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CHAPTER 1

Basic ideas of ODEs

1.1. Review of topology in R™

In this section we review the basic facts of the topology in R™ that we are going
to use subsequently.

DEFINITION 1.1.1. Let X be a vector space over R. A real inner product on X
is a mapping ((-,-)) : X x X — R such that for every z,y,z € X and A € R the
following hold:

) ({z,z)) > 0 (positivity).
1) ((x,z)) = 0 = x = 0 (definiteness).

(i

(

(#id) ((z,y)) = ((y,)) (symmetry).

(iv) ((x +y,2)) = ((z,2)) + {{y,2)) (left additivity).
(v) {(Ax,y)) = A({z,y)) (left homogeneous)

If ((-,-)) is a real inner product on X, the pair (X, ((-,))) is called a real inner
product space. A real norm on X is a mapping ||.|]| : X — R such that for every
z,y € X and X € R the following hold:

(@) ||z|| > 0 (positivity).

(#) ||z|| = 0 = 2 = 0 (definiteness).

(i13) ||z + y|| < [|z|| + [|y|| (triangle inequality).

(i) [[Az]| = [All]]]

If ||.|| is a real norm on X, the pair (X,||.||) is called a real normed space. Unless
stated otherwise, an inner product (space) means here a real inner product (space),
and a norm(ed space) means here a real norm(ed space). We use the notation

X* = X\ {0}.

Because of symmetry an inner product is bilinear (i.e., it is also right additive
and right homogeneous). Next we show that an inner product is determined by its
diagonal entries.

PROPOSITION 1.1.2. Let (X, ({-,-))) be an inner product space and x,y € X.

(i) (Polarization identity ) (( N =1z +y,z4+y) - (z—y.z—1y))).
(ii) =0 & Voex (((z,2) )
(i) Y.ex (((z,2)) = (v, >>) =z =y.
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ProoF. (i) Clearly, ((z +y,z +y)) — {(z —y,z — y)) = <(x,y)<)

(i) If & = 0, then ((z,2)) = (0,2)) = ((0+0,2)) = ((0,2)) + ({0, 2)). Hence
({0, 2)) = 0. For the converse, if V.cx ({{z,2)) = ) then ({(x,x)) = 0, hence z = 0.
(iii) By the hypothesis we get V.cx ({((z — y, 2)) = 0), hence by (ii) z = O
If = 0, then ||z|| = 0. Moreover, if z = 0, or y = 0, or y = Az, for some
A > 0, then equality holds in the triangle inequality.
DEeFINITION 1.1.3. If 2 = (21,...,2,) and y = (y1,...,Yn) are in R™ their

Euclidean inner product is defined by

n
)= Z TiYi-
i=1

It is immediate to see that the Euclidean inner product is an inner product on
R™. If we define the Minkowski product (-,-) on R* by

((SL‘, S)a (yvt)) = szyz — st,

for every (z,s), (y,t) € R*, we get a function, which is symmetric, left additive and
left homogeneous, but does not satisfy positivity and definiteness. Hence, positivity
and definiteness are independent from the rest properties of an inner product. The
pair (R4, (+,)) is called the Minkowski space, and it is very important in the special
theory of relativity. If we identify space with all pairs (x,0), then ((x,0), (z,0)) > 0,
and if we identify time with all pairs (0, s), then ((0,s), (0, s)) < 0. For this reason
we say that an element (z, s) of the Minkowski space is space-like, if ((, s), (z,s)) >
0, and we say that it is time-like, if ((z, s), (z,s)) < 0.

DEFINITION 1.1.4. If z € R™, the Fuclidean norm |z| of z is defined by

1

2] = (Zx)

i=1

To show that the Euclidean norm is a norm we need the following.

PROPOSITION 1.1.5 (Inequality of Cauchy). If z,y € R™, then
(@, 9)] < |2[lyl.

PROOF. (Bishop) By definition we need to show

(54) (59)"

iYi

which is equivalent to
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This we get as follows:
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An inner product on X induces a norm on X defined by

l|z|| = ({z,2))%.

To show that ||.|| is a norm on X we need the inequality

({2, )| < ] Iyl

which generalizes the inequality of Cauchy. Clearly, the Euclidean norm is the norm
induced by the Euclidean inner product. Geometrically, if © € R™, then |z| is the
length of the vector z and

(z,y) = |z| ly| cosO(z,y),
where 6 is the angle between x and y, which for z # 0 and y # 0 is defined by
(z,y)
|z[ly]

If (x,y) = 0, we say that x (y) is orthogonal to y (z).
If (X, ||-|]) is a normed space, the triangle inequality implies the reverse triangle
inequality!

O(x,y) := arccos

Izl = 1lyll] < llz = yll,
for every z,y € X. If we replace y by —y, we get

[zl =yl < [l = [lyll] < llz + yll-

The next theorem is a sharp version of the triangle inequality. If a,b € R, we
use the notations a A b := min{a, b} and a V b := max{a,b}.

IThe reverse triangle inequality implies that |.|| is 1-Lipschitz on X with respect to ||.||.
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THEOREM 1.1.6 (Sharp triangle inequality). If (X, ||.||) is a normed space and
x,y € X*, the following hold:
Y
ol et A o)
Il ) ( )

+”yy||H>(||z|v||y||>-

Moreover, if either ||z|| = ||ly|| or y = Az, for some XA > 0, then equality holds in
both (1.1) and (1.2).

(L.1) |lx+ylélxll+|yll—<2—

(1.2) |I$+y|2|xll+|yll<2

PRrOOF. (Maligranda) Without loss of generality we assume that ||z|| < ||y||,
hence ||z|| A |ly|| = ||z]|- Using the triangle inequality we have that

x X
o+l = [l + 8+ (1 1214
Il Tl ol
e, , el = el
T 7
el e o =l
R
= Yol |2+ 2|+ gl ~
i ol

~ Iyl + '(Hmf@ | 1)
~ Jlall + Iyl - (2— ||y||H>”x”

The rest of the proof is an exercise. [l

THEOREM 1.1.7 (Jordan, von Neumann). Let (X, ||.||) be a normed space. The
following are equivalent.

(i) The norm ||.|| is induced by some inner product ((-,-)) on X.
(#3) The norm ||.|| satisfies the parallelogram law i.e., for every x,y € X

[l +yl? + [l =yl = 2(||=[1* + [y]|*)-

PROOF. (i) = (ii) It follows from a simple calculation.
(ii) = (i) Due to the polarization identity it is natural to define

(1) (o) = 5 (llo + 91 = llo = oI,



1.1. REVIEW OF TOPOLOGY IN R" 5

Positivity, definiteness and symmetry of ((z,y)) follow immediately. It is also
straightforward to see that

(1.4) ((=2,9)) = =((z,9))-

In order to show left additivity we have from the parallelogram law and the defini-
tion of ({z,y)) that

Az +z9) = llz+ 2 +yl1* = llz + 2 - ylI?

[ ) G- 1)+ (-3)

2

2 2
Y Y 2
—2 I wollz+ 2| — o — 2|2~
x+ 5 +2[|z + 5 |z — z||
2 2
<2xg +2Hz@2/ |xz||2>
Y 2 Y 2 Y 2 Y ?
_ 4 Y
= 8{(z, 1)) + 844z, 2)
Hence we get
_ Y )
(1.5 (o200 =2t 2+ 4 2.
If in (1.5) we set z =0, we get for every z,y € X
Y
(1.6) {{&,y)) = 2({z, 5))-
Consequently, (1.5) becomes
Y Y
(o -+ 2000) = 2( o 0+ (2 200) = L)) + LG
The rest of the proof is an exercise. O

Note that in [1] one can find about 350 characterizations of a normed space
induced by an inner product!

It is often convenient to work with norms on R™ other than the Euclidean norm.
It is easy to show that the following mappings are norms on R™

n
|Z]sum = Z |z:| =: Z |zl
=1 i

|| max := max{|z;| | i € {1,...,n}} = mzax|xi|.
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If n =1 and z € R, then |2|sum = |2| = ||max- The unit sphere of a normed space
(X, ||-1]) is the set
S\lHl ={z e X||z|| =1}

The unit spheres S|1~"8|1v|max and Sll.lsum of R? are pictured as follows:

1
A ) A [+ Jmae A
i) .

[-[sum

Y
Y
Y

Especially for R™ we define the n-sphere S™, for n > 1, as follows:
S" = {zx ¢ R"" | |z| = 1}.

If B={f1,...,fn} is any basis for R", there are B-versions of the aforementioned
norms on R™: if z € R™ and
T = Z tifia
i

then e.g., the B-Euclidean norm and the B-max norm are defined, respectively, as

follows: )
3
|z|p = ( > t?)

i
|| B, max := m?X|ti|-

DEFINITION 1.1.8. Let (X, ||.||) be a normed space and f: X — R.
We say that f is convex, if

VayexVieon) (ftz + (1 —t)y) <tf(x)+ (1 —1)f(y)),

and we say that f is strictly converz, if

Yoyex (z#y = Veeon (f(tz + (1= t)y) <tf(z) + 1 =1)f(y)))-
The normed space (X, ||.||) is called strictly convexz, if
<1).

Tty
2
The identity function idg on R is convex, but not strictly convex function. If
a normed space is strictly convex, its unit sphere S\1|~|| includes no line segment, as

vz,y@((x%w lell = 1= llyll = ]

the middle points are not in SllHI' The normed space (R?, |.|) is strictly convex. A
normed space generated by some inner product is always strictly convex.
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A

PROPOSITION 1.1.9. Let (X, ||.]|) be a normed space.

(i) The norm ||.|| is a convex function, which is not strictly convex.
(i3t) If the norm ||.]| is induced by some inner product ({-,-)) on X, then (X,||.|])
is a strictly convex normed space.

PRroOF. Exercise. O

Using Proposition 1.1.9(iii) we can find norms that are not induced by some
inner product (exercise).

PROPOSITION 1.1.10. Let (X, ((-,-))) be an inner product space and let ||.|| be
the norm on X induced by {{-,-)).
(i) If x,y € X, the following hold:

|Gz, )| = Izl Tyl < (v, 9))z = (. 9))y,
lz +yll = llzll + [yl < lylle = z]ly.

(ii) The function ||.||? is a strictly convex function.

Proor. Exercise. U

DEFINITION 1.1.11. A metric on some set X is a mapping d : X x X — R such
that for every z,y, 2z € X the following hold:
(1) d(z,y) = 0.
(i) d(z,y) =0z =y.
(1ii) d(z,y) = d(y, ).
(1) d(z,y) < d(z, 2) + d(2,y).
If d is a metric on X, the pair (X, d) is called a metric space.

A norm ||.|| on the real vector space X induces a metric on X defined by
d(z,y) = [lz = yl|.

DEFINITION 1.1.12. The Fuclidean metric € on R™ is the metric induced by
the Euclidean norm on R" i.e., e(z,y) := |z — y|, for every z,y € R™.
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PrROPOSITION 1.1.13. Let X be a real vector space and let d be a metric on X.
The following are equivalent:
(i) There is a norm ||.|| on X that induces d.
(i) If z,y,2 € X and A € R, then d satisfies the following:
(a) d(z,y) = d(z + 2,y + 2).
(0) d(Az, Ay) = [Ald(z,y).
Proor. Exercise. O

Using Proposition 1.1.13 we can find a metric on any real vector space X that
is not induced by some norm on X.

DEFINITION 1.1.14. If x € R™ and € > 0, the e-neighborhood of x is the set

B(z,e) :={y e R" | |y — z| < €}
The e-ball around x is the set

B(z,e] :={y e R" | ly — z| < €}.
The 1-ball around 0 is called the unit ball. Let X C R™. X is convexz, if for every
z,y € X the line segment between x and y

{tr+(1—-t)y|te(0,1)}

is included in X. We say that X is a neighborhood of z, if there is some € > 0 such
that B(z,e) C X, and we call X open, if X is a neighborhood of every z € X. X
is bounded, if there is € > 0 such that X C B(0,¢). The convergence of a sequence
(25,)22; in R™ to the limit € R™ is defined by

n .
Ty — X = nhﬁn;o Tp =T 1 Ve 0Tn(0)eNVn>n(e) (|xn —z| < e).

A sequence (2,)%2; in R™ is a Cauchy sequence, if

ve>03n(e)ENvm,n2n(e) (|xm - xn| < €)~

X is closed, if every convergent sequence in X has its limit in X, and X is compact,
if every sequence in X has a convergent subsequence in X.

All concepts found in Definition 1.1.14 and Definition 1.1.19 are generalized to
arbitrary metric spaces. Note that the above notions of e-neighborhood, neighbor-
hood, open set, closed set, of convergence and the various continuity concepts are
defined with respect to the Fuclidean norm on R™. Usually we refer to them as
a Fuclidean neighborhood, a Euclidean open set and so on. Soon we will see that
this is not a loss of generality. Convexity of sets is generalized to arbitrary normed
spaces, and it is the necessary property of the domain of a convex function.

It is easy to see that the e-neighborhoods and the e-balls of a normed space are
convex sets. This is not generally the case for the e-neighborhoods and the e-balls

Ba(w,€) == {y € X | d(y,z) <€},
Ba(z,e] :={y € X |d(y,z) < €}
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of a metric space (X,d). E.g., let the metric ¢ on R? be defined by

o(z,y) = Vw1 =yl + Vw2 — al,
for every x,y € R%. If x € R? and € > 0, we show that B,(x,¢) is not convex. If
A€ (%,e), then VA < e and § < \/g If y = (x1 + Ay z2) and z = (21,22 + A),
then o(z,y) = VA = o(z, 2) i.e., y, 2 € B,(z,¢). Hence,

1 +1 _ ( ) ( +)\ +)\)
g 33723j 2y =0\ (T1,72),\T1 27372 2

_\ﬁ+ /A
V2 2
+

Vv
Dol e
N

i.e., 3z + 3y ¢ B, (x,€). The non-convex unit ball of o looks as follows:
A
(07 1) T

(07 _1) T

DEFINITION 1.1.15. If X is a vector space and d is a metric on X, then X has
convex e-neighborhoods, if for every © € X and € > 0 the set B,(z,€) is convex.

From now on we write “iff” instead of “if and only if”.

ProproSITION 1.1.16. If X is a vector space and d is a metric on X, then X
has convex e-neighborhoods iff

Voyzex Vie(o) (dz, ty + (1 - t)2) < d(z,y) V d(z, 2)).
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PROOF. Suppose first that the condition holds and let z,y,z € X such that
Y,z € Ba(w,e). If t € (0,1), then d(x, ty + (1 — t)z) < d(x,y) V d(=,z) < e. For the
converse suppose that there are x,y,z € X and ¢t € (0,1) such that d(a:,ty +(1-
t)z) > d(x,y) V d(z,z). If we take € € R such that

d(z,y) Vd(z,2) < e <d(z,ty+ (1-1)z),

then y, z € By(z,€) and ty + (1 — t)z ¢ By(x, €), which contradicts the convexity of
Ba(x,e). O

It is easy to see that the set 7 of open sets of a normed (metric) space X are
closed under arbitrary unions and finite intersections, and that X and () are in T,
the so-called topology of X. We denote by T°¢ the set of the closed sets of X. If
A C X, the interior A of A and the closure A of A are defined by

A= {GCX|GCANGET},

A=({FCX|F2AANF T

Clearly, A is the largest open set included in A and A is the smallest closed set that
includes A. Moreover, A is open iff A = A, and A is closed iff A= A. If A,BC X
and A\ € R, we use the following notations*

A+B:={a+b|lac Abe B},
M :={)Xa|a € A}.
PROPOSITION 1.1.17. Let (X, ||.||) be a normed space and A, B C X.

(i) If A is open, then A+ B is open.

(i) If A is open and t > 0, then tA is open.

(iii) If A is convex, then A is convex and A is convew.

(iv) If A is a subspace of X, then A# X < A=.

(v) If f: X — R is linear and f # 0, then f is open i.e., it maps open sets of X
nto open sets of R.

ProoF. (i) If a € A and € > 0 such that B(z,¢) C A, and if b € B, then
B(x +y,e) = B(x,e) + {b} C A+ {b}
i.e., A+ {b} is open. Since,
A+B=|J{A+{p}|be B},

we have that A + B is open as a union of open sets.

(ii) Exercise.

(iif) Since A is open, by (ii) we get tA is open, hence by (i) we have that t A4 (1—t)A
is open. Since A is convex, tA + (1 —t)A C A, and since A C A, we conclude
that tA + (1 —t)A C A. Since A is the largest open set included in A, we get



1.1. REVIEW OF TOPOLOGY IN R" 11

tA+ (1 —t)A C Aie., Ais convex. If ,y € A, there are sequences (z,)5, C A
and (y,)%; C A such that x,, - z and y,, — y. Since

try, + (1 - t)yn L> te + (1 - t)yv
and tz,, + (1 —t)y, € A, by the convexity of A, we get tx + (1 —t)y € A.

iv) and (v) Exercises. O
(iv) (v)

PropPOSITION 1.1.18. Let X C R".
(0) If xx, = (Tk1, ..., Tgn) € R™, for every k € N, and y € R™, then

lim z =y < lim g = y;, for everyi € {1,...,n}.
k— o0 k—o0

(i1) A sequence in R™ converges to a limit iff it is a Cauchy sequence.
(#i1) X s closed iff its complement R™ \ X is open.

(1v)(Bolzano-Weierstrass) X is compact iff X is closed and bounded.

v) If n =1, and X # 0 and compact, then X has a mazimum and a minimum

PROOF. Left to the reader. See also [4] and [12]. O

DEFINITION 1.1.19. Let X C R™ and f : X — R™. We say that f is continuous
at o € R™, if

VYes0Ts>0¥aex (|2 — 2ol <6 = |f(2) — f(zo)] <),

and f is continuous on X, if it is continuous at every element of X. We say that
f is sequentially continuous on X, if for every (z,)$2; in X and every x € X

nl;ngo Ty =T = nlgI;o flxn) = f(x).

We say that f is uniformly continuous on X, if

ve>035>0vr,yEX(|x - y| <d= |f(SC) - f(y)| < 6)7
and f is o-Lipschitz on X, where o > 0, if

Voyex (If(2) — fy)| < oz —yl).

ProroOSITION 1.1.20. Let X CR" and f: X — R™.
(1) f is continuous on X iff f is sequentially continuous on X.
(i) If f is o-Lipschitz on X, it is uniformly continuous on X.
(#i1) If f is uniformly continuous on X, it is continuous on X.
(i) If X is compact and if [ is continuous on X, then f is uniformly continuous
and f(X) is compact.
(v) If m=1, and X # 0 and compact, and if f is continuous on X, then f has a
maximum and a minimum value.

PROOF. Left to the reader. See also [4] and [12]. O
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One can show that & — 2 is continuous on R, but not uniformly continuous
on R, and = — +/|z| is uniformly continuous on R, but not o-Lipschitz, for every
o >0, If € R", then

(el < Y02 < m(max )
K2

and taking square roots we get
|$|max S |$| S \/ﬁ ‘$|maxa
or

1
—= 2| < |2|max < |2]-
n
Since |Z|sum < 7 |2 max < 1 |x|, we also have that
1
- |x‘sum S |£C| S |x‘sum'
n
Such inequalities hold for every norm on R™.
LEMMA 1.1.21. A norm ||.|| on R™ is an (Mn)-Lipschitz function, where

M := max|[e;]],
K3
and {e1,...,e,} is the standard basis for R™.

PROOF. Let x € R"™ and let © = )", x;e;. Then

|M=HZ%@<§NWH=ZMMW<M§}M=M%M<MM¢
7 7 7 7

Hence, if z,y € R"™, we get
2|l = 1lyll] < [l =yl < Mn|z —y].

(|

PROPOSITION 1.1.22 (Equivalence of norms). Let ||.||, ||.]|« be norms on R™.

(i) There are A >0 and B > 0 such that for every x € R™ we have that
Alz| <|lz]| < Bla].
(#3) There are A’ > 0 and B’ > 0 such that for every x € R™ we have that
Alall < llell. < Bzl

PROOF. (i) Since the unit sphere S|1~| is non-empty, closed and bounded subset

of R™, and since by Lemma 1.1.21 ||.|| is continuous on R"™, its restriction to S‘l_‘

is continuous on Sll_‘. By Proposition 1.1.20(v) we have that ||.|| has a maximum
value B and a minimum value A on Sh i.e., for every z € R"”

o] =12 A< o]l < B.
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If 2 = 0, the inequalities A|0] < ||0|] < B|0| hold trivially. If @ # 0, then |z| > 0
and ’\%I| = 1. Hence

A< HISCIH < B Alz| < |jz]| < Blal.
X

(ii) Exercise. O

Two norms satisfying the inequalities of Proposition 1.1.22(ii) are called equiv-
alent. Hence, any two norms on R" are equivalent. Two equivalent norms generate
the same topology i.e., the same set of open sets, and “behave equivalently” in
the sense of the next proposition. Of course, we have already seen that there are
geometric properties, like the strict convexity of the resulting normed space, that
are not shared by equivalent norms.

PROPOSITION 1.1.23. Let ||.||, ||.||« be norms on R™, X CR™, (z,)5%, C R™,
and z € R™.
(1) X is open with respect to ||.|| iff X is open with respect to ||.||«.
(i) X is closed with respect to ||.|| iff X is closed with respect to ||.||«.
(#i1) X is bounded with respect to ||.|| iff X is bounded with respect to ||.|«.
(1v) limp, 00 (T5,) = & with respect to ||.|| iff imy—oo(2y) = x with respect to |].|]«.
(v) (2,)24 is Cauchy with respect to ||.|| iff (x,)52, is Cauchy with respect to ||.|]«.
(vi) X is compact with respect to ||.|| iff X is compact with respect to ||.||«.
(vit) The unit ball and the unit sphere with respect to ||.|| are compact sets.

PROOF. (i) Let A’ > 0 and B’ > 0 such that A'||z|| < ||z||« < B’||z||, for every
x € R™. Let X be open with respect to ||.|| i.e., if z € X, there is € > 0 such that
By j(z,e) ={y e R" | [ly —z]| <e} € X.
If y € R™ such that ||y — z||. < €A/, then, since A'|ly — z|| < ||y — z||. < €A’, we
get ||y — z|| < e. Consequently,
x € By (z,eA") C By (z,€) € X.

If X is open with respect to ||.||«, then working similarly we get
€
T € BII-H(:CV g) - B\\-||*(x76) C X.
(#i) — (vi) Immediately by (i) and the corresponding definitions.
(vit) The unit ball and the unit sphere with respect to the Euclidean norm are closed
and bounded, hence compact. Then we use (vi) and Proposition 1.1.22(i). O

DEFINITION 1.1.24. Let ||.|| be a norm on R"™ and ||.||« a norm on R™. If
X CR"and f: X — R™, we call f Lipschitz, if there is ¢ > 0 such that f is
o-Lipschitz i.e.,

Vayex (1 (@) = fW)]« < ollz —yll).
The Lipschitz-property does not depend on the choice of norms on R™ and R™
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COROLLARY 1.1.25. Let ||.|| and ||.]|" be norms on R™, and let ||.||. and ||.||.
be norms on R™. If X CR™ and f: X — R™, then f is Lipschitz with respect to
[I.Il and ||.||« #f f is Lipschitz with respect to ||.|| and ||.||,-

PRrROOF. Exercise. O

PROPOSITION 1.1.26. Let (X, ||.||) and (Y, ||.||«) be normed spaces and f : X —
Y linear. The following are equivalent:
(1) f is continuous at o € X.
(i3) f is continuous at 0.
(#i1) There is o > 0 such that for all x € X we have that || f(x)]]. < ol|z|].

Proor. (i) = (i) If z,, — 0, then z,, + 19 —= 20, hence f(z,) + f(xo) —
f(20), which implies that f(x,) — 0= £(0).
(ii) Let 6(1) > 0 such that ||z|] < §(1) = ||f(2)|]« <1, for every z € X. If g € X
such that xg # 0, then

o)
5 < 0(1),

hence

|Gt <= 71
2||zol| 2” ol|
where o := W' If £y = 0, then the inequality ||f(0)|]. < o¢|0]| holds trivially.

The implication (iii) = (i) follows from Proposition 1.1.20(iii). O

1 (zo)ll« <1 & |f(zo)ll+ < allzol],

If X = R™ we can show that a linear function on R™ is always continuous.

PROPOSITION 1.1.27. Let E be a normed space. If f : R™ — E is linear, then
f is Lipschitz.

Proor. Exercise. O
The Lipschitz functions between metric spaces are defined as in Definition 1.1.24.
A major difference between uniformly continuous functions and Lipschitz functions

is that the latter send bounded subsets of their domain to bounded subsets of their
codomain, as, for example,

F @) < [1f () = FO)| + £ )]
< ollz = 0[| +[l£ )l
= oM +|f(0)ll;

while the former do not preserve, in general, boundedness; the identity idy : N —
R, where N is equipped with the discrete metric?, is uniformly continuous, but
idy(N) = N is not bounded in R.

2The discrete metric on a set X is defined by p(z,y) = 0 < = = y and p(z,y) = 1, otherwise.
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PRrROPOSITION 1.1.28. Let E be a subspace of R™.

(@) If .| is @ norm on R", then its restriction ||.|||g to E is a norm on E.

(i) If .|| is a norm on E, there is a norm ||.|| on R™ such that ||.||g = ||.|||&-
(#i1) All norms on E are equivalent.

() If ||.llg is a norm on E, the unit ball and the unit sphere with respect to ||.||g

are compact sets.

PROOF. The proof of (i) is immediate. For (ii) we write R™ as the direct sum
R™ = E + F; take a basis {ei,...,e,} for R such that {e1,...,en} is a basis
for E, where m < n (if m = n, what we want to show follows trivially). Then
F =<{em+1,--.,en} >, the span of {€,,41,...,€,}. Since an element x of R" is
written as
r=y+z yek z€F,

we define the function

Il == llyll + |2l.
It is immediate to see that ||.|| is a norm on R™. Also, ||y|| = ||y|| &, for every y € E.
(iii) If |||z, and ||.|| ; are two norms on E, let ||.|| and ||.]|" be their induced norms

on R”™. Since the latter are equivalent, the former are also equivalent.

(iv) The unit ball B(0,1] = {z € E | ||z||lg < 1} is bounded with respect to
the extension norm ||.|| of ||.||z to R™, hence by Proposition 1.1.23(iii) it is also
bounded in R™ (with respect to the Euclidean norm). By the continuity of ||.|| and
the implied continuity of its restriction ||.||g, we have that B(0,1] is closed with
respect to ||.||g. Hence, by Proposition 1.1.23(ii) it is also closed with respect to
the Euclidean norm. 0

DEFINITION 1.1.29. If (z,)5%, C R™, the sequence of partial sums (sg)5>, of
(2,)52, is defined by
k
Sk = Z L,
i=0

and it is often denoted by an infinite series

oo
E T, Or E Tk-
k=0 k

If limg_ o0 Sg = x, for some x € R™, we write

oo
E Tp =T, Or E Tp = T.
k=0 k

If ||.|| is a norm on R", a series ), x), is absolutely convergent, if the series

o0

>zl

k=0
is convergent in R.
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If a series is absolutely convergent with respect to some norm ||.|| on R”, then
it is absolutely convergent with respect to any other norm ||.||. on R™. For this let
ok = Zf:o [|;|| and 73 := Zf:o [|z;||«. By the equivalence of norms there is some
C > 0 such that if n > m,
n

> laill

i=m-+1

n

= Y el <€ Y llaill = Clow — owl-

i=m+1 i=m+1

|7-n - Tm| =

Hence, absolute convergence of a series is independent of the norm on R™, and we
speak of absolute convergence of a series in R™ without reference to some norm.

PROPOSITION 1.1.30 (Comparison test). Let ||.|| be a norm on R™ and let the
series y_, xy in R™. If there is a series ), ap in R such that:
(i) ax > 0, for every k;
(i1) ||xk|| < ag, for every k;
(¢43) Y-, ax converges in R,

then the series ), x) converges absolutely.

ProoF. If 1, := Zf:o [|z;|| and of, = Zf:o a;, for every k, and since for n > m

n n

n
T =Tl = D Ml < Y0 ai=| Y ai = ok —oml,
1=m-+1 i=m-+1 1=m-+1
we use the Cauchy criterion for convergence. O

1.2. The Newtonian gravitational field and the method of integrals

The field of ordinary differential equations (ODESs) is closely related to physics.
In this section we discuss Newton’s second law that connects the physical concept
of force field and the mathematical concept of differential equation, and lies at the
root of classical mechanics. We shall be working with a particle moving in a field
of force. We represent mathematically the notion of trajectory of a moving particle
in R™ (usually n < 3) by a path in R™.

DEFINITION 1.2.1. Let U C R™. A path in U is a continuous function~y : I — U,
where I is an interval of R. If « is differentiable on I (i.e., each projection function
~; is differentiable), the derivative of v defines a function 7' : I — R™. If 4/ is
continuous, we say that v is C*, or continuously differentiable. If v' is C1, we say
that « is C2. Inductively one defines a function v to be C™, where n > 0. Moreover,
v is called C'°, if it is C™, for every n > 0. The set U is called path-connected, if
for every x,y € U there is some path v : [a,b] = U from z to y i.e., y(a) = z and
v(b) = y. Similarly, U is C* path-connected, if there is a C* path connecting any
two points of U, where i € N* U {oo}. A path from z to z in U is called a closed
path, or a loop in U.
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A convex subset of R™ is path-connected, but the converse is not generally true.

A

Y

The space R" is C*° path-connected in the following special way.
PROPOSITION 1.2.2. Let x,y € R™ such that |y — x| > 0.
(i) The function v, : [0, |y — x|] = R™, defined by

y—x

ly — x|’

Voy(t) i=a+1t

A

for every t € [0,y — x|] is a C*° path from x to y, which is an isometry i.e., for
every s,t € [0, |y — z|]

Yoy (8) = 2y ()] = |5 = 1.

(1) If 05,y : [0, |y — z|] = R™ is a path from x to y that is an isometry, then 8y, is
equal to vz y.

PRrROOF. Exercise. O
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PROPOSITION 1.2.3. Let z,y € S? such that y # x and y # —=x.
(i) If u € S? is orthogonal to x, then the path o, : R — S?, defined by

Ozu(t) == xcost + usint,

for every t € R, parametrizes the great circle ({x,u}) N'S?, where ({z,u}) is the
linear span of x and u, which, since x,u are linearly independent, ({x,u}) is a
plane.

(i) There is a C* path o4, : [0,y — z|] = S* that parametrizes the arc of the
unique great circle from x to y.

PRrOOF. Exercise. For (ii) use the vector

_ y—(y)
Cly = ()l
O

REMARK 1.2.4. (i) An inner product ((,-)) on R™ is a continuous function.
(ii) Let I be an interval of R and let f,g: I — R™ be C1.
(a) If {(f,g)) : I — R is defined for every ¢t € I by

({(Fr90)(8) = ((£(1),9(1))),

then, for every t € I we have that

((f,9))(t) = ((f'(1), 9(1))) + ((F(£), ¢'(£)))-

(b) For every t € I we have that

((F'@), F)) = = (IIF @DI12)".

PRrOOF. Exercise. O

N =
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Differentiability of a function f on an open subset of R™ means that locally f
is well-approximated by some linear, therefore continuous, function on R". First
we consider a function f that takes values in R.

DEFINITION 1.2.5. Let U be an open subset of R™, xg € U and f : U — R. We
say that f is differentiable at xg, if there are A € R™ and a function v defined for
all sufficiently small A € R™ such that

li =
lim ¢(z) =0,

and
f(xo +h) = f(x0) + (A, h) + ||t (o).
Equivalently, we may write these two conditions in one as follows:
f(@o+h) = f(zo) + (A, h) + o(xo).

We say that f is differentiable on U, if it is differentiable at every point of U. We
define the gradient of f at any point x at which all partial derivatives exist to be
the vector

gradf(z) := (D1 f(z),...,Dnf(2)) = ((,ic‘i(x),,;x{l (x))

One should write (gradf)(x) but we omit the parentheses for simplicity.

Clearly, the differentiability of f at x¢ implies the continuity of f at xq. If f, g
are differentiable on U, and if A\ € R, it is immediate to see that

grad(f + g) = gradf + gradg, and grad(\f) = Agradf.

PROPOSITION 1.2.6. Let U be an open subset of R™, xg € U and f : U — R.
(1) If f is differentiable at xq, and if A € R™ such that

f(zo+h) = f(zo) + (A, h) + o(0),
then all partial derivatives of f at xg exist, and
A = gradf(zo).
(#3) If all partial derivatives of f exist in U and for each i the function

of

Usz— &Ez(x)

is continuous®, then f is differentiable at x.
PROOF. See [7], p.322. O

PROPOSITION 1.2.7 (Chain rule). Let I be an interval of R, and ¢ : I — R™
differentiable on I such that ¢(I) C U, where U is an open subset of R™

3In this case f is called C!. As in Definition 1.2.1, one defines C™ functions for every n > 0.
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ILUQRYL
fON kf
R.

If f:U — R is differentiable, fo ¢ : I — R is differentiable and for every t € I

(f o d)'(t) = (gradf(o(t)), ¢'(t))-
PROOF. See [7], pp.324-325. O

Unfolding the chain rule we get

(000 = (F= 000 52600 ). 1)

=Y e

An immediate consequence of the chain rule is that if f: U — R is differentiable,
and U C R" is path connected, then

gradf = 0 = f is constant.

If x € U, and u € R is a fixed vector with |u| = 1, the directional derivative
D.f(x) of f: U — R at x in the direction u is defined by
Dy f(x) = (f(z +tu))'(0) = ¢'(0),
where ¢(t) := f(x + tu), for every t € J, for some open interval J in R. Since
g'(t) = (gradf(z + tu),u) and ¢'(0) = (gradf(x),u), if gradf(x) # 0, then D, f(x)
becomes maximal precisely when u has the direction of gradf(x) i.e., gradf(z)
points in the direction of the maximal increase of f at x. Moreover, from the
implicit function theorem one can deduce that gradf(z) is perpendicular to the
tangent plane of the level hypersurface S,(f) at x of level a = f(x), where

Sa(f) i={z e U] f(z) = a}.
DEFINITION 1.2.8. Let U be an open subset of R™. A wvector field on U is a
function F': U — R™. If F is represented by its coordinate functions i.e.,

F:(f17~--afn)7

F is continuous (differentiable), if each f; : U — R is continuous (differentiable).
F is called conservative, if there is a differentiable function V : U — R such that*

F = —gradV.

4The negative sign is only traditional, and it can be avoided.
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In this case V is called a potential energy function for F'.

If V is a potential energy function for F' and ¢ € R some constant, then V +c¢ is
also a potential energy function for F. If f is a differentiable function on U, then,
because of Proposition 1.2.6(i), we get the vector field on U defined by

U >z gradf(x).

DEFINITION 1.2.9. Let U C R™ be open, 7 : [a,b] — U a C! path and F : U —
R™ a continuous vector field. The path integral of F along -y is defined by

L i [ (FO0) A ().

Note that by Remark 1.2.4(i) and our hypotheses on v and F' the function in
the integral is continuous, hence Riemann-integrable.

ProproSITION 1.2.10. Let U C R™ be path-connected and open, and let F' : U —
R™ be a continuous vector field on U. The following are equivalent.

(i) F is conservative.

(i) The path integral of F between any two points of U is independent of the path
connecting them.

(#i1) The path integral of F' along any loop in U is equal to 0.

PRrROOF. Exercise. O

DEFINITION 1.2.11. Let U be an open subset of R3. A force field on U is a
vector field F' : U — R3, where the vector F(z) assigned to x is interpreted as a
force acting on a particle placed at x. A position function of a particle in U is a
function z : J — U that is C?, where J is an open interval in R. The vector x(t)
is interpreted as the position of the particle at time ¢.

A

U
x(t)

F(z(t) ]

vas

If = is a position function of a particle in U and F' is a force field on U, we may also
say that the particle is moving in F. We use the term force field also for vector
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fields with values in R or in R2. If the mass of the particle is m > 0, the kinetic
energy of the particle is the function 7' : J — R defined by®

1., 2
T(t) := im‘x(t)‘ .

If F' is conservative and V is a potential energy function for F, the total energy of
the particle is the function £ : J — R defined by

E(t) == T(t) + V(x(t)).

If v is a path in U from z( to x1 in U and F' is a force field on U, the path integral
fv F of F along v is the work done in moving a particle along this path.

If z(t) is a position function of some particle with mass m, and F is a force
field, Newton’s second law
F=ma
asserts that a particle in a force field moves in such a way that the force vector
at the location of the particle, at any instant, equals the acceleration vector of the
particle times its mass. If we write the law as the equation

F(z(t)) = mi(t),
and rewrite it in the form )

() = — F(a(t),
we get a differential equation of second order i.e., an equation the solution of which
is a function and involves the derivatives of this function. From now on, ode means
ordinary differential equation. The order of an ode is the order of the highest
derivative that occurs explicitly in it. If we write Newton’s second law as

F(z(t)) = mi(t),

where v(t) = @(t), we get a first order ode in terms of z(t) and v(t). The term
ordinary is used to distinguish these equations from differential equations involving
partial derivatives of functions, which are called partial differential equations. In
the next sections of this chapter we’ll study linear odes i.e., equations of the form

ag(2) f () + ar (@) f'(x) + ... + an(2) [T (2) + b(w) = 0,

where ag(z),...,a,(x) and b(z) are differentiable functions. It is easy to see that
if we consider the linear ode

(1.7) > ai(z) P (z) =0,
=0

where f()(x) denotes the i-th derivative of f at z, and g, h are solutions of equa-
tion (1.7), then Ag + ph are also solutions. Note that Newton’s second law, in its

5A standard way in physics texts to write the first and the second derivative of x(t) with
respect to time (only) is through the symbols #(t) and Z(t), respectively.
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full generality, is a non-linear ode and its solutions do not form a vector space. In
special cases though, it is reduced to a linear ode.

E.g., if we consider a particle of mass m attached to a wall by means of a
spring, and x : J — R is its position function, where 0 € J, such that z(t) is the
displacement of the particle from the equilibrium position z(0), then according to

Hooke’s law F(x(t)) = —Kx(t), where K > 0 is Hooke’s constant. If we assume no
friction, Newton’s second law becomes the linear ode
(1.8) #(t) + p*z(t) =0,

where p = ,/%. The equation (1.8) is the equation of the harmonic oscillator in

one dimension, that has as solutions the functions

(1.9) x(t) = Acos(pt) + Bsin(pt), A,BeR.

One can show that (1.9) is the only solution of (1.8) satisfying the initial conditions
z(0)=A and %(0)=pB.

Using the formula cos(¢ 4 6) = cos ¢ cos @ — sin ¢ sin 0, solution (1.9) takes the form

(1.10) x(t) = acos(pt + to),

where

A
a:=+VA%2+ B? and costg= ———.
0 /AZ + B2
In the proof of Theorem 1.2.20 we will consider the equation
(1.11) i(t) + p*x(t) = C,

where K represents a constant disturbing force, and has solutions of the form

(1.12) o(t) = Acos(pt) + Bsinpt) + .

A, B € R,
which can take the form

C
(1.13) x(t) = acos(pt + to) + el

The two-dimensional version of the harmonic oscillator concerns a function z :
J — R? and a force field F' on R? defined by F(z(t)) = —Kx(t), for some k > 0.
Newton’s second law takes again the form

(1.14) #(t) 4 p2x(t) = 0,
and has solutions of the form
(1.15) x1(t) = Acos(pt) + Bsin(pt), x2(t) = Ccos(pt) + D sin(pt).

THEOREM 1.2.12 (Conservation of energy). Let U C R3 be open. If x(t) is the
position function in U of a particle of mass m moving in a conservative force field
F on U, then its total energy E is constant.
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PrOOF. Let V : U — R a potential energy function for F'. By the definition of
a position function of a particle in U and the chain rule on Vox : J — R we get

(Vo) (t) = (gradV (z(t)), &(t))
(= F(x(t),2(t))
—(F(a(t)),2(t))-
By Remark 1.2.4(ii)(b) and Newton’s second law we have that
E'(t)=T'(t) + (Voux)(t)
= m(i(t), &(t)) — (F(x(t), 3(t))

= (mi(t), &(t)) — (mi(t), &(t))
= <0,m'(t)>
=0.
Hence the function F is constant on the interval J. O

The previous proof is independent from the choice of V', since any potential energy
function V' for F has the property gradV’(z(t)) = —F(x(t)), for every t € R.

DEFINITION 1.2.13. A force field F on an open subset U of R3 is called central,
if there is u : U — R such that for every z € U

F(z) = p(x)x.

According to Newton’s law of gravitation, a body of mass m; exerts a force
F,,, on a body of mass ms such that its magnitude is
gmims
2 b

r
where r is the distance of their centers of gravity and g is a constant, and the
direction of Fy,, is from mo to m;.

Fo, Fo,

| S

'«
-

If m, is placed at the origin of R® and my at € R3, we have that

mim
(- 52),
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The force F,,, of mg on my is —F,,. If m; is much larger than mg, and since

1 gms
= 7F = _—
ai m ma < |ZL'|3 )1‘,

we may assume that m; does not move. In the case of planetary motion, where
e.g., the sun has mass m; and a much smaller object of mass mo is considered, the
assumption is natural. If we want to avoid this simplification, we may consider the
center of mass of the sun at the origin.

A

DEFINITION 1.2.14. If we place the sun S at the origin of R3, the Newtonian
gravitational force field to a much smaller planet P of mass m placed at

z € R*\ {(0,0,0)} =: UY

F(z) = (— |f|3)x

If we use the notation |U(§3)| ={lz| |z € Uég)}, then
F(z) = f(|z])z,

where, f : \Ué?’)\ — R is defined by f(t) := —%, for every t € |U(§3)| = (0, +00),
and C is the obviously defined constant. Clearly, F is a central force field on Ué?’),
and it is conservative, since a simple calculation shows that

(157 )= = maavia)

is given by

where

V(z):= —g

" = g(|z|),

where ¢ : |Ué3)| — R is defined by g(t) := —%, for every t € |U(§3)|. As we show
next, this situation is standard for conservative force fields that are central.
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ProproSITION 1.2.15. If F' is a conservative force field on Ué?’) and 'V : Uég) —
R is a potential energy function for F', the following are equivalent:
(i) F is central.
(#7) There is f : |U(53)| — R such that for every x € Uég) we have F(x) = f(|z])z.
(#i1) There is a function g : |U(§3)\ — R such that g o x is differentiable, for every
position function x(t) on U(gg), and for every x € Uég) we have V(z) = g(|x|).

PROOF. (iii) = (ii): If we see x € Uég) as x(t) for some differentiable position
function z : J — Ués), then by the chain rule we have

WV oa (=3 5 () G0
Moreover,
(Vo)1) = (g0 lal) (1)
= (20 lal (1)
= (w5 (F300) +23(0) + 730) " (530) +a3(0) + 331’
=105 20F) (2005 0 + 2020 52 0) + 20020

2 (g (=) dz;
:Z( ()] “’”’“)) a )

Note that this is well-defined, since 0 ¢ Uég). Hence, for each ¢ € {1,2,3} we have

v gl
() = L 0.
Since F(z) = —gradV (z), we get
Fa(t) = - ( G-, 5o (o). G e (0) )
0D
— LD 40,01,
__9'(=®)]
RO
Hence we define f : \Ué?))\ — R by
() = ~ LD
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(#3) = (i): We define p : Uég) — R by p(z) := f(|z]), for every x € U(g?’).
(1) = (i%9): It suffices to show that V' is constant on each non-trivial sphere
S, ={z eR® | |z| =r} C U,
where r > 0. Since then, for every r > 0
z,y €Sy = V(z) =V(y),

the function g : |U(§3)| — R, defined by g(|z|) = V(z), is well-defined. The rest of
the proof is an exercise. O

Next follows a remarkable consequence of the centrality of a force field.

ProrosITION 1.2.16. If F is a central force field on an open U C Ué3), a
particle moving in F' moves in a fized plane.

PROOF. Let x : J — U the position function of a particle moving in F'. We fix

some tg € J and let
Ptg = P(l‘(t()), U(to))
the unique plane in R3 containing the position vector of the particle at tg, the
corresponding velocity vector and the origin. Since F(z) = p(x)z, for some p :
U — R, the force vector F(xz(to)) also lies in P;,. We show that the particle is
moving in this plane i.e.,
vteR ((E(t) S Pto)'

Using the Leibniz product rule for the cross product of R3-vector-valued differen-
tiable functions u,w on R

W(t) = (u(t) x w(t)) + (u(t) x w(t)),
where (u x w)(t) = u(t) x w(t), we have
d(xdi?i)(t) = (&(t) x &(t)) + (x(t) x &(t))
= 2(t) x i(t)
= a(0) x|ttt
=0.

Hence the function z x & is constant, and let x(t) x @(t) = ¢ € R3, for every t € J.
If ¢ # 0, then for every t € J the vectors x(t) and &(¢) lie in the plane orthogonal
to the vector ¢, and this is the fixed plane in which the particle moves in. Since ¢
is orthogonal to x(0) and 4(0), this plane is P,
If ¢ = 0, the equality x(t) x &(¢) = 0 implies that there is some g : J — R such
that for every ¢t € J
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Hence, F(x) and v(t) are always directed along the line through the origin and the
position x(t) of the particle. Actually, in this case the particle always moves along
the same line through the origin i.e.,

e (00 € (fat)}))
hence trivially it moves in P, which is just a line. To show this we work as follows.
If x(t) = (21(t), z2(t), 23(t)), then

i 1) = g(oyito)

for each i € {1,2,3}. Since U does not contain the origin, we have

¢ 1 dlL’z
- — d
/to x;(s) ds (s)ds

= /t (Inz;(s))'ds

to
=Inz;(t) — Inxz;(to).
Since then Inz;(t) = h(t) + Inz;(to), we get
zi(t) = "Wa;(to).
Since this is the case for each i, the vector z(t) is a scalar multiple of x(tg). d

Because of Proposition 1.2.16 we can assume without loss of generality that
our central force field of study is defined on an open subset of Uéz) =R\ {(0,0)}.

DEFINITION 1.2.17. The angular momentum of a moving particle with position
function z : J — R? is the function h : J — R defined by
do
dt
where (r(t),0(t)) are the polar coordinates of z(t).

h(t) := mr?(t)— (t) =: mr20,

THEOREM 1.2.18 (Conservation of angular momentum). The angular momen-
tum of a particle moving in a central force field on an open U C USQ) 18 constant.

PROOF. Let x : J — U the position function of the particle, and let +(6(t)) be
the unit vector in the direction z(t) i.e., for every ¢t € J

2(t) = r(t)e(0(t)).

Let n(0(t)) be the unit vector such the angle from ¢(6(t)) to n(6(t)) is 5.
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n(t)

Since cos(f + §) = —sinf and sin(6 + 7) = cosf we have
L(0(t)) := (cos(t),sinb(t)), and n(6(t)) := ( —sind(t),cosb(t)),
hence taking the derivatives with respect to time we get
= 779, and 1= —.
E.g., for the first equality we have (v 0 0)'(t) = /(0(t))¢'(t) = n(6(t))0'(t). Hence,
(1.16) @ = 7u(0(t)) + rn(6(t))é,
and since U does not contain the origin we have
i = #(0(t)) + n(0(t)0 + in(0(1)8 + r(—u(6(t)0% + rn(6(t))0
= (i — r0?) + (200 +r6)n

= (¥ — r6? L+1 27’7”9+r2g
n
r

= (i —rf%) + [id(ﬁé)]n.

Since & = m™1F(x) = m™u(z)z, for some p : U — R, the vector #(t) has zero
component perpendicular to z(t). Hence

d, 5
% (T 0) = 07
and this implies h = 0, hence h is constant on J. O

Because of Proposition 1.2.16 we study the motion of a planet in the Newtonian
gravitational field (of the sun placed at the origin) on Ué2)7 which is defined by
x
_w’
where the constant C in Definition 1.2.14 is avoided with appropriate change of
the units. Let s(t) be a solution curve of i(t) = m~'F(z(t)). By Theorems 1.2.12
and 1.2.18 the total energy E and the angular momentum A are constant at all

F(z):=
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points of the curve s(t). If h = 0, then 6 = 0, hence 6 is constant i.e., the planet
moves along a straight line toward or away from the sun. Therefore, we assume
that h # 0. If s(t) = (r(t),0(t)), and since 720 is a non-zero constant function of
time, the sign of § is constant along s(t), hence 6(t) is either an increasing or a
decreasing function of time. In order to have constant h along s(t) we need to have
r as a function of # along the curve s(t) i.e., r = r(0). We define

1
u(t) :== 0
ie.,
u(t) = =V (s(t)),

where V(z) = — L. Note that since r = r(f), we also get u = u(6).

|]
LEMMA 1.2.19. Let s(t) be a solution curve of #(t) = m~1F(x(t)), where F(x)
is the Newtonian gravitational field on Uéz), and h is non-zero along s(t).

(1) The kinetic energy T along s(t) satisfies the following formula:

1R? [ du\?

1.1 T=-—1(- 2.

(1.17) Qm{(de) H‘}

(ii) Along s(t) the functions u,0 and E satisfy the following ode:

(1.18) du 2+u2—2—m(E+u)

' de K2 '

(#i1) Along s(t) the functions u and 0 satisfy the following ode:

d*u m
Proor. Exercise. O

THEOREM 1.2.20. Let P be a planet moving in the Newtonian gravitational

field (of the sun placed at the origin) on Uéz). If the angular momentum h along a
solution curve s(t) of #(t) = m~1F(x(t)) is non-zero, then P moves along a conic

of eccentricity
1
( 2Eh? > 2
e=(1+ .
m

ProOF. Equation (1.19) has the form of equation (1.11), where p = 1 and
C = 73, hence it has a solution of the form

(1.20) u(0) = acos(6 + 6y) + %,
where a, 0y € R. Hence
(1.21) du _ —asin(f + 6p).

o
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Substituting equations (1.20) and (1.21) in (1.18) we get
1 1
a= j:ﬁ(2mh2E + m2) z.
Hence (1.20) becomes

1
u(f) = iﬁ 2mh?E + m? cos(0 + 0y) + %

m 1 [2Em2?h?
:ﬁiﬁ T+m2 COS(0+90)

_m_ m 2Eh?

+1 cos(6 + 6p)

h? = h2 m
m 2Fh?
hQ{li <1+ - )cos(0+90)].
Since cos(f + 0y + m) = —cos(6 + ), and 6y is arbitrary, hence it can be written

as ¢ + m, we can use only one sign in the last equation. Hence we get

m 2Eh?
(1.22) u(f) = 72 [1 + (1 + - ) cos(f + 90)}
If we change the variable 6 to 8’ = 6 — 6, then

m 2Eh?
(1.23) w(®) =u(f —6p) = 72 [1 + (1 + - > cos 9} .
Since the equation of a conic in polar coordinates is
1 1
U=, u:Z(l—i—ecosH),

where [ is the latus rectum and € > 0 is the eccentricity of the conic, we get

2 2Eh?
l:h—, €= (1—1— h).

m m

O

In the equation of a conic in polar coordinates, if € > 1, then conic is a hyper-
bola, if ¢ = 1, then conic is a parabola, and if € < 1, then conic is an ellipse. The
special case € = 0 corresponds to a circle. Hence, if £ > 0, the orbit of the planet
around the sun is a hyperbola, if £ = 0, the orbit of the planet around the sun is
a parabola, and if ' < 0, the orbit of the planet is an ellipse.

COROLLARY 1.2.21 (Kepler’s first law). Let P be a planet moving in the New-
tonian gravitational field (of the sun placed at the origin) on UéQ). If the angular
momentum h along a solution curve s(t) of #(t) = m~1F(x(t)) is non-zero, then
P moves along an ellipse.
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ProOOF. The quantity u = % is always positive. Hence by equation (1.23)

2Fh?
(1 + ) cosf > —1.
m

Since for planets like the earth cos = —1 has been observed at least once a year,

and since F is constant, we get
2Eh?
(1 + > <1,
m

which implies F < 0. U

While in the planetary model of Copernicus the speed of the planet in orbit
around the sun is constant, for Kepler neither the velocity nor the angular velocity
is constant, but the areal velocity is.

COROLLARY 1.2.22. If a particle moves in a central force field on some open
UC U(§2), it sweeps out equal areas in equal intervals of time.

PROOF. Let A(t) be the area swept out by the moving particle z(¢) in the time
from tg to t. In polar coordinates we get dA = %T2d0 and we define

. 1 .-
A = §T29.
By Theorem 1.2.18 we have that A is constant. O

In the case of the Newtonian gravitational field Corollary 1.2.22 becomes Ke-
pler’s second law.

COROLLARY 1.2.23 (Kepler’s second law). A line segment joining a planet and
the sun sweeps out equal areas in equal intervals of time.

Intuitively, a state of a physical system is information characterizing it at a
given time. E.g., a state for the harmonic oscillator in one dimension is a pair of
vectors (z(t),v(t)) and in this case the space of states of the harmonic oscillator is
the open set R? x R3. Since Newton’s second law can be written as the ode

mo(t) = F(x(t)),

a solution to it is a curve s(t) = (z(t),v(t)) in the state space R? x R? such that
1
B(t) = o(t), and 0(t) = —P(a(t)),
m

for every t € J. Trivially, if z(¢) is a solution to the 2nd-order ode of Newton’s
second law, we get a solution of the lst-order version of it by setting v(t) = &(t).
The other direction is also trivial. Moreover, the function

A:R®xR3 - R3 x R?,
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is a vector field on the space of states
S:=R>xR?

that defines the 1st-order ode of Newton’s second law. A solution curve s(t) =
(x(t),v(t)) describes the evolution of the state of the system in time. We can view
the total energy of a particle as the function

E:S —R,

B(a(t), (1)) := gmlo(t)? + V(x(t)),

and when we say that the total energy is an integral we mean that the composition

Jg—2 . g

R

is constant, or E is constant on the solution curve in the state space. According
to Theorem 1.2.18, the angular momentum is also an integral for mo(t) = F(x(t)).
In the nineteenth century the solution of an ode was related to the construction
of appropriate integrals. This method of integrals, which uses results from basic
calculus, does not suffice though, for the solution of more general odes, for the
solution of which we need to employ tools and results from more abstract theories.

1.3. The simplest ode, but one of the most important

If a € R and z : J — R is differentiable, one can show (exercise) that the ode
(1.24) &(t) = ax(t)
has as set of solutions the set
Solutions(1.24) = {s: J = R | cerVics(s(t) = Ce™)}.

Equation (1.24) is the simplest ode. If s € Solutions(1.24), then s(0) = C.
Conversely, there is a unique function s € Solutions(1.24) such that s(0) = C.
This is a special case of the existence of a unique s € Solutions(1.24) satisfying
the initial condition s(tg) = sg, where to € J.

The parameter a in (1.24) influences dramatically the way the solution curve s
looks like. If a > 0, then we have the following three cases:
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C <0

If C > 0, then lim;_, o Ce* = +o0, and if C' < 0, then lim;_, ., Ce® = —o0.
If @ = 0, the solution curves are constant functions

If a < 0, we have the following three cases:

w
In this case, if C' # 0, then

. . _ . 1
lim Ce™® =C lim e 1®'=C lim
t—+o0 t—+o00 t—+o00 e|a‘t

=0.

The above graphs reflect the qualitative behavior of the solution curves. If a # 0,
equation (1.24) is stable in the following sense: If a is replaced by some a’ sufficiently
close to a, the qualitative behavior of the solution curves does not change. E.g., we
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have that

la’ —a| < |a] = sign(a’) = sign(a),
since, if a > 0, then |’ —a| <a & —a<d —a<a=0<d < 2a, while, if a <0,
then [0/ —a| < —a e a<d —a< —a=2a<da <0. If a =0, equation (1.24)
is unstable, since the slightest change in the value of a implies a big change in the
qualitative behavior of the solution curves. For this reason we say that a =0 1is a
bifurcation point in the one-parameter family of equations

<x’(t) - aac(t)) .

Let the following system of two odes in two unknown functions:
Zl(t) = alxl(t),
.’i‘g (t) = a2x2 (t)

Since there is no relation between x4 (t) and z3(t), we have that

(1.25)

Solutions(1.25) = {s :J = R? | ey, coerVies (s(t) = (Clealt,Cge“"’t)> }

If s1(t) = Cre™? and sa(t) = Coe®?t, we get C; = 51(0) and Cy = 52(0). Equa-
tion (1.25) can be written as
(1.26) z(t) = Ax(t),
where

A:R? - R?,

Az, 72) = (@171, ag, T2)

is a vector field on R?, which geometrically we understand that it assigns to each
vector z € R? the directed line segment from z to x + Azx.

A x

/ - a(t) + Ax(t)
/ Ax(t)
We can write equation (1.25) using matrices as follows
i1(ﬁ) aiy 0 ] [ .’El(t) ]

1.27 . = .
(1.27) [ Ty (t) } [ 0 a2 (1)

A dynamical system is a way of describing the passage in time of all states s in
the space of states S of a physical system. Here S will be an open subset of R™,
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and a dynamical system on S tells us for every s € S the history of s i.e., its future
and past positions in time. A dynamical system on S is an appropriately defined®
function of type
¢:Rx S — S,
such that for every s € S, the function
¢s :R— S,

¢s(t) := o(t, )
represents the history of the state s.
The ode (1.25) generates a dynamical system. If we consider S := R?, the
dynamical system on R? generated by (1.25) is the function

¢ :R x R? —» R?

o(t,u) = (ule‘“t,u26a2t).

We can visualize a dynamical system on R? as particles placed at each point of R?
and moving simultaneously, like dust particles under a steady wind. In order to

prove some properties of the aforementioned dynamical system on R?, it is useful
to recall the following definitions and facts.

(1.28)

DEFINITION 1.3.1. Let L(R™,R™) denote the space of (continuous) linear maps
from R™ to R™. If T € L(R",R™) we define the norm
|T|| :=inf {o > 0| Voern (|T(z)| < olz]) }.
PRrROPOSITION 1.3.2. If T € L(R™,R™), then
T
[T = sup{||5;|r) | z € R" and |z| > 0}
=sup {|T(z)| |z € R" and |z| < 1}
sup {|T(x)| | z € R" and |z| =1}.

PRrOOF. Exercise. O

By Proposition 1.1.18(ii) the Euclidean normed space (R™, |.|) is a Banach space
i.e., a normed space where every Cauchy sequence in it is convergent.

THEOREM 1.3.3. The normed space (L(R™,R™),||.||) is a Banach space.
Proor. Exercise. g

DEFINITION 1.3.4. Let U be an open subset of R, xg € U and f : U — R™.
We say that f is differentiable at xo, if there is a linear map A,, : R — R™ and a
function v defined for all sufficiently small h € R™ such that

lim ¢(z) =0,

6We will define and study dynamical systems later in this course.
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and
f(@o +h) = f(z0) + Az (h) + |A[Y0(h).

We say that f is differentiable on U, if it is differentiable at every point of U. In
that case, the derivative f’ is a map

f U — L(R™,R™),

o )‘Io = f/(l'o).
We say that f is C!, if f is differentiable on U and the derivative f’ is continuous,
where the space L(R™, R™) is equipped with the norm in Definition 1.3.1.

In many cases, to show that some f : U — R™ is C' we use the following.

ProPOSITION 1.3.5. Let U be an open subset of R™, and f : U — R™. The
following are equivalent.

(i) f is CL.

(ii) The partial derivatives g—i :U = R, wherei € {1,...,m} and j € {1,...,n},
J

exist and are continuous functions.

PROOF. See [7], p.371. O

PROPOSITION 1.3.6. Let ¢ be the dynamical system defined by equation (1.28).
(i) ¢ is CL.
(ii) If t € R, the function ¢; : R?> — R2, defined by
oe(u) = o(t,u),
for every u € R2, is linear.
(i73) If t = 0, the function ¢o : R? — R? is the identity function on R2.
() If s,t € R, then ¢so ¢ = Psit.

PRrooF. Exercise. O

The above result is a special case of a general fact that we will prove later,
namely that an arbitrary ode generates a dynamical system ¢. As we will see later,
the converse also holds i.e., a dynamical system ¢ on a state space S generates an
ode by differentiating ¢, with respect to time t.

The equations in the system (1.25) are in uncoupled, or diagonal form, as the
matrix corresponding to it is diagonal. Usually, in a system of odes the equations
are coupled, as e.g., in the system

Z1(t) = bz (t) + 3za(t),

Ea(t) = =621 (t) — daa(t).

In the next section we will explain why we can choose to define
yi(t) = 21(t) + 22(1),
Y2(t) = z1(t) + 22(1),

(1.29)
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and hence we get
z1(t) = yi(t) — y2(2),
(1.30) xo(t) = —y1(t) + 2ya(2).

Since
91 (t) = 21 () + @2(1),
Y2(t) = d1(t) + @2(1),
we get by 1.30 the system
() = 201 (1),
Y2(t) = —ya(t),

where its equations are in a diagonal form. Hence, if y(¢) = (y1(t),y2(t)) is its
solution with initial value (y1(0),y2(0)) = (u1,uz) i.e.,

hn (t) = u1€2ta
y2(t> = u26_t7

we can solve the original system (1.29) by substituting these solutions to the sys-
tem (1.30). Finally we get

x1(t) = (2uy + ug)e® — (uy 4+ ug)e ™,
To(t) = —(2uy + ug)e® 4 2(up + ug)e .

1.4. Linear systems with constant coefficients & real eigenvalues

If 1,...,2, : J — R are differentiable functions, and a;; € R, for every
i,j € {1,...,n}, the following generalization of the system (1.29) is formed

i‘l(t) = a111‘1(t) + ...+ a1n$n(t),
(131) l}(t) = aﬂxl(t) 4+ ...+ am:cn(t),

Tn(t) = an1z1(t) + ... + Gnnxn(t).
We can write equation (1.31) using matrices as follows

xl(t) ail .o QA1p Il(t)

(132) Z‘Z(t) = a%l a;n mi.(t) s
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or, generalizing the simplest ode, we can write it in the form

(1.33) i(t) = Ax(t),

where
ail . A1n

(134) A= [e75] N Qim | =2 [aij].
Anl1 .- Qpp

The right-hand side of equation (1.33) is a linear map from R™ to R™. Next
we investigate the use of matrices and linear maps in the study of the system of
odes given by equation (1.33). The aim of this section is to prove the fundamental
theorem of linear odes with constant coefficients and real eigenvalues.

DEFINITION 1.4.1. The set L(R™,R") is denoted by L(R™) and an element T" of
L(R™) is called an operator. Usually’, we write T instead of T'(z). The constant
zero operator in L(R™) is denoted by O,, and the identity operator in L(R™) is
denoted by I,. The norm [|.|| on L(R™) defined in Definition 1.3.1 is called the
operator norm. If T € L(R™) and m € N, we define

Tm.:{ln Jifm =0
' ToTm™ 1 [ifm>0.

The set of n x m matrices with entries in R is denoted by M, ,,(R), and the set
M, »(R) is denoted by M,,(R). A diagonal matrix in M, (R) is written as follows

A1 A1 0 .00
A2 0 X ... O
= 1. . =:Diag(A1,...,An)-
An 0 0 ... A\
We also denote by I, the unit matrix in M, (R) i.e.,
1
1
L, = . =1 [035],
1

where

5”._{ 1 ifi=

Y1 0, otherwise

The zero matrix in M, (R) is also denoted by O,. If A,B € M,(R) such that
A = [a;;] and B = [b;;], then the algebra operations on M, (R) are defined as

"This is due to Proposition 1.4.3.
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follows: A + B := [Cij]; A = [ei]‘], and AB = [dij], where Cij = Q45 + bij,
eij = Aa;; and d;j = 22:1 aigbr;. An A € M, (R) is called invertible, if there is
B € M,(R) such that AB = BA =1,. AT € L(R") is called invertible, if there
is S € L(R™) such that SoT =T oS = I,,. Since B and S are unique, we write
B=A"1!and S =T"!, respectively.
PROPOSITION 1.4.2. Let S,T € L(R™), x € R™ and m € N.
(@) [Tz < [[T][|x].
(i) 15271 < |ISI|- 1Tl
(i) |1l = 1.
(o) [|T™ || < |IT°||™.
(v) If T is invertible, then ||T|| - ||T1|| > 1.
PRrROOF. Exercise. ]
By Proposition 1.4.2(ii)-(iii) and Theorem 1.3.3, L(R™) is a Banach algebra.

PROPOSITION 1.4.3. There is a mapping T : M,(R) — L(R"™)
A Ty :=T(A),
where, if A = [a;;], the mapping Ta : R™ — R™ is defined by

n n n
Ta(z) = ( E aijTy,. .., E iy, ..., E anjxj),
j=1 j=1 j=1

or in matriz form

Ta(z)1 ai a1n T
(135) TA(ZE)i =1&1 ... Qin Z; |,
7?4(-77)11 an1 .. Ann Tn

for every x € R™. There is a function A : L(R™) — M, (R)
T~ Ap = A(T),

where, if T € L(R™) {e1,...,en} is the standard basis for R™, the matrizx Ap €
M, (R) is defined by

T(€1)1 . T(en)l
(1.36) Ar = |T(er)i ... T(en):| = [T(e;)i].
T(er)n ... T(ew)n

The mappings T and A satisfy the following conditions:
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(i) Ao T =1idp, ) and T o A = idp @)

idp,mm)

(Z’L) Tap=TaoTp.
(t31) T1, = I, and To,,

(w) Targ=Ta+Tp-

(v) Taa = ATa.

(vi) If A is invertible, then Ta is invertible and Ty * = Ty-1.
(vii) Asor = AsAr.

(viii) Af, = I, and Ao, = O

(za?) Asir = As + Ar.

(x) Tar = ATa.

(zi) If T is invertible, then A is invertible and A;" = Ap-1.

PRrROOF. Left to the reader. O

COROLLARY 1.4.4. If A € M,(R), we define
[A]] = [[Tall-
(@) ||| is @ norm on M, (R).
(i¢) The mappings T and A are norm-preserving.

ProOF. (i) |4]| =0« ||Ta|| =0« Ta =0 < A = 0, where the implication
Ta =0 = A = 0is shown as follows: By Proposition 1.4.3(i) we have that Ay, = A,
and by definition A1, = [Ta(e;);] = O,. The rest properties of the norm follow
easily from Proposition 1.4.3(iv)-(v).

(i) (A = Azl = [ Tar |l = [IT1]- 0
According to the equality
(1.37) [Ta(@)], = ayz;
j=1

the i-row of A expresses the i-coordinate of T4 (x). Since
(1.38) Ta(e;) = Ae; = Z a;je;

the j-column of A gives the j-coordinate of TA(ej). If 2 = > " | x;e;, with respect
to the standard basis, the coordinate functions pr; : R™ — R, are defined by

x +— x; = pr;(x),
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and equation (1.37) is written as
n
pr,o7Ta = Zaijprj.
j=1

-
R® —2 R7

pri © TA\ Jp

R.
We also have that Tx = Az, since
T(61)1 . T(en)l T
.ATLIJ = T(el)i ‘e T(en)l xT;
T(e1)n --- T(en)n| |zn

:<,

n
T(ei)lxi, ey Z T(ei)an)
=1 =1

— (T, T(@)).
=Tux.

n

PROPOSITION 1.4.5. Let T € L(R™) and B = {f1,..., fn} a basis for R™. If B
is the matriz of T with respect to B, there is an invertible matriz Q € M, (R) such
that B = QArQ™!.

Proor. If
fi= Zpijej»
j=1

and P := [p;;], it is easy to see that P' := [p;;], the transpose of P, is invertible,
and if we define
Q=[P
the coordinates z; and y; of some z € R™ with respect to the standard basis and
B, respectively, satisfy
y=Qz, and z=Q ly.

The corresponding coordinates Az and By of the image T (2) satisfy
By = QArz = QArQ ™'y,
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for every y € R”, hence B = QA7-Q 1. O

Matrices that are related as B and Ar are called similar, and it is easy to see
the converse of Proposition 1.4.5 is also the case. Namely, if two matrices in M, (R)
are similar, they represent the same operator with respect to different bases of R™.

DEFINITION 1.4.6. We call a property P on M, (R) an operator property, if P
is preserved under similarity i.e.,
P(A) = P(QAQ™Y),
for every A € M, (R) and every invertible @ € M, (R).
Note that if P is an operator property on M, (R), the converse implication
P(QAQ™') = P(A) also holds. Clearly, an operator property on M, (R) defines a

property P on L(R"™), since its validity is independent from the choice of the matrix
representing an operator. Recall that there is a unique mapping

Det : M,(R) - R
satisfying the following conditions:
(D) Det(AB) = Det(A)Det(B),
(D2) Det(I,) =1,
(D3) Det(A) # 0 iff A is invertible.
If B is invertible, then it is immediate to see that
(D4) Det(B~1) = Det(B)1,
(D5) Det(BAB™!) = Det(A).
Because of (Ds), the property Py(A) := (Det(A) = \) is an operator property, and
we can define the determinant Det(T') of an operator T to be the determinant of
any matrix representing 7.
ProOPOSITION 1.4.7. If T € L(R™), the following are equivalent:
(1) Det(T) # 0.
(73) Kex(T) := {x € R™ | Tx = 0} = {0}.
(#i1) T is an injection.
(iv) T is a surjection.
(v) T is invertible.

ProOOF. For (i) = (ii) we use (D3). The rest is left to the reader. O

Consequently, Det(T") = 0 iff Tz = 0, for some = # 0. The trace Tr(A) of a
matrix A = [a;;] € M,,(R) is defined by

TI‘(A) = zn: i,
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and since
Tr(AB) = Tr(BA),
it B € M,(R) is invertible, we get
Tr(BAB™') = Tr(B7'BA) = Tr(A)
ie., Tr(A) = X is an operator property on M, (R). Hence we define the trace
Tr(T) of an operator T € L(R™) to be the trace of any matrix representing 7.
The correspondence between matrices and operators facilitates also the transfer of
concepts from operators to matrices, other than the norm. If A € M, (R) the rank
Rank(A) of A is defined as the Rank(7,), which is dim(Im(74)). If S,T € L(R"),
we say that they are similar, if there is invertible R € L(R™) such that
S=RoToR

By Proposition 1.4.3 we get that if S,T are similar operators, then Ag, A7 are
similar matrices, and if A, B are similar matrices, then 74, 7p are similar opera-
tors. Note that the concept of an operator property on M, (R) does not have its
counterpart for properties on L(R™), since the definition of T4 does not depend on
a basis for R™.

DEFINITION 1.4.8. Let F1, ..., Ex be subspaces of R”. We say that R" is the
direct sum of Ey, ..., Ey, if

k
vzeRna!zleElvumkeEk ("E = E $l> .
i=1

In this case we write .
R"=E1®...0 B = PE:
i=1

If T € L(R™) and T; : E; — E; are operators, we say that T' is the direct sum of
Ty, ..., Ty, if R" = @le E; and Ty = Ty, for every y € F; and every i € {1,...,k}
In this case we write

k
T:Tl@...@TkZZ@Ti.
i=1

If A; is the matrix of T; with respect to some basis B; for E;, then

Ay

Ao
A= ) =:Diag(Ay,..., Ax)

Ay,

is a matrix of T" with respect to the basis
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for R™. We also have that

i=1

k k
Det ( @ E) = H Det(T;),
i=1
since
k
Det(Diag(Ay,... Ay)) = HDet(Aj),
i=1

and we have that

(1) - i

since

k
Tr(Diag(Ay,... Ag)) = ZTr(Ai).

DEFINITION 1.4.9. If T € L(R"), a vector € R™\ {0} is a (real) eigenvector
of T, if there is A € R such that Tx = Az. In this case X\ is a real eigenvalue of T,
and we also say that  belongs to A. The subspace Ker(T — AI,,) of R” is called the
A-eigenspace of T'. Similar notions are defined for an operator T' on a subspace X
of R™, where in this case the A-eigenspace of T': X — X is Ker(T — Alx), and Ix
is the identity on X.

Clearly, A is an eigenvalue of T iff Ker(T — A\I,,) # {0}, and Ker(T — \IL,,) is
the set of all eigenvectors belonging to A, together with 0. By Proposition 1.4.7
Ker(T — AI,,) # {0} & Det(T — AI,,) =0,

hence to find the eigenvalues of T' we solve the polynomial p(\) generated by the
equation

Det(A — \I,,) =0,
where A is any matrix that represents 1" with respect to some basis for R™. If
B is some other matrix of T, then by Proposition 1.4.5 there is some invertible
Q € M, (R) such that B = QAQ ™!, hence by the properties of Det we get

Det(B — A,,) = Det(QAQ ™' — \I,,)
=Det(Q(A - A[,)Q™")
= Det(Q)Det(A — AI,,)Det(Q)*
=Det(A — \I,,).
Since Py(A) := Det(A — AI,,) = 0 is an operator property on M, (R), we can call
p(A) the characteristic polynomial of T. A complex root of p(\) is called a complex

eigenvalue of T. If A is a real eigenvalue of T' and A is a matrix of T', we determine
the A-eigenspace of T' by solving the equation

(A—Al,)z =0.
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Now we can explain why we chose the new coordinates

yl(t) = 2{E1(t) + .’L‘Q(t),
y2(t) = z1(t) + 22(2),

for the solution of the coupled system of odes (1.29). The matrix of this system is

5 3

=l )
and the characteristic polynomial of Ty is p(A) = (A —2)(A+1) i.e., its eigenvalues
are A\ = 2 and Ay = —1. If we solve the equation (A — 2[z)x = 0, we find that 2-
eigenspace of Ty is the one-dimensional space {(¢,—t) | t € R} and let f; = (1,—-1)
form a basis for it. Working similarly, we find that the (—1)-eigenspace of Ty is
the one-dimensional space {(t,—2t) | t € R} and let fo = (—1,2) form a basis for
it. From the proof of Proposition 1.4.5 we find that the matrix of 74 with respect
to the basis {f1, fo} for R? is the diagonal matrix

2 0
o-[

(x1,72) = (y1 — Y2, —y1 + 242).

hence

DEFINITION 1.4.10. An operator T' € L(R™) is called diagonalizable, if its
matrix with respect to some basis B = {fi,..., fn} for R™ is diagonal.

REMARK 1.4.11. Let T € L(R™). If B = {f1,..., fn} is a basis for R” such
that fi,..., fn are eigenvectors of T, and if A1, ..., A, are the corresponding eigen-
values of T, then the matrix of T with respect to B is Diag(A1,..., A, ), hence T is
diagonalizable.

PROOF. Just note that if © = (z1,...,2,) with respect to B, then Tz =
(M1, ..., Any,) with respect to B. O

THEOREM 1.4.12 (Criterion of diagonalizability). Let T' € L(R™). If the char-
acteristic polynomial p(A) of T has n distinct real roots A1, ..., A, and f1,..., fn
are corresponding eigenvectors, then their set B = {f1,..., fn} is a basis for R™,
and T 1is diagonalizable.

PRrROOF. We show that B is a basis for R™, hence by Remark 1.4.11 we have that
T is diagonalizable. Suppose that B is not a basis for R™, and let the elements of B
be ordered such that there is m < n with the property {fi,..., fm} is a maximal
independent subset of {f1,..., fn}. Clearly, m > 1, and

m
en =) _a;f;
=1
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for some ay,...,a, € R. Since f, belongs to \,, we have that
0=(T—-M.1p)fn
= T(Zajfj> — >\n Zajfj
= a;Tf; - Zaj)\ £
=1
=2 ai(Tf; =)

<.
Il
—_

E'qs

aj(Nifi — Anf;)

j=1
m
=300 Ak
j=1
Since the vectors fi,..., fi, are linearly independent, we get

a;(Aj—X) =0, je{l,....m}
Since Aq,..., A, are distinct, we get
a; =0, je{l,...,m},
hence f,, = 0, which contradicts the hypothesis that f, is an eigenvector of T. [

COROLLARY 1.4.13. If A € M, (R) such that Det(A — A\I,,) has n distinct real
T00ts A1, ..., An, then there exists an invertible @ € M, (R) such that

QAQ ™' =Diag(A1,..., \n).

PROOF. By Theorem 1.4.12 there is a basis B = {fi,..., fn} for R" with
fi,- .., fn eigenvectors that correspond to the eigenvalues A1, ..., A, of the operator
Ta. Since A is the matrix of T with respect to the standard basis for R™, the
matrix B of T4 with respect to B is by Proposition 1.4.5 equal to QAQ ™!, for some
invertible @ € M, (R). Moreover B = Diag(A1,...,A,), by Remark 1.4.11. O

REMARK 1.4.14. Let T € L(R?) with matrix A € M(R), and let
A(A) :=Tr(A)? — 4Det(A).

(i) If A(A) > 0, then T has two distinct real eigenvalues and it is diagonalizable.
(7)) If A(A) <0, then T has two non-real complex eigenvalues.

(791) If A(A) =0, then T has two equal real eigenvalues. In this case, every matrix
of T is diagonal, or no matrix of T is diagonal.
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a b
a=le )

ProOF. If A = At and

then
pr(A\) =Det(A — Az)
=(a—A)(d—A) —bd
=X\~ (a+d)\+ad — be
= A% — Tr(A)\ + Det(A).
Hence,

and (i)-(ii) follow immediately. For case (ii) we work as follows. If T is diagonaliz-
able, then it has a matrix of the form

A0
0 |’
hence every matrix representing 7" is diagonal (why?). If T' is not diagonalizable,
then by definition no matrix of 7" is diagonal. O
REMARK 1.4.15. If x1,...,%n,y1,---,Yn : J — R are differentiable functions

and A € M, (R) such that y(t) = Az(t), then y(t) = Az(t).
PRrROOF. By hypothesis yl(t) = Z?:l ;T (t), hence yl (t) = Z_?:l aij:i:j (t) O

REMARK 1.4.16. If A = Diag(A1,...,An), for some Ay, ..., A\, € R, and u € R",
then the system of linear odes

z(t) = Az(t) ; z(0)=u
has a unique solution (t) = (z1(t),...,2,(t)), where for each i € {1,...,n}
zi(t) = ugetit.
PROOF. The system
1 (t) AL z1(t)
in(®) o] e

with initial condition 2(0) = w is equivalent to the system of odes @;(t) = \;z;(t)
with initial condition z;(0) = w;, for each 4, hence we get the above solutions. [J

In the previous remark Aq,..., A, need not be distinct.
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THEOREM 1.4.17 (Fundamental theorem of linear odes with constant coeffi-
cients and real, distinct eigenvalues). If A € M, (R) with n distinct, real eigenvalues
ALy An, and u € R™, then the system of linear odes

#(t) = Az(t) ; z(0)=u

has a unique solution x(t) = (z1(t),...,z,(t)), where for each i € {1,...,n}
l’l(t) = Z dije)‘jt,
j=1

for unique constants d;; that depend on u.
Proor. By Corollary 1.4.13 there exists an invertible @ € M,,(R) such that
QAQ™!' =Diag(\i,..., \n).
With the following matrix equation we introduce the new coordinates
y=Qz, hence z=Q ly.
By Remark 1.4.15 we have
y(t) = Qi(t) = QAx(t) = QAQ™'y(1),
hence

y(t) =Diag(A1, ..., A\n)y(t).
By Remark 1.4.16 this system together with the initial condition

y(0) = Qu

has as unique solutions the curve

y(t) = (1), yn(t)) = ((Quhw, o (Qu)ne“t)

We show that the function z(t) = (x1(t),...,z,(t)) defined by

x1(t) Y1
(1.39) Ii-(t) =Q! yz )
() Y

is the unique solution of the initial system. By Remark 1.4.15 we have that
@(t) = Q™ y(1)
=Q7'QAQ y(t)
= AQy(1)
= Ax(t).
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Moreover,
2(0) = Q 'y(0) = Q'Qu = u.
The uniqueness of this solution follows from the uniqueness of the solution of the
system y = Diag(Aq, ..., Ay)y with initial condition y(0) = Qu. If (¢) is a solution
of @(t) = Az(t) with initial condition 2:(0) = u, then y(t) = Qx(¢) is a solution for
y = Diag(A1,..., Ay, since
y(t) = Q(t)

— QA1)

= QAQ 'y(1)

= Diag(A1,..., An)y(t),
and

y(0) = Qz(0) = Qu.
If Q7' = [gi;'], equation 1.39 gives us

zi(t) = i (Qu) e’
=1

n

At

= E dije E
Jj=1

where each term

dij = g5’ (Qu);
depends on u. The uniqueness of the terms d;; follows from the fact that the
functions e*?, ..., e ? are linearly independent, since i, ..., \, are distinct®. O

One can show (exercise) that if Ay, ..., A, are distinct, the solution of the system
in Remark 1.4.16 is a special case of the solution of the system in Theorem 1.4.17.
The direct algorithm of finding the solution of the system

z(t) = Az(t) ; z(0)=u
that is extracted from the proof of Theorem 1.4.17 is the following:

Step 1: Find the eigenvalues Aq,..., A\, of A i.e., the roots of Det(A — AI,,). This
can be difficult.

Step 2: For each eigenvalue \; find an eigenvector f; that belongs to \; i.e., solve
the system (A — A\;I,,)f; = 0. This is mechanical.

Step 3: Find P = [p;j], by f; = Z;.lzl pije; and © = Py, or equivalently
n
T = Zpijyi7
i=1

8The proof of this standard fact makes use of the Vandermonde determinant.
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for every j € {1,...,n}.

Step 4: The system in the new coordinates is y(¢t) = Diag(A1, ..., A\, )y(t) and

yi(t) = a;et,  a; = y;(0).

The general solution to the original system, where j € {1,...,n}, is given by

n

Zj (t) = Zpijaieh't.

i=1

If one is interested in a specific u, it is easier to solve the equations

n
uj = E :pijaj
i=1

than to invert P’ and solve
a=(PH)~!
A second algorithm is extracted from the form of solutions and not from the
proof of Theorem 1.4.17. We rewrite the equation &(t) = Ax(t) as

Z?=1 )‘jdlje)\jt Z] 1 dlje it
(140) Z;_L:l )\jdije)\jt = A Z?:l dije)‘jt 7
21 Ajdnett 21 dnjetit

and we solve (1.40) with respect to d;;. E.g., using this algorithm the system
1 (t) = 1 (1),
ba(t) = w1 (t) + 22(t),
bg(t) = 21 (t) — x3(t).

with initial condition z(0) = (1,0,0) has as solution the curve

=5

3.

1 1
z(t) = (e, —e' + €™, iet - ie*t).

REMARK 1.4.18. Theorem 1.4.17 doesn’t hold if some of the real eigenvalues
of A are equal.

PROOF. Let
1 0
=],

with eigenvalues A1 = A9 = 1, and let the system
i‘l(t) = l‘l(t),
Ta(t) = w1 (t) + 22(t)
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with 21(0) = a and x2(0) = b. If a # 0, then this system cannot be solved according
to Theorem 1.4.17. If it could be, then

:vl(t) = dllet + dwet = (dll + d12)et — aet
w3(t) = dare’ + dpze’ = (da1 + daa)e’ = be’.
But then the second equation of the original system becomes

bet = aet + be! < aet =0< a=0.

One can show (exercise) that the unique solution to the above system is
z(t) = (ae', €' (at +b)).

THEOREM 1.4.19 (Lipschitz continuity of solutions in initial conditions). Let
A € M, (R) with n distinct, real eigenvalues. We define the function

o4 :RxR* - R"”
dat,u) =x(t),
where x(t) is the unique solution of the system
x(t) = Az(t) ; x(0) = w.
Let t € R be fized. We define
¢pat:R" - R"
Pau(u) = dalt,u).
Then there are constants C' > 0 and k € R such that for every u,w € R™
[Pat(u) — par(w)| < olu—wl,
where
o= CeM.
PRrROOF. Using the form of solutions in Theorem 1.4.17 (exercise). g

Note that Theorem 2.1.15 implies trivially the continuity of solutions in initial
conditions i.e., the property

lim ¢4 ¢(u) = dat(uo),

U—>UQ

which can be shown (exercise) without using the form of solutions in Theorem 1.4.17.
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1.5. Linear systems with constant coefficients & complex eigenvalues

DEFINITION 1.5.1. If a,b € R and b # 0, we define the matrix
a —=b
Aa,b - |:b a:| )
and T, is the operator in L(R?) that is represented by A, .

The eigenvalues of A, are Ay = a +bi and A\ =a —bi in C\ R.

PROPOSITION 1.5.2. Ifb # 0, the operator Ty is the composition of a stretching
or shrinking and a rotation.

PROOF. Let a = rcosf and b = rsinf, where r = va? + b%2. We have that
A rcos —rsinf| |r 0] |cosf@ —sinf
@b = lpsing  rcosf| |0 7| |sind  cosf|’

hence

Tap =10 Ry,
where Rg(x) is the #-counterclockwise rotation of the vector x, and we use for
simplicity the symbol r for the mapping x — rz, which is the stretching or shrinking
of = by the factor r. O

If we identify R? with C, and if z = = + iy, then

B x|  |ax —by
Ta,bZ - Aa,b |:y:| - |:bl‘ +ay:| ’

hence
(1.41) Tupz = z(a + bi)

i.e., algebraically speaking, Tj; is multiplication by a 4 bi. The identification
between R? and C can be used to solve the system of odes
T(t) = ax(t) — by(t),
(1.42) .( ) (t) — by(t)
y(t) = bx(t) + ay(t),
which is also written
(1.43) 2(t) = Agpz = Topz = (a + bi)z.
Therefore, for some C' = u + iv the solution of (1.43) is
z(t) = Celottit — (u+ iv)e“teibt.

Since 4
e = cos(bt) + i sin(bt),
we get
z(t) = ue® cos(bt) — ve® sin(bt)

y(t) = ue sin(bt) + ve® cos(bt).
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In this section we explain how one can reduce different linear systems with constant
coefficients and non-real, complex eigenvalues to a system like the above.

DEFINITION 1.5.3. A vector space over C is called a complex vector space. The
complex Cartesian space C™ is a complex vector space where

(215 oy zn) + (Wi, .y wp) = (21 F W1,y v oy 20 + W),
Azt ooy 2n) = (Az1,. .0, 2,) 5 A eC.
A subset F' of C" is a complex subspace, if it is closed in C™ under addition and
complex multiplication. We denote the set of operators T : F' — F by L(F). An
eigenvalue of T' € L(F) is some A € C such that Tv = Av, for some v € F \ {0}.
In this case v is an eigenvector of T that “belongs to” A. If M, (C) is the set of
n X n matrices with entries in C, an isomorphism between the complex algebras
L(C™) and M, (C) can be established, as in the real case. The polynomial with

complex coefficients pr(\) = Det(T — M) is the characteristic polynomial of T.
An operator T € L(F) is called diagonalizable, if it has a matrix in diagonal form.

Note that an element g € C™ can be written as
C">g=_(z1,..-,%n)
= (a1 +b1,...,a, +1iby)
= (al,...,an) —|—Z(b1,,bn)
=u+ v, u,v € R™.
If g, ¢’ € C™ such that ¢ = u +iv and ¢’ = v’ + v’, where u,v,u’,v" € R", then
g=¢ ©u=u and v ="'
THEOREM 1.5.4 (Criterion of diagonalizability). Let F' be a complex subspace
of C™ and T € L(F). If the characteristic polynomial pr(\) of T has distinct roots

Ay-oyAm, where m = dim(F), and fi,..., fm are corresponding eigenvectors,
then their set B = {f1,..., fm} is a basis for F, and T is diagonalizable.

PROOF. Similar to the proof of Theorem 1.4.12. O

DEFINITION 1.5.5. If F' is a complex subspace of C", the space of real vectors
IR in F is defined by

g :=FNR"
If F is a real subspace of R™, the complezification Ec of E is defined by

k
E¢ = {wEC"|w:Z)\iwi, ke NT, wl,...,wkEE,/\l,...,/\kGC}.

i=1

We say that F' is decomplezifiable, if there is E such that F' = Fg¢.
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REMARK 1.5.6. If F'is a complex subspace of C™ and E is a real subspace of
R™, the following hold:

(i) Fr is a real vector space such that Fg C F.
1) E¢ is a complex vector space such that £ C Ec¢.
i

(
(i1i) (Ec)r = E.
(iv) (Fr)c C F.

PROOF. Left to the reader. O

DEFINITION 1.5.7. If A is a complex algebra, an involution on A is a function
*: A — A that satisfies the following conditions:

(L) (x+y) =a" +y*.

(I2) (Ax)* = Az*, where X is the conjugate of .

(Is) (zy)* =y o~

(

The pair (A4,*) is called a *-algebra. The fized points of * is the set {a € A | a* = a}.
A subspace B of A is called *-invariant, if B* := {b* | b € B} C B. If (4,*) and
(B,®) are *-algebras, a function ¢ : A — B is called *-preserving, if for every z € A

p(z") = p(2)®.

The conjugate function z — Z is an involution on C with R as the set of its
fixed points. We can also define the function * : C* — C" defined by

(21, y2n) = (21, -, Zn)
on the vector space C", which has R™ as the set of its fixed points.

PROPOSITION 1.5.8. A complex subspace F of C™ is decomplexifiable iff F is
*-invariant.

PRroOOF. Exercise. O

DEFINITION 1.5.9. Let E be a real subspace of R” and T' € L(FE). The com-
plexification Tr of T is the linear operator

Tc : Ec — E¢
defined by

k k
T(c(w) = TC ( Z )\iwi) = Z )\iT(wi).
i=1 i=1
An S € L(Eg) is called decomplexifiable, if there is T € L(E) such that S = T¢.

Note that if w € E, then by definition we have that T¢(u) = T'(u).

REMARK 1.5.10. Let E be a real subspace of R, B = {ey,...,e,} a basis for
E, T € L(E), and A € C. The following hold:

(1) B is a basis for E¢.
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(#4) The definition of the complexification T¢ of T is independent from the choice
of representation of w € Eg.

(791) If B € M, (R) is the matrix of T with respect to B (as a basis for F), then B
is the matrix of T with respect to B (as a basis for E¢).

(iv) pr(A) = pre(A).
(v) Ais an eigenvalue of T iff A is an eigenvalue of T¢.

Proor. Exercise. U

PROPOSITION 1.5.11. 2 If E is a real subspace of R™ and S € L(E¢), then S
is decomplexifiable iff S is *-preserving.

PROOF. Exercise. (]

COROLLARY 1.5.12. Let E be a real vector subspace of R", T € L(E), and
A e C. If X is an eigenvalue of T, then X\ is an eigenvalue of T .

PRrROOF. By Remark 1.5.10(v) A is an eigenvalue of Tt i.e., there is some non-
zero w € Eg such that T (w) = Aw. Since T¢ is trivially decomplexifiable, by
Proposition 1.5.8(ii) Tt is *-preserving, hence

Te(w*) = (Te(w))” = (w)* = Jw*,
and X is an eigenvalue of T¢ with w* as a vector in C" belonging to . By Re-
mark 1.5.10(v) we conclude that X is an eigenvalue of T'. O

By Corollary 1.5.12 the eigenvalues of some T' € L(E) can be listed as
Ay A €ER)
By [y ey s [l € C\R
DEFINITION 1.5.13. Let X be a vector space, Y, Y7,...,Y; subspaces of X and
T € L(X). We say that Y is T-invariant, if TY == {Ty |y € Y} CY. If X is
the direct sum of Y7,...,Y;, we say that Y7,...,Y; form a T-invariant direct sum

decomposition for X, if Y; is T-invariant, for every j € {1,...,1}.

If T € L(X), the subspaces X and {0} are T-invariant, and every subspace is
idx-invariant. Since Ry = idgz, every subspace of R? is Ry-invariant, and since an
one-dimensional subspace of R? is a line through the origin, every subspace of R?
is also R -invariant. Note also that R, = —idg=.

THEOREM 1.5.14 (Direct sum decomposition for an operator with distinct
eigenvalues). Let E be a real vector subspace of R™ and T € L(E). If all eigen-
values of T are distinct, then there are subspaces E,., E. of E and operators T, €
L(E,),T. € L(E.) such that:

(i) E=E, ® E,;
(i) T =T, ®T.;

(#i1) T, has real eigenvalues and T, has non-real, complex eigenvalues.
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PROOF. Let Aq,..., Ay € R, and pq,fi1,..., 0, € C\ R be the distinct
eigenvalues of T, and let eq, ..., e, d1,d1’, ..., d;, d;’ the corresponding eigenvectors
of T. By Remark 1.5.10(v) these are exactly the eigenvalues of its complexification
Tc € L(E¢). By Theorem 1.5.4 the set

B .= {fl?"'7fk7gl7g>1kﬂ"'7gl7g£k}

is a basis for F¢, where its elements are eigenvectors of Tr that belong to the
corresponding eigenvalues of T¢. Let

Fr = <{f13~"7fk}>(Ca
Fc = <{glagr7"'7glagl*}>(:

be the complex linear span of f1,..., fr and g1,97,..., 41,9}, respectively. The sets
F,., F, are complex subspaces of E¢ that are Tg-invariant, since they are generated
by eigenvectors of T¢. By the definition of B we get

Ec=F,.®F,.
We define the following subspaces of E':
E..=FENF,, and E.:=FENF..
By Proposition 1.5.8 we have that F,. and F, are *-invariant, since
F.=(E;)c, and F.= (E.)c

i.e., they are decomplexifiable. We show only the first equality, and for the second
we work similarly. By the corresponding definitions we get

k
E, = {u €L | 3k€N+,G'17"~,O'k6C (’LL = Zazfz> }a

i=1
m
(E)c = {w eC"|w= ZTjuj, meNY, w,... um €EET1,.. ., Tm € C}.
j=1
Clearly, (E,)c C F,.. For the converse inclusion it suffices to show that fi,..., fx €

(Ey)c. Since eg,...,e, belong to Aq,..., Ak, and since E C Eg, for every v €
{1,...,k}, we have that

k ! !
e, =Y pifit Y 0igi+ > Tig),
i=1 j=1 j=1

for some p1,...,pk,01,...,00,7T1,...,71 € C. Since Te(e,) = T(e,) = Aye,, we get

k l l
Te(e,) =Y piTefi+ Y o;Teg;+ > 7,Tcy;
i=1 j=1 j=1

k l l
=Y oNifi+ D> oiug+ Y Tilg)
i=1 j=1 =1
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= )\I/el/

k ! !
= Zpi/\ufi + Zaj/\ugj + ZTJ‘AVQ}‘-
i=1 j=1 J=1

Hence, for each ¢ € {1,...,k} and j € {1,...,1} we have that
piXi = pidu & pi(Xi — Ay) =0,
ojp; =0\, 0i(p; —Ay) =0,
Tilk; = Tid < i (R — M) = 0.

Since all eigenvalues are distinct, we get p; = 0, if i # v, and 0; = 0 = 75, for every
je{l,...,1l}. Consequently,

€y = pu,fua
for some p, # 0, since e, is an eigenvector, and e, € E,.. Hence
1 1
fuziem 76((:3 eueEr
v Pv

ie, f, € (E;)c. Since e, = e, +0 € E. ® E,, and since similarly we have that
d;,d;’ € E, & E,, for every j € {1,...,1}, we get E C E,. @ E.. The converse
inclusion E, & E. C E holds trivially. Hence

E=F.6®FE..
We define T, € L(E,) and T. € L(E.) by T, := T|g, and T¢. := T|g,, respectively.
These are well-defined mappings, since if e.g., u = Ele i fi € E,., then
Tu="1Tcu

k
=Tc Z,uifi
. =1
= ZMz‘TCfi

i=1

k
= Zﬂz‘)\ifi €k,
i1

Clearly, T has real eigenvalues and T, has non-real, complex eigenvalues. O
COROLLARY 1.5.15. Let E be a real vector subspace of R™ and T € L(E). If
all eigenvalues of T are distinct, then then the system of linear odes
(t) = Tx(t),
s rewritten as
& (t) = Trap(t),  deo(t) = Tewe(t),
where x(t) = x,(t) + z.(t) E E=E, ®E, and T =T, ®T,.
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PRrROOF. By Theorem 1.5.14, we have that let B, := {ej,...,ex} and B. :=
{d1,dy',...,d;,d;'} are the bases for E, and E., respectively. If A, is the matrix of
T, with respect to B,., and if A, is the matrix of T, with respect to B, then, by the
comment following Definition 1.4.8, the matrix of T" with respect to B = B, U B, is

A 0 )
A= [ 0 AJ = Diag(A,, A.),

and the original system is written
()| _ [Ar 0| |z:(2)
()] |0 Al |z(®)]|

Next follows the direct sum decomposition for the operator T,.

THEOREM 1.5.16 (Direct sum decomposition for an operator with distinct,
non-real eigenvalues). Let E be a real vector subspace of R™ and T € L(E). If all
eigenvalues of T are the distinct, non-real complexr numbers p1, fi1, . - ., W, i, there
are subspaces En,...E; of E and operators Ty € L(E1),...,T; € L(E)}) such that:

(i) Eq, ..., E; are two-dimensional;

(i) Ty has eigenvalues pyi, i1, - .., T} has eigenvalues py, fig;

(iit) E=E1®...® E; is a T-invariant direct sum decomposition for E;
() T=T1&®...aT.

Proor. Let g1,97,..., 4, g; be the corresponding eigenvectors of T¢. For every
j€{1,...,1} we define the complex subspace

Fy:=<{gj,9;} >c,
of Fc. If F; :== F; N E, we work as in the proof of Theorem 1.5.14. O
Because of Theorem 1.5.14 the study of an operator T € L(E) with distinct
eigenvalues is reduced to the study of T, and T.. For the operator T, we use
Theorem 1.4.17, while the study of T, is reduced by Theorem 1.5.16 to the study

of an operator 7" € L(E’), where E’ is a two-dimensional real subspace of R and
T’ has non-real, complex eigenvalues.

THEOREM 1.5.17. Let E be a two-dimensional real vector subspace of R™ and
T € L(E) with eigenvalues pn = a+1ib and i = a—1ib, where b # 0. Then the matriz

-b
Aab = |:Z a:|

is the matriz of T with respect to some basis for E.
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PROOF. The complexification Tc € L(FE¢) of T has eigenvectors g, g* that
belong to p and [, respectively. By the remark following Definition 1.5.3 there are
u,v € R™ such that g = u 4 . Hence ¢g* = u — v, and

1 . i
= 27-(9 -9 = )
The linear independence of g, g* implies the linear independence of u,v. If x,y € R,

1 . .
u=§(g+g), v (9" —9g).

1 * 7: *
:cu+yv:0:>m§(g+g )+y§(g -9)=0

Hence B := {v,u} is a basis for E. If e = (x,y) with respect to B i.e., e = zv + yu,
then from the equalities
Tcg = pyg
= (a+1b)(u +iv)
= (au — bv) +i(bu + av),
and
Teg = Te(u + i) = Teu + Te(iv) = Tu + iTv
we get Tu = au — bv and Tv = bu + av. Hence
Te="1Tce
— Te(ow + yu)
=xTcv + yleu
=aTv+yTu
= z(bu + av) + y(au — bv)
= (za — yb)v + (xb + ya)u,

e = ) ]

COROLLARY 1.5.18. Let E be a two-dimensional real vector subspace of R™ and
T € L(E) with eigenvalues p = a + ib and i = a — ib, where b # 0. If g is an
eigenvector of the complexification Te € L(E¢) of T that belongs to p, such that

or in matrix form

g=u+iv, u,veER?
then B := {v,u} is a basis for E, and the matriz of T with respect to B is Agp.
PRrROOF. By inspection of the proof of Theorem 1.5.17. (|
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Note that if we had used as basis for E the set B’ := {u,v}, then working as
above we see that the matrix of 7" with respect to B’ is A,_p).
Let for example the following system of odes

xl(t) = —2!172@),
o(t) = x1(t) + 222(t),

0 -2
A= L 2} .
The eigenvalues of A are A = 1 +4 and A = 1 —i. We find a non-real, complex
eigenvector w € C? that belongs to A by solving the equation

(A= (i+i)h)w =0 [11¢ 1_21] [IU”};] _

with matrix

& (=1 = 49wy — 2we = 0 and wy + (1 — i)we = 0.

Since by multiplying the equation wy +(1—i)ws = 0 by (—1—1) we get the equation
(=1 — 9)wy — 2w = 0, the two equations are equivalent. Since

w1 = (=1 + i)ws,
we can choose wy = —i and w; = 1 + 7. Hence
w=(1+14,-i)=(1+41,0+i(—1)) = (1,0) + i(1,—1) = u + v,
w:=(1,0), wv:=(1,-1).

Let B := {v,u} the new basis for R?. By Corollary 1.5.18 the matrix of A with
respect to the new basis is
1 -1
el )

If x(t) is a solution curve to the system, and if z(¢) = Py(t), where y(¢) are the
coordinates of the solution curve with respect to B, we get y(t) = P~1x(t), therefore

§(t) = Pl (1)
=Pt Ax(t)
=P 1APy(t)
= Any(t).
Since, as we already know, the system (1.42) has solutions the curves
z(t) = K1e® cos(bt) — Koe® sin(bt)
y(t) = Kie™sin(bt) + K1e cos(bt),
we get
y1(t) = Kie' cost — Koe'sint
yo(t) = Kie'sint + Koe' cost.
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Since
x = (1,22)
=10 + Yau
=y1(1,—1) + 42(1,0)
= (y1 + Y2, —41),
we get
T1 =Y+ Y2
To = —Y1.
Hence the solution curve of the original system is
21(t) = (K1 + Ks)el cost + (K1 — Ko)e! sint,
12(t) = —Kje' cost + Kqe' sint.

1.6. Exponentials of operators and homogeneous linear systems

The aim of this section is to solve the system of linear odes

z(t) = Ax(t),
where A € M, (R), without supposing that the eigenvalues of A are distinct. In

order to do this we use the concept of the exponential of an operators, a generaliza-
tion of the exponential function on reals. Recall that exp : R — R can be defined

through the power series
o0
zF
eXp E kf

k=0

DEFINITION 1.6.1. If T € L(R™), its exponential operator exp(T), or e, is
defined through its ezponential series in L(R™):
o0
Tk
. T . i
exp(T) =:e" = o
k=0
Recall that the operator T*, where k € N, is defined in Definition 1.4.1, and
all concepts defined in Definition 1.1.29 extend to a general normed space.
PROPOSITION 1.6.2. The exponential series of e is absolutely convergent.

PRrROOF. We show that the series

>
k=0

is convergent. By Proposition 1.4.2(iv) we get for every k € N
H HT\I’“

)
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and since
o k
3 144 _ I
K ’
k=0
by the comparison test we get the required convergence. O

REMARK 1.6.3. If T € L(R"), then e’ € L(R™) and

le”]] < eIl
PRrROOF. If z € R™, then
(oo}
T*(x)
T(.\ _
€ (33) - P k' bl

and the linearity of e” follows immediately from the linearity of each T* and the
properties of infinite series. If ||z|| = 1, then by Proposition 1.4.2(i) and (iii)
7" ()| < ||T*]] |2 < ||IT|¥, hence

(oo} oo oo
T*(z) T*(z) |T]1*
T _ — 7l
le” (2)| = Z k! SZ k! SZ k! =€
k=0 k=0 k=0
hence by Proposition 1.3.2 we get ||eT|| < ellT1l. O

Note that if (T},)22, is an absolutely convergent sequence in L(R™), then it is
also convergent in L(R") i.e.,

oo o0

Z [T < 0o = Z T,, converges in L(R™).

n=0 n=0
If 7,, is the n-th partial sum of the series >~ (T, oy, is the n-th partial sum of
the series Y0 ||T,||, and n > m, then

2. T
i=m—+1
and we use the fact that L(R"™) is a Banach space (Theorem 1.3.3). Note that when

absolutely convergence of a series in a normed space X implies its convergence in
X, then X is a Banach space (left to the reader).

n

< Z T3] = lon — oml,

i=m-+1

HTn _Tm” =

LEMMA 1.6.4. If R = 3372 R and S = Y27 S are absolutely convergent
series in L(R™), then

ROS::T:iTZ,

=0

T) = Z R; o Sy.
J+k=l
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PROOF. Let the sequences of the partial sums

n n
Pn 1= g R;, op:= E Sk, Tn:
§=0 k=0

i
(]
=

We have that
RoS= ILm (pnoon) & ||[RoS — (pnoay)|| == 0,
since
[|[RoS — (ppoon)||=[RoS—ppoS+pnoS—pnoayl|
<|[RoS —=pnoS||+|lpnoS —pnoonll|
= [[(B = pn) o S|+ |lpn o (S = an)]l
<R[ [[B = pnll + [lonll - IS = onl|-
Since ||R — pnl| — 0 and ||S — 0,,|| — 0, and since the sequence (||pn||)3, is
bounded (for each n € N we have that |[p|| < 377 [|R;]| < 3772, [|R;l] < 00), we
conclude that
IR0 S = (pnoon)l| = 0.
By hypothesis we have that
T = lim 1, & ||T — 7ou|| == 0.
n— 00
We also have that
pogn= (1) o (Xs)
j=0 k=0
:R0050+(R0051+R1050)+...+
+ (Rn—l o Sn + Rn o Sn—l) + Rn o Sn
= Z RjOSk.
J+Ek<2n, 0<j<n,0<k<n
Since

2n
Tan=»_ Y RjoS,

1=0 j+k=l
we have that

Ton = Pn ©0pn +

+ > R; o S

J+k<2n, 0<j<n,n+1<k<2n

+ > R; o Sg.

J+k<2n, n+1<j<2n,0<k<n
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By the hypothesis of the absolute convergence of the series we get

> Rjo Sy +

J+E<2n, 0<j<n,n+1<k<2n
J+k<2n, n+1<5<2n,0<k<n

< > R - 115kl +

J+k<2n, 0<j<n,n+1<k<2n

+ > 1B 11 115wl

J+k<2n, n+1<j<2n,0<k<n

< (inw)( > sl +

k=n+1

(Znsku)( 5 I1).

j=n+1

[|Ton — pn o on|| =

Since Zk — 1 1Sk 5 0 and Zj (vl 50, we get that
[[T2n — pn o ol — 0.
Since

||ROS—T27LH = HROS_pnoo-n'i_pnOUn_T?nH
< HROS_pnOUHH + Hpnogn_TZnHv

we conclude that ||R oS — 7, || — 0.

65

O

REMARK 1.6.5. Let S,T € L(R"), and (T},)3; C L(R"), such that T,, — T

(i) SoT, =+ SoT.
(ii) Tp0S —»ToS.

PROOF. Left to the reader.

PROPOSITION 1.6.6. Let R, S,T € L(R™), and a,b € R.
(i) If R is invertible, then ef°5°R™" = RoeS o RL.
(i) IfSoT ToS, then e5tT = e%0e”.
(iii) e=% = (%)~ 1.
() If n =2 and the matriz of T is
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then the matriz of eT is
o0 cosb —sinb
sinb cosh|’
PRrOOF. (i) It is easy to show by induction on N that for every k € N
(RoSoR M) =RoS*o R
Since
Sk 1 = RoS*oR' “(RoSoR M)
RO<ZM)OR =2 q =2 ! ’
k=0 k=0 k=0
by Remark 1.6.5 we have that
RoSoR™' __ - (ROSOR_1>k
© =2 !
k=0
n —1\k
— g O HeSO RS

— k!

. - Sk _
Jim (Zk;>°31

k=0

I
2
=
o]

(i) Using the binomial expansion we get

(S+T)" = zn: <Z> Snk o Tk

k=0
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0o Sj 0o Tk'
-(%%)- (5 ®)
J= =0

:eSOGT.

(iii) First we observe that

2!

O—Oook—l 0! 0 =1
e—zﬁ—n-i- +—=+...=1I,.
k=0

Since S o (—=8) = (=8) o S, by case (ii) we get that e5+(=%) = &0

similarly e 519 = &% = e7% 0 7.

(iv) If 21,22 € R, then
a —b| |z1| _ |ax1 — b
b al |za|  |bxy+axs|’

265097

hence, identifying R? with C and viewing (x1,72) as o1 + ixe = z, we get

Tz = (a+1ib)z.

Since for every k € N we get then 7%z = (a + ib)* 2, we have that

7oy = (a+ib)Fz
e’ (2) = Zik!
k=0
= (atib)*
=2
k=0
— ZeaJrib

— Zeaezb

= (x1 + tz2)e?(cos b + isin b)

=e? (x1 cosb — xzosinb + i(xg cosb + x1 sin b))7

hence using matrices we get

e*(xg cosb + 1 sinb) sinb  cosb

e?*(xq cosb — xg sin b)} _ o {cos b —sin b] [

S
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, and

g

PROPOSITION 1.6.7. If L(R™)~! is the set of all invertible operators in L(R™),

the following hold:

(i) The function exp : L(R") — L(R"), defined by T + e, is a function from

L(R™) to L(R™)~!.
(ii) The function exp is continuous.
i1) If T € L(R™) such that ||T|| < 1, then

(7
(a) the series > po T* converges,
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(b) I, — T € L(R*) ™, and

- 1
k_
ZT L, -T
k=0
(iv) The set L(R®)™! is an open subset of L(R™).

PRroOOF. Exercise. O

PROPOSITION 1.6.8. Let T € L(R™), A€ R, z € R", and E a subspace of R™.

(2) If X is an eigenvalue of T and x is an eigenvector of T that belongs to X, then
x is an eigenvector of €T that belongs to e>.

(ii) If E is T-invariant, then E is T -invariant.
PRrOOF. Exercise. O
Note that if A € R, then

M s AL)E O SALE (S
e —Z R E ZE I, =¢e'l,.

k=0 k=0

ProrosiTiON 1.6.9. If

a O 1 0]]0 O
a=ly o=l Y O =

then the matriz of €74 is
oa 10
b 1|°

PROOF. Since aly - B = B -als, we get als o Tg = T o als, hence by Proposi-
tion 1.6.6(ii) and the previous remark we have that

eTA _ eaIerTB — ez g eTB _ (ealz) oeTB _ 6a([2 o eTB) _ eaeTB.

=y of[) = b]

Ti(Tpz) = [2 8} [bm - [8}

and similarly (73)* = 0, for every k > 1. Hence

e k
T _ TB

kB
— k!

and e74 = (I, + Tp). Therefore the matrix of e74 is e*(I + B). O

Since

we have that

e =IL+Tg+0++0... =15+ Tg,
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PROPOSITION 1.6.10. Let S,T € L(R™) such that SoT =T o S.

(i) e¥oeT =eT oed.

(ii) eS0T =Toe".
PRrROOF. Exercise. (]
DEFINITION 1.6.11. If T € L(R"), the map expy : R — L(R")™! is defined by

t — expp = el

If A€ M,(R), we write for simplicity exp ,(t) = e instead of exp;, (t) = el7a,

Since L(R™) can be identified with M, (R), and hence with R"’ . it is meaningful
to study the differentiability of exp,. In the rest we identify 74 with A.

PROPOSITION 1.6.12. If A € M, (R), the function exp, is differentiable and
expy(t) = Aoexp,(t) = expy(t) o A.

PROOF. If h,t € R, then tAohA = hAotA, and Proposition 1.6.6(ii) gives

exp,(t+h) —expy(t)

exp4(t) = lim

h—0
o(t+h)A _ gtA
=lim ———
h—0 h
| gtA o ghA _ gtA
= lim
h—0 h
o ello (ehA -1,
=lim —————*
h—0 h

lim [ &4 o ehAi_I"
h—0 h

hA _
— e 6 lim (GI”>
h—0 h

— etA o A,
where the last equality is justified as follows. By definition of e"4 we get

ehA—In:(In+hA+h2A72+...)—In
h h
hA+h2A + W3 AT+
h
A? A3
=A+h|l—+h—+...
wh(ng )

: A+ hB,
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hence by Proposition 1.6.2, and since |h| — 0, we get

ehd — 1
= 4l =B
- = s
— Jb/ 1B
A? A3
< — —_—
o (1 s+
A2 A3
< — —
o (= aell )

Ak
r

< Ihl Y
k=0

Since Ao (tA) = (tA) o A, by Proposition 1.6.10(ii) Ao exp,(t) = exp,(t)c A. O

THEOREM 1.6.13 (Fundamental theorem of linear odes with constant coeffi-
cients). If A € M, (R), the system of linear odes

#(t) = Az(t); x(0) =K e R"
has as unique solution the function
2(t) = (exp 4(1))(K) = e"K.
PROOF. First we show that x(t) is a solution. By Proposition 1.6.12 we get?

) ) e(t+h)AK _ etAK
#(t) = fim h
S(tHR)A _ otA

. e
= lim
h—0 h

(t+h)A _ otA

= 1. —_— K
hl—>rnO h

= expy (1)K
— (Ao exp, (1)K
= A K
= Ax(t).
Moreover, x(t) satisfies the given initial condition, since
2(0) = " K = ’K = I,K = K.

For the uniqueness of the solution of the system we work as in the case of the proof
of uniqueness of solution to the simplest ode. If x(¢) is a solution of the system and

9We freely pass from an expression like (A o exp 4 (t)) K, which is understood as a formula be-
tween operators, to an expression like Ae?4 K, which is understood as a formula between matrices.
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y(t) = (exp4(—1t))(x(t)) = e *z(t), then by Proposition 1.6.12 we have that

y(t) = (ie‘“‘)x(t) +e (1)
= —Ae Mu(t) + e Ax(2)
= eftA(—A + A)x(t)
=0,

hence y(t) is constant with value y(0) = e

O()—Ix() z(0) = K. Hence
K = e 4x(t), therefore e!1 K = etetz(t) = &° =z

a(t) = Inx(t) = 2(t). 0
Note that if n = 1, the general solution to the system
z(t) = Az(t); x(0)=K eR

is z(t) = e'* K, and since
eta — eta
we get the known unique solution of the simplest ode. If we consider the system
(1.44) %1(t) = axq(t); 21(0) = K; € R,
' xz(t) = b.’El(t) + axg(t); LEQ(O) = Ky € R,

with matrix

then by Proposition 1.6.9 we know that

o ta 0 tA _ ta 1 0
tA_[tb ta]:>e - Lb 1}

By Theorem 1.6.13 the unique solution of the system is
x1(t) w1l 0] |K; et K
[:@(t)} - Lb 1} {KJ - Lm(tbKl + KQ)] '
If A e M,(R), the dynamical system that is generated by the system of odes
z(t) = Ax(t)
is the function ¢4 : R x R” — R"™
da(t,u) := x(t),
where z(t) is the unique solution of the system
(t) = Az(t) ; x(0) =u e R™
By Theorem 1.6.13 we get
dat,u) = eu.
Let t € R be fixed. The function
pat:R" - R"
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dau(u) == pat,u) = eu
is linear. The family of maps

(¢t)t€]R

is called the flow that corresponds to the above system of odes. This flow is linear,
as the maps ¢; are linear, for every ¢t € R. If s;t € R, the flow satisfies the
fundamental property

¢A,s o ¢A,t = ¢A,s+t,
since for every u € R™ we have that
(Pasodar)(u) = ¢as(daru)
= ¢a,s(e)
_ esAetAu

_ e(s—i—t)Au

= @A sre(u).

The Lipschitz continuity of solutions in initial conditions (see Theorem 2.1.15)
follows in this case easily, since

|pat(u) — das(w)| = |eu — el
= le"(u — w)|
<l - [u — wl
< elAll [y — g
_ el

Ju— wl.

If A € M3(R), one can show that there is invertible P € M3(R) such that
B = PAP~! has one of the following forms:

A Of. a —b| A0
0 pl|’ b al’ 1 Al
Correspondingly, the exponential e? has one of the following forms:
e 0 ) o |COsb  —sinb| A1 0
0 et|’ ¢ |sinb cosb|’ o1l
The firs case is an exercise, while the third follows from the solution of the sys-

tem (1.44) for ¢ = 1 = b. By Proposition 1.6.6(i) we get

oA — ePleP _ pleBp

i.e., we can can compute e, for every A € My(R). Consequently, we can ezplicitly
solve the system @(t) = Axz(t), for every A € M3(R). We consider the following
cases:
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(I) A has eigenvalues A, 1 € R such that A - p < 0 (saddle): By Corollary 1.4.13
. Iro
B =Diag(\,pu) = {0 M] .

(IT) All eigenvalues have negative real part (sink): one can show that every solution
z(t) of the corresponding system satisfies

tli>rgo z(t) =0.

E.g,if A\=a+iband p =a—1tband a < 0, by Corollary 1.5.18 after changing the
system of coordinates we get the equivalent system y(t) = By(t), where B = Agp.

Since
‘B ta |cos(tb) —sin(tb)
€T Isin(th) cos(tb) |’
the solutions are

[ R Pt et i 1 e

Since | cos(tb)| < 1 and |sin(tb)| < 1, and since a < 0, we get lim;_, o y(t) = 0, and
since z(t) = Py(t), we conclude that lim; o, 2(t) = 0.

(IIT) All eigenvalues have positive real part (source): one can show as in case (II)
that every solution z(t) of the corresponding system satisfies

lim fo(t)] = o0, lim_[a(t)] = 0.
(IV) All eigenvalues are pure imaginary (center): one can show (exercise) that all
solutions are periodic with the same period i.e., there is some p > 0 such that
Vier (m(t +p) = CL’(t))
1.7. Variation of constants

DErFINITION 1.7.1. If A € M,,(R) and B : R — R"™ is continuous, the system of
odes

(1.45) z(t) = Ax(t) + B(t)
is called a non-homogeneous, non-autonomous system of odes.

Equation (1.45) is called non-homogeneous because the term B(t) prevents it
from being linear, and it is called non-autonomous, since %(t) depends explicitly on
the time parameter t.

THEOREM 1.7.2. (i) Equation (1.45) has as a solution the function

t
(1.46) z(t) = et [/ e *AB(s)ds+ K|, KeR",
0

and every solution of equation (1.45) is of this form.
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(i1) A solution of equation (1.45) has the form
(t) = u(t) + v(t),

where u(t) is a solution of equation (1.45) and v(t) is a solution of the homogeneous
equation ©(t) = Axz(t).

(#i1) The sum of a solution of equation (1.45) and of the homogeneous equation
&(t) = Ax(t) is a solution to equation (1.45).

PROOF. (i) We suppose that the solution of equation (1.45) has the form
(1.47) £(t) = M (1),

for some differentiable function f : R — R", and we determine the exact form of
f(t). Note that if B(¢t) = 0, for every t € R, then by Theorem 1.6.13 f(¢) = K,
for every T € R and for some K € R"™ (that is why this method of solution of
equation (1.45) is called variation of constants). By Proposition 1.6.12 we get

Azx(t) + B(t) = &(t)
= (") f(t) + e f (1)
= (Ae")f(t) + e (1)
= A" f(1) + e (1)
= Ax(t) + " (1),
hence
f(t) = e A B(1).
By integration we get
t
ft) = / e *“B(s)ds + K,
0
for some K € R™. Note that the function g : R — R”, defined by
g(s) == e *4B(s)

is continuous, hence it is integrable, and

/Otg(s)ds = (/Otg1(8)ds7...,/Otgn(s)ds) c R™.

First we show that equation (1.47) is indeed a solution to equation (1.45):
¢ ¢
i(t) = (e')’ [/ e *“B(s)ds + K] +e'4 [/ e *4B(s)ds + K}
0 0
¢
= Ae! [/ e *“B(s)ds + K} +ee 1 B(1)

0
= Ax(t) + B(t).
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Next we show that a solution y : R — R™ of equation (1.45) is of this form. Since
y(t) = Ay(t) + B(t), we get

(z —y)(t) = &(t) — y(t) = A(=(t) —y(1)),
hence by Theorem 1.6.13 there is some A € R™ such that z(t) — y(t) = e**A, hence

y(t) = x(t) — A

Tt

=et4 / e *“B(s)ds + K} — A
LJo
Tt

=ef4 / e *“B(s)ds + (K — A)]
LJo

"
= et4 / efSAB(S)dS + K’] ,
LJo

where K’ := K — A € R™.
(ii) The general solution of equation (1.45) is written as

z(t) = u(t) + 'K,

where

u(t) == etA/o e *AB(s)ds

is also a solution of equation (1.45).
(iil) Let u(t) be a solution of equation (1.45) and v(t) be a solution of &(t) = Ax(¢).
Then z(t) = u(t) + v(¢) is a solution of equation (1.45), since

a(t)

u(t) + o(t)

Au(t) + B(t) + Av(t)
A(u(t) +v(t)) + B(t)
Ax

(t) + B(t).

O

If B(t) is of non-trivial complexity, it is hard to compute the integral in (1.47).
If B(t) is simple, we calculate z(t) following the obvious steps:

(i) We determine the matrices A and B(t).

(ii) We calculate the matrices e =4 and e/

(iii) We calculate the (nx1)-matrix that corresponds to the integral fot e %A B(s)ds.

iv) We find the product of the matrix e*4 and the (nx1)-matrix " e=sAB(s)ds+K.
0
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1.8. Higher order linear odes

An ode of higher order is a a linear ode with constant coefficients that involves
derivatives higher than the first.

DEFINITION 1.8.1. If n > 2, s : R — R is an n-differentiable function and
ai,...,a, € R, the ode

(1.48) S (t) +ars V@) + .+ an_15(t) + ans(t) =0
is an ode of higher order n. If n = 2, equation (1.48) becomes
(1.49) S(t) + alé(t) + ags(t) =0.

If we introduce new variables, equation (1.49) is reduced to a linear system of
odes with constant coefficients. Namely, if 21 = s and z3 = 1 = $, equation (1.49)
becomes &9 + aix2 + asx; = 0, hence we get the following system of odes:

Ty = Xa,
(1.50) .
ro = —a2x1 — A1X9.
If (x1,22) is a solution of the system (1.50), then s = x; is a solution of equa-
tion (1.49), and if s is a solution of equation (1.49), then (s, $) is a solution of the
system (1.50). The matrix of the system (1.50) is

0 1
A2 — |:_a2 —CL1:| )
with characteristic polynomial
pa,(\) =Det(As — AL) = A + ay X\ + a.

Similarly, equation (1.48) is reduced to a linear system of odes with constant co-
efficients. If we define x1 = s, o = 27 = §, ... x, = Tp—1, we get the following
system of odes:

:tl = T2,
i‘Q = 3,
(1.51)
j:n—l = Tn,
Tp = —QpT1 — Ap—1L9 — ... — A1 Ty,

The matrix of the system (1.51) is

0o 1 0 0
o 0 1 0
An = :
0 0 0 1
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PROPOSITION 1.8.2. Ifn > 2, the characteristic polynomial of A,, is given by
pa,(A) ="+ A" 4 an_ )+ an.

PrROOF. By induction on n > 2. Case n = 2 is shown above, and the inductive
case is straightforward (the details are left to the reader). O

THEOREM 1.8.3. Let A1, A2 be the roots of the characteristic polynomial pa, of
Ay. For the solution s(t) of the ode (1.49) the following hold:

(1) If M1, Ay € R are distinct, there are Cp,Cy € R such that
5(t) = CreMt  Coet?t.
(i) If \1 = Ao = X € R, there are C1,Cs € R such that
s(t) = CreM 4 Cyte.
(#91) If A, A2 € C\ R, and \y = u + iv, there are Cy,Cy € R such that
s(t) = e**(Cy cos(vt) + Cy sin(vt)).

PrOOF. (i) By Theorem 1.4.17 there are K, Ky € R such that for the di-
agonalizing system of coordinates (yi(t),y2(t)) we have that y;(t) = KieM' and
y2(t) = Koe*2'. For the original system (z1(t), z2(t)) we have that

x1(t) _ |P11 P12 y1(t)
xo(t) P21 P22 |y2(t)]’
hence s(t) = z1(t) = p11 K1eM? + praKoe2t.
(ii) One can show that in this case As is similar to a matrix B of the form

B = [2 (ﬂ ;o B#FO.
As we have seen already in the solution of system (1.44), the solutions of the system
§(t) = By(t) are

yi(t) = KieM,

ya(t) = KoM + K Bte,

where K7, K> € R. As in the previous case, the solutions z1(t) and z3(t) of the
original system are linear combinations of y; (¢) and ya(t).
(iii) By Corollary 1.5.18 and since we know the solutions of system (1.42), the
solutions of the system

y(t) = Auoy(?)
are

y1(t) = K€" cos(vt) — Koe* sin(vt) = e** (Kj cos(vt) — Kj sin(vt)),
y2(t) = K€" sin(vt) + Kae" cos(vt) = e** (Ky sin(vt) + Kj cos(vt)).

Since the solutions z1(t) and x2(t) of the original system are linear combinations
of y1(t) and yz(t), the result follows. O
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PROPOSITION 1.8.4. Let S(ay,...,ay,) be the set of solutions of the higher ode
s (E) +ars™ V@) + .. 4 an_15(t) + ans(t) = 0.

(i) Equipped with pointwise addition and multiplication by reals the set S(aq, ..., an)
is a real vector space. .
(i3) If f € S(as,...,a,), then f is (n + 1)-differentiable and f € S(aq,...,an).

PRrOOF. (i) Straightforward and left to the reader.
(i) If f € S(a1,...,a,), then z = (f,f,...,f(”’l)) is a solution to the sys-
tem (1.51). By Theorem 1.6.13 z(t) has derivatives of all orders (i.e., it is infinitely
differentiable), hence f is (n + 1)-differentiable. To get fe S(a,...,a,) we take
the derivatives on both sides of the higher ode. O

PROPOSITION 1.8.5. If €°(R) is the set of infinitely differentiable functions of
type R — R, the following hold:
(2) The constant functions Const(R) is a subset of €°(R).
(i) Equipped with pointwise addition and multiplication by reals the set €°(R) is
a real vector space.
(#it) The solutions S(a1,...,a,) of the higher ode (1.48) is a subspace of € (R).
(iv) The differentiation operator D : €°(R) — €*(R) defined by

Df = {.
Jor every f € €*(R), is in L(€>(R)).
(v) For every A € R, the mapping M) : €°(R) — € (R) defined by
MAf = >‘f7

for every f € €°(R), is in L(COO(R)). Moreover, My = idgs(w) and My =0, the
zero operator in L(€>(R)).
(vi) The mapping Miq, : €°(R) — €*°(R) defined by

Mg, f =1idg - f,

for every f € €*(R), is in L(€>(R)).
(vii) If D™ is the n-th application of D to itself, and if

p(t) =t" +at" ..+ anat +a, € R,
the mapping p(D) : €°(R) — €°(R) defined by
p(D):=D"+a; D" '+ ... +a, 1D+ anleo (),

i.e.,
p(D)f = f"™ + a1 fOY 4+ apa f +anf,
for every f € €*(R), is in L(€>(R)).

PROOF. Straightforward and left to the reader. O
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Clearly, if p(¢t) is the polynomial corresponding to equation (1.48), and f €
Ker(p(D)), then f is a solution to equation (1.48). Hence the problem of solv-
ing (1.48) is reduced to the problem of finding elements of Ker(p(D)).

PROPOSITION 1.8.6. If p(t),q(t),r(t) € R[t] such that p(t) = q(t) - r(t), the
following hold:
(1) Ker(r(D)) C Ker(p(D)) and Ker(q(D)) C Ker(p(D)).
(ii) If f € Ker(q(D)) and g € Ker(r(D)), then f + g € Ker(p(D)).

PRrOOF. The proof of (i) is straightforward, while if ¢(D)f = 0 = r(D)g, then
by case (i) p(D)f = 0 = p(D)g, hence p(D)(f + g) = p(D)f + p(D)g = 0. O
From now on we denote M;q, by M; and Midffz by M« i.e.,
Mif:=tf, and Muf:=t"f.
LEMMA 1.8.7. If A € R, then for every k > 1 we have that
(D= My)o My — My o(D— M) =kMp-.
PROOF. By induction on k£ > 1. If kK = 1, we show that
(D= My)oM;— M;o(D— M) =M = idgw ).
First we observe that
DoM; — M, oD = M,
since by the Leibniz rule we get
[DoM,— M,oD|f=D(tf)—tDf =tf+tDf —tDf = f.
Since (Mx o My)f = AM,f = Xtf =t(\f) = (Mo M))f, we get
(D—My)oMy —M;o(D—My)=DoM; — MyoM,—M;oD+ M; oM,
=DoM;—M;oD
= M;.
For the inductive step we observe first that
(D — M) o Myrs1 — Myrs1 0 (D — My) =D o Muyt1 — My o Myrs1—
— Mk+1 0 D+ Myk+1 o M)y,
=D o Mups1 — Myk+1 0D,
and we reach our conclusion by the following equalities:
[D o M1 — Mysr o D] f = D(t*+1 f) —¢*H1Df
= (k+1t"f +t"TIDf —t*T1Df
= (k+1)tkf
=(k+1)Muf.



80 1. BASIC IDEAS OF ODES
PROPOSITION 1.8.8. If m € NT, X\ € R, and p(t) € R[t], then
(t =" pt) = Vieqo,....m-1} (tke’\t € Ker(p(D))).
ProoFr. It suffices to show that
Vken ((D — M)k = 0),

since then we get all required cases:
(D — My)eM =0,
(D — My)*teM =0,

(D — My)™™ et =0,

since, if o(t) ;== t — A, and by hypothesis o7 (t) | p(t), for every j € {1,...,m}, we
get that t/e* € Ker(o7 (D)), hence by Proposition 1.8.6(i) /e € Ker(p(D)).

If k = 0, the equality DeM = XeM is written as (D — M,)eM = 0 By
Lemma 1.8.7, and since (D — M))eM = 0, we get

(D — My)"1tFer = (D — M)+ (Myee)
= (D — My)* ((D — M) o Mtk> e’\t}

= (D — M)k :<Mtk o (D — M)+ kMtkl)e/\t:|

= (D — My)* [tF(D — My)eM + kt’“le’\f}

— (D _ M}\)kktkflekt

— k(D _ Mx)ktkileAt

= 07
since by the inductive hypothesis (D — M) )*tF=1eM = 0. O

Everything we said in this section so far works also for C instead of R. Recall'®
that a polynomial p(t) € C[t] of degree > 1 has a factorization
p(t) = ep1(t) ... ps(t),

where pi(t)...ps(t) € C[t] are irreducible, with leading coefficient 1, ¢ € C, and
this factorization is unique up to permutation. This factorization holds for the
polynomials in R[t] too, since if K is a field, the integral domain K[¢] is a principal
ideal domain, hence a unique factorization domain. The use of C[t] though, is

10See [8], Chapter XI, section 3.
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crucial in the form of the irreducible polynomials occurring in the factorization
of p(t). Namely, a monic polynomial p(t) € CJt], i.e., a polynomial with leading
coefficient 1, is written as

p(t)=(E =)™ ... (=)™,
where my; is the multiplicity of (t — A;) in p(t), or the multiplicity of A; in p(t) for
every j € {1,...,r}.
COROLLARY 1.8.9. The following n functions belong to the set S(a1,...,ay) of

solutions of the higher ode (1.48):
(i) The functions
F) = e,

where X is any of the distinct real roots of the polynomial'' of p(t) that corresponds
to (1.48), and k € N is between 0 and the multiplicity of X in p(t).
(i3) The functions

g(t) = tFe® cos(bt),  h(t) = tFe sin(bt),
where A = a + b is any of the non-real, complex roots of p(t) withb >0 and k € N
is between 0 and the multiplicity of \ in p(t).

PRrROOF. (i) It follows from the above factorization of p(t) and Proposition 1.8.8.
If m is the multiplicity of A, then the following m functions are in S(aq,...,a,):
eMoteM e,

(ii) Since p(D) has real coefficients, we have that

p(D)if =ip(D)f,
for every n-differentiable function f : R — R, hence by the generalization of Propo-
sition 1.8.8 to A € C and p(t) € (C[ ] we get

0=p(D

=(
(D
=(
therefore p(D)t*e® cos(bt) = 0 = p(D)tFe sin(bt). O
Note that a non-real, complex root of p(t) of the form a — ib generates the
functions g(t) and —h(t), hence it adds no new functions to the linear span of the
functions mentioned in Corollary 1.8.9. Next we show that these functions not only

belong to S(ay,...,ay), but also form a basis for it. For the proof of this fact we
need some preparation.

HNote that by Proposition 1.8.2 the polynomial p(t) is the characteristic polynomial of the
matrix of the system (1.51) that corresponds to equation (1.48).
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First we note that the definition in Proposition 1.8.5(vii) is generalized to any
complex vector space X and T € L(X) i.e, if p(t)t" + a1t + ... ap_1t + a,, € C[t],
then p(T) € L(X) is defined by

p(T) =T "+ a;T" '+ ... +an 1T+ anlx.
Hence every p(t) € C[t] determines the function
p() : L(X) = L(X)

T p(T),

and consequently we get the mapping
() : Clt] = (L(X) = L(X))

p = p().
It is immediate to see that if 1 is the constant polynomial 1 in C[t], then

WT)=1Ix
i.e., 1(+) is the constant mapping Ix on L(X). Moreover, if p(t), q(t) € C[t], then

p(T) o q(T) = (p-9)(T) = (¢-p)(T) = ¢(T) o p(T).

For simplicity we may write p(T)q(T) instead of p(T) o ¢(T).

PROPOSITION 1.8.10. If X be a complex vector space, T € L(X), and p(t) € C[t]
such that p(t) = q(t)r(t), for some q(t),r(t) € C[t] with degree > 1 and greatest
common diwisor equal to 1, and p(T) = 0, then

X=Y19Y,
where Y1 = Ker (q(T)) and Yz = Ker(r(T)).
PROOF. Let o(t), 7(t) € C[t] such that o(t)q(t) + 7(t)r(¢t) = 1. Hence
o(T)g(T) + 7(T)r(T) = Ix,

and
z=Ixz = [o(T)g(T)+ 7(T)r(T)|z = o(T)q(T)z + 7(T)r(T)z
Since
r(T)o(T)g(T)x = o(T)r(T)q(T)x
=o(T)q(T)r(T)x
=o(T)p(T)x
=o(T)0z

we get o(T)q(T)x € Ys. Similarly we get 7(T)r(T)z € Y7, hence X = Y] + Vs, If
T = y1 + Y2, where y; € Y7 and y2 € Yo, then

o(T)q(T)x = o(T)q(T)(yr + y2)
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o(T)q(T)yr + o(T)q(T)y2
0+ 0(T)q(T)y2
=o(T)q(T)y2.

Hence we get

Y2 = Ixyo

(
Similarly we get y; = 7(X)r(T)x i.e., y1,y2 are uniquely determined. O

LEMMA 1.8.11. Let X be a complex vector space and T € L(X). If p(t) € C[t],
then Ker (p(T)) is T-invariant.

PROOF. If z € Ker (p(T)), we show that Tx € Ker(p(T)). Since p(t)-t = t-p(t),
p(T)oT =Top(T),
hence p(T)Tx = Tp(T)x =T0 = 0. O
THEOREM 1.8.12. Let r > 2. If X is a complex vector space, T € L(X), and
p(t) € C[t] such that p(t) = (t — A1)™ - ... (t = A\.)™r, for distinct Ay, ..., A\, € C,
and p(T) = 0, then
X=Y®.. .0V,
where Yy =Ker ((T — M Ix)™)), ..., Y, =Ker((T — A\ Ix)™)).
PROOF. If T = \;Ix, for some i € {1,...,7}, thenKer ((I'—X\;Ix)™) = X and
Ker ((T' — \jIx)™) = {0}, for every j € {1,...,7}\ {i}. Hence we get immediately
what we want to show. Suppose next that T' # \;Ix, for every i € {1,...,r}. We

prove what we want by induction on r > 2. The case r = 2 follows immediately
from Proposition 1.8.10. If r > 2, let

Z :=Ker ((T —Xlx)™o...0(T— )\TIX)’”"‘)

Since A1,..., A, are distinct, in the factorization
pt) = (t— )™ {<t =) (- M"“]
of p(t) the polynomials g(t) := (£ — A\1)™* and s(t) := (£ — A2)™2 - ...- (t — Ap)™

have greatest common divisor equal to 1. Hence by Proposition 1.8.10 we get
X=Y1eZ
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If ' =1T),, then T" is linear, and by Lemma 1.8.11 we have that if z € Ker(s(T)),
then 7"z = Tz € Ker(s(T')), therefore T’ € L(Z). By definition of Z we have that,
if z € Z, then s(T")z = 0 i.e., s(T") is the zero element of L(Z). Hence by the
inductive hypothesis on r — 1 for Z,T’, and s(t) we get

Z2=7:...0 7,
Zy :=Ker ((T — Aalz2)"™)),..., Zy :=RKer ((T — A\ Iz)™")).
It suffices to show that for every j € {2,...,7}
Zj =Ker((T — X\jIx)™)).
For this it suffices to show that
Z; D Ker((T — \jIx)™)).
Since
X=YeZ,¢...6~Z,
ifx e Ker((T—)\jIX)mi)), there are unique y1 € Y1,22 € Z, ..., 2. € Z, such that
=Y +22+ ...+ 2.

Since the polynomials in the factorization of s(t) commute, the compositions of the
corresponding operators also commute, and since (T'— \;Ix)™ x = 0, we also get

(T —XeIx)™o0...o(T—M\Ix)" |xz=0

ie., z € Z. Consequently, y1 =0 and = = z; € Z;. O
COROLLARY 1.8.13. Let p(t) € C[t] and A1, ..., A € C are distinct such that
p(t) =t"+at" '+ .. 4 anit+a,

={t=A)™ (= N)T.

If S(ay,...,a,) is the complex vector space of the solutions of the ode
s 4 gsmD 44 An_15+ ans =0,

then

S(aty...,an) =Y1®...0Y,,
where Y; is the space of solutions of the ode

(DiAjIS(al,.A )ij: 0,

~7an)
for every j € {1,...,7}.
PrOOF. Immediately by Theorem 1.8.12 for X = S(a1,...,a,)and T = D. O

LEMMA 1.8.14. Let the space S(aq,...,a,) be as in Corollary 1.8.13, and let
s € S(ay,...,a,). If m > 1, then for every A € C

(D = Ms(ay,....an)™s = e D™ (e”‘ts).
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ProoF. Exercise. O
THEOREM 1.8.15. Let A € C and m > 1. If Sy is the set of solutions of the ode
(t—XN"(D)s =0,

then the m functions
M teM, L Tl

form a basis for S).

ProOOF. By Lemma 1.8.14 we have that
s € Ker((D — As,)™) < D™ (e *s) = 0.

The only functions the m-derivative of which is constant 0 are the polynomials of

degree < m — 1. Hence there are by, ..., b,,_1 € C such that
e Ms=by V ... Ve Ms=b, ™
Hence
s=boeM V ...V s=by, 1t" teM
i.e., the functions e, te, ... t™~1eM generate the space Sy. The fact that these

functions are linearly independent is an exercise. O






CHAPTER 2

Fundamental theorems of ODEs

2.1. The fundamental local theorem of odes

A dynamical system is a mathematical description of the passage in time of the
points in some space S, which is usually understood as the space of states of some
physical system. From now on S denotes an open subset of R".

DEFINITION 2.1.1. A dynamical system on S is a C* function ¢ : R x § — S
(t,u) = o(t, u),
such that if for every ¢t € R we define the function ¢, : S — S
u = gp(u) = o(t, u),

the following properties are satisfied:
(i) ¢o = ids.
(i) VS,tER(d)s 0P = Psyt)-

REMARK 2.1.2. If ¢ is a dynamical system on S, the following hold:
(i) Vier (¢ is C1).
(ii) Vier(¢: has a C! inverse).

PRrROOF. Left to the reader. O

DEFINITION 2.1.3. The vector field f on S generated by a dynamical system
¢ on S is given by

d
2.1 _a
(21) ) = Golo)|
i.e., f(z) is a vector in R™, which is tangent to the curve x : J — S, defined by
t— x(t) = ¢(x), at t = 0. We rewrite equation (2.1) as the initial value problem

(2.) = )
and z(0) = ¢o(z) = =

As we have already seen, the linear ode @(t) = Az(t) generates the dynamical
system ¢4 : R — R™ — R"” defined by

da(t,u) = eu.

87
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Next we generalize this fact. Given an ode of the form (2.2) we associate to it an
object that would be a dynamical system if it were definable in R.

DEFINITION 2.1.4. Let f: S — R"™ be continuous. A solution of the ode

(2.3) &= f(z)
is a differentiable function
uw:dJ— S,
where, if a,b € R and a < b, J is an interval that has one of the following forms

(a’b)a (a7b}7 [avb)7 [a7b]v (—OO,b), (—OO,b], (CL, OO), [(I, OO), (_00700)7
such that for all ¢t € J

1

u(t) = f(u(t)).

From the geometric point of view a solution u to equation (2.3) is a curve in S
whose tangent vector u(t) is the vector f(u(t)).

Generally, there are more than one solutions of the ode (2.3). E.g., the ode
i = 3z3,
where S = R, has both ug(t) = 0, for every t € R, and u(t) = t, for every t € R,
as solutions. As we will show, we get uniqueness, if f is C', while for existence

continuity of f suffices. As we saw in the previous example, continuity of f does
not imply uniqueness of solutions to (2.3).

DErFINITION 2.1.5. If (X, ||.]]), (Y, |]-]I') are normed spaces, a function f: X —
Y is called locally Lipschitz, if for every x € X there is a neighborhood V. of x such
that the restriction fy, of f to V, is Lipschitz i.e., there is some K > 0, which
depends on x and V., such that for all y,z € V,

£ () = F < Klly = 2|l.

H.e., J does not have the form [—oc, b], [—o0, b), or [a, o], (@, c0].
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LEMMA 2.1.6. If f: § — R" is C!, then f is locally Lipschitz.
PROOF. Let g € S. Since S is open, there is some €y > 0 such that
Vi, i= B(zo, €0l ={y € R" [ |y —zo[ < €0} € S.
By Definition 1.3.4 the function Df : 8 — L(R™), where D f(z) € L(R™) satisfies

is continuous. Since Vj, is closed and bounded, hence by Proposition 1.1.18(iv) it
is compact, the composition ||.|| o Df has a maximum on V. Let

K = max{|[Df ()| | y € Vi, }-

We could have also taken K to be any bound of ||.|| o Df on V,,. Since V,, is a
closed ball, it is also a convex set. Let y,z € V;,, and let

U=z —y.

If s € [0,1], then y + su € Vg, since y + su =y + s(z —y) = (1 — s)y + sz. Let
0 :0,1] — Vg, defined by 0(s) := y + su, and let

= flvzo 0f:[0,1] - R"
¢(s) = fy + su).

Applying the chain rule to the coordinate functions

0,1 - v, cscRr

R
we get
"~ 0f; do;
i) = 1 g BN G
B " Of; d(y; + suj)
=3 Gy 0D TR
— 0f;
= (y + su)u
jz::laxj J
Since
S0 (y + su) -y + su)] [w
Df(y+ su)u= : : : S
e (y + su) gy +su)] Lun
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we conclude that

¢(s) = Df(y + su)u.
Since #(0) =y and (1) =y+u=y+ (2 —y) = 2, we get

f(z) = Fly) = F(0(1)) = f(0(0))
= o(1) — ¢(0)

- / (s)ds

= /1 Df(y + su)uds.
0

Hence we get

1f(2) = f(y)| = ’/OlDf(y+SU)uds

< /0 |Df(y+ su)u|ds

1
s/o IDf(y + su)|| - ulds

1

< Klu|ds
0
1
=Klu| [ ds
0
= K]ul
= K|z —y|

O

One can use Lemma 2.1.6 to find locally Lipschitz functions that are not Lipschitz.

COROLLARY 2.1.7. If f : 8§ = R" is C', and V C 8 is conver such that
[|IDf(z)|| < K, for some K > 0 and for every x € V, then K is a Lipschitz

constant for fi,, .

Proor. It follows immediately by inspection of the proof of Lemma 2.1.6.

O

LEMMA 2.1.8. Let J be an open interval of R such that 0 € J, zo € S, and

x:J — S is differentiable. The following are equivalent:
(1) 2(t) = f(z(t)) and x(0) = xo.
(i) x(t) = xo + [ f(x(s))ds.

PRrROOF. Exercise.
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LEMMA 2.1.9 (Cauchy criterion of uniform convergence). Let ()32, a se-
quence of continuous functions from a closed interval [a,b] to R™. If

Ve>03N>0Vm,n>NViela,b] (‘fm(t) = @) < f)»
then there is a continuous f : [a,b] = R™ such that
Ves0IN>0Yns N Viean) (| fn(t) — F(E)] <€).
PRrOOF. This is a standard result, and the proof is left to the reader. O

The conclusion of the previous lemma is usually formulated by the expression
“f is the uniform limit of (f,)5%,”.

LEMMA 2.1.10. Let (fn)22, be a sequence of continuous functions from [a,b]
to K CR"™ compact, f : [a,b] = R™, and g : K — R™ uniformly continuous. If f
is the uniform limit of (fn)22y, then the following hold:
(1) f is integrable on [a,b], and

i [ [ [

(i) go f is the uniform limit Of (g0 fu)nlo-
PRrOOF. This is a standard result, and the proof is left to the reader. O

THEOREM 2.1.11 (Fundamental local theorem of odes). If f : § — R" is C1,
and xo € S, then there is a > 0 and a unique solution x : (—a,a) — S of the ode
= f(x) that satisfies the initial condition x(0) = xo.

PRrROOF. By Lemma 2.1.6 f is locally Lipschitz on V., = B(zo, €], for some
€p > 0, and has Lipschitz constant on V,,. Since V;, is compact, the continuous
function |f| is bounded on V,,. Let M > 0 such that

Yyev,, (I (y)] < M).

Moreover, let

1
2.4
(2.4) 0<a<m1n{M K}

J = |—a,aq.
Next we define a sequence (u, )22, of con[tinuois functions from J to V,, as follows:
uo(t) := xo, teJd,
and if we suppose that u,(t), where has been defined such that it satisfies
(2.5) [un(t) — zo| <€, t€J

a condition that holds trivially for n = 0, we define

(2.6) Un41(t) == o +/0 fun(s))ds, tedJ
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If we suppose that u,, is continuous, then the composition f ou,, is also continuous,
hence integrable. Clearly, u,, is C*, for every n. We show that if u, : J — Vj,,
then uy41 : J = Vg, ie,

Vies ([unt1(t) — zol < €o).

If t € J, then

= €Q.

Next we show that the sequence (u,)52 , satisfies the hypothesis of Lemma 2.1.9.
First we need to show a useful inequality. Let

L := max{|ui (t) —uo(¥)| | t € J}.
We show that for all n € N and t € J we have that
(2.7) [Un+1(t) — un(t)] < (Ka)"L.

The case n = 0 holds by definition. For the inductive step we have that

s (1) — |\ / (un(s)) — £ (tn_1(5))) ds

/ |f Un (s flun—1( ’ds

/ Klun(s) — up—1(s)|ds

< K(Ka)" 'Lt
< (Ka)"L.

If we fix some ¢ > 0, we can find N > 0 such that for all m,n > N, and without
loss of generality let m > n, and for all t € J we have that

() — |<Z|uk+1 ) — k()
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i (Ka)kL

=N

IN
o~

IA

LY (Ka)*
k=N

IN

€,

since by (2.4) we have that Ka < 1. Hence there is continuous x : J — R™, which
is the uniform limit of (u,)52 4. One can show (exercise) that actually = : J — V.
Taking limits in the equality (2.6) and using Lemma 2.1.10 we get
t

z(t) = xo + lim fun(s))ds

n—oo 0

:IEO—I-/O [ Lim f(un(s))]ds

n—0o0

=9 —|—/O f(xz(s))ds,

hence by Lemma 2.1.8 z(t) is a solution of the ode & = f(x) and satisfies x(0) =
To show the uniqueness of the solution we suppose that there are x : J — V,, and
y:J =V, such that & = f(z) and §y = f(y) and 2(0) = 2y = y(0). Note that we
can take without loss of generality J to be the same closed interval around 0. We
show that x(t) = y(¢), for every ¢t € J. We define

A = max{|z(t) —y(t)| | t € J},
and let tp € J such that |x(t) — y(t)| attains A at 4. If A > 0, we have that
A= z(ta) — y(ta)l

- " is)ds - / " ts)

ta

Il
o\o
—~
s
—~
8
—~
)
N~—
~—
[
-
—
<
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since Ka < 1 and the hypothesis A > 0 implies KaA < A. Since we reached a
contradiction, we conclude that A = 0, and consequently = = y. O

COROLLARY 2.1.12. Let Vy, := B(xg,e0] C S, for some eg >0, M, K >0, and

. e 1
O0<a< mln{M,K}.
If f: S — R" satisfies the conditions:
(1) max{|f(x)| | x € Voo } < M, and
(i) f|vm0 is K-Lipschitz,
there is a unique solution x : (—a,a) — S of the ode & = f(x) that satisfies the
initial condition x(0) = x¢.

PRrROOF. It follows by inspection of the proof of Theorem 2.1.11. O

COROLLARY 2.1.13. Let f : § =+ R" be C!, and g € S. Suppose that u : I —
S and v :J — S are solutions of the ode & = f(x) that satisfy u(to) = v(so), for
some tg € I and sg € J. Then there is some subinterval I' of I around ty and a
subinterval J' of J around sg such that u(I') = v(J").

PROOF. Suppose that u(tg) = v(sg) is a crossing point, as it is indicated in the
following figure:

We define z : I — S by

x(t) :=wv(so—to+1t), tel.

Since &(t) = 0(so —to +1t) = f(v(so —to+1t)) = f(x(t)), and since z(tg) = v(so) =
u(tp), by the uniqueness of the solution around ¢y, there is an interval Iy around t
such that up, =Ty, If ¢ is close to tg, then sg — tg + t is close to sg, hence u and
v meet again. O

PROPOSITION 2.1.14. Let a > 0 and let u : [0,a] — [0, +00) be continuous. If
C >0 and L > 0 such that for every t € [0, a)

u(t) < C+ /t Lu(s)ds,
0
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then for every t € [0,a] we have that
u(t) < Celt.
PROOF. Suppose first that C' > 0. We define U : [0,a] — [0, +00) by

Ut):=C+ /t Lu(s)ds.

Since C' > 0 and Lu(s) > 0, we get that U(t) > 0, for every t € [0,qa].

hypothesis we have that for every ¢ € [0, a]

u(t) < U(t).
Since U(t) = Lu(t), we get
U(t)  Lu(t)
v o) <
or equivalently
o [log(U(t))] <L
hence
/0 T [log(U(s))]ds < -/0 Lds < log(U(t)) — log(U(0)) < Lt
& log(U(t)) <log(U(0)) + Lt
< log(U(t)) <log(C) + Lt

The proof for case C' = 0 is an exercise.

95

By our

O

THEOREM 2.1.15 (Continuity of solutions in initial conditions for Lipschitz
function f). Suppose that the C' function f : S — R™ has Lipschitz constant
c>0. Ify:[to,t1] — S and z : [to,t1] — S are solutions of the ode & = f(z) on

[to,t1], then for every t € [to, t1]
ly(t) = 2(t)] < [y(to) — =(to)]e” ).
PROOF. For every t € [tg, t1] we define

w(t) = ly(t) — z(8)].

Since
t t

y(t) = 2(t) =y(to) + | [fly(s))ds — =z(to) = [ f(2(s))ds

to tO

— (y(to) — =(to)) + / [F(y(s)) — F(=(s))]ds,

to
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we get
t
wlt) < [ytto) = e + | [ [Fe) = reten]as
to
t
<ulto) + [ |(s) - 1(:(o)]ds
to
t
< w(tp) —|—/ oly(s) — z(s)|ds
to
t
< w(tp) +/ ow(s)ds.
to
If a :==t; —to > 0, then for the continuous function u : [0,a] — [0, +00), defined by
u(r) == w(r +to),
then w(tp) = u(0), and w(t) = u(t — to). Moreover, if g(r) := r + t9, we have that

/ puw(s)ds / N (s)ds — /O T g () = /O T ()

to 9(0)

Hence the inequality

w(t) < w(to) —|—/ ow(s)ds

to
is written as

By Proposition 2.1.14 we get
u(t —to) < u(0)e” 1) & w(t) < wlto)e” )
& Jy(t) — 2(t)] < ly(to) — =(to)]e” ")
O

DEFINITION 2.1.16. A sequence of continuous functions (f,)2, from [a,b] —
R™ is called uniformly bounded, if there is M > 0 such that

vnENth[a,b] (|fn(x)| < M)’

and it is called equicontinuous, if
ve>OE|6>Ovs,te[a,b]vneN(|5 - t| <o= |fn(3) - fn(t)‘ < 6)'

THEOREM 2.1.17 (Arzela-Ascoli). If (fn)S%, is a sequence of continuous func-
tions from [a, b] to R™, which is uniformly bounded and equicontinuous, then (f,)5,
has a subsequence (fy,, )52 that converges uniformly on [a,b).
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PROPOSITION 2.1.18. Let f : R™ — R" be continuous such that Vyepn (| f(z)] <
M), and let o € R™. Moreover, let (x,)52, be a sequence of functions from [0,1]
to R™ such that
(i) xy, is a solution of the ode & = f(x), for every n € N, and
(41) limy,— 00 2, (0) = 0.

Then there is a subsequence of (x,)5%, that converges uniformly on [0,1] to a
solution of & = f(x).

ProoOF. Exercise. (]

LEMMA 2.1.19. Let f: S = R be C', and u: I — S, v: I — S solutions of
the ode & = f(x) such that u(ty) = v(to), where to € I. Then u(t) = v(t), for every
tel.

ProOOF. By Theorem 2.1.11 there is an open subinterval Jy of I such that
to € Jo and up, =), Hence

J:={JC1I|toeJAu, =uv,AJ open interval} # 0.

Since the union of intervals with a common point is an interval, the set

== {t|Jelten}

is an open interval. By its definition I* is the largest open subinterval of I that
contains ty and the restrictions of w and v to it are equal. If ¢;, ¢, are the endpoints
of I'*, we show that
ICTI* = (t,t).

Suppose that this is not the case. Then at least one of the endpoints of I* has to be
in I. Let t, € I, and if ¢; € I, we work similarly. Since u|,, = vj,., and since (t;, 1)
is dense in (¢;,t,], by the continuity of u and v on (t,t,] we get u(t,) = v(t,).
By Theorem 2.1.11 there is an open subinterval J,. of I such that ¢, € J,. and

up, =y, . Hence Upaty = Ulpuiy, and

I*CI*UJ, €7,

which is a contradiction. The equality I* = I implies what we want to show. [

Jr

A solution z(t) to an ode # = f(x) is not always extendable to R. E.g., the
ode & = 1+ x? has a s solution the curve z(t) = tan(t — c), with (c— 5,c+ %) as
the largest interval of definition.

PROPOSITION 2.1.20. Let f : § — R™ be C'. For every xo € S, there is a

mazimum open interval (o, B), where o, f € RU{—00, 400}, such that the following
hold:

(i) 0 € (0,B), and
(1) there is a solution x : (o, B) — S of the ode & = f(x) such that £(0) = xo.

PRrOOF. Exercise. O
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Next we see how a solution curve y(t) behaves close to the limits of its domain.
We include only the result for the right endpoint of the interval of definition of y(¢).
As we will show, if the domain of y(¢) cannot be extended, then y(t) “leaves” any
compact set in S.

THEOREM 2.1.21. Let f : § - R be Ct and B € R. Ify: (a,B) — S is a
solution of & = f(x) on the maximal open interval (o, B), then for every compact
K C 8, thereist € (a, B) such that y(t) ¢ K.

y(t)

PrOOF. We fix some compact subset K of S, and we suppose that

Vic(a,B) (y(t) € K) :

Since f|, is continuous, there is some M > 0 such that Vyex (|f(z)] < M). Next
we show that y is Lipschitz with Lipschitz constant M. If s,t € («, 3) such that
s < t, then

Since y is uniformly continuous, and («, 3) is dense in («, 3], y can be extended?®
to a uniformly continuous function y* : (o, 8] — R"™. Actually, we have that®

2Here we use the following standard fact: If D is a dense subset of a metric space X, and
f: D — Y is a uniformly continuous function from D to a complete metric space Y, then f is
extended to a uniformly continuous function f* : X — Y.

3This follows from the above result, if we take y : (o, 8) — K, where K is complete, as a
closed subset of the complete space R™.
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y* i (o, 8] = K. Next we show that y* is differentiable at 8. If v € («a, 8), then
taking the limit ¢ — 8 on both sides of the equation

and since y(a, ) C K

N
n
=
a3
o
&

+tlg%/f

+/f@@wz
v
hence for every ¢ € [y, 8] we have that

ww=mw+/fwwma

Hence y* is differentiable also at S and (y*)'(8) = f(y(B)). Therefore, y* is a
solution on [, 8]. Since by Theorem 2.1.11 there is a solution on an interval around
B, there is a solution on some interval [3,4), where § > 5. But then we can extend
y to the interval («, d), which contradicts the maximality of («, ). O

By Theorem 2.1.21 we have that when ¢ approaches 8, then y(t) approaches
the boundary of S, or |y(¢)| tends to +oo.

Ko Ks  y(t)

COROLLARY 2.1.22. Let K C S be compact, xg € K, and let f : S — R" be
CL. Suppose that every solution x : [0, 8] — S with x(0) = x¢ satisfies the property

vte[O,B] (x(t) € K)
Then there is a solution z* : [0,4+00) — S with *(0) = o and
vtzo (’I'*(t) S K)
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Proor. Exercise. O

2.2. The fundamental global theorem of odes

LEmMMA 2.2.1. If f: S — R" is locally Lipschitz and K C S is compact, then
Jix 1s Lipschitz.

PRrROOF. Since f is locally Lipschitz, f is continuous. Let M > 0 such that

Voer (1f(2)] < M).
Suppose that f|, is not Lipschitz i.e., for every o > 0 there are x,y € K such that
[f(z) = f(y)l > olz —yl.

Consequently, for every n > 0 there are x,,,y, € K such that

By compactness of K there is a subsequence (zy, )52, of (2,)22, and some 2’ €

K such that x;,, —= /. If we consider the sequence (yz, )52, in K, there is

a subsequence (yx, )32 of (yx,)5%; and some y' € K such that y, — v’

Clearly, x5, — &’ too. We define
x, = LD YR} yn/ = Yy n > 0.

Hence

“rnl - yn" = |I)\kn - y)\kn

< mﬁ(mkn) = f(Wre,)
< %|f(xn’) — flya)l-

Taking limits we have that

0< lim |z, — u/|
n— oo

lim <71L|f(:vn/) f(yn’>|)

IN

n—oo

IA

lim (i(f(xn’)l + |f(yn’>))

n—oo

. 2M
< lim —

n—o0 N

=0.
Since
0< |z’ =yl — 12" = ¥/
<(@n" — ') = (2" =)
<o =2+ v =y,
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we get |2/ — y/| = limp o0 |2 — yn'| =0 ie., 2’ =y, Since f is locally Lipschitz,
there is some neighborhood V,+ of 2" in S such that f,, ~has Lipschitz constant o.

xT

Since z," — ' and y,’ — @/, there is some ng € N*t such that for every n > ng
If(z)) = fy)| < olzn” — yn']- If n > o, hence A(k(n)) > o, we get

U‘x)\kn ~ Yxg, ’ < )‘(k(n))lmkkn — Yxg, ‘
< |f(xkkn) - f(y)\kn)’

S O'|Jj)\kn - y)\kn

)

which is a contradiction.
O

LEMMA 2.2.2. Lety : [to,t1] — S be continuous.
(i) There exists €y > 0 such that for every x € R™ the following implication holds
HtG[to,tl](‘m — y(t)| S EO) =T c S
(i1) If for this ey we define the set
KEO = {x € Rn | Hte[to,tl](‘x - y(t)‘ S 60)}7
then K, is a compact subset of S.

ProOOF. (i) If t € [to,t1], y(t) € S, and since S is open, there is e; > 0 with
B(y(t), Gt) C S. Since y is continuous, 3! [B(y(t) “)} is open in [tg,t1]. Clearly,

)2
_ €t
ot = |J v {B(y@, 2)]
t€(to,t1]
By the compactness? of the closed interval [to, ;] there are sy,...,sy € [to,t1], for

some N € N*t, such that

4Here we use the theorem of Heine-Borel, according to which, a subset K of R" is compact if
and only if every open covering of K has a finite subcover. In the figure yo = y(to) and y1 = y(t1).
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(i 5]

J=1

€3 €sn
€0 —mln{ 5 T [

Let « € R™ and t € [to,t1] such that |z — y(t)] < €. For this ¢ there is some
j€{l,..., N} such that

e s(uen )] 0 <8, 5 )

€s;

5 "

We define

< ly(t) —y(sj)| <
Hence

lz —y(s;)| < |z —y(t)] + |y(t) — y(s))]

€s;

ie., € B(y(s;)e,) C 8.

(ii) By case (i) we get K., C S. Next we show that K., is bounded. Let M > 0
such that |y(t)] < M, for every t € [to,t1]. If z,2’ € K, there are ¢,t' € [to,t1]
such that |z — y(t)] < € and |2’ — y(t')| < 9. Hence

lz —a'| < |z —y(t)| + |y(t) — y(t")] + y(t') — 2|
<eo+|yt) —y(t')| +eo
< €0 + 2M + €0-

Next we show that K, is closed. If 2y € K., where K, is the closure of K, w
show that zp € K,. If € > 0, there is some z € K, such that |z — zo| < e If
t € [to,t1] such that |x — y(t)| < eg, we get

lzo — y(t)] < |wo — x| + |z —y(t)| < e+ o
i.e., we showed that
VesoTtefto, ] (2o — ()] < €+ o).
Suppose that z¢ ¢ K, i.e
Vieqto.] (170 — y(t)] > €0).
We define the function p : [to,t1] — (0, +00) by
p(t) = |zo — y(t)| — €o.
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Since p is continuous, it attains its minimum value p at some point s € [tg, t1] i.e.,

p(t) > p(s) = |zo — y(s)| — eo = p > 0.
Since p > 0, there is some ¢’ € [to, 1] such that |zo — y(t')| < § + €0, hence

1
p(t') = |zo —y(')] —e0 < 5 < u=p(s),
which is a contradiction. Hence xg € K. 0

Next follows a stronger form of the continuity of solutions in initial conditions.
While in Theorem 2.1.15 both solutions were assumed to be defined on the same
interval [tg,t1], in the theorem that follows the solutions starting at nearby points
will be shown that they are defined on the same interval [to,¢;] and remain close
to each other in [tg,t1]. Moreover, f is not assumed to be Lipschitz.

THEOREM 2.2.3 (Fundamental global theorem of odes). Let f : § — R" be C*
and y : [to,t1] — S a solution of © = f(x) with y(to) = yo. There is a neighborhood
Viyo © 8 of yo and there is a constant o > 0 such that for every zy € V,,, there is a
unique solution z : [to,t1] = S of & = f(z) with z(tg) = 20 and

Vielto,t1] <|y(t) —2(t) < |yo — z0|ed(tt0)>.

PROOF. Since y : [tg,t1] — S is continuous, let ¢y and K, as in Lemma 2.2.2.
By the definition of K., we get immediately that Ve, ¢ (y(t) € KEO). Since K,
is a compact subset of S, by Lemma 2.2.1 the function f| Keg has Lipschitz constant
o, for some o > 0. There is § > 0 such that

0 <e¢ and Se?(t1—to) < €.

We define
Vyo = B(yOa 5)7
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and we show that if zy € V,,, there is a unique solution z : [tg,t;] = S of & = f(z)
with z(tg) = zo. Since
120 = yo| = [z0 — y(to)| <6 < €0,

we get 29 € K, hence

Vo € K¢y € S.
By Theorem 2.1.11 there is a solution z(¢) through z, defined on a maximal interval
[to, B), for some € RU {+o0}. We show that 8 > t;, where > is here the
ordering of the extended reals. Suppose that g < ¢1, and let ¢t € [tg, ). Then by
Theorem 2.1.15 on fvyov which is o-Lipschitz, and on the solutions y and z defined

on the common interval [to, s], where t < s < [3, we get
|2(t) = y()] < |z0 — yole” ")
< 560(t7t0)
< €0-
Hence z(t) lies in K.,. By Theorem 2.1.21 the interval [t, 5) cannot be a maximal
solution domain, which contradicts our hypothesis. Therefore, § > t;. Since now
z: [to, ) = S and [to,t1] C [to, ), we conclude that z is defined on [tg,?;]. The
inequality
ly(t) = 2(t) < lyo — zole” ")
for every t € [tg, t1] follows from Theorem 2.1.15, and the uniqueness of the solution
z on [tg, t1] follows from Lemma 2.1.19. O

Hence, if f: S — R" is C! and y : [tg,t1] — S is a solution of & = f(z), then
for all zg sufficiently close to yo = y(to) there is a unique solution on [tg, t1] starting
at zg. If we write

Z(t) = ¢(ta ZO)? y(t) = (b(ta yO)a
then zg = ¢(0, 29) and yo = ¢(0,yo), and by Theorem 2.2.3

lim (b(ta ZO) = ¢(ta ZUO)
20—Yo
uniformly on [tg, ¢1] i.e., the solution through zy “depends continuously” on z.

2.3. The flow of an ode

DEFINITION 2.3.1. If f : § — R" is C', and since for every u € S there is a
unique solution z,, : J(u) — S of the ode & = f(z) such that z,(0) = v and J(u)
is the maximal open interval of u, we define the set

Q:={(t,u) eERx S |te J(u),ue S},
and the function ¢ : Q — S,
o(t,u) =z (t) =: ¢r(u),
for every (t,u) € Q, which is called the flow of the ode @ = f(x).
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Note that since 0 € J(u), for every u € S, we have that {0} x S C Q, and
$(0,u) = 2,(0) = u.

PROPOSITION 2.3.2. Let s,t € R, u € S and ¢ the flow of & = f(x), for some
C! function f: S — R™. The following hold:
(1) Ift € J(u) and s € J(¢(u)), then s+t € J(u) and ¢psii(u) = ¢ps(Pr(u)).
(13) If s+t € J(u), thent € J(u), s € J(¢ps(u)) and dsit(u) = ds(pe(u)).

PrOOF. We show only (i), and we consider the case s,t > 0. The other cases
are shown similarly. Let J(u) = («, 8) and let ¢t € J(u) i.e. o <t < 3, where < is
the ordering of the extended reals. We show that s+t € J(u) & a < s+t < .

Since t > 0, @ < s + t, hence it remains to show that s +¢ < 3. We define the
function y : (o, s +t] — S by
(r) i= o(r,u) Jifa<r<t
PIZ o(r—tgu(u)) Lift<r<s+t.

Note that y is continuous at ¢, since ¢p(t —t, ¢+ (u)) = ¢(0, Pps(u)) = d¢(u), hence y is
continuous on («, s + t]. Moreover, u is a solution curve on (a,s+t]. If o <r < ¢,
then

§(r) = d(r,u) = du(r) = flao(r)) = f(é(r,u) = f(y(r)).
Ift<r<s+t,and s(r) :=r —t, then

i(r) = L160r — t, du(w))]

ds

dr

j[%wm( )]
j[ L ( u)( )]dr
d

= 2 [Touw) (5)]

= f(2g,(u)(5))
= f(2g,(u)(r — 1))
—f( (7))-

Since 0 € (a, 8) and a < 0 < t, by our hypothesis on ¢, then by the definition of y,
we get

y(0) = ¢(0,u) = 2,(0) = w.
Hence the maximal open interval J(u) must include («, s + ], i.e., s+t < 8. By
the uniqueness of solutions on («a, s +t] that agree on 0 € («, s +t] (Lemma 2.1.19)
and the definition of y we get

Pstt(u) = (s +t,u)
=Zyu(s+1)
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s+1t)

(s —1) =1, ¢ (u))
s, ot (u))
s(¢e(u)).

(
(
(

I
RSaSS S S S

THEOREM 2.3.3. If Q and ¢ are as in Definition 2.3.1, then

(1) Q is an open subset of R x S, and
(ii) ¢ is continuous.

PRrROOF. Left to the reader.
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