
Part I
Mathematical Preliminaries



The first part of the notes begins with an elementary and detailed exposition of the
notion of a conformal transformation in the case of the flat spaces R

p,q (Chap. 1)
and a thorough investigation of the conformal groups, that is the groups of all con-
formal transformations on the corresponding compactified spaces N p,q (Chap. 2).
As a result, the conformal groups are finite-dimensional Lie groups except for the
case of the Minkowski plane. In the case of the Minkowski plane one obtains (two
copies of) the infinite dimensional Witt algebra as a complexified Lie algebra of
infinitesimal conformal transformations.

Chapters 3 and 4 deal with central extensions of groups and Lie algebras. Central
extensions occur in a natural way if one studies projective representations and wants
to compare them with true representation in the linear space to which the projective
space is associated. Since quantization represents observables as linear operators in
a linear (mostly Hilbert) space W and the space of quantum states is the associated
projectivation P(W ), it is unavoidable that central extensions of Lie groups and Lie
algebras naturally appear as the quantization of classical symmetries.

The first part of the notes concludes with an elementary description of the Vira-
soro algebra as the only nontrivial central extension of the Witt algebra (Chap. 5).

As a consequence, in a two-dimensional conformally invariant quantum field
theory the Virasoro algebra shall be a symmetry algebra providing the theory with
an infinite collection of invariants of motion.



Chapter 1
Conformal Transformations
and Conformal Killing Fields

This chapter presents the notion of a conformal transformation on general semi-
Riemannian manifolds and gives a complete description of all conformal transfor-
mations on an open connected subset M ⊂ R

p,q in the flat spaces R
p,q. Special

attention is given to the two-dimensional cases, that is to the Euclidean plane R
2,0

and to the Minkowski plane R1,1.

1.1 Semi-Riemannian Manifolds

Definition 1.1. A semi-Riemannian manifold is a pair (M,g) consisting of a smooth1

manifold M of dimension n and a smooth tensor field g which assigns to each point
a ∈M a nondegenerate and symmetric bilinear form on the tangent space TaM:

ga : TaM×TaM → R.

In local coordinates x1, . . . ,xn of the manifold M (given by a chart φ : U →V on an
open subset U in M with values in an open subset V ⊂R

n, φ(a) = (x1(a), . . . ,xn(a)),
a ∈M) the bilinear form ga on TaM can be written as

ga(X ,Y ) = gμν(a)XμY ν .

Here, the tangent vectors X = Xμ∂μ , Y = Y ν∂ν ∈ TaM are described with respect to
the basis

∂μ :=
∂
∂xμ

, μ = 1, . . . ,n,

of the tangent space TaM which is induced by the chart φ .
By assumption, the matrix

(gμν(a))

is nondegenerate and symmetric for all a ∈U , that is one has

1 We restrict our study to smooth (that is to C ∞ or infinitely differentiable) mappings and mani-
folds.
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det(gμν(a)) �= 0 and (gμν(a))T = (gμν(a)).

Moreover, the differentiability of g implies that the matrix (gμν(a)) depends dif-
ferentiably on a. This means that in its dependence on the local coordinates x j the
coefficients gμν = gμν(x) are smooth functions.

In general, however, the condition gμν(a)XμXν > 0 does not hold for all X �= 0,
that is the matrix (gμν(a)) is not required to be positive definite. This property dis-
tinguishes Riemannian manifolds from general semi-Riemannian manifolds. The
Lorentz manifolds are specified as the semi-Riemannian manifolds with (p,q) =
(n−1,1) or (p,q) = (1,n−1).

Examples:

• R
p,q = (Rp+q,gp,q) for p,q ∈ N where

gp,q(X ,Y ) :=
p

∑
i=1

XiY i−
p+q

∑
i=p+1

XiY i.

Hence
(
gμν
)

=

(
1p 0

0 −1q

)

= diag(1, . . . ,1,−1, . . . ,−1).

• R
1,3 or R

3,1: the usual Minkowski space.
• R

1,1: the two-dimensional Minkowski space (the Minkowski plane).
• R

2,0: the Euclidean plane.
• S

2 ⊂ R
3,0: compactification of R

2,0; the structure of a Riemannian manifold on
the 2-sphere S

2 is induced by the inclusion in R
3,0.

• S× S ⊂ R
2,2: compactification of R

1,1. More precisely, S× S ⊂ R
2,0 ×R

0,2 ∼=
R

2,2 where the first circle S = S
1 is contained in R

2,0, the second one in R
0,2 and

where the structure of a semi-Riemannian manifold on S×S is induced by the
inclusion into R

2,2.
• Similarly, S

p×S
q ⊂ R

p+1,0×R
0,q+1 ∼= R

p+1,q+1, with the p-sphere S
p = {X ∈

R
p+1 : gp+1,0(X ,X) = 1} ⊂ R

p+1,0 and the q-sphere S
q ⊂ R

0,q+1, as a gener-
alization of the previous example, yields a compactification of R

p,q for p,q ≥
1. This compact semi-Riemannian manifold will be denoted by S

p,q for all
p,q≥ 0.

In the following, we will use the above examples of semi-Riemannian manifolds
and their open subspaces only—except for the quadrics N p,q occurring in Sect. 2.1.
(These quadrics are locally isomorphic to S

p,q from the point of view of conformal
geometry.)
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1.2 Conformal Transformations

Definition 1.2. Let (M,g) and (M′,g′) be two semi-Riemannian manifolds of the
same dimension n and let U ⊂M,V ⊂M′ be open subsets of M and M′, respectively.
A smooth mapping ϕ : U → V of maximal rank is called a conformal transforma-
tion, or conformal map, if there is a smooth function Ω : U → R+ such that

ϕ∗g′ =Ω2g ,

where ϕ∗g′(X ,Y ) := g′(Tϕ(X),Tϕ(Y )) and Tϕ : TU → TV denotes the tangent
map (derivative) of ϕ . Ω is called the conformal factor of ϕ . Sometimes a confor-
mal transformation ϕ : U → V is additionally required to be bijective and/or orien-
tation preserving.

In local coordinates of M and M′

(ϕ∗g′)μν(a) = g′i j(ϕ(a))∂μϕ i∂νϕ j.

Hence, ϕ is conformal if and only if

Ω2gμν = (g′i j ◦ϕ)∂μϕ i∂νϕ j (1.1)

in the coordinate neighborhood of each point.
Note that for a conformal transformation ϕ the tangent maps Taϕ : TaM →

Tϕ(a)M
′ are bijective for each point a ∈ U . Hence, by the inverse mapping theo-

rem a conformal transformation is always locally invertible as a smooth map.

Examples:

• Local isometries, that is smooth mappings ϕ with ϕ∗g′ = g, are conformal trans-
formations with conformal factor Ω= 1.

• In order to study conformal transformations on the Euclidean plane R
2,0 we iden-

tify R
2,0 ∼= C and write z = x + iy for z ∈ C with “real coordinates” (x,y) ∈ R.

Then a smooth map ϕ : M → C on a connected open subset M ⊂ C is conformal
according to (1.1) with conformal factor Ω : M →R+ if and only if for u = Reϕ
and v = Imϕ

u2
x + v2

x =Ω2 = u2
y + v2

y �= 0 , uxuy + vxvy = 0. (1.2)

These equations are, of course, satisfied by the holomorphic (resp. antiholo-
morphic) functions from M to C because of the Cauchy–Riemann equations
ux = vy,uy = −vx (resp. ux = −vy,uy = vx) if u2

x + v2
x �= 0. For holomorphic or

antiholomorphic functions, u2
x + v2

x �= 0 is equivalent to detDϕ �= 0 where Dϕ
denotes the Jacobi matrix representing the tangent map Tϕ of ϕ .

Conversely, for a general conformal transformation ϕ = (u,v) the equations
(1.2) imply that (ux,vx) and (uy,vy) are perpendicular vectors in R

2,0 of equal
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length Ω �= 0. Hence, (ux,vx) = (−vy,uy) or (ux,vx) = (vy,−uy), that is ϕ is
holomorphic or antiholomorphic with nonvanishing detDϕ .

As a first important result, we have shown that the conformal transformations
ϕ : M → C with respect to the Euclidean structure on M ⊂ C are the locally
invertible holomorphic or antiholomorphic functions. The conformal factor of ϕ
is |detDϕ|.

• With the same identification R
2,0 ∼= C a linear map ϕ : R

2,0 → R
2,0 with repre-

senting matrix

A = Aϕ =
(

a b
c d

)

is conformal if and only if a2 +c2 �= 0 and a = d, b =−c or a =−d, b = c. As a
consequence, for ζ = a+ ic �= 0, ϕ is of the form z �→ ζ z or z �→ ζ z.

These conformal linear transformations are angle preserving in the following
sense: for points z,w ∈ C\{0} the number

ω(z,w) :=
zw
|zw|

determines the (Euclidean) angle between z and w up to orientation. In the case
of ϕ(z) = ζ z it follows that

ω(ϕ(z),ϕ(w)) =
ζ zζw
|ζ zζw| = ω(z,w),

and the same holds for ϕ(z) = ζ z.
Conversely, the linear maps ϕ with ω(ϕ(z),ϕ(w)) = ω(z,w) for all z,w ∈

C\{0} or ω(ϕ(z),ϕ(w)) =−ω(z,w) for all z,w ∈ C\{0} are conformal trans-
formations. We conclude that an R-linear map ϕ : R

2,0 → R
2,0 is a conformal

transformation for the Euclidean plane if and only if it is angle preserving.
• We have shown that an orientation-preserving R-linear map ϕ : R

2,0 → R
2,0 is

a conformal transformation for the Euclidean plane if and only if it is the mul-
tiplication with a complex number ζ �= 0: z �→ ζ z. In the case of ζ = r exp iα
with r ∈ R+ and with α ∈ ]0,2π], we obtain the following interpretation: α in-
duces a rotation with angle α and z �→ (exp iα)z is an isometry, while r induces
a dilatation z �→ rz.

Consequently, the group of orientation-preserving R-linear and conformal
maps R

2,0 → R
2,0 is isomorphic to R+×S ∼= C\{0}. The group of orientation-

preserving R-linear isometries is isomorphic to S while the group of dilatations
is isomorphic to R+ (with the multiplicative structure) and therefore isomorphic
to the additive group R via t → r := exp t, t ∈ R.

• The above considerations also show that the conformal transformations ϕ : M →
C, where M is an open subset of R

2,0, can also be characterized as those map-
pings which preserve the angles infinitesimally: let z(t),w(t) be smooth curves
in M with z(0) = w(0) = a and ż(0) �= 0 �= ẇ(0), where ż(0) = d

dt z(t)|t=0 is the
derivative of z(t) at t = 0. Then ω(ż(0), ẇ(0)) determines the angle between the
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curves z(t) and w(t) at the common point a. Let zϕ = ϕ ◦ z and wϕ = ϕ ◦w be
the image curves. By definition, ϕ is called to preserve angles infinitesimally
if and only if ω(ż(0), ẇ(0)) = ω(żϕ(0), ẇϕ(0)) for all points a ∈ M and all
curves z(t),w(t) in M through a = z(0) = w(0) with ż(0) �= 0 �= ẇ(0). Note that
żϕ(0) = Dϕ(a)(ż(0)) by the chain rule. Hence, by the above characterization of
the linear conformal transformations, ϕ preserves angles infinitesimally if and
only if Dϕ(a) is a linear conformal transformation for all a ∈ M which by (1.2)
is equivalent to ϕ being a conformal transformation.

• Again in the case of R
2,0 ∼= C one can deduce from the above results that the

conformal, orientation-preserving, and bijective transformations R
2,0 →R

2,0 are
the entire holomorphic functions ϕ : C→ C with holomorphic inverse functions
ϕ−1 : C → C, that is the biholomorphic functions ϕ : C → C. These functions
are simply the complex-linear affine maps of the form

ϕ(z) = ζ z+ τ, z ∈ C,

with ζ ,τ ∈ C, ζ �= 0.
The group of all conformal, orientation-preserving invertible transformations

R
2,0 → R

2,0 of the Euclidean plane can thus be identified with (C \ {0})×C,
where the group law is given by

(ζ ,τ)(ζ ′,τ ′) = (ζζ ′,ζτ ′+ τ).

In particular, this group is a four-dimensional real manifold.
This is an example of a semidirect product of groups. See Sect. 3.1 for the

definition.
• The orientation-preserving and R-linear conformal transformations ψ : R

1,1 →
R

1,1 can be identified by elementary matrix multiplication. They are represented
by matrices of the form

A = Aψ = A(s, t) = exp t

(
coshs sinhs
sinhs coshs

)

with (s, t) ∈ R
2 (see Corollary 1.14 for details).

• Consider R
2 endowed with the metric on R

2 given by the bilinear form

〈(x,y),(x′,y′)〉 :=
1
2
(xy′+ yx′).

This is a Minkowski metric g on R
2, for which the coordinate axes coincide with

the light cone
L = {(x,y) : 〈(x,y),(x,y)〉= 0}

in 0 ∈ R
2. With this metric, (R2,g) is isometrically isomorphic to R

1,1 with re-
spect to the isomorphism ψ : R

1,1 → R
2,

(x,y) �→ (x+ y,x− y).



12 1 Conformal Transformations

• The stereographic projection

π : S
2 \{(0,0,1)} → R

2,0,

(x,y,z) �→ 1
1− z

(x,y)

is conformal with Ω = 1
1−z . In order to prove this it suffices to show that the

inverse map ϕ := π−1 : R
2,0 → S

2 ⊂R
3,0 is a conformal transformation. We have

ϕ(ξ ,η) =
1

1+ r2 (2ξ ,2η ,r2−1),

for (ξ ,η) ∈ R
2 and r =

√
ξ 2 +η2. For the tangent vectors X1 = ∂

∂ξ ,X2 = ∂
∂η

we get

Tϕ(X1) =
d
dt
ϕ(ξ + t,η)|t=0

= 2

(
1

1+ r2

)2

(r2 +1−2ξ 2,−2ξη ,2ξ ),

Tϕ(X2) = 2

(
1

1+ r2

)2

(−2ξη ,r2 +1−2η2,2η).

Hence

g′(Tϕ(Xi),Tϕ(Xj)) =
(

2
1+ r2

)2

(δi j),

that is Λ = 2
1+r2 is the conformal factor of ϕ . Thus, π = ϕ−1 has the conformal

factor Ω= Λ−1 = 1
2 (1+ r2) = 1

1−z .
Similarly, the stereographic projection of the n-sphere,

π : S
n \{(0, . . . ,0,1)}→ R

n,0,

(x0, . . . ,xn) �→ 1
1− xn (x0, . . . ,xn−1),

is a conformal map.
• In Proposition 2.5 we present another natural conformal map in detail, the con-

formal embedding
τ : R

p,q → S
p×S

q ⊂ R
p+1,q+1

into the non-Riemannian version of S
p×S

q. S
p×S

q has been described in the
preceding section.

• The composition of two conformal maps is conformal.
• If ϕ : M → M′ is a bijective conformal transformation with conformal factor Ω

then ϕ is a diffeomorphism (that is ϕ−1 is smooth) and, moreover, ϕ−1 : M′ →
M is conformal with conformal factor 1

Ω . This property has been used in the
investigation of the above example on the stereographic projection.
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1.3 Conformal Killing Fields

In the following, we want to study the conformal maps ϕ : M → M′ between open
subsets M,M′ ⊂ R

p,q, p + q = n > 1. To begin with, we will classify them by an
infinitesimal argument:

Let X : M ⊂ R
p,q → R

n be a smooth vector field. Then

γ̇ = X(γ)

for smooth curves γ = γ(t) in M is an autonomous differential equation. The local
one-parameter group (ϕX

t )t∈R corresponding to X satisfies

d
dt

(ϕX (t,a)) = X(ϕX (t,a))

with initial condition ϕX (0,a) = a. Moreover, for every a∈U , ϕX (·,a) is the unique
maximal solution of γ̇ = X(γ) defined on the maximal interval ]t−a , t+a [. Let Mt :=
{a ∈ M : t−a < t < t+a } and ϕX

t (a) := ϕX (t,a) for a ∈ Mt . Then Mt ⊂ M is an open
subset of M and ϕX

t : Mt → M−t is a diffeomorphism. Furthermore, we have ϕX
t ◦

ϕX
s (a) = ϕX

s+t(a) if a ∈Mt+s∩Ms and ϕX
s (a) ∈Mt , and, of course, ϕX

0 = idM,M0 =
M. In particular, the local one-parameter group (ϕX

t )t∈R satisfies the flow equation

d
dt

(ϕX
t )|t=0 = X .

Definition 1.3. A vector field X on M ⊂ R
p,q is called a conformal Killing field if

ϕX
t is conformal for all t in a neighborhood of 0.

Theorem 1.4. Let M ⊂ R
p,q be open, g = gp,q and X a conformal Killing field with

coordinates
X = (X1, . . . ,Xn) = Xν∂ν

with respect to the canonical cartesian coordinates on R
n. Then there is a smooth

function κ : M → R, so that

Xμ,ν +Xν ,μ = κgμν .

Here we use the notation: f ,ν := ∂ν f , Xμ := gμνXν .

Proof. Let X be a conformal Killing field, (ϕt) the associated local one-parameter
group, and Ωt : Mt → R

+, such that

(ϕ∗t g)μν(a) = gi j(ϕt(a))∂μϕ i
t ∂νϕ

j
t = (Ωt(a))2gμν(a).

By differentiation with respect to t at t = 0 we get (gi j is constant!)
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d
dt

(Ω2
t (a)gμν(a))|t=0 =

d
dt

(gi j(ϕt(a))∂μϕ i
t ∂νϕ

j
t )
∣
∣
∣
t=0

= gi j∂μϕ̇ i
0 ∂νϕ

j
0 +gi j∂μϕ i

0 ∂ν ϕ̇
j

0

= gi j ∂μXi(a)δ j
ν +gi j δ i

μ ∂νX j(a)

= ∂μXν(a)+∂νXμ(a).

Hence, the statement follows with κ(a) =
d
dt

Ω2
t (a)
∣
∣
t=0 . �

If gμν is not constant, we have

(LX g)μν = Xμ;ν +Xν ;μ = κgμν .

Here, LX is the Lie derivative and a semicolon in the index denotes the covariant
derivative corresponding to the Levi-Civita connection for g.

Definition 1.5. A smooth function κ : M ⊂ R
p,q → R is called a conformal Killing

factor if there is a conformal Killing field X , such that

Xμ,ν +Xν ,μ = κgμν .

(Similarly, for general semi-Riemannian manifolds on coordinate neighborhoods:

Xμ;ν +Xν ;μ = κgμν .)

Theorem 1.6. κ : M → R is a conformal Killing factor if and only if

(n−2)κ,μν +gμνΔgκ = 0,

where Δg = gkl∂k∂l is the Laplace–Beltrami operator for g = gp,q.

Proof. “⇒”: Let κ : M→R and Xμ,ν +Xν ,μ = κgμν (M⊂R
p,q,g = gp,q). Then from

∂k∂l(Xμ,ν) = ∂ν∂k(Xμ,l), etc.,

it follows that

0 = ∂k∂l(Xμ,ν +Xν ,μ)−∂l∂μ(Xk,ν +Xν ,k)
+∂μ∂ν(Xk,l +Xl,k)−∂ν∂k(Xμ,l +Xl,μ).

Since κ is a conformal Killing factor, one can deduce

∂k∂l(Xμ,ν +Xν ,μ) = κ,kl gμν , etc.

Hence
0 = gμν κ,kl −gkν κ,lμ +gkl κ,μν −gμl κ,νk.

By multiplication with gkl (defined by gμλgλν = δ μν ) we get
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0 = gklgμν κ,kl −gklgkν κ,lμ +gklgkl κ,μν −gklgμl κ,νk

= gkl(gμν κ,kl)−δ l
ν κ,lμ +nκ,μν −δ k

μ κ,lμ

= gμνΔgκ+(n−2)κ,μν .

The reverse implication “⇐” follows from the discussion in Sect. 1.4. �
The theorem also holds for open subsets M in semi-Riemannian manifolds with “;”
instead of “,”.

Important Observation. In the case n = 2, κ is conformal if and only if Δgκ = 0.
For n > 2, however, there are many additional conditions. More precisely, these are

κ,μν = 0 for μ �= ν ,

κ,μμ = ±(n−2)−1Δgκ.

1.4 Classification of Conformal Transformations

With the help of the implication “⇒” of Theorem 1.6, we will determine all confor-
mal Killing fields and hence all conformal transformations on connected open sets
M ⊂ R

p,q.

1.4.1 Case 1: n = p+q > 2

From the equations gμμ(n−2)κ,μμ +Δgκ = 0 for a conformal Killing factor κ we
get (n− 2)Δgκ + nΔgκ = 0 by summation, hence Δgκ = 0 (as in the case n = 2).
Using again gμμ(n− 2)κ,μμ + Δgκ = 0, it follows that κ,μμ = 0. Consequently,
κ,μν = 0 for all μ ,ν . Hence, there are constants αμ ∈ R such that

κ,μ(q1, . . . ,qn) = αμ , μ = 1, . . . ,n.

It follows that the solutions of (n−2)κ,μν +gμνΔgκ = 0 are the affine-linear maps

κ(q) = λ +ανqν , q = (qν) ∈M ⊂ R
n,

with λ ,αν ∈ R.
To begin with a complete description of all conformal Killing fields on connected

open subsets M ⊂R
p,q, p+q > 2, we first determine the conformal Killing fields X

with conformal Killing factor κ = 0 (that is the proper Killing fields, which belong
to local isometries). Xμ,μ +Xμ,μ = 0 means that Xμ does not depend on qμ . Xμ,ν +
Xν ,μ = 0 implies Xμ

,ν = 0. Thus Xμ can be written as

Xμ(q) = cμ +ωμ
ν qν

with cμ ∈ R, ωμ
ν ∈ R.
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If all the coefficients ωμ
ν vanish, the vector field Xμ(q) = cμ determines the differ-

ential equation
q̇ = c,

with the (global) one-parameter group ϕX (t,q) = q + tc as its flow. The associated
conformal transformation (ϕX (t,q) for t = 1) is the translation

ϕc(q) = q+ c.

For c = 0 and general ω = (ωμ
ν ) the equations

Xμ,ν +Xν ,μ = gμνκ = 0

imply

gνρ ω
ρ
μ +gμρ ω

ρ
ν = 0,

that is ωT g + gω = 0. Hence, these solutions are given by the elements of the Lie
algebra o(p,q) := {ω :ωT gp,q +gp,qω = 0}. The associated conformal transforma-
tions (ϕX (t,q) = etωq for t = 1 ) are the orthogonal transformations

ϕΛ : R
p,q → R

p,q, q �→ Λq,

with

Λ= eω ∈ O(p,q) := {Λ ∈ R
n×n : ΛT gp,qΛ= gp,q}

(equivalently, O(p,q) = {Λ∈R
n×n : 〈Λx,Λx′〉= 〈x,x′〉}with the symmetric bilinear

form 〈·, ·〉 given by gp,q).
We have thus determined all local isometries on connected open subsets M ⊂

R
p,q. They are the restrictions of maps

ϕ(q) = ϕΛ(q)+ c, Λ ∈ O(p,q), c ∈ R
n,

and form a finite-dimensional Lie group, the group of motions belonging to gp,q.
This group can also be described as a semidirect product (cf. Sect. 3.1) of O(p,q)
and R

n.
The constant conformal Killing factors κ = λ ∈ R \ {0} correspond to the con-

formal Killing fields X(q) = λq belonging to the conformal transformations

ϕ(q) = eλq, q ∈ R
n,

which are the dilatations.
All the conformal transformations on M ⊂ R

p,q considered so far have a unique
conformal continuation to R

p,q. Hence, they are essentially conformal transforma-
tions on all of R

p,q associated to global one-parameter groups (ϕt). This is no longer
true for the following conformal transformations.
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In view of the preceding discussion, every conformal Killing factor κ �= 0 with-
out a constant term is linear and thus can be written as

κ(q) = 4〈q,b〉, q ∈ R
n,

with b ∈ R
n \{0} and 〈q,b〉= gp,q

μν qμbν . A direct calculation shows that

Xμ(q) := 2〈q,b〉qμ −〈q,q〉bμ , q ∈ R
n,

is a solution of Xμ,ν + Xν ,μ = κgμν . (This proves the implication “⇐” in Theo-
rem 1.6 for n > 2.) As a consequence, for every conformal Killing field X with
conformal Killing factor

κ(q) = λ + xμqμ = λ +4〈q,b〉,

the vector field Y (q) = X(q)−2〈q,b〉qμ−〈q,q〉bμ−λq is a conformal Killing field
with conformal Killing factor 0. Hence, by the preceding discussion, it has the form
Y (q) = c+ωq. To sum up, we have proven

Theorem 1.7. Every conformal Killing field X on a connected open subset M of
R

p,q (in case of p+q = n > 2) is of the form

X(q) = 2〈q,b〉qμ −〈q,q〉bμ +λq+ c+ωq

with suitable b,c ∈ R
n, λ ∈ R and ω ∈ o(p,q).

Exercise 1.8. The Lie bracket of two conformal Killing fields is a conformal Killing
field. The Lie algebra of all the conformal Killing fields is isomorphic to o(p + 1,
q+1) (cf. Exercise 1.10).

The conformal Killing field X(q) = 2〈q,b〉q−〈q,q〉b, b �= 0, has no global one-
parameter group of solutions for the equation q̇ = X(q). Its solutions form the fol-
lowing local one-parameter group

ϕt(q) =
q−〈q,q〉tb

1−2〈q, tb〉+ 〈q,q〉〈tb, tb〉 , t ∈ ]t−q , t+q [ ,

where ]t−q , t+q [ is the maximal interval around 0 contained in

{ t ∈ R|1−2〈q, tb〉+ 〈q,q〉〈tb, tb〉 �= 0}.

Hence, the associated conformal transformation ϕ := ϕ1

ϕ(q) =
q−〈q,q〉b

1−2〈b,q〉+ 〈q,q〉〈b,b〉

– which is called a special conformal transformation – has (as a map into R
p,q) a

continuation at most to Mt at t = 1, that is to
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M = M1 := {q ∈ R
p,q|1−2〈b,q〉+ 〈q,q〉〈b,b〉 �= 0}. (1.3)

In summary, we have

Theorem 1.9. Every conformal transformation ϕ : M → R
p,q, n = p + q ≥ 3, on a

connected open subset M ⊂ R
p,q is a composition of

• a translation q �→ q+ c, c ∈ R
n,

• an orthogonal transformation q �→ Λq, Λ ∈ O(p,q),
• a dilatation q �→ eλq, λ ∈ R, and
• a special conformal transformation

q �→ q−〈q,q〉b
1−2〈q,b〉+ 〈q,q〉〈b,b〉 , b ∈ R

n.

To be precise, we have just shown that every conformal transformation ϕ : M →
R

p,q on a connected open subset M ⊂ R
p,q, p+q > 2, which is an element ϕ = ϕt0

of a one-parameter group (ϕt) of conformal transformations, is of the type stated in
the theorem. (Then Λ is an element of SO(p,q), where SO(p,q) is the component
containing the identity 1 = id in O(p,q).) The general case can be derived from this.

Exercise 1.10. The conformal transformations described in Theorem 1.9 form a
group with respect to composition (in spite of the singularities, it is not a subgroup
of the bijections R

n →R
n), which is isomorphic to O(p+1,q+1)

/
{±1} (cf. The-

orem 2.9).

1.4.2 Case 2: Euclidean Plane (p = 2, q = 0)

This case has already been discussed as an example (cf. 1.2).

Theorem 1.11. Every holomorphic function

ϕ = u+ iv : M → R
2,0 ∼= C

on an open subset M ⊂ R
2,0 with nowhere-vanishing derivative is an orientation-

preserving conformal mapping with conformal Killing factor Ω2 = u2
x + u2

y =
detDϕ = |ϕ ′|2. Conversely, every conformal and orientation-preserving transfor-
mation ϕ : M → R

2,0 ∼= C is such a holomorphic function.

This follows immediately from the Cauchy–Riemann differential equations
(cf. 1.2). Of course, a corresponding result holds for the antiholomorphic functions.
In the case of a connected open subset M of the Euclidean plane the collection of
all the holomorphic and antiholomorphic functions exhausts the conformal transfor-
mations on M.

We want to describe the conformal transformations again by analyzing confor-
mal Killing fields and conformal Killing factors: Every conformal Killing field
X = (u,v) : M → C on a connected open subset M of C with conformal Killing



1.4 Classification of Conformal Transformations 19

factor κ satisfies Δκ = 0 as well as uy + vx = 0 and ux = 1
2κ = vy. In particular, X

fulfills the Cauchy–Riemann equations and is a holomorphic function.
In the special case of a conformal Killing field corresponding to a vanishing

conformal Killing factor κ = 0, one gets

X(z) = c+ iθz, z ∈M,

with c∈C and θ ∈R. Here we again use the notation z = x+ iy∈C∼= R
2,0. The re-

spective conformal transformations are the Euclidean motions (that is the isometries
of R

2,0)
ϕ(z) = c+ eiθ z.

For constant conformal Killing factors κ �= 0, κ = λ ∈ R, one gets the dilatations

X(z) = λ z with ϕ(z) = eλ z .

Moreover, for R-linear κ in the form κ = 4Re(zb̄) = 4(xb1 + yb2) one gets the
“inversions”. For instance, in the case of b = (b1,b2) = (1,0) we obtain

ϕ(z) =
z−|z|2

1−2x+ |z|2 =
−1+2x−|z|2− x+1+ iy

|z−1|2

= −1− z−1
|z−1|2 =− z

z−1
.

We conclude

Proposition 1.12. The linear conformal Killing factors κ describe precisely the
Möbius transformations (cf. 2.12).

For general conformal Killing factors κ �= 0 on a connected open subset M of
the complex plane, the equation Δκ = 0 implies that locally there exist holomorphic
X = (u,v) with uy + vx = 0, ux = 1

2κ = vy, that is

ux = vy , uy =−vx.

(This proves the implication “⇐” in Theorem 1.6 for p = 2,q = 0, if one lo-
calizes the definition of a conformal Killing field.) In this situation, the one-
parameter groups (ϕt) for X are also holomorphic functions with nowhere-vanishing
derivative.

1.4.3 Case 3: Minkowski Plane (p = q = 1)

In analogy to Theorem 1.11 we have

Theorem 1.13. A smooth map ϕ = (u,v) : M → R
1,1 on a connected open subset

M ⊂ R
1,1 is conformal if and only if

u2
x > v2

x , and ux = vy,uy = vx or ux =−vy,uy =−vx.
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Proof. The condition ϕ∗g =Ω2g for g = g1,1 is equivalent to the equations

u2
x − v2

x =Ω2, uxuy− vxvy = 0, u2
y − v2

y =−Ω2, Ω2 > 0.

“⇐” : these three equations imply u2
x =Ω2 + v2

x > v2
x and

0 = Ω2 +2uxuy−2vxvy−Ω2 = (ux +uy)2− (vx + vy)2.

Hence ux +uy =±(vx + vy). In the case of the sign “+” it follows that

0 = u2
x −u2

x + vxvy−uxuy

= u2
x −ux(ux +uy)+ vxvy

= u2
x −ux(vx + vy)+ vxvy

= (ux− vx)(ux− vy),

that is ux = vx or ux = vy. ux = vx is a contradiction to u2
x − v2

x =Ω2 > 0. Therefore
we have ux = vy and uy = vx.

Similarly, the sign “−” yields ux =−vy and uy =−vx.
“⇒” : with Ω2 := u2

x − v2
x > 0 we get by substitution

u2
y − v2

y = v2
x −u2

x = −Ω2 and uxuy− vxvy = 0.

Hence ϕ is conformal. In the case of ux = vy,uy = vx it follows that

detDϕ = uxvy−uyvx = u2
x − v2

x > 0,

that is ϕ is orientation preserving. In the case of ux = −vy,uy = −vx the map ϕ
reverses the orientation. �

The solutions of the wave equation Δκ = κxx−κyy = 0 in 1 + 1 dimensions can
be written as

κ(x,y) = f (x+ y)+g(x− y)

with smooth functions f and g of one real variable in the light cone variables x+ =
x + y , x− = x− y. Hence, any conformal Killing factor κ has this form in the case
of p = q = 1. Let F and G be integrals of 1

2 f and 1
2 g, respectively. Then

X(x,y) = (F(x+)+G(x−),F(x+)−G(x−))

is a conformal Killing field with Xμ,ν + Xν ,μ = gμνκ . (This eventually completes
the proof of the implication “⇐” in Theorem 1.6.) The associated one-parameter
group (ϕt) of conformal transformations consists of orientation-preserving maps
with ux = vy, uy = vx for ϕt = (u,v).

Corollary 1.14. The orientation-preserving linear and conformal maps ψ : R
1,1 →

R
1,1 have matrix representations of the form

A = Aψ = A+(s, t) = exp t

(
coshs sinhs
sinhs coshs

)
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or

A = Aψ = A−(s, t) = exp t

(
−coshs sinhs

sinhs −coshs

)

with (s, t) ∈ R
2.

Proof. Let Aψ be the matrix representing ψ = (u,v) with respect to the standard
basis in R

2:

Aψ =
(

a b
c d

)
.

Then u = ax + by , v = cx + dy , hence ux = a,uy = b,vx = c,vy = d. Our Theo-
rem 1.13 implies a2 > c2 and a = d,b = c (the choice of the sign comes from
detA > 0). There is a unique t ∈R with exp2t = a2−c2 and also a unique s∈R with
sinhs = (exp−t)c, hence c2 = exp2t sinh2 s. It follows a2 = exp2t(1 + sinh2 s) =
(exp t coshs)2, and we conclude a = exp t coshs = d or a =−exp t coshs = d , and
b = exp t sinhs = d. �

There is again an interpretation of the action of t (dilatation) and s (boost) similar
to the Euclidean case.

The representation in Corollary 1.14 respects the composition: The well-known
identities for sinh and cosh imply A+(s, t)A+(s′, t ′) = A+(s+ s′, t + t ′).

Remark 1.15. As a consequence, the identity component of the group of linear con-
formal mappings R

1,1 → R
1,1 is isomorphic to the additive group R

2. Moreover,
the Lorentz group L = L(1,1) (the identity component of the linear isometries) is
isomorphic to R. The corresponding Poincaré group P = P(1,1) is the semidirect
product L �R

2 ∼= R�R
2 with respect to the action R→ GL(2,R) , s �→ A+(s,0).




