
T̂ : E → U(H), such that the following diagram commutes:

Here, E = {(U,g)∈U(H)×G|γ̂(U) = T g}, π = pr2, and T̂ = pr1. E is a topological
group as a subgroup of the topological group U(H)×G (cf. Proposition 3.11) and T̂
and π are continuous homomorphisms. The lower exact sequence has local contin-
uous sections, as we will prove in Lemma 4.9: For every A ∈ U(P) there is an open
neighborhood W ⊂ U(P) and a continuous map ν : W → U(H) with γ̂ ◦ ν = idW .
Let now V := T−1(W ). Then μ(g) := (ν ◦T (g),g), g ∈ V , defines a local contin-
uous section μ : V → E of the upper sequence because γ̂(ν ◦ T (g)) = T g, that is
(ν ◦T (g),g) ∈ E for g ∈ V . μ is continuous because ν and T are continuous. This
implies that

ψ : U(1)×V → π−1(V )⊂ E, (λ ,g) �→ (λν ◦T (g),g),

is a bijective map with a continuous inverse map

ψ−1(U,g) = (λ (U),g),

where λ (U) ∈ U(1) for U ∈ γ̂−1(W ) is given by the equation U = λ (U)ν ◦ γ̂(U).
Hence, the continuity ofψ−1 is a consequence of the continuity of the multiplication

U(1)×U(H)→ U(H), (λ ,U) �→ λU.

We have shown that the open subset π−1(V ) = (T ◦π)−1(W )⊂ E is homeomor-
phic to U(1)×V . Consequently, E is a topological manifold of dimension 1+dimG.
By using the theorem of Montgomory and Zippin mentioned above, the topological
group E is even a (1+dimG)-dimensional Lie group and the upper sequence

1−→ U(1)−→ E −→ G−→ 1

is a sequence of differentiable homomorphisms.
Now, according to Remark 4.7 the corresponding exact sequence of Lie algebras

0−→ Lie U(1)−→ Lie E −→ Lie G−→ 0



4.2 Bargmann’s Theorem 71

splits because of the condition H2(Lie G,R) = 0. Since G is connected and simply
connected, the sequence

1−→ U(1)−→ E −→ G−→ 1

splits with a differentiable homomorphism σ : G → E as splitting map: π ◦ σ =
idG. Finally, S := T̂ ◦σ is the postulated lift. S is a continuous homomorphism and
γ̂ ◦ T̂ = T ◦π implies γ̂ ◦S = γ̂ ◦ T̂ ◦σ = T ◦π ◦σ = T ◦ idG = T :

γ
�

Lemma 4.9. γ̂ : U(H)→ U(P) has local continuous sections and therefore can be
regarded as a principal fiber bundle with structure group U(1).

Proof. (cf. [Sim68, p. 10]) For f ∈H let

Vf := {U ∈ U(H) : 〈U f , f 〉 �= 0}.

Then Vf is open in U(H), since U �→U f is continuous in the strong topology. Hence,
U �→ 〈U f , f 〉 is continuous as well. (For the strong topology all maps U �→U f are
continuous by definition.) The set

Wf := γ̂(Vf ) = {T ∈ U(P) : δ (Tϕ,ϕ) �= 0}, ϕ = γ̂( f ),

is open in U(P) since γ̂−1(Wf ) = Vf is open. (The open subsets in U(P) are, by
Definition 3.6, precisely the subsets W ⊂U(P), such that γ̂−1(W )⊂U(H) is open.)
(Wf ) f∈H is, of course, an open cover of U(P). Let

β f : Vf → U(1), U �→ |〈U f , f 〉|
〈U f , f 〉 .

β f is continuous, since U �→ 〈U f , f 〉 is continuous. Furthermore, β f (eiθU) =
e−iθβ f (U) for U ∈ Vf and θ ∈ R, as one can see directly. One obtains a contin-
uous section of γ̂ over Wf by

ν f : Wf → U(H), γ̂(U) �→ β f (U)U.

ν f is well-defined, since U ′ ∈Vf with γ̂(U ′) = γ̂(U), that is U ′ = eiθU , implies

β f (U ′)U ′ = β f (eiθU)eiθU = β f (U)U.
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Now γ̂ ◦ν f = idWf , since

γ̂ ◦ν f (γ̂(U)) = γ̂(β f (U)U) = γ̂(U) for U ∈Vf .

Eventually, ν f is continuous: let V1 ∈ Wf and U1 = ν f (V1) ∈ ν f (Wf ). Then
β f (U1) = 1. Every open neighborhood of U1 contains an open subset

B = {U ∈Vf : ‖Ug j−U1g j‖< ε for j = 1, . . . ,m}

with ε > 0 and g j ∈H, j = 1, . . . ,m. The continuity of β f on Wf implies that there
are further gm+1, . . . ,gn ∈H, ‖g j‖= 1, so that |β f (U)−1|< ε

2 for

U ∈ B′ := {U ∈Vf : ‖Ug j−U1g j‖<
ε
2

for j = 1, . . . ,m, . . . ,n}.

The image D := γ̂(B′) is open, since

γ̂−1(D) =
⋃

λ∈U(1)

{U ∈Vf : ‖Ug j−λU1g j‖<
ε
2

for j = 1, . . . ,n}

is open. (We have shown that the map γ̂ : U(H) → U(P) is open.) Hence, D is an
open neighborhood of V1. ν f is continuous since ν f (D) ⊂ B: for P ∈ D there is a
U ∈ B′ with P = γ̂(U), that is ν f (P) = β f (U)U . This implies

‖ν f (P)g j−U1g j‖ ≤ ‖β f (U)Ug j−β f (U)U1g j‖
+‖(β f (U)−1)U1g j‖

<
ε
2

+
ε
2

for j = 1, . . . ,m, that is ν f (P) ∈ B. Hence, the image ν f (D) of the neighborhood D
of V1 is contained in B.

In spite of this nice result no reasonable differentiable structure seems to be
known on the unitary group U(H) and its quotient U(P) with respect to the strong
topology in order to prove a result which would state that U(H)→ U(P) is a differ-
entiable principal fiber bundle. The difficulty in defining a Lie group structure on the
unitary group lies in the fact that the corresponding Lie algebra should contain the
(bounded and unbounded) self-adjoint operators on H. In contrast to this situation,
with respect to the operator norm topology the unitary group is a Lie group.

E is by construction the fiber product of γ̂ and T . Since γ̂ is locally trivial by
Lemma 4.9 with general fiber U(1), this must also hold for E →G. Exactly this was
needed in the proof of Theorem 4.8, to show that E actually is a Lie group.

Remark 4.10. For every finite-dimensional semi-simple Lie algebra g over K one
can show H2(g,K) = 0 (cf. [HN91]). As a consequence of the above discussion we
thus have the following result which can be applied to the quantization of certain
important symmetries: if G is a connected and simply connected finite-dimensional
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Lie group with semi-simple Lie algebra Lie(G) = g, then every continuous repre-
sentation T : G → U(P) has a lift to a unitary representation. In particular, to every
continuous representation T : SU(N) → U(P) (resp. T : SL(2,C) → U(P)) there
corresponds a unitary representation S : SU(N)→ U(H) (resp. SL(2,C)→ U(H))
with γ̂ ◦S = T .

Note that SL(2,C) is the universal covering group of the proper Lorentz group
SO(3,1) and SU(2) is the universal covering group of the rotation group SO(3).
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