Prof. W. Bley Marta Pieropan

4. Exercise sheet Algebraic Geometry I

Note: all solutions have to be completely justified.

Aufgabe 1 Let (X, \mathcal{O}_X) be a prevariety. Show that the topological space X is noetherian and irreducible.

Aufgabe 2 (a) Let $X \subset \mathbb{A}^n(k)$ be an irreducible affine algebraic set, Z an irreducible closed subset of X and U an open subset of Z. Show that the image of the inclusion $\mathcal{O}_Z(U) \to \operatorname{Map}(U,k)$ is the set of functions $f \in \operatorname{Map}(U,k)$ with the following property: for every $x \in U$ there exists an open neighborhood V of x in X and $g \in \mathcal{O}_X(V)$ such that $f|_{U \cap V} = g|_{U \cap V}$.

(b) Let X be a prevariety and Z an irreducible closed subset of X. For all open subsets U of Z we define $\mathcal{O}_Z(U)$ to be the set of functions $f \in \operatorname{Map}(U, k)$ with the following property: for every $x \in U$ there exists an open neighborhood V of x in X and $g \in \mathcal{O}_X(V)$ such that $f|_{U \cap V} = g|_{U \cap V}$. Show that (Z, \mathcal{O}_Z) is a prevariety and the inclusion $Z \subseteq X$ is a morphism of prevarieties.

Aufgabe 3 (a) Let X be an irreducible affine algebraic set and I a proper ideal of $\Gamma(X)$. Show that $V(I) \neq \emptyset$. (b) Let $X := \mathbb{A}^n(k) \setminus V(T_1, \ldots, T_n)$. Show that $(X, \mathcal{O}_{\mathbb{A}^n(k)}|_X)$ is a prevariety. Is

(b) Let $X := \mathbb{A}^{n}(k) \setminus V(T_{1}, \dots, T_{n})$. Show that $(X, \mathcal{O}_{\mathbb{A}^{n}(k)}|_{X})$ is a prevariety. If $(X, \mathcal{O}_{\mathbb{A}^{n}(k)}|_{X})$ an affine variety?

Aufgabe 4 Let X be a prevariety and let Y be an affine variety. Show that the map

$$Hom(X,Y) \to Hom_{k-alg}(\Gamma(Y),\Gamma(X)), \quad f \mapsto f^*: \varphi \mapsto \varphi \circ f,$$

is bijective. Deduce that $Hom(X, \mathbb{A}^n(k)) = \Gamma(X)^n$.

07.11.2013