Prof. W. Bley Marta Pieropan

6. Exercise sheet Algebraic Geometry I

Note: all solutions have to be completely justified.

Aufgabe 1 Let $A = \mathbb{Z}[T]$ the polynomial ring in one variable over \mathbb{Z} , and X = Spec(A).

(a) Determine all points in X.

(b) Determine all closed points in X.

(c) Is X irreducible?

(d) For any prime $p \in \mathbb{Z}$ determine the closure of the point $p\mathbb{Z}[T]$.

Aufgabe 2 Let $\varphi : A \to B$ be a homomorphism of rings and ${}^a\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$ the associated morphism of spectra. Show that

(a) ${}^{a}\varphi$ is dominant if and only if all elements in ker(φ) are nilpotent.

(b) if φ is surjective, then ${}^{a}\varphi$ is a homeomorphism of Spec *B* onto a closed subset of Spec *A*.

(c) if S is a multiplicative subset of A, $B = S^{-1}A$, and $\varphi : A \to S^{-1}A$ is the canonical morphism, then ${}^a\varphi$ is a homeomorphism onto the subspace of Spec A consisting of prime ideals \mathfrak{p} of A such that $\mathfrak{p} \cap S = \emptyset$.

Aufgabe 3 Let A be a ring and $X = \operatorname{Spec} A$.

(a) Show that every irreducible subset of X contains at most one generic point.

(b) Show that every irreducible closed subset of X contains a generic point.

(c) Show that every irreducible open subset of X contains a generic point.

(d) Let A be a principal ideal domain with infinitely many maximal ideals (for example $A = \mathbb{Z}$ or A = k[T]). Show that any subset of X that consists of infinitely many closed points is irreducible, but does not contain a generic point.

Aufgabe 4 Let X be a topological space.

(a) Let \mathcal{F} be a sheaf on X. Show that $\mathcal{F}(\emptyset)$ consists of only one element.

(b) Let A be a nonzero abelian group (i.e. A coontains at least two distinct elements). We define \mathcal{F} by $\mathcal{F}(U) = A$ for all open subsets U of X and $\operatorname{res}_U^V = \operatorname{id}_A$ for all inclusions $U \subseteq V$ of open subsets of X. Show that \mathcal{F} is a presheaf on X, but not a sheaf. Let now \mathcal{F}' be defined by $\mathcal{F}'(U) = A$ for all nonempty open subsets U of X, $\mathcal{F}(\emptyset) = 0$, $\operatorname{res}_U^V = \operatorname{id}_A$ for all inclusions $U \subseteq V$ of nonempty open subsets of X, and $\operatorname{res}_{\emptyset}^U$ the zero map $A \to 0$. Is \mathcal{F}' a sheaf on X?

(c) Assume that $X = \{x_1, \ldots, x_n\}$ is a finite set, and let \mathcal{F} be a sheaf on X. Show that $\mathcal{F}(X) \simeq \prod_{i=1}^n \mathcal{F}(\{x_i\})$.

21.11.2013