LMU Munich Winter term 2016/17

Exercises on Mathematical Statistical Physics II Sheet 11

Problem 1 (Heat Equation from Brownian Motion)

Derive the heat equation $d_t\psi(x,t) = C\Delta\psi(x,t)$ as an effective equation for a system evolving due to Brownian motion (resp. Wiener process).

Problem 2 (Minimal Coupling)

Consider the N-particle bosonic Schrödinger equation with some weakly timedepentent perturbation of the Laplacian

$$i\frac{d}{dt}\Psi_t = \left(-\sum_{j=1}^N (i\nabla_j + A(t))^2 + \frac{1}{N}\sum_{k< j} V(|x_j - x_k|)\right)\Psi_t$$

with $||A(t)||_{\infty} < C < \infty$, $||d_t A(t)|| < C < \infty$, $V \in L_r$ for $2 \le r \le \infty$ and $\Psi_0 = \prod_{j=1}^N \phi(x_j)$.

Show that the system is effectively described by a Hartree equation. At which places do you use that the wave function is symmetric?

What did you assume for the solution of the effective equation dependent on r?

Problem 3 (Vlasov equation)

Consider the Newtonian system we discussed in class, i.e. $X = (Q, P) = (q_1, q_2, \dots, q_N, p_1, \dots, p_N) \in \mathbb{R}^{6N}$ with

$$\dot{Q} = P \qquad \dot{p}_j = N^{-1} \sum_{k \neq j} f(q_j - q_k)$$

Assume that $f(q) = \frac{q}{|q|^2}$ with cutoff at $N^{-\delta}$. Proof convergence of X against the auxiliary system \overline{X} in probability for δ as large as possible.

The solutions to these exercises will be discussed on Friday, 10.02.2017.