Riemann Surfaces Solution

Problem 40

c) We reproduce a proof by Ludwig Fürst with a slightly different notation: Choose local coordinates z and $w=z^k$. Obvserve that $dw=kz^{k-1}dz$ and $\varphi_j(w)=e^{2\pi i j/k}w^{1/k}$ w.l.o.g.. Let $\omega=\sum_{l\in\mathbb{Z}}c_lz^l\,dz$. Then

$$\operatorname{Tr}(\omega) = \sum_{l \in \mathbb{Z}} \sum_{j=1}^{k} c_l \left(e^{2\pi i j/k} w^{1/k} \right)^l \frac{dw}{k \left(e^{2\pi i j/k} w^{1/k} \right)^{k-1}} = \sum_{l \in \mathbb{Z}} \sum_{j=1}^{k} \frac{c_l}{k} \cdot e^{2\pi i j (l-k+1)/k} w^{(l-k+1)/k} dw.$$

If $\frac{l-k+1}{k} \in \mathbb{Z} \Leftrightarrow \frac{l+1}{k} \in \mathbb{Z}$, then $e^{2\pi i j(l-k+1)/k} = 1$ for all j and we get

$$\sum_{j=1}^{k} \frac{c_l}{k} \cdot e^{2\pi i j(l-k+1)/k} w^{(l-k+1)/k} = \sum_{j=1}^{k} \frac{c_l}{k} \cdot w^{(l-k+1)/k} = c_l \cdot w^{(l-k+1)/k}.$$

If $\frac{l-k+1}{k} \notin \mathbb{Z}$, then by the geometric sum formula $\sum_{j=1}^k e^{2\pi i j(l-k+1)/k} = \frac{e^{2\pi i j(l-k+1)k/k}-1}{e^{2\pi i(l-k+1)/k}-1} = 0$. Hence we get

$$\sum_{j=1}^{k} \frac{c_l}{k} \cdot e^{2\pi i j(l-k+1)/k} w^{(l-k+1)/k} = 0.$$

Putting both results together we get for $l-k+1=mk \Leftrightarrow l=(m+1)k-1$

$$\operatorname{Tr}(\omega) = \sum_{m \in \mathbb{Z}} c_{(m+1)k-1} w^m dw.$$

- a) Follows from part c) since $m < 0 \Rightarrow (m+1)k 1 < 0$.
- b) Follows from part c) for the m = -1 coefficient $c_{(-1+1)k-1} = c_{-1}$.