Exercises on Mathematical Statistical Physics II Sheet 1

Problem 1 (Projectors) Let $\varphi(x_j) \in L^2(\mathbb{R}^3, \mathbb{C})$. Show explicitly that $p_i^{\varphi} := |\varphi(x_i)\rangle\langle\varphi(x_i)|$ and $q_i^{\varphi} := 1 - p_i^{\varphi}$ are projectors, i.e. $p \circ p = p$ and $q \circ q = q$. Which are the eigenvalues of p_i^{φ} and q_i^{φ} ?

Problem 2 (Scaling) Regard the N-body Schrödinger equation with an interaction potential $V(x_i - x_j)$:

$$i\frac{\partial\psi(\mathbf{x},t)}{\partial t} = \left(-\sum_{i=1}^{N}\Delta_i + \sum_{i\neq j}V(x_i - x_j)\right)\psi(\mathbf{x},t) \tag{1}$$

where $\mathbf{x} = (x_1, x_2, ..., x_N) \in \mathbb{R}^{3N}$ denotes the tuple of the spatial coordinates of the particles.

Perform the following coordinate transformations $\mathbf{y} = N^{-1}\mathbf{x}$ and $\tau = N^{-2}t$. Consider first a general interaction, then the special case of a Coulomb potential $V(x_i - x_j) = (x_i - x_j)^{-1}$.

Of which equation from the lecture does the result remind you?

Problem 3 (Convolution) Let $f * g(x) := \int_{\mathbb{R}^d} f(y)g(x-y)d^dx$ be the convolution of $f \in L^p(\mathbb{R}^d)$ and $g \in L^q(\mathbb{R}^d)$. Show that

- a) the convolution defines a commutative algebra (without identity) on these function spaces.
- b) $\int_{\mathbf{R}^d} (f * g)(x) dx = \left(\int_{\mathbf{R}^d} f(x) dx \right) \left(\int_{\mathbf{R}^d} g(x) dx \right)$ (Hint: Use Fubini's theorem).

c)
$$\frac{\mathrm{d}}{\mathrm{d}x}(f \ast g(x)) = \frac{\mathrm{d}}{\mathrm{d}x}f(x) \ast g(x) = f(x) \ast \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$
 if $f, g \in C^1(\mathbb{R}^d)$.

- d) $\mathcal{F}(f*g)(x) = \mathcal{F}(f)(x) \cdot \mathcal{F}(g)(x)$ as well as $\mathcal{F}(f \cdot g)(x) = \mathcal{F}(f)(x) * \mathcal{F}(g)(x)$ with \mathcal{F} denoting the Fourier transform (up to a possible normalization constant).
- e) $||f * g||_r \le ||f||_p ||g||_q$ for $1 \le p, q, r \le \infty$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$. This inequality is known as Young's inequality.
- The solutions to these exercises will be discussed on Friday, 28.10. The upcoming exercise sheets and important news regarding the lecture will be posted on http://www.mathematik.uni-muenchen.de/~schaal/msp2_2016/.