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Riemann Surfaces
Solution

Problem 12

a) Choose Ag = AN Ky, for Ky, K, = {2 € C: |z| <r}. Then for all w € A\ Ay,Vz € K, :
|w| > 2|z|. W.lLo.g. we assume |w;| < |ws|: We find a constant ¢ such that
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Thus the term converges uniformely on every K,. Hence p := pj is a meromorphic
function with poles of order two in the lattice points.

Remark. (x) results from rotating the lattice such that w; € R and then taking the norm.
For (x) one counts the number of (standard) lattice points with 1-norm n. There are
n + 1 of these points. Since the 1-norm is smaller than the euclidean norm (in this case)
we may restrict to [n| > 2r/|wy|. Finally we write our sum as an integral over a step
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T ACTREIE The factor 8 ensures that

3
we get for the integrants 8 - “%1 > ”n—*;} . 1[n,n+1[(:v), x > 0. Observe that (%) <8
as [2r/|ws|] = 1.



