
Chapter 3
Central Extensions of Groups

The notion of a central extension of a group or of a Lie algebra is of particular
importance in the quantization of symmetries. We give a detailed introduction to the
subject with many examples, first for groups in this chapter and then for Lie algebras
in the next chapter.

3.1 Central Extensions

In this section let A be an abelian group and let G be an arbitrary group. The trivial
group consisting only of the neutral element is denoted by 1.

Definition 3.1. An extension of G by the group A is given by an exact sequence of
group homomorphisms

1−→ A
ι−→ E

π−→ G−→ 1.

Exactness of the sequence means that the kernel of every map in the sequence equals
the image of the previous map. Hence the sequence is exact if and only if ι is injec-
tive, π is surjective, the image im ι is a normal subgroup, and

kerπ = im ι(∼= A).

The extension is called central if A is abelian and its image im ι is in the center of
E, that is

a ∈ A,b ∈ E ⇒ ι(a)b = bι(a).

Note that A is written multiplicatively and 1 is the neutral element although A is
supposed to be abelian.

Examples:

• A trivial extension has the form

1−→ A
i−→ A×G

pr2−→ G−→ 1,
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where A×G denotes the product group and where i : A → G is given by a �→
(a,1). This extension is central.

• An example for a nontrivial central extension is the exact sequence

1−→ Z/kZ−→E = U(1) π−→ U(1)−→ 1

with π(z) := zk for k ∈N, k≥ 2. This extension cannot be trivial, since E = U(1)
and Z/kZ×U(1) are not isomorphic. Another argument for this uses the fact –
known for example from function theory – that a homomorphism τ : U(1)→ E
with π ◦ τ = idU(1) does not exist, since there is no global kth root.

• A special class of group extensions is given by semidirect products. For a group
G acting on another group H by a homomorphism τ : G→Aut(H) the semidirect
product group G�H is the set H×G with the multiplication given by the formula

(x,g).(x′,g′) := (xτ(g)(x′),gg′)

for (g,x),(g′,x′) ∈ G×H. With π(g,x) = x and ι(x) = (a,x), one obtains the
group extension

1−→ H
ι−→ G � H

π−→ G−→ 1.

For example, for a vector space V the general linear group GL(V ) of invert-
ible linear mappings acts naturally on the additive group V , τ(g)(x) = g(x), and
the resulting semidirect group GL(V )�V is (isomorphic to) the group of affine
transformations.

With the same action τ : GL(V )→ Aut(V ) the group of motions of R
p,q,n =

p+q > 2, as a semi-Riemannian space can be described as a semidirect product
O(p,q)� R

n (see the example in Sect. 1.4). As a particular case, we obtain the
Poincaré group as the semidirect group SO(1,3)�R

4 (cf. Sect. 8.1).
Observe that these examples of group extensions are not central, although the

additive group V (resp. R
n) of translations is abelian.

• The universal covering group of the Lorentz group SO(1,3) (that is the identity
component of the group O(1,3) of all metric-preserving linear maps R

1,3 →R
1,3)

is (isomorphic to) a central extension of SO(1,3) by the group {+1,−1}. In fact,
there is the exact sequence of Lie groups

1−→ {+1,−1}−→SL(2,C) π−→ SO(1,3)−→ 1,

where π is the 2-to-1 covering.
This is a special case of the general fact that for a given connected Lie group

G the universal covering group E of G is an extension of G by the group of deck
transformations which in turn is isomorphic to the fundamental group π(G) of G.

• Let V be a vector space over a field K. Then

1−→ K× i−→ GL(V ) π−→ PGL(V )−→ 1
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with i : K× → GL(V ),λ �→ λ idV , is a central extension by the (commutative)
multiplicative group K× = K\{0} of units in K. Here, the projective linear group
PGL(V ) is simply the factor group PGL(V ) = GL(V )/K×.

• The main example in the context of quantization of symmetries is the follow-
ing: Let H be a Hilbert space and let P = P(H) be the projective space of one-
dimensional linear subspaces of H, that is

P(H) := (H\{0})/∼,

with the equivalence relation

f ∼ g :⇔∃λ ∈ C
× : f = λg for f ,g ∈H.

P is the space of states in quantum physics, that is the quantum mechanical
phase space. In Lemma 3.4 it is shown that the group U(H) of unitary operators
on H is in a natural way a nontrivial central extension of the group U(P) of
(unitary) projective transformations on P by U(1)

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1.

To explain this last example and for later purposes we recall some basic notions
concerning Hilbert spaces. A pre-Hilbert space H is a complex vector space with a
positive definite hermitian form, called an inner product or scalar product. A hermi-
tian form is an R-bilinear map

〈 , 〉 : H×H→ C,

which is complex antilinear in the first variable (another convention is to have the
form complex linear in the first variable) and satisfies

〈 f ,g〉= 〈g, f 〉

for all f ,g ∈H. A hermitian form is an inner product if, in addition,

〈 f , f 〉> 0 for all f ∈H\{0}.

The inner product induces a norm on H by ‖ f‖ :=
√
〈 f , f 〉 and hence a topology.

H with the inner product is called a Hilbert space if H is complete as a normed space
with respect to this norm.

Typical finite-dimensional examples of Hilbert spaces are the C
m with the stan-

dard inner product

〈z,w〉 :=
m

∑
j=1

z jw j.

In quantum theory important Hilbert spaces are the spaces L2(X ,λ ) of square-
integrable complex functions f : X → C on various measure spaces X with a mea-
sure λ on X , where the inner product is
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〈 f ,g〉 :=
∫

X
f (x)g(x)dλ (x).

In the case of X = R
n with the Lebesgue measure, this space is separable, that is

there exists a countable dense subset in H. A separable Hilbert space has a countable
(Schauder) basis, that is a sequence (en), en ∈ H, which is mutually orthonormal,
〈en,em〉= δn,m, and such that every f ∈H has a unique representation as a conver-
gent series

f =∑
n
αnen

with coefficients αn ∈ C. These coefficients are αn = 〈en, f 〉.
In quantum theory the Hilbert spaces describing the states of the quantum system

are required to be separable. Therefore, in the sequel the Hilbert spaces are assumed
to be separable.

A unitary operator U on H is a C-linear bijective map U : H → H leaving the
inner product invariant:

f ,g ∈H =⇒ 〈U f ,Ug〉= 〈 f ,g〉.

It is easy to see that the inverse U−1 : H → H of a unitary operator U : H → H

is unitary as well and that the composition U ◦V of two unitary operators U,V is
always unitary. Hence, the composition of operators defines the structure of a group
on the set of all unitary operators on H. This group is denoted by U(H) and called
the unitary group of H.

In the finite-dimensional situation (m = dimH) the unitary group U(H) is iso-
morphic to the matrix group U(m) of all complex m×m-matrices B with B−1 = B∗.
For example, U(1) is isomorphic to S

1. The special unitary groups are the

SU(m) = {B ∈ U(m) : detB = 1}.

SU(2) is isomorphic to the group of unit quaternions and can be identified with
the unit sphere S

3 and thus provides a 2-to-1 covering of the rotation group SO(3)
(which in turn is the three-dimensional real projective space P(R4)).

Let γ : H \ {0} → P be the canonical map into the quotient space P(H) = (H \
{0})/ ∼ with respect to the equivalence relation which identifies all points on a
complex line through 0 (see above). Let ϕ = γ( f ) and ψ = γ(g) be points in the
projective space P with f ,g ∈H. We then define the “transition probability” as

δ (ϕ,ψ) :=
|〈 f ,g〉|2
‖ f‖2‖g‖2 .

δ is not quite the same as a metric but it defines in the same way as a metric a
topology on P which is the natural topology on P. This topology is generated by the
open subsets {ϕ ∈ P : δ (ϕ,ψ) < r}, r ∈ R, ψ ∈ P. It is also the quotient topology
on P with respect to the quotient map γ , that is a subset W ⊂ P is open if and only
if γ−1(W )⊂H is open in the Hilbert space topology.
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Definition 3.2. A bijective map T : P→ P with the property

δ (Tϕ,Tψ) = δ (ϕ,ψ) for ϕ,ψ ∈ P,

is called a projective transformation or projective automorphism.

Furthermore, we define the group Aut(P) of projective transformations to be
the set of all projective transformations where the group structure is again given by
composition. Hence, Aut(P) is the group of bijections of P, the quantum mechanical
phase space, preserving the transition probability. This means that Aut(P) is the full
symmetry group of the quantum mechanical state space.

For every U ∈ U(H) we define a map γ̂(U) : P→ P by

γ̂(U)(ϕ) := γ(U( f ))

for all ϕ = γ( f ) ∈ P with f ∈ H. It is easy to show that γ̂(U) : P → P is well
defined and belongs to Aut(P). This is true not only for unitary operators, but also
for the so-called anti-unitary operators V , that is for the R-linear bijective maps
V : H→H with

〈V f ,V g〉= 〈 f ,g〉,V (i f ) =−iV ( f )

for all f ,g ∈H.
Note that γ̂ : U(H)→ Aut(P) is a homomorphism of groups.
The following theorem is a complete characterization of the projective automor-

phisms:

Theorem 3.3. (Wigner [Wig31], Chap. 20, Appendix) For every projective trans-
formation T ∈ Aut(P) there exists a unitary or an anti-unitary operator U with
T = γ̂(U).

The elementary proof of Wigner has been simplified by Bargmann [Bar64].

Let
U(P) := γ̂(U(H))⊂ Aut(P).

Then U(P) is a subgroup of Aut(P), called the group of unitary projective transfor-
mations. The following result is easy to show:

Lemma 3.4. The sequence

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

with ι(λ ) := λ idH, λ ∈ U(1), is an exact sequence of homomorphism and hence
defines a central extension of U(P) by U(1).

Proof. In order to prove this statement one only has to check that ker γ̂ = U(1)idH.
Let U ∈ ker γ̂ , that is γ̂(U) = idP. Then for all f ∈H, ϕ := γ( f ),

γ̂(U)(ϕ) = ϕ = γ( f ) and γ̂(U)(ϕ) = γ(U f ),
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hence γ(U f ) = γ( f ). Consequently, there exists λ ∈ C with λ f = U f . Since U is
unitary, it follows that λ ∈ U(1). By linearity of U , λ is independent of f , that is U
has the form U = λ idH. Therefore, U ∈ U(1)idH.

Conversely, let λ ∈ U(1). Then for all f ∈H, ϕ := γ( f ), we have

γ̂(λ idH)(ϕ) = γ(λ f ) = γ( f ) = ϕ,

that is γ̂(λ idH) = idP and hence, λ idH ∈ ker γ̂ . �
Note that this basic central extension is nontrivial, cf. Example 3.21.
The significance of Wigner’s Theorem in quantum theory is the following: The

states of a quantum system are represented by points in P = P(H) for a suitable sep-
arable Hilbert space. A symmetry of such a quantum system or an invariance princi-
ple is a bijective transformation leaving invariant the transition probability δ , hence
it is an element of the automorphism group Aut(P), that is a projective transforma-
tion. Now Wigner’s Theorem 3.3 asserts that such a symmetry is always induced
by either a unitary or an anti-unitary operator on the Hilbert space H. In physical
terms, “Every symmetry transformation between coherent states is implementable
by a one-to-one complex-linear or antilinear isometry of H.”

In the next section we consider the same question not for a single symmetry given
by only one transformation but for a group of symmetries. Note that this means that
the notion of symmetry is extended from a single invariance principle to a group of
symmetry operations.

3.2 Quantization of Symmetries

Examples for classical systems with a symmetry group G are

• G = SO(3) for systems with rotational symmetry;
• G = Galilei group, for free particles in classical nonrelativistic mechanics;
• G = Poincaré group SO(1,3) � R

4, for free particles in the special theory of
relativity;

• G = Diff+(S)×Diff+(S) in string theory and in conformal field theory on R
1,1;

• G = gauge group = Aut(P), where P is a principal fiber bundle, for gauge theo-
ries;

• G = unitary group U(H) as a symmetry of the Hilbert space H (resp. U(P) as
a symmetry of P = P (H)) when H (resp. P) is considered as a classical phase
space, for instance in the context of quantum electrodynamics (see below p. 51).

In these examples and in other classical situations the symmetry in question is
manifested by a group homomorphism

τ : G→ Aut(Y )

with respect to the classical phase space Y (often represented by a manifold Y
equipped with a symplectic form) and a suitable group Aut(Y ) of transformations
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leaving invariant the physics of the classical system. (In case of a manifold with
a symplectic form at least the symplectic form is left invariant so that the auto-
morphisms have to be canonical transformations.) In addition, in most cases τ is
supposed to be continuous for natural topologies on G and Aut(Y ). The symmetry
can also be described by the corresponding (continuous) action of the symmetry
group G on Y :

G×Y → Y,(g,y) �→ τ(g)(y).

Example: Rotationally invariant classical system with phase space Y = R
3×R

3 and
action SO(3)×Y → Y,(g,(q, p)) �→ (g−1q,g−1 p).

In general, such a group homomorphism is called a representation of G in Y . In
case of a vector space Y and Aut(Y ) = GL(Y ), the group of invertible linear maps
Y → Y the representation space Y sometimes is called a G-module. Whether or not
the representation is assumed to be continuous or more (e.g., differentiable) depends
on the context.

Note, however, that the symmetry groups in the above six examples are topolog-
ical groups in a natural way.

Definition 3.5. A topological group is a group G equipped with a topology, such
that the group operation G×G → G, (g,h) �→ gh, and the inversion map G → G,
g �→ g−1, are continuous.

The above examples of symmetry groups are even Lie groups, that is they are
manifolds and the composition and inversion are differentiable maps. The first three
examples are finite-dimensional Lie groups, while the last three examples are, in
general, infinite dimensional Lie groups (modeled on Fréchet spaces). (The topol-
ogy of Diff+(S) will be discussed briefly at the beginning of Chap. 5, and the unitary
group U(H) has a Lie group structure given by the operator norm (cf. p. 46), but it
also carries another important topology, the strong topology which will be investi-
gated below after Definition 3.6.)

Now, the quantization of a classical system Y means to find a Hilbert space H on
which the classical observables (that is functions on Y ) in which one is interested
now act as (mostly self-adjoint) operators on H in such a way that the commutators
of these operators correspond to the Poisson bracket of the classical variables, see
Sect. 7.2 for further details on canonical quantization.

After quantization of a classical system with the classical symmetry τ : G →
Aut(Y ) a homomorphism

T : G→ U(P)

will be induced, which in most cases is continuous for the strong topology on U(P)
(see below for the definition of the strong topology).

This property cannot be proven – it is, in fact, an assumption concerning the
quantization procedure. The reasons for making this assumption are the following.
It seems to be evident from the physical point of view that each classical symmetry
g ∈ G acting on the classical phase space should induce after quantization a trans-
formation of the quantum phase space P. This requirement implies the existence of
a map
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T (g) : P→ P

for each g ∈ G. Again by physical arguments, T (g) should preserve the transition
probability, since δ is – at least in the case of classical mechanics – the quantum
analogue of the symplectic form which is preserved by g. Hence, by these consider-
ations, one obtains a map

T : G→ Aut(P).

In addition to these requirements it is simply reasonable and convenient to as-
sume that T has to respect the natural additional structures on G and Aut(P), that
is that T has to be a homomorphism since τ is a homomorphism, and that it is a
continuous homomorphism when τ is continuous.

This (continuous) homomorphism T : G → U(P) is sometimes called the quan-
tization of the symmetry τ . See, however, Theorem 3.10 and Corollary 3.12 which
yield a (continuous) homomorphism S : E →U(H) of a central extension of G which
is also called the quantization of the classical symmetry τ .

Definition 3.6. Strong (operator) topology on U(H): Typical open neighborhoods
of U0 ∈ U(H) are the sets

V f (U0,r) := {U ∈ U(H) : ‖U0( f )−U( f )‖< r}

with f ∈H and r > 0. These neighborhoods form a subbasis of the strong topology:
A subset W ⊂ U(H) is by definition open if for each U0 ∈ W there exist finitely
many such V f j(U0,r j), j = 1, . . . ,k, so that the intersection is contained in W , that is

U0 ⊂
k⋂

j=1

V f j(U0,r j)⊂W .

On U(P) = γ̂(U(H)) a topology (the quotient topology) is defined using the map
γ̂ : U(H)→ U(P):

V ⊂ U(P)open :⇐⇒ γ̂−1(V )⊂ U(H)open.

We see that the strong topology is the topology of pointwise convergence in both
cases. The strong topology can be defined on any subset

M ⊂BR(H) := {A : H→H|A is R-linear and bounded}

of the space of R-linear continuous endomorphisms, hence in particular on

Mu = {U : H→H|Uunitary or anti-unitary}.

Note that a linear map A : H→H is continuous if and only if it is bounded, that
is if its operator norm

‖A‖ := sup{‖A f‖ : f ∈BR,‖ f‖ ≤ 1}
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is finite. And with the operator norm the space BR(H) is a Banach space, that is
a complete normed space. Evidently, a unitary or anti-unitary operator is bounded
with operator norm equal to 1.

In the same way as above the strong topology on Aut(P) is defined using δ
replacing the norm.

Observe that the strong topology on U(H) and U(P) as well as on Mu and Aut(P)
is the topology of pointwise convergence. So, in contrast to its name, the strong
topology is rather a weak topology.

Since all these sets of mappings are uniformly bounded they are equicontinuous
by the theorem of Banach–Steinhaus and hence the strong topology also agrees
with the compact open topology, that is the topology of uniform convergence on the
compact subsets of H (resp. of P). We also conclude that in the case of a separable
Hilbert space (which we always assume), the strong topology on U(H) as well as
on U(P) is metrizable.

On subsets M of BR(H) we also have the natural norm topology induced by
the operator norm. This topology is much stronger than the strong topology in the
infinite dimensional case, since it is the topology of uniform convergence on the unit
ball of H.

Definition 3.7. For a topological group G a unitary representation R of G in the
Hilbert space H is a continuous homomorphism

R : G→ U(H)

with respect to the strong topology on U(H). A projective representation R of G is,
in general, a continuous homomorphism

R : G→ U(P)

with respect to the strong topology on U(P) (P = P(H)).

Note that U(H) and U(P) are topological groups with respect to the strong topol-
ogy (cf. 3.11). Moreover, both these groups are connected and metrizable (see be-
low).

The reason that in the context of representation theory one prefers the strong
topology over the norm topology is that only few homomorphisms G → U(H) turn
out to be continuous with respect to the norm topology. In particular, for a com-
pact Lie group G and its Hilbert space H = L2(G) of square-integrable measurable
functions with respect to Haar measure the regular representation

R : G→ U(L2(G)),g �→ (Rg : f (x) �→ f (xg)),

is not continuous in the norm topology, in general. But R is continuous in the strong
topology, since all the maps g �→ Rg( f ) are continuous for fixed f ∈ L2(G). This
last property is equivalent to the action

G×L2(G)→ L2(G),(g, f ) �→ Rg( f ),

of G on L2(G) being continuous.
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Another reason to use the strong topology is the fact that various related actions,
e.g., the natural action of U(H) on the space of Fredholm operators on H or on the
Hilbert space of Hilbert–Schmidt operators, are continuous in the strong topology.
Hence, the strong topology is weak enough to allow many important representa-
tions to be continuous and strong enough to ensure that natural actions of U(H) are
continuous.

Lifting Projective Representations. When quantizing a classical symmetry group
G the following question arises naturally: Given a projective representation T , that
is a continuous homomorphism T : G → U(P) with P = P(H), does there exist a
unitary representation S : G→ U(H), such that the following diagram commutes?

In other words, can a projective representation T always be induced by a proper
unitary representation S on H so that T = γ̂ ◦S?

The answer is no; such a lifting does not exist in general. Therefore, it is, in gen-
eral, not possible to take G as the quantum symmetry group in the sense of a uni-
tary representation S : G → U(H) in the Hilbert space H. However, a lifting exists
with respect to the central extension of the universal covering group of the classical
symmetry group. (Here and in the following, the universal covering group of a con-
nected Lie group G is the (up to isomorphism) uniquely determined connected and
simply connected universal covering G̃ of G with its Lie group structure.) This is
well known for the rotation group SO(3) where the transition from SO(3) to the sim-
ply connected 2-to-1 covering group SU(2) can be described in the following way:

Example 3.8. To every projective representation T ′ : SO(3) → U(P) there corre-
sponds a unitary representation S : SU(2) → U(H) such that γ̂ ◦ S = T ′ ◦P =: T .
The following diagram is commutative:

S is unique up to a scalar multiple of norm 1.

SU(2) is the universal covering group of SO(3) with covering map (and group
homomorphism) P : SU(2) → SO(3). From a general point of view the lifting
S : SU(2) → U(H) of T := T ′ ◦ P (that is T = γ̂ ◦ S) in the diagram is obtained
via the lifting of T to a central extension of SU(2) which always exists according
to the subsequent Theorem 3.10. Since each central extension of SU(2) is trivial



3.2 Quantization of Symmetries 49

(cf. Remark 4.10), this lifting factorizes and yields the lifting T (cf. Bargmann’s
Theorem 4.8).

Remark 3.9. In a similar matter one can lift every projective representation T ′ :
SO(1,3)→ U(P) of the Lorentz group SO(1,3) to a proper unitary representation
S : SL(2,C)→ U(H) in H of the group SL(2,C): T ′ ◦P = γ̂ ◦S.

Here, P : SL(2,C)→ SO(1,3) is the 2-to-1 covering map and homomorphism.
Because of these facts – the lifting up to the covering maps – the group SL(2,C)

is sometimes called the quantum Lorentz group and, correspondingly, SU(2) is
called the quantum mechanical rotation group.

Theorem 3.10. Let G be a group and T : G → U(P) be a homomorphism. Then
there is a central extension E of G by U(1) and a homomorphism S : E → U(H), so
that the following diagram commutes:

Proof. We define

E := {(U,g) ∈ U(H)×G | γ̂(U) = T g}.

E is a subgroup of the product group U(H)×G, because γ̂ and T are homomor-
phisms. Obviously, the inclusion

ι : U(1)→ E,λ �→ (λ idH,1G)

and the projection π := pr2 : E → G are homomorphisms such that the upper row
is a central extension. Moreover, the projection S := pr1 : E → U(H) onto the first
component is a homomorphism satisfying T ◦π = γ̂ ◦S. �

Proposition 3.11. U(H) is a topological group with respect to the strong topology.

This property simplifies the proof of Bargmann’s Theorem (4.8) significantly.
The proposition is in sharp contrast to claims in the corresponding literature on
quantization of symmetries (e.g., [Sim68]) and in other publications. Since even in
the latest publications it is repeated that U(H) is not a topological group, we provide
the simple proof (cf. [Scho95, p. 174]):

Proof. In order to show the continuity of the group operation (U,U ′) �→ UU ′ =
U ◦U ′ it suffices to show that to any pair (U,U ′) ∈ U(H)×U(H) and to arbitrary
f ∈H,r > 0, there exist open subsets V ,V ′ of U(H) satisfying
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{VV ′|V ∈ V ,V ′ ∈ V ′} ⊂ V f (UU ′,r).

Because of

‖UU ′( f )−VV ′( f )‖
= ‖UU ′( f )−VU ′( f )+VU ′( f )−VV ′( f )‖
≤ ‖UU ′( f )−VU ′( f )‖+‖VU ′( f )−VV ′( f )‖
= ‖UU ′( f )−VU ′( f )‖+‖U ′( f )−V ′( f )‖
= ‖U(g)−V (g)‖+‖U ′( f )−V ′( f )‖,

where g = U ′( f ), the condition is satisfied for V = Vg(U, 1
2 r) and V ′ = V f (U ′, 1

2 r).
To show the continuity of U �→U−1 let g = U−1( f ) hence f = U(g). Then

‖U−1( f )−V−1( f )‖= ‖g−V−1U(g)‖= ‖V (g)−U(g)‖,

and the condition ‖V (g)−U(g)‖< r directly implies

‖U−1( f )−V−1( f )‖< r.

�
Note that the topological group U(H) is metrizable and complete in the strong

topology and the same is true for U(P).
Because of Proposition 3.11, it makes sense to carry out the respective investi-

gations in the topological setting from the beginning, that is for topological groups
and continuous homomorphisms. Among others we have the following properties:

1. U(H) is connected, since U(H) is pathwise connected with respect to the norm
topology. Every unitary operator is in the orbit of a suitable one-parameter group
exp(iAt).

2. U(P) and Aut(P) are also topological groups with respect to the strong topology.
3. γ̂ : U(H) → U(P) is a continuous homomorphism (with local continuous sec-

tions, cf. Lemma 4.9).
4. U(P) is a connected metrizable group. U(P) is the connected component con-

taining the identity in Aut(P).
5. Every continuous homomorphism T : G → Aut(P) on a connected topological

group G has its image in U(P), that is it is already a continuous homomorphism
T : G → U(P). This is the reason why – in the context of quantization of sym-
metries for connected groups G – it is in most cases enough to study continuous
homomorphism T : G→ U(P) into U(P) instead of T : G→ Aut(P)

Corollary 3.12. If, in the situation of Theorem 3.10, G is a topological group and
T : G → U(P) is a projective representation of G, that is T is a continuous homo-
morphism, then the central extension E of G by U(1) has a natural structure of a
topological group such that the inclusion ι : U(1) → E, the projection π : E → G
and the lift S : E → U(H) are continuous. In particular, S is a unitary representa-
tion in H.
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To show this statement one only has to observe that the product group G×U(H)
is a topological group with respect to the product topology and thus E is a topolog-
ical group with respect to the induced topology.

Remark 3.13. In view of these results a quantization of a classical symmetry group
G can in general be regarded as a central extension E of the universal covering group
of G by the group U(1) of phases.

Quantum Electrodynamics. We conclude this section with an interesting example
of a central extension of groups which occurs naturally in the context of second
quantization in quantum electrodynamics. The first quantization leads to a separa-
ble Hilbert space H of infinite dimension, sometimes called the one-particle space,
which decomposes according to the positive and negative energy states: We have
two closed subspaces H+,H− ⊂ H such that H is the orthogonal sum of H±, that
is H = H+⊕H−. For example, H± is given by the positive resp. negative or zero
eigenspaces of the Dirac hamiltonian on H = L2(R3,C4).

An orthogonal decomposition H = H+⊕H− with infinite dimensional compo-
nents H± is called a polarization.

Now, the Hilbert space H (or its projective space P = P(H)) can be viewed as a
classical phase space with the imaginary part of the scalar product as the symplectic
form and with the unitary group U(H) (or U(P)) as symmetry group. In this context
the observables one is interested in are the elements of the CAR algebra A (H) of
H. Second quantization is the quantization of these observables.

The CAR (Canonical Anticommutation Relation) algebra A (H) = A of a
Hilbert space H is the universal unital C∗-algebra generated by the annihilation
operators a( f ) and the creation operators a∗( f ), f ∈H, with the following commu-
tation relations:

a( f )a∗(g)+a∗(g)a( f ) = 〈 f ,g〉1,

a∗( f )a∗(g)+a∗(g)a∗( f ) = 0 = a( f )a(g)+a(g)a( f ).

Here, a∗ : H→A is a complex-linear map and a : H→A is complex antilinear
(other conventions are often used in the literature). The CAR algebra A (H) can be
described as a Clifford algebra using the tensor algebra of H.

Recall that a Banach algebra is an associative algebra B over C which is a com-
plex Banach space such that the multiplication satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all a,b∈
B. A unital Banach algebra B is a Banach algebra with a unit of norm 1. Finally,
a C∗-algebra is a Banach algebra B with an antilinear involution ∗ : B → B,b �→ b∗

satisfying (ab)∗ = b∗a∗ and ‖aa∗‖= ‖a‖2 for all a,b ∈ B.
Let us now assume to have a polarization H = H+ ⊕H− induced by a (first)

quantization (for example the quantization of the Dirac hamiltonian). For a gen-
eral complex Hilbert space W the complex conjugate W is W as an abelian group
endowed with the “conjugate” scalar multiplication (λ ,w) �→ λw and with the con-
jugate scalar product.
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The second quantization is obtained by representing the CAR algebra A in
the fermionic Fock space (which also could be called spinor space) S(H+) = S
depending on the polarization. S is the Hilbert space completion of

∧
H+⊗
∧

H−,

with the induced scalar product on
∧

H+⊗
∧

H−, where

∧
W =
⊕ p∧

W

is the exterior algebra of the Hilbert space W equipped with the induced scalar
product on

∧
W.

In order to define the representation π of A in S, the actions of a∗( f ),a( f ) on
S are given in the following using a∗( f ) = a∗( f+)+ a∗( f−),a( f ) = a( f+)+ a( f−)
with respect to the decomposition f = f+ + f− ∈H+⊕H−.

For f1, f2, . . . fn ∈H+,g1,g2, . . . ,gm ∈H−, and ξ ∈∧k
H+,η ∈∧H−, one defines

π(a∗)( f+)ξ ⊗η := ( f+∧ξ )⊗η ,

π(a∗)( f−)(ξ ⊗g1∧ . . .gm) :=
j=n

∑
j=1

(−1)k+ j+1ξ ⊗〈g j, f−〉g1∧ . . . ĝ j ∧ . . .gm,

π(a)( f+)( f1∧ . . .∧ fn⊗η) :=
j=n

∑
j=1

(−1) j+1〈 f+, f j〉 f1∧ . . . f̂ j ∧ . . . fn⊗η ,

π(a)( f−)(ξ ⊗η) := (−1)kξ ⊗ f− ∧η .

Lemma 3.14. This definition yields a representation

π : A →B(S)

of C∗-algebras satisfying the anticommutation relations.

Here, B(H)⊂ End H is the C∗-algebra of bounded C-linear endomorphisms of H.
The representation induces the field operatorsΦ : H→B(S) byΦ( f ) = π(a( f ))

and its adjoint Φ∗,Φ∗ = π ◦a∗.
One is interested to know which unitary operators U ∈U(H) can be carried over

to unitary operators in S in order to have the dynamics of the first quantization
implemented in the Fock space (or spinor space) S, that is in the second quantized
theory. To “carry over” means for a unitary U ∈ U(H) to find a unitary operator
U∼ ∈ U(S) in the Fock space S such that

U∼ ◦Φ( f ) =Φ(U f )◦U∼, f ∈H,

with the same condition for Φ∗. In this situation U∼ is called an implementation
of U .
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A result of Shale and Stinespring [ST65*] yields the condition under which U is
implementable.

Theorem 3.15. Each unitary operator U ∈U(H) has an implementation U∼ ∈U(S)
if and only if in the block matrix representation of U

U =

(
U++ U−+

U+− U−−

)

: H+⊕H− −→H+⊕H−

the off-diagonal components

U+− : H+ →H−,U−+ : H− →H+

are Hilbert–Schmidt operators. Moreover, any two implementations U∼, ′U∼ of
such an operator U are the same up to a phase factor λ ∈ U(1): ′U∼ = λU∼.

Recall that a bounded operator T : H → W between separable Hilbert spaces
is Hilbert–Schmidt if with respect to a Schauder basis (en) of H the condition
∑‖Ten‖2 < ∞ holds.

‖T‖HS =
√
∑‖Ten‖2

is the Hilbert–Schmidt norm.

Definition 3.16. The group Ures = Ures(H+) of all implementable unitary operators
on H is called the restricted unitary group.

The set of implemented operators

U∼
res = U∼

res(H+) = {V ∈ U(S)|∃U : U∼ = V}

is a subgroup of the unitary group U(S), and the natural “restriction” map

π : U∼
res → Ures

is a homomorphism with kernel {λ idS : λ ∈ U(1)} ∼= U(1).
As a result, with ı(λ ) := λ idS,λ ∈U(1), we obtain an exact sequence of groups

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1, (3.1)

and therefore another example of a central extension of groups appearing naturally
in the context of quantization. This is the example we intended to present, and we
want briefly to report about some properties of this remarkable central extension in
the following.

We cannot expect to represent Ures in the Fock space S, that is to have a homo-
morphism ρ : Ures → U(S) with π ◦ ρ = idUres , because this would imply that the
extension is trivial: such a ρ is a splitting, and the existence of a splitting implies
triviality (see below in the next section). One knows, however, that the extension is
not trivial (cf. [PS86*] or [Wur01*], for example).
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As a compensation we obtain a homomorphism ρ : Ures → U(P(S)). The exis-
tence of ρ follows directly from the properties of the central extension (3.1).

In what sense can we expect ρ : Ures → U(P(S)) to be continuous? In other
words, for which topology on Ures is ρ a representation? The strong topology on
Ures is not enough. But on Ures there is the natural topology induced by the norm

‖U++‖+‖U−−‖+‖U+−‖HS +‖U−+‖HS,

where ‖ ‖HS is the Hilbert–Schmidt norm. With respect to this topology the group
Ures becomes a real Banach Lie group and ρ is continuous.

Moreover, on U∼
res one obtains a topology such that this group is a Banach Lie

group as well, and the natural projection is a Lie group homomorphism (cf. [PS86*],
[Wur01*]). Altogether, the exact sequence (3.1) turns out to be an exact sequence
of Lie group homomorphisms and hence a central extension of infinite dimensional
Banach Lie groups.

According to Theorem 3.15 the phase of an implemented operator U∼ for
U ∈ Ures is not determined, and the possible variations are described by our exact
sequence (3.1). In the search of a physically relevant phase of the second quantized
theory, it is therefore natural to ask whether or not there exists a continuous map

s : Ures → U∼
res with π ◦ s = idUres .

We know already that there is no such homomorphism since the central exten-
sion is not trivial. And it turns out that there also does not exist such a continuous
section s.

The arguments which prove this result are rather involved and do not have their
place in these notes. Nevertheless, we give some indications.

First of all, we observe that the restriction map

π : U∼
res → Ures

in the exact sequence (3.1) is a principal fiber bundle with structure group U(1)
(cf. [Diec91*] or [HJJS08*] for general properties of principal fiber bundles). This
observation is in close connection with the investigation leading to Bargmann’s The-
orem, cf. Lemma 4.9. Note that a principal fiber bundle π : P → X is (isomorphic
to) the trivial bundle if and only if there exists a global continuous section s : X → P
satisfying π ◦ s = idX .

The existence of a continuous section s : Ures → U∼
res in our situation, that is

π ◦ s = idUres , would imply that the principal bundle is a trivial bundle and thus
homeomorphic to Ures×U(1). Although we know already that U∼

res cannot be iso-
morphic to the product group Ures×U(1) as a group, it is in principle not excluded
that these spaces are homeomorphic, that is isomorphic as topological spaces.

But the principal bundle π cannot be trivial in the topological sense. To see this,
one can use some interesting universal properties of another principal fiber bundle

τ : E −→ GL0
res(H+),

which is in close connection to π : U∼
res → Ures.
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Here GLres(H+) is the group of all bounded invertible operators H → H whose
off-diagonal components are Hilbert–Schmidt operators, so that Ures = U(H) ∩
GLres(H+). GLres(H+) will be equipped with the topology analogous to the topol-
ogy on Ures respecting the Hilbert–Schmidt norms, and GL0

res(H+) is the connected
component of GLres(H+) containing the identity. The group E is in a similar relation
to U∼

res as GLres(H+) to Ures. In concrete terms

E := {(T,P) ∈ GL0
res(H+)×GL(H+) : T −P ∈I1},

where I1 is the class of operators having a trace, that is being a trace class operator.
(We refer to [RS80*] for concepts and results about operators on a Hilbert space.) E
obtains its topology from the embedding into GL0

res(H+)×I1(H+). The structure
group of the principal bundle τ : E −→ GL0

res(H+) is the Banach Lie group D of
invertible bounded operators having a determinant, that is of operators of the form
1+T with T having a trace.

τ is simply the projection into the first component and we obtain another exact
sequence of infinite dimensional Banach Lie groups as well as a principal fiber
bundle

1−→D
ı−→ E

τ−→ GL0
res(H+)−→ 1. (3.2)

E is studied in the book of Pressley and Segal [PS86*] where, in particular, it
is shown that E is contractible. This crucial property is investigated by Wurzbacher
[Wur06*] in greater detail. The main ingredient of the proof is Kuiper’s result on the
homotopy type of the unitary group U(H) of a separable and infinite dimensional
Hilbert space H: U(H) with the norm topology is contractible and this also holds
for the general linear group GL(H) with the norm topology (cf. [Kui65*]).

By general properties of classifying spaces the contractibility of the group E
implies that τ is a universal fiber bundle for D (see [Diec91*], for example). This
means that every principal fiber bundle P → X with structure group D can be ob-
tained as the pullback of τ with respect to a suitable continuous map X →GL0

res(H).
Since there exist nontrivial principal fiber bundles with structure group D the bun-
dle τ : E →GL0

res cannot be trivial, and thus there cannot exist a continuous section
GL0

res(H+)→ E .
One can construct directly a nontrivial principal fiber bundle with structure group

D . Or one uses another interesting result, namely that the group D is homotopy
equivalent to U(∞) according to a result of Palais [Pal65*]. U(∞) is the limit of
the unitary groups U(n)⊂ U(n+1) and the above exact sequence (3.2) realizes the
universal sequence

1−→ U(∞)−→EU(∞)−→BU(∞)−→ 1.

Since there exist nontrivial fiber bundles with structure group U(n) it follows that
there exist nontrivial principal fiber bundles with structure group U(∞) as well, and
hence the same holds for D as structure group.
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The closed subgroup D1 := {P ∈D : detP = 1} of D induces the exact sequence

1−→D1
ı−→D

det−→ C
× −→ 1.

With the quotient GL0∼
res (H+) := E /D1 one obtains another universal bundle

GL0∼
res (H+)→ GL0

res(H+),

now with the multiplicative group C
× as structure group. We have the exact se-

quence
1−→ C

× ı−→ GL0∼
res (H+) π−→ GLres(H+)−→ 1,

which is another example of a central extension. Using the universality of this se-
quence one concludes that GL0∼

res (H+)→ GL0
res(H+) again has no continuous sec-

tion. It follows in the same way that eventually our original bundle π : U∼
res →

Ures (3.1) cannot have a continuous section. In summary we have

Proposition 3.17. The exact sequence of Banach Lie groups

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1

is a central extension of the restricted unitary group Ures and a principal fiber bundle
which does not admit a continuous section.

In the same manner the basic central extension

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

introduced in Lemma 3.4 has no continuous section when endowed with the norm
topology. Since U(H) is contractible [Kui65*] the bundle is universal. But we know
that there exist nontrivial U(1)-bundles, for instance the central extensions

1−→ U(1) ι−→ U(n)
γ̂−→ U(P(Cn))−→ 1

are nontrivial fiber bundles for n > 1 (cf. Example 3.21 below).
As will be seen in the next section the basic central extension also has no sec-

tions which are group homomorphisms (that is there exists no splitting map, cf.
Example 3.21).

3.3 Equivalence of Central Extensions

We now come to general properties of central extensions beginning the discussion
without taking topological questions into account.

Definition 3.18. Two central extensions

1−→ A
ı−→ E

π−→ G−→ 1 , 1−→ A
ı−→ E ′ π−→ G−→ 1
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of a group G by A are equivalent, if there exists an isomorphism ψ : E → E ′ of
groups such that the diagram

commutes.

Definition 3.19. An exact sequence of group homomorphisms

1−→ A
ı−→ E

π−→ G−→ 1

splits if there is a homomorphism σ : G→ E such that π ◦σ = idG.

Of course, by the surjectivity of π one can always find a map τ : G → E with
π ◦ τ = idG. But this map will not be a group homomorphism, in general.

If the sequence splits with splitting map σ : G→ E, then

ψ : A×G→ E, (a,g) �→ ı(a)σ(g),

is a group isomorphism leading to the trivial extension

1−→ A−→A×G−→G−→ 1,

which is equivalent to the original sequence: the diagram

commutes. Conversely, if such a commutative diagram with a group isomorphism
ψ exists, the sequence

1−→ A−→ E −→ G−→ 1

splits with splitting map σ(g) := ψ(1A,g). We have shown that

Lemma 3.20. A central extension splits if and only if it is equivalent to a trivial
central extension.

Example 3.21. There exist many nontrivial central extensions by U(1). A general
example of special importance in the context of quantization is given by the exact
sequence (Lemma 3.4)
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1−→ U(1) ι−→ U(n)
γ̂−→ U(P(Cn))−→ 1

for each n ∈ N,n > 1, and

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1

for infinite dimensional Hilbert spaces H. These extensions are not equivalent to
the trivial extension. They are also nontrivial as fiber bundles (with respect to both
topologies on U(H), the norm topology or the strong topology).

Proof. All these extensions are nontrivial if this holds for n = 2 since this extension
is contained in the others induced by the natural embeddings C

2 ↪→ C
n resp. C

2 ↪→
H. The nonequivalence to a trivial extension in the case n = 2 follows from well-
known facts.
In particular, we have the following natural isomorphisms:

U(2)∼= U(1)×SU(2) and PU(2) = U(P(C2))∼= SO(3)

as groups (and as topological spaces). If the central extension

1−→ U(1) ι−→ U(2)
γ̂−→ PU(2)−→ 1

would be equivalent to the trivial extension then there would exist a splitting homo-
morphism

σ : SO(3)∼= PU(2)→ U(2)∼= U(1)×SU(2).

The two components of σ are homomorphisms as well, so that the second compo-
nent σ2 : SO(3)→ SU(2) would be a splitting map of the natural central extension

1−→ {+1,−1} ι−→ SU(2) π−→ SO(3)−→ 1,

which also is the universal covering. This is a contradiction. For instance, the stan-
dard representation ρ : SU(2) ↪→GL(C2) cannot be obtained as a lift of a represen-
tation of SO(3) because of π(±1) = 1.

In the same way one concludes that there is no continuous section. �

Note that the nonexistence of a continuous section has the elementary proof just
presented above without reference to the universal properties which have been con-
sidered at the end of the preceding section. One can give an elementary proof for
Proposition 3.17 as well, with a similar ansatz using the fact that the projection
U∼

res → Ures corresponds to the natural projection γ̂ : U(S)→ U(P(S)).
On the other hand, the basic exact sequence

1−→ U(1) ι−→ U(H)
γ̂−→ U(P)−→ 1
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is universal also for the strong topology (not only for the norm topology as men-
tioned in the preceding section), since the unitary group U(H) is contractible in the
strong topology as well whenever H is an infinite dimensional Hilbert space.

In the following remark we present a tool which helps to check which central
extensions are equivalent to the trivial extension.

Remark 3.22. Let
1−→ A

ı−→ E
π−→ G−→ 1

be a central extension and let τ : G→ E be a map (not necessarily a homomorphism)
with π ◦ τ = idG and τ(1) = 1. We set τx := τ(x) for x ∈ G and define a map

ω : G×G −→ A∼= ı(A)⊂ E,

(x,y) �−→ τxτyτ−1
xy .

(Here, τ−1
xy = (τxy)−1 = (τ(xy))−1 denotes the inverse element of τxy in the group

E.) This map ω is well-defined since τxτyτ−1
xy ∈ kerπ , and it satisfies

ω(1,1) = 1 and ω(x,y)ω(xy,z) = ω(x,yz)ω(y,z) (3.3)

for x,y,z ∈ G.

Proof. By definition of ω we have

ω(x,y)ω(xy,z) = τxτyτ−1
xy τxyτzτ−1

xyz

= τxτyτzτ−1
xyz

= τxτyτzτ−1
yz τyzτ−1

xyz

= τxω(y,z)τyzτ−1
xyz

= τxτyzτ−1
xyzω(y,z) (A is central)

= ω(x,yz)ω(y,z). �

Definition 3.23. Any map ω : G×G −→ A having the property (3.3) is called a
2-cocycle, or simply a cocycle (on G with values in A).

The central extension of G by A associated with a cocycle ω is given by the exact
sequence

1−→ A
ı−→ A×ω G

pr2−→ G−→ 1,

a �−→ (a,1).

Here, A×ω G denotes the product A×G endowed with the multiplication defined by

(a,x)(b,y) := (ω(x,y)ab,xy)

for (a,x),(b,y) ∈ A×G.
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It has to be shown that this multiplication defines a group structure on A×ω G
for which ı and pr2 are homomorphisms. The crucial property is the associativity of
the multiplication, which is guaranteed by the condition (3.3):

((a,x)(b,y))(c,z) = (ω(x,y)ab,xy)(c,z)

= (ω(xy,z)ω(x,y)abc,xyz)

= (ω(x,yz)ω(y,z)abc,xyz)

= (a,x)(ω(y,z)bc,yz)

= (a,x)((b,y)(c,z)).

The other properties are easy to check.

Remark 3.24. This yields a correspondence between the set of cocycles on G with
values in A and the set of central extensions of G by A.

The extension E in Theorem 3.10

1−→ U(1)−→E
π−→ G−→ 1

is of the type U(1)×ω G. How do we get a suitable map ω : G×G → U(1) in this
situation? For every g ∈G by Wigner’s Theorem 3.3 there is an element Ug ∈U(H)
with γ̂(Ug) = T g. Thus we have a map τg := (Ug,g), g ∈ G, which defines a map
ω : G×G→ U(1) satisfying (3.3) given by

ω(g,h) := τgτhτ−1
gh = (UgUhU−1

gh ,1G).

Note that g �→Ug is not, in general, a homomorphism and also not continuous (if
G is a topological group and T is continuous); however, in particular cases which
turn out to be quite important ones, the Ugs can be chosen to yield a continuous
homomorphism (cf. Bargmann’s Theorem (4.8)).

If G and A are topological groups then for a cocycle ω : G×G→ A which is con-
tinuous the extension A×ω G is a topological group and the inclusion and projection
in the exact sequence are continuous homomorphisms. The reverse implication does
not hold, since continuous maps τ : G → E with π ◦ τ = idG need not exist, in gen-
eral. The central extension p : z �−→ z2

1−→ {+1,−1}−→U(1)
p−→ U(1)−→ 1

provides a simple counterexample. A more involved counterexample is (cf. Propo-
sition 3.17)

1−→ U(1) ı−→ U∼
res

π−→ Ures −→ 1.

Lemma 3.25. Let ω : G×G−→ A be a cocycle. Then the central extension A×ω G
associated with ω splits if and only if there is a map λ : G→ A with

λ (xy) = ω(x,y)λ (x)λ (y).



References 61

Proof. The central extension splits if and only if there is a map σ : G → A×ω G
with pr2 ◦σ = idG which is a homomorphism. Such a map σ is of the form σ(x) :=
(λ (x),x) for x ∈ G with a map λ : G → A. Now, σ is a homomorphism if and only
if for all x,y ∈ G:

σ(xy) = σ(x)σ(y)

⇐⇒ (λ (xy),xy) = (λ (x),x)(λ (y),y)

⇐⇒ (λ (xy),xy) = ((ω(x,y)λ (x)λ (y)),xy)

⇐⇒ λ (xy) = ω(x,y)λ (x)λ (y). �

Definition 3.26.

H2(G,A) := {ω : G×G→ A|ω is a cocycle}/∼,

where the equivalence relation ω ∼ ω ′ holds by definition if and only if there is a
λ : G→ A with

λ (xy) = ω(x,y)ω ′(x,y)−1λ (x)λ (y).

H2(G,A) is called the second cohomology group of the group G with coefficients
in A.

H2(G,A) is an abelian group with the multiplication induced by the pointwise
multiplication of the maps ω : G×G→ A.

Remark 3.27. The above discussion shows that the second cohomology group
H2(G,A) is in one-to-one correspondence with the equivalence classes of central
extensions of G by A.

This is the reason why in the context of quantization of classical field theories
with conformal symmetry Diff+(S)×Diff+(S) one is interested in the cohomology
group H2(Diff+(S),U(1)).
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