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Problem 12

a) Choose Λ0 = Λ ∩K2r for K2r, Kr = {z ∈ C : |z| 6 r}. Then for all w ∈ Λ \ Λ0,∀z ∈ Kr :
|w| > 2|z|. W.l.o.g. we assume |w1| 6 |w2|: We �nd a constant c such that
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Thus the term converges uniformely on every Kr. Hence ℘ := ℘Λ is a meromorphic
function with poles of order two in the lattice points.

Remark. (∗) results from rotating the lattice such that w1 ∈ R and then taking the norm.
For (?) one counts the number of (standard) lattice points with 1-norm n. There are
n + 1 of these points. Since the 1-norm is smaller than the euclidean norm (in this case)
we may restrict to |n| > 2r/|w2|. Finally we write our sum as an integral over a step
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we get for the integrants 8 · x+1
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as d2r/|w2|e > 1.
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