Übungen zur Algorithmischen Zahlentheorie

Aufgabe 37

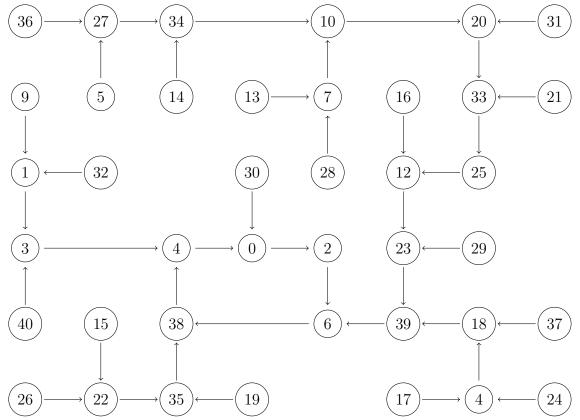
a) i) Wir müssen die Anzahl der Elemente des Bildes $f(\mathbb{Z}/p)$ berechnen. Die Aussage folgt aus:

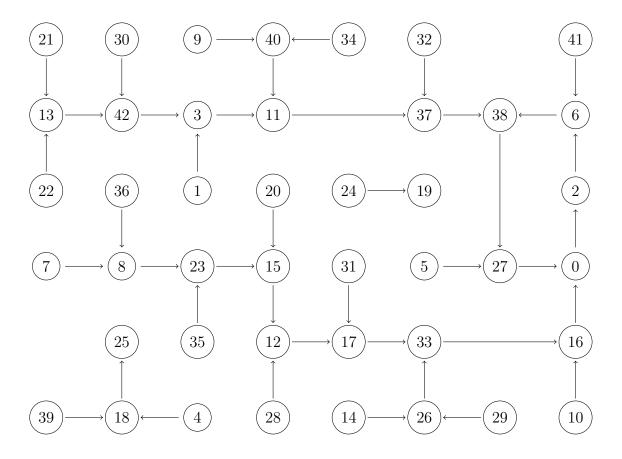
Satz. Für eine zyklische Gruppe der Ordnung m hat der Endomorphismus $f_k : x \mapsto x^k$ ein Bild der Mächtigkeit $m/\gcd(k,m)$.

Beweis. Wir wieder den Beweis aus Prof. Forsters Buch zur Algorithmischen Zahlentheorie, 14.1. Sei $\langle g \rangle = G$ und $d = \gcd(k,m), dj = k$, so erzeugt g^d das Bild von f_k , denn aus $d = \nu k + \mu m$ folgt für alle $y = x^k = (g^i)^k = (g^i)^{jd} = (g^d)^{ij}$, dass $y \in \langle g^d \rangle$. Man beachte $g^d = g^{\nu k} = (g^{\nu})^k$ liegt selbst im Bild. Wir haben gezeigt, dass das Bild gerade aus den Elementen $(g^d)^n$ mit $0 \leq n < \frac{m}{d}$ besteht.

Damit wissen wir, dass $f_2((\mathbb{Z}/p)^*) = \frac{p-1}{2}$ und es somit $\frac{p-1}{2}$ Quellen von f_2 in $(\mathbb{Z}/p)^*$. Da $f_2(0) = 0$ ist 0 keine Quelle, also gibt es $\frac{p-1}{2}$ Quellen von f_2 in \mathbb{Z}/p und damit auch $\frac{p-1}{2}$ Quellen von f in \mathbb{Z}/p .

- ii) Nach Aufgabe 21 hat $ax^2 + bx + c = 0, p \nmid a$ genau $1 + \left(\frac{b^2 4ac}{p}\right)$ Lösungen. Für $x^2 x + 2 = 0$ ergeben sich $1 + \left(\frac{-7}{p}\right)$ Lösungen.
- iii) Siehe ii).
- b) Wir zeichnen die beiden Falle 41 und 43 nacheinander:





Aufgabe 38*

Wir betrachten f_n je nach Kontext als eine der Abbildungen $f_n : \mathbb{Z}/2^n \to \mathbb{Z}/2^n$, $x \mapsto x(2x+1)$ oder $f : \mathbb{Z} \to \mathbb{Z}$, $x \mapsto x(2x+1) \mod 2^n$.

Die Behauptung für n=1 ist trivial. Sei deshalb $n \ge 2$. Wir benötigen die folgende Aussage: Behauptung 1. Für alle $n \ge 2$ und alle $a, b \in \mathbb{Z}$ gilt

$$f_{n+1}(x+a\cdot 2^{n-1}+b\cdot 2^n)=f_{n+1}(x)+a\cdot 2^{n-1}+b\cdot 2^n, \quad \forall x\in (\mathbb{Z}/2^{n+1})^*.$$

Beweis von Behauptung 1. Wir berechnen

$$f_{n+1}(x+a\cdot 2^{n-1}+b\cdot 2^n) = (x+a\cdot 2^{n-1}+b\cdot 2^n)(2((x+a\cdot 2^{n-1}+b\cdot 2^n))+1)$$

$$= 2x^2 + ax\cdot 2^n + bx\cdot 2^{n+1} + x + ax\cdot 2^n + a^2\cdot 2^{2n-1} + ab\cdot 2^{2n}$$

$$+ a\cdot 2^{n-1} + bx\cdot 2^{n+1} + ab\cdot 2^{2n} + b^2\cdot 2^{2n+1} + b\cdot 2^n$$

$$= f_{n+1}(x) + a\cdot 2^{n-1} + b\cdot 2^n.$$

Behauptung 2. Für alle $n \ge 2$ gilt $f_{n+1}^{2^{n-1}}(x) = x + 2^n$ für alle $x \in (\mathbb{Z}/2^{n+1})^*$.

Beweis von Behauptung 2. Wir zeigen die Aussage mit Induktion nach n. Den Induktionsanfang n=2 liefert die Periode $1\mapsto 3\mapsto 5\mapsto 7(\mapsto 1)$.

Man beachte es gilt $f_n(x \bmod 2^n) = f_{n+1}(x) \bmod 2^n$ für alle $x \in (\mathbb{Z}/2^{n+1})^*$. Somit ist $f_{n+1}(x) = f_n(x) + b \cdot 2^n$ mit $b \in \{0, 1\}$ oder allgemeiner $f_{n+1}^k(x) = f_n^k(x) + b_k \cdot 2^n$ mit $b_k \in \{0, 1\}$. Es folgt

¹Diese Behauptung gilt auch für n = 1.

durch zweifache Anwendung der Induktionsvoraussetzung sowie Behauptung 1

$$f_{n+1}^{2^{n-1}}(x) = f_{n+1}^{2^{n-2}} \circ f_{n+1}^{2^{n-2}}(x) = f_{n+1}^{2^{n-2}}(x + 2^{n-1} + b_{2^{n-2}} \cdot 2^n)$$

$$= f_{n+1}^{2^{n-2}}(x) + 2^{n-1} + b_{2^{n-2}} \cdot 2^n = x + 2^{n-1} + b_{2^{n-2}} \cdot 2^n + 2^{n-1} + b_{2^{n-2}} \cdot 2^n$$

$$= x + 2^n.$$

Die gesuchte Aussage folgt nun nochmal mittels Induktion. Für n=2 erhalten wir die Periode $1\mapsto 3(\mapsto 1)$ der Länge 2.

Sei $a_1, \ldots, a_{2^{n-1}}$ eine Periode von f_n und a'_1, \ldots, a'_{2^n} die entsprechende Folge in $(\mathbb{Z}/2^{n+1})^*$ mit $a'_1 = a_1$ und $a'_{i+1} = f_{n+1}(a'_i)$ für $1 \leqslant i \leqslant 2^n - 1$. Dann gilt $a'_i = a_i + b_i \cdot 2^n$ für gewisse $b_i \in \{0,1\}$ und $1 \leqslant i \leqslant 2^{n-1}$. Offensichtlich sind die a'_i für $i \leqslant 2^{n-1}$ paarweise verschieden, da $a'_i \mod 2^n = a_i \neq a_j = a'_j \mod 2^n$ für alle $1 \leqslant i \leqslant j \leqslant 2^{n-1}$. Nach Behauptung 2 gilt $a'_{i+2^{n-1}} = a'_i + 2^n$, sodass sogar für alle $1 \leqslant i \leqslant j \leqslant 2^n$ die $j \leqslant j \leqslant j \leqslant j \leqslant j \leqslant j$ paarweise verschieden sind. Damit erhalten wir wie gefordert eine Periode der Länge $j \leqslant j \leqslant j \leqslant j \leqslant j \leqslant j \leqslant j \leqslant j$

Bemerkung. Alle bis Mittwoch, 20.01.2016, 16:15, eingereichten Lösungen, waren richtig. Die Autoren erhalten jeweils einen Notenbonus von 0,3. Die Lösungen können in der Zentralübung abgeholt werden.

Aufgabe 40

so erhält man

Wir wissen, dass $|p-q| \le 2^{m-7}$ mit m=256. Setzt man p=N/q, so erhält man eine quadratische Ungleichung $q^2+2^{m-7}q-N\geqslant 0$ und somit

Implementiert man den fermatschen Faktorisierungsalgorithmus, z.B. mit aribas

```
function fer_factorize(N:integer):array;
external
q_min;
var
k,n:integer;
y:real;
v:array[2];
begin
n:=floor(sqrt(N))+1;
for k:=0 to n-q_min do;
y:=sqrt((n+k)**2-N);
if floor(y)=y then v[0..1]:=(n+k+floor(y),n+k-floor(y));
return v;
break;
end;
end;
end.
```

```
p = 97_75986_15749_30740_42230_55319_04247_90930_43816_
93187_16548_38138_45070_38229_99439_55923,
```

q = 97_75986_15749_30740_42230_55319_04247_90928_88374_ 85497_78169_36919_46597_28393_56742_85603.

Sei $\varphi(N) = (p-1)(q-1)$, dann erhalten wir mit der aribas-Funktion gcdx d, v mit $de+v\varphi(N) = 1$.

```
==> gcd(e,vp,d,v); d.
```

-: 8217_57985_01114_08498_32446_37992_88579_22416_28290_78511_04397_69513_ 34095_80135_85245_83312_54710_55380_23319_65588_25424_46097_32875_25029_19491_ 49522_09986_45888_82917_14196_55297

Nun können wir den Geheimtext y mittel $y^d \mod N$ in den Klartext

 $13_99613_83750_05971_69498_18674_83662_69019_62523_53958_53853_46302_51723_17530_77612_13968_44971_36816_54183_15330_75071_78297_17822_20362_64900_34973_27627_89120_51546_91550_71092$

umwandeln. Umwandlung ist Ascii-Zeichen liefert

```
x:=y**d mod N;
b:=byte_string(x);
mem_byteswap(b,length(b));
string(b).
```

wobei mem_byteswap entsprechend der Vorgabe $x = \sum_{i=1}^{n} a_i 2^{n-i}$ die Reihenfolge der length(b) = 63 Bytes in b umkehrt. Wie erhalten den Hinweis:

Die Klausur findet am 08.02.2016, 16-18 Uhr, im Raum C123 statt