
Logic in Computer Science

Priv.-Doz. Dr. Iosif Petrakis

Ludwig-Maximilians-Universität, Institut für Informatik

Wintersemester 21/22

Contents

1 Introduction 3

1.1 Intuitionistic logic and constructive mathematics 3

1.2 Inductive definitions . 5

1.3 First-order logic in a nutshell . 7

1.4 The Brouwer-Heyting-Kolmogorov-interpretation 10

1.5 Cantor sets I and Zermelo-Fraenkel sets . 12

1.6 Cantor sets II and Bishop sets . 17

1.7 Bishop subsets . 22

1.8 Families of Bishop sets . 25

2 Basic types of Martin-Löf Type Theory 29

2.1 Propositions and Judgments . 30

2.2 Universes of types . 30

2.3 Function type . 32

2.4 Dependent function type . 34

2.5 Product type . 36

2.6 Coproduct type . 40

2.7 Dependent pair type . 45

2.8 The type-theoretic axiom of choice . 49

2.9 The empty type . 50

2.10 The unit type . 51

2.11 The type of booleans . 52

2.12 The type of naturals . 54

2.13 The equality type family . 57

3 General properties of the equality type-family 61

3.1 Transport and least reflexive relation . 61

3.2 The uniqueness-rule associated to the equality type-family 64

3.3 The based version of the J-rule . 68

3.4 The equality type family is an equivalence relation 70

3.5 The higher groupoid structure of a type . 72

3.6 Loop spaces and the Eckmann-Hilton theorem 74

4 Equality and basic types 81

4.1 Equality and the function type . 81

4.2 Equality and the dependent function type . 84

2 Contents

4.3 Equality and the product type . 85
4.4 Equality and the dependent pair type . 87
4.5 Equality and the coproduct type . 89
4.6 Equality and the unit type . 90
4.7 Equality and the type of naturals . 91

5 Homotopy type theory 95
5.1 Homotopies . 95
5.2 Equivalences . 97
5.3 Function extensionality axiom . 99
5.4 Propositions and sets . 101
5.5 Sets . 102
5.6 Voevodsky’s axiom of univalence . 102
5.7 Propositional truncation as a higher inductive type 105
5.8 Propositionally truncated logic . 106
5.9 The higher inductive type interval . 107

Chapter 1

Introduction

1.1 Intuitionistic logic and constructive mathematics

Mathematical logic (ML), or simply logic, is concerned with the study of formal systems related
to the foundations and practice of mathematics. ML is a very broad field encompassing various
theories, like the following. Proof theory, the main object of study of which is the concept
of (formal) derivation, or (formal) proof (see e.g., [33]). Model theory studies interpretations,
or models, of formal theories (see e.g., [9]). Axiomatic set theory is the formal theory of sets
that underlies most of the standard mathematical practice (see e.g., [22]). It is also called
Zermelo-Fraenkel set theory (ZF). The theory ZFC is ZF together with the axiom of choice.
ML has strong connections to category theory, a theory developed first by Eilenberg and Mac
Lane within homology and homotopy theory (see e.g. [2]). Categorical logic is that part of
category theory connected to logic (see [24]). Computability theory is the theory of computable
functions, or in general of algorithmic objects (see e.g., [31]).

ML lies also at the core of theoretical computer science. Its fundamental notion of
computation was first approached mathematically by logicians like Church, Turing and Gödel.
Church’s λ-calculus was a formal system designed to express computation and able to simulate
a Turing machine. Martin-Löf’s type theory (MLTT), which has its origins to Russell’s so called
ramified theory of types, is a predicative modification of λ-calculus with many applications
in the theory of programming languages (see [25], [26]). Recently, the late Fields medalist
V. Voevodsky revealed unexpected connections between homotopy theory and logic, developing
Homotopy Type Theory (HoTT), an extension of MLTT with his axiom of univalence and
higher inductive types (see [36]). MLTT, HoTT and their connections to category theory are
currently among the most actively studied mathematical frameworks for the logical foundations
of mathematics and theoretical computer science.

One of the most important breakthroughs in the foundations of mathematics in the 20th
century that also influenced crucially the foundations of theoretical computer science was the
introduction and use of intuitionistic logic in mathematics by the great topologist Brouwer.
Roughly speaking, in intuitionistic logic the principle of the excluded middle (PEM) and (or)
the double negation elimination (DNE) are not accepted. If A is a certain mathematical
formula, the corresponding instances of these principles are the following formulas:

(PEMA) A ∨ ¬A,

(DNEA) ¬¬A→ A.

4 CHAPTER 1. INTRODUCTION

Proposition 1.1.1. There are irrational numbers a, b such that ab is rational.

Proof. (with PEM): Let the following instance of PEM:

√
2

√
2 ∈ Q ∨

√
2

√
2
/∈ Q.

In the first case take a = b =
√

2. In the second, take a =
√

2
√

2
and b =

√
2, as

ab =

(√
2

√
2
)√2

=
√

2

√
2
√

2
=
√

2
2

= 2.

The above “proof” is accepted by a standard mathematician, although he would also prefer

to have a method to decide whether
√

2
√

2 ∈ Q or not. If one wants to write a “program”
based on this proof, this seems to be impossible. DNE can be equally problematic.

Proposition 1.1.2 (Fundamental theorem of algebra). If p : C → C is a non-constant
polynomial in the set of complex numbers C i.e., there are a0, . . . an ∈ C with an 6= 0 such that

p(z) = a0 + a1z + a2z
2 + . . .+ anz

n,

for every z ∈ C, then there is z0 ∈ C such that p(z0) = 0.

Proof. (with PEM and DNE) Since p is non-constant, we have that |p(z)| −→ +∞, as
|z| −→ +∞, since we can write

p(z) = zn
(
an +

an−1

z
+ . . .+

a0

z

)
.

Hence we can find r > 0 such that |p(z)| > |p(0)| = |a0|, for every z ∈ C with |z| ≥ r. If not,
and here we use PEM, then for every r > 0 there is z ∈ C with |z| ≥ r and |p(z)| ≤ |p(0)|,
which contradicts the above implication (|z| −→ +∞) ⇒ (|p(z)| −→ +∞). Suppose that p
has no root i.e., |p(z)| > 0, for every z ∈ C, or

¬
[
∃z∈C

(
p(z) = 0)

]
.

The closed disc
D(r) = {z ∈ C | |z| ≤ r}

is compact and, as p is continuous, there is z0 ∈ D such that

0 < |p(z0)| = min{|p(z)| | z ∈ D} = min{|p(z)| | z ∈ C},

as 0 ∈ D(r). Hence for every z ∈ C we have that

∣∣∣∣ 1
p(z)

∣∣∣∣ = 1
|p(z)| ≤

1
|p(z0)| . Consequently, the

function 1
p is bounded, and as holomorphic, it is constant (by the Liouville theorem). Hence p

is constant, which is a contradiction. I.e., we showed

¬¬
[
∃z∈C

(
p(z) = 0)

]
.

Hence by the corresponding instance of DNE:

¬¬
[
∃z∈C

(
p(z) = 0)

]
⇒ ∃z∈C

(
p(z) = 0)

we get ∃z∈C
(
p(z) = 0).

1.2. INDUCTIVE DEFINITIONS 5

From the computational, or constructive, or “programs out of proofs” point of view, what
we showed in the previous proof, relying already on PEM, is that it is impossible not to find
a root of p. But we didn’t really find it. In classical logic the principles PEM and DNE are
accepted and, as we showed, they are used very often in standard mathematical practice.
Classical mathematics, is, roughly speaking, mathematics done with classical logic i.e. with
principles, like PEM and DNE (we shall describe classical logic explicitly later in the course).
Mathematics done within constructive logic is called constructive mathematics. We shall see
later that intuitionistic logic is more general than classical logic. It is a surprising fact that
intuitionisitic logic is, in general, the logic of a topos, a certain type of category introduced
by Grothendieck, one of the most important mathematicians of the second half of the 20th
century, in relation to its work on algebraic geometry!

After Brouwer, it was Bishop who managed to develop a large part of mathematics using
intuitionistic logic and, in contrast to Brouwer, without contradicting classical mathematics
(see [4] and [5]). In this way, constructive mathematics can also be considered more general
than classical mathematics.

Notice that we cannot constructively prove that PEM is false i.e., ¬(A∨¬A), as there is a
constructive proof of ¬¬(A ∨ ¬A).

1.2 Inductive definitions

In order to define the fundamental concepts of first-order logic, we need a so-called metatheory
M that permits such definitions. This metatheory M is, in principle, a formal theory the
exact description of which is left here open. What we ask from M is to include some theory
of natural numbers, of sets and functions and of rather simple inductively defined sets. For
example, one could take M to be the whole Zermelo-Fraenkel set theory (ZF), described in
section 1.5, but smaller parts of ZF would also suffice. One could use a constructive theory
of sets as a metatheory M. Next we explain the kind of inductive definitions that must be
possible in M.

An inductively defined set, or an inductive set, X is determined by two kinds of rules
(or axioms); the introduction rules, which determine the way the elements of X are formed,
or introduced, and the induction principle IndX for X (or elimination rule for X) which
guarantees that X is the least set satisfying its introduction rules.

Example 1.2.1. The most fundamental example of an inductive set is that of the set of
natural numbers N. Its introduction rules are:

0 ∈ N ,
n ∈ N

Succ(n) ∈ N .

According to these rules, the elements of N are formed by the element 0 and by the primitive,
or given successor-function Succ: N→ N. These rules alone do not determine a unique set; for
example the rationals Q and the reals R satisfy the same rules. We determine N by postulating
that N is the least set satisfying the above rules. This we do in a “ bottom-up” way1 with the
induction principle for N.

1If we work inside the set of real numbers R, we can also do this in a “top-down” way by defining N to be
the intersection of all sets satisfying these introduction rules. Notice that also in this way N is the least subset
of R satisfying its introduction rules.

6 CHAPTER 1. INTRODUCTION

The induction principle IndN for N is the following formula (in M):[
A(0) & ∀n∈N(A(n)⇒ A(Succ(n)))

]
⇒ ∀n∈N(A(n)),

where A(n) is an arbitrary formula on N in M. The interpretation of IndN is the following:
the hypotheses of IndN say that A satisfies the two formation rules for N i.e., A(0) and
∀n∈N(A(n)→ A(Succ(n))). In this case A is a “competitor” predicate to N. Then, if we view
A as the set of all objects such that A(n) holds, the conclusion of IndN guarantees that N ⊆ A,
i.e., ∀n∈N(A(n)). In other words, N is “smaller” than A, and this is the case for any such A.
Notice that we use the following conventions in M:

∀x∈XA(x) :⇔ ∀x
(
x ∈ X ⇒ A(x)

)
,

∃x∈XA(x) :⇔ ∃x
(
x ∈ X & A(x)

)
.

The induction principle in an inductive definition is the main tool for proving properties of
the defined set. In the case of N, one can prove (exercise) its corresponding recursion theorem
RecN, which determines the way one defines functions on N. According to a simplified version
of it, if X is a set, x0 ∈ X and g : X → X, there exists a unique function f : N→ X such that

f(0) = x0,

f(Succ(n)) = g(f(n)); n ∈ N,

To show e.g., the uniqueness of f with the above properties, let h : N→ X such that h(0) = x0

and h(Succ(n)) = g(h(n)), for every n ∈ N. Using IndN on A(n) :⇔ (f(n) = h(n)), we get
∀n(A(n)). As an example of a function defined through RecN, let Double : N→ N defined by

Double(0) = 0,

Double(Succ(n)) = Succ(Succ(Double(n)))

i.e., X = N, x0 = 0 and g = Succ ◦ Succ.

Example 1.2.2. Let A be a non-empty set that we call alphabet. The set A∗ of words over
A is introduced by the following rules

nilA∗ ∈ A∗ ,
w ∈ A∗, a ∈ A
w ? a ∈ A∗ .

The symbol nilA∗ denotes the empty word, while the word w ? s denotes the concatenation
of the word w and the letter a ∈ A. The induction principle IndA∗ for A∗ is the following: if
P (w) is any formula on A∗ in M, then[

P (nilA∗) & ∀w∈A∗∀a∈A
(
P (w)⇒ P (w ? a)

)]
⇒ ∀w∈A∗(P (w)).

A simplified version of the corresponding recursion theorem RecA∗ is the following: If X is a
set, x0 ∈ X, and if ga : X → X, for every a ∈ A, there is a unique function f : A∗ → X such
that

f(nilA∗) = x0,

f(w ? a) = ga(f(w)); w ∈ A∗, a ∈ A.

1.3. FIRST-ORDER LOGIC IN A NUTSHELL 7

As an example of a function defined through RecA∗ , if X = A∗, w0 ∈ A∗ and if ga(w) = w ? a,
for every a ∈ A, let the function fw0 : A∗ → A∗ defined by

fw0(nilA∗) = w0,

fw0(w ? a) = ga(fw0(w))

i.e., fw0(w) = w0 ? w is the concatenation of the words w0 and w (we use the same symbol for
the concatenation of a word and a symbol and for the concatenation of two words).

If ZF is our metatheory M, then the proof of the recursion theorem that corresponds to
an inductive definition can be complicated. If as metatheory we use a theory like Martin-Löf’s
type theory MLTT, we will see that there is a completely mechanical, hence trivial, way to
recover the corresponding recursion rule from the induction rule of an inductive definition.

1.3 First-order logic in a nutshell

A first-order language L comprises a set Var of variables x, y, z, a set of logical symbols
{→,∧,∨, ∀, ∃, (,), , }, a set Rel of relation symbols and a set Fun of function symbols. A
constant symbol is a function symbol of arity 0. The symbol ⊥ (read falsum) is a fixed relation
symbol of arity 0, contained always for us in Rel. Let Fun(n) be the set of function symbols of
arity n and Rel(n) the set of relation symbols of arity n (these can also be empty). Usually,
we use only the sets Rel and Fun to describe a first-order language. The set Term of terms of
L is defined inductively by the rules

x ∈ Var

x ∈ Term
,

c ∈ Const

c ∈ Term
,

n ∈ N+, t1, . . . , tn ∈ Term, f ∈ Fun(n)

f(t1, . . . , tn) ∈ Term
,

and the set Form of formulas of L by the rules

n ∈ N, t1, . . . , tn ∈ Term, R ∈ Rel(n)

R(t1, . . . , tn) ∈ Form
,

A,B ∈ Form

A→ B, A ∧B, A ∨B ∈ Form
,

A ∈ Form, x ∈ Var

∀xA, ∃xA ∈ Form
.

The formulas of the form R(t1, . . . , tn) are called prime formulas, or atomic formulas. If
r, s ∈ Term and ∼∈ Rel(2), we also write r ∼ s for the prime formula ∼ (r, s). Since ⊥ ∈ Rel(0),
we get ⊥ ∈ Form. We call A→ B the implication from A to B, A∧B the conjunction of A,B,
and A ∨B the disjunction of A,B. The negation ¬A of a formula A is defined as the formula

¬A = A→ ⊥.

We use the notational convention

A→ B → C = A→ (B → C).

8 CHAPTER 1. INTRODUCTION

The formulas generated by the prime formulas are called complex, or non-atomic formulas. A
formula ∀xA is called a universal formula, and a formula ∃xA is called an existential formula.

If R,S ∈ Rel(1), we have the following first-order formulas:

⊥ → ⊥,

∀x(⊥ → ⊥),

∃x(R(x) ∨ S(x)).

We have added two parentheses (left and right) in both last examples, in order to make them
clear to read. A first-order language may have its own equality.

Definition 1.3.1. Let L be a first-order language and let ≈ ∈ Rel(2). The set EqL of L-
equality axioms consists of (the universal closures of) the following L-formulas:

(Eq1) x ≈ x,
(Eq2) x ≈ y → y ≈ x,

(Eq3) x ≈ y ∧ y ≈ z → x ≈ z,

(Eq4) x1 ≈ y1 ∧ . . . ∧ xn ≈ yn → f(x1, . . . , xn) ≈ f(y1, . . . , yn),

(Eq5) x1 ≈ y1 ∧ . . . ∧ xn ≈ yn ∧ R(x1, . . . , xn)→ R(y1, . . . , yn),

for all n-ary function symbols f , for all relation symbols R of L, and for all n ∈ N.

If f is a 0-ary function symbol, then Eq4 has as special case the axiom c ≈ c. Notice
that this equality is the given “internal” equality of L and must not be confused with the
“external” equality x = y, which is the metatheoretical equality of the set Var. Consequently,
if t, s ∈ Term, we get the following formula of L with equality:

t ≈ s.

If we have another set of variables X,Y, Z, for a different sort, we construct similarly a
second-order language. As prime formulas are defined by an n-relation symbol and n-number
of terms, it is very often the case that in order to define a function on Form, we need first to
define a corresponding function on Term. These functions are defined by the recursion (more
on this issue later). If X is a set, Pfin(X) denotes the set of finite subsets of X. If Y, Z ⊆ X,
then Y \ Z = {x ∈ X | x ∈ Y & x /∈ Z}.

Definition 1.3.2. Let the function FVTerm : Term→ Pfin(Var) defined by

FVTerm(x) = {x},

FVTerm(c) = ∅,

FVTerm(f(t1, . . . , tn)) =

n⋃
i=1

FVTerm(ti).

The function FVForm : Form→ Pfin(Var) is defined by

FVForm(R) = ∅, R ∈ Rel(0),

FVForm(R(t1, . . . , tn)) =
n⋃
i=1

FVTerm(ti), R ∈ Rel(n), n ∈ N+,

1.3. FIRST-ORDER LOGIC IN A NUTSHELL 9

FVForm(A2B) = FVForm(A) ∪ FVForm(B),

FVForm(4xA) = FVForm(A) \ {x}.

If FV(A) = ∅, then A is called a sentence, or a closed formula.

According to Definition 1.3.2, a variable y is free in a prime formula A, if just occurs in A,
it is free in A2B, if it is free in A or free in B, and it is free in 4xA, if it is free in A and
y 6= x. E.g., the formulas

∀y(R(y)→ S(y)), ∀y(R(y)→ ∀zS(z))

are sentences, while y is free in the formula

(∀y(R(y))→ S(y).

If a variable x is free in A, then x can be substituted2 by some term t ∈ Term. If FV(A) ⊆ {x},
we write A(x), while A(t) is the formula generated by the substitution of x by t.

Although mathematicians for centuries were proving mathematical statements, which in
many cases these can be written as first-order formulas, it was only until recently that the
following question was systematically studied in mathematical terms:

“what does it mean to prove some A ∈ Form?”

In order to give an answer to this question, a set of (logical) rules, or (logical) axioms, is
added that governs the derivation, or the proof, of some A ∈ Form. E.g., PEM or DNE are
such logical axioms. For example, the introduction and elimination rules for implication are:

[u : A]

|M
B →+uA→ B

|M
A→ B

| N
A →−B

These rules are represented by derivation trees, where in the left tree the formula A → B
is “introduced”, and in the second it is “eliminated” (a complete presentation of Gentzen’s
derivation rules of natural deduction rules will be given later). The L-equality axioms are also
included, if there is an (internal) equality in L. If some extra, non-logical axioms are added,
then we get an L-theory T , or a first-order theory T . If T is a first-order theory over L, and
A ∈ Form, we say that A is derivable or provable by T , in symbols

T ` A,

if there is a derivation, or proof, of A by formulas A1, . . . , An in T . If

T 6` A & T 6` ¬A,

then A is called independent of T .

2These concepts will be defined properly later in the course.

10 CHAPTER 1. INTRODUCTION

Example 1.3.3. The first-order language of arithmetic is the pair N := ({⊥,≈}, {0, S,+, ·}),
or simpler N := (⊥,≈, 0, S,+, ·), where 0 ∈ Const, S ∈ Fun(1), and +, · ∈ Fun(2). The non-
logical axioms of Peano arithmetic N are the universal closures of the following formulas in N :

(PA1) ¬S(x) ≈ 0 (or S(x) 6≈ 0).

(PA2) S(x) ≈ S(y)→ x ≈ y.

(PA3) x+ 0 ≈ 0.

(PA4) x+ S(y) ≈ S(x+ y).

(PA5) x · 0 ≈ 0.

(PA6) x · S(y) ≈ x · y + x,

and the axiom-scheme (PA7A) of induction :

A(0) ∧ ∀x(A(x)→ A(S(x))→ ∀xA(x),

where A(x) is an arbitrary formula of N .

1.4 The Brouwer-Heyting-Kolmogorov-interpretation

A first, informal, answer to the question mentioned above was given by Brouwer, his student
Heyting, and, independently, from Kolmogorov. The combination of the proof-interpretation
of formlulas given by these mathematicians is called the Brouwer-Heyting-Kolmogorov-
interpretation, or the BHK-interpretation. Notice that this is interpretation presupposes
an informal, or primitive, or unexplained, notion of proof. Moreover, the interpretation of a
proof of a prime formula, other than ⊥, is not addressed in the BHK-interpretation.

Definition 1.4.1 (BHK-interpretation). Let A,B ∈ Form, such that it is understood what it
means “q is a proof (or witness, or evidence) of A” and “r is a proof of B”.

(∧) A proof of A ∧B is a pair (p0, p1) such that p0 is a proof of A and p1 is a proof of B.

(→) A proof of A→ B is a rule r that associates to any proof p of A a proof r(p) of B.

(∨) A proof of A∨B is a pair (i, pi), where if i = 0, then p0 is a proof of A, and if i = 1, then
p1 is a proof of B.

(⊥) There is no proof of ⊥.

For the next two rules let P (x) be a formula, such that it is understood what it means “q is a
proof of P (a), where a ∈ A”.

(∀) A proof of ∀x∈AP (x) is a rule R that associates to any given element a of A a proof Ra of
P (a).

(∃) A proof of ∃x∈AP (x) is a pair (a, q), where a is an element of A and q is a proof of P (a).

We write p : B to denote that p is a proof of the formula B.

The notions of rule in the clauses (→) and (∀) are unclear, and are taken as primitive. As
we have already said, the nature of a proof, or a witness, is also left unexplained. These will be
clarified in MLTT, where proof-terms will be first class citizens. A formal version of the BHK-
interpretation of Form is a so-called realisability interpretation (see [35]). Within Gentzen’s
natural deduction the BHK-interpretation is reflected through the so-called Curry-Howard
correspondence. According to it, a derivation tree is represented by some typed derivation
term, where the derived formula is the type of the term (and displayed as a superscript). E.g.,

1.4. THE BROUWER-HEYTING-KOLMOGOROV-INTERPRETATION 11

Derivation Term

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

Table 1.1: Derivation terms for →

Despite these problems, the BHK-interpretation captures essential elements of the mathe-
matical process of proof. Especially, it captures, informally, the notion of a constructive proof,
as the clauses for (∨) and (∃) indicate.

Example 1.4.2. Let the formula D = (A → B → C) → (A → B) → A → C, which,
according to our notational convention, is the formula

(A→ (B → C))→ ((A→ B)→ (A→ C)).

According to BHK, a proof

p : (A→ B → C)→ ((A→ B)→ (A→ C))

is a rule that sends a supposed proof q : A→ (B → C) to a proof

p(q) : (A→ B)→ (A→ C),

which, in turn, is a rule that sends a proof r : A→ B to a proof [p(q)](r) = [p(q)](r) : A→ C.
This proof is a rule that sends a proof s : A to a proof

[
[p(q)](r)

]
(s) : C. Hence we need to

define the later proof through our supposed proofs. By definition q(s) : B → C, and hence
[q(s)](r(s)) : C. Thus we define [

[p(q)](r)
]
(s) = [q(s)](r(s)).

Example 1.4.3. Let the formula

P = ∀x∈A(⊥ → Q)→ ⊥→ ∀x∈AQ.

According to BHK, a proof p : ∀x∈A(⊥ → Q)→ ⊥→ ∀x∈AQ is a rule that sends a supposed
proof q : ∀x∈A(⊥ → Q) to a proof

p(q) : ⊥ → ∀x∈AQ,

which is a rule that sends a proof r : ⊥ to some proof

[p(q)](r) : ∀x∈AQ.

12 CHAPTER 1. INTRODUCTION

The proof q : ∀x∈A(⊥ → Q) is understood as a family of proofs

q =
(
qx : ⊥ → Q

)
x∈A,

and, similarly, the required proof [p(q)](r) : ∀x∈AQ is a family of proofs

[p(q)](r) =

([
[p(q)](r)

]
x∈A : Q

)
x∈A

.

We define this family of proofs by the rule[
[p(q)](r)

]
x∈A = qx(r).

Example 1.4.4. A BHK-proof p : A→ A is a rule that associates to every q : A a proof of A.
Clearly the identity rule p(q) = q is such a proof.

Example 1.4.5. A BHK-proof p∗ : A→ ¬¬A is a rule that associates to every q : A a proof
p∗(q) : (A→ ⊥)→ ⊥. If r : A→ ⊥, we need to get a proof [p∗(q)](r) : ⊥. For that we define
[p∗(q)](r) = r(q).

It is easy to see that there is no straightforward method to find a BHK-proof of the
converse implication DNEA. There are some instances of DNE though, that can be shown
constructively. E.g., it is possible to find (exercise) a BHK-proof of

(DNE¬A) ¬¬¬A→ ¬A.

1.5 Cantor sets I and Zermelo-Fraenkel sets

The theory of sets is a very recent enterprise in the history of mathematics, which was
introduced by Cantor. At the beginning Cantor used the Full Comprehension Scheme (FCS):

∃u(u = {x | φ(x)}),

which guarantees the existence of a set generated by any formula φ that is formed by the
symbol of elementhood ∈. Russell, and independently Zermelo, found that Cantor’s principle
is contradictory: if φ(x) is the formula x /∈ x :⇔ ¬(x ∈ x), then by FCS we have that

R = {x | x /∈ x}

is a set. The contradiction
R ∈ R⇔ R /∈ R

is known as Russell’s paradox. Zermelo’s Restricted Comprehension Scheme (RCS), also known
as Separation Scheme,

∃u(u = {x ∈ v | φ(x)})

replaced the problematic principle FCS, and Russell’s paradox is avoided. If V is the universe
of all sets i.e.,

V = {x | x = x},

RCS implies that V /∈ V : if V ∈ V , then by RCS we get u = {x ∈ V | x /∈ x} ∈ V and then
u ∈ u⇔ u /∈ u. If FCS was not contradictory, we wouldn’t need so many axioms to describe our
intuition about sets. E.g., the union of two sets would be defined as u∪v = {x | x ∈ u∨x ∈ v}.

1.5. CANTOR SETS I AND ZERMELO-FRAENKEL SETS 13

Example 1.5.1. The first-order language of set theory is the pair S = ({⊥,≈,∈}, ∅)}), which
is written for simplicity as S = (⊥,≈,∈), where ∈ is in Rel(2). The first-order non-logical
axioms of the first-order Zermelo-Fraenkel set theory ZF in the first-order language S are the
following3:

Extensionality : ∀x,y
(
∀z(z ∈ x↔ z ∈ y)→ x ≈ y

)
.

Empty set : ∃x∀y(y /∈ x).

Unordered pair : ∀x,y∃z∀w(w ∈ z ↔ w ≈ x ∨ w ≈ y).

Union: ∀x∃y∀z
(
z ∈ y ↔ ∃w(w ∈ x & z ∈ w)

)
.

Replacement Scheme: If φ(x, y, ~w) is a function formula4, then

∀x∃v∀y
(
y ∈ v ↔ ∃z(z ∈ x ∧ φ(z, y, ~w))

)
.

Power-set : ∀x∃y∀z
(
z ∈ y ↔ ∀w(w ∈ z → w ∈ x)

)
.

Foundation: ∀x
(
x 6= ∅ → ∃z

(
z ∈ x ∧ ¬∃w(w ∈ z ∧ w ∈ x)

))
.

Infinity : ∃x
(
∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ {y} ∈ x)

)
.

Unlike the axioms for vector spaces for example (first came the examples, or models, of
vector spaces, and then came the axioms for a linear space) the axioms for sets were given first
and their models were studied only afterwords! The axioms of ZF are generally “accepted”
by the classical mathematicians, and ZF is considered the standard foundation of classical
mathematics. The are also constructive theories of sets i.e., set theories within intuitionistic
logic (see [1]).

In ZF functions are not basic objects, since they are certain sets. A function f : x → y,
where x, y are sets in ZF, is an appropriate subset of x× y = {(a, b) | a ∈ x∧ b ∈ y}, where the
notion of an ordered pair (a, b) is defined through the notion of an unordered pair as follows:

(a, b) :=
{
{a}, {a, b}

}
.

Clearly, {
{a}, {a, b}

}
≈
{
{c}, {c, d}

}
⇔ a ≈ c & b ≈ d.

If to ZF we add the axiom of choice (AC), we get the system ZFC. One formulation of it is
the following 5 :

Axiom of choice (AC): If (Aj)j∈J is a family of non-empty sets indexed by some set J ,
there is a choice function

f : J →
⋃
j∈J

Aj ,

such that f(j) ∈ Aj , for every j ∈ J .

With the use of Cohen’s method of forcing it is shown that

ZF 6` AC,

3An introduction to the axiomatic set theory can be found in [12]. More advanced books are [21] and [22].
4I.e., if φ(x, y, ~w) and φ(x, z, ~w), then y = z.
5Another formulation of AC is: ∀v∃f :v→V ∀x∈v

(
x 6= ∅ ⇒ f(x) ∈ x

)
.

14 CHAPTER 1. INTRODUCTION

while with the use of the method of inner models Gódel showed that

ZF 6` ¬AC

i.e., AC is independent from ZF. AC is not that “innocent”. When a proof uses it, usually
this is noted. It has many important consequences in standard mathematics, for example
every ideal in a ring is contained in a maximal ideal, every vector space has a basis, and
every product of compact spaces is compact. For many equivalent formulations of AC see [32].
But AC has also some counter-intuitive consequences like the Banach-Tarski paradox : it is
possible to decompose the 3-dimensional solid unit ball into finitely many pieces and, using
only rotations and translations, reassemble the pieces into two solid balls each with the same
volume as the original. Another unexpected consequence of the AC is the following.

Theorem 1.5.2 (Diaconescu 1975). The AC together with some very small part of ZF implies
constructively i.e., without the use of PEM or DNE, the principle of the excluded middle PEM.

Proof. Let A be any formula, 2 = {0, 1}, and let the sets

A0 = {x ∈ 2 | x = 0 ∨A},

A1 = {x ∈ 2 | x = 1 ∨A}.

Since 0 ∈ A0 and 1 ∈ A1, the sets A0 and A1 are non-empty. By AC there is

f : 2→
⋃
j∈2

Aj = A0 ∪A1 ⊆ 2

such that

f(0) ∈ A0 ⇔ f(0) = 0 ∨A and

f(1) ∈ A1 ⇔ f(1) = 1 ∨A.

Since f takes values in 2, we consider the following cases. If f(0) = 1, then, since f(0) ∈ A0,
we get A. If f(0) = 0, we consider the two possible cases for f(1). If f(1) = 0, then, since
f(1) ∈ A1, we get A. If f(1) = 1, we show ¬A i.e., we reach a contradiction by supposing A.
Suppose A. In this case A0 = A1 = 2. Let the set {A0, A1} and let the function

f∗ : {A0, A1} → 2,

f∗(A0) = f(0) = 0 & f∗(A1) = f(1) = 1.

Since A0 = A1 though, we get f∗(A0) = f∗(A1) i.e., 0 = 1, which is a contradiction. Hence,
we showed A ∨ ¬A.

In the previous proof we used the (full) Separation Scheme, and the axioms for the
unordered pair, the empty set to define 0 and 1, and the extensionality axiom. One could
argue that the axiom most crucial to the previous proof is the axiom of choice. As from the
constructive point of view the other axioms are quite “safe” to use, except maybe the full
separation axiom, it is AC the source of the non-constructivity.

1.5. CANTOR SETS I AND ZERMELO-FRAENKEL SETS 15

Definition 1.5.3. A partially ordered set, or a poset, is a pair (I,�), where I is a set, and
� ⊆ I × I satisfying the following conditions:

(i) ∀i∈I
(
i � i

)
.

(ii) ∀i,j∈I
(
i � j & j � i⇒ i = j

)
.

(iii) ∀i,j,k∈I
(
i � j & j � k ⇒ i � k

)
.

A subset C of a poset (I,�) is called a chain in I, or a totally ordered subset of I, if

∀c,c′∈C
(
c � c′ ∨ c′ � c

)
.

A subset J of I is bounded in I, if there is i0 ∈ I such that ∀j∈J
(
j � i0

)
. In this case i0 is

called a bound of J . An element i0 of I is called maximal in I, if

∀i∈I
(
i0 � i⇒ i = i0

)
.

A bound i0 of I itself is called the maximum element6 of I. If the poset (I,�) is clear from the
context, we just say C is a chain, J is bounded, and i0 is a maximal element. For simplicity
we say that I is a poset, and we do not write (I,�), when � is clear from the context.

If P(I) denotes the powerset of the set I i.e., the set of all subsets of I, then P(I) is
partially ordered by the relation A ⊆ B, “the subset A is included in the subset B” i.e.,

A ⊆ B :⇔ ∀i∈I
(
i ∈ A⇒ i ∈ B

)
.

An infinite, countable chain C in P(X) can take the form of a sequence

A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . ,

and
∞⋃
n=1

An =
{
i ∈ I | ∃n≥1

(
i ∈ An)

}
is a bound of C. Clearly, X is the maximum element of P(X), and ∅ is the minimum of P(X).

Theorem 1.5.4. AC implies classically i.e., with the use of PEM, Zorn’s lemma: if I is a
non-empty poset, such that every chain in I is bounded, then I has a maximal element7.

Proof. (Sketch) Let (I,�) be a non-empty poset, such that every chain in I is bounded. Let
C be a fixed chain in I, where by hypothesis

B(C) = {i ∈ I | i is a bound of C} 6= ∅.

By PEM either C contains a maximal element of I, or not. In the first case, the existence of a
maximal element follows immediately. Suppose that C does not contain a maximal element of
I (Hyp1). In this case, we show that

B∗(C) = {i ∈ B(C) | i /∈ C} 6= ∅.
6A maximum element i0 is uniquely determined i.e., if j0 is also bound of I, then j0 = i0. The maximum

element is also a maximal element, while the converse is not generally the case.
7If I = ∅, then it is easy to show that the ex falsum quodlibet scheme EfqA : ⊥ → A, for every formula A,

implies that if every chain of ∅ is bounded, then ∅ has a maximal element.

16 CHAPTER 1. INTRODUCTION

Suppose that B∗(C) = ∅ i.e.,

∀i∈B(C)(i ∈ C) (Hyp2).

Let i0 ∈ B(C). By Hyp2 we get i0 ∈ C. If i ∈ I, such that i0 � i, then i ∈ B(C) too, hence
by Hyp2 we have that i ∈ C. Since i0 ∈ B(C), we get i � i0, hence by the transitivity of �
we conclude that i0 = i. Since i is an arbitrary element of I, we have that i0 is a maximal
element in I that it is also in C, which contradicts the hypothesis Hyp1. Let

C =
{
C ⊆ I | C is a chain in I that contains no maximal element of I

}
.

By the previous remark the family
(
B∗(C)

)
C∈C is a family of non-empty sets indexed by C,

hence by AC there is a function

f : C →
⋃
C∈C

B∗(C)

such that
f(C) ∈ B∗(C), for every C ∈ C.

The idea of the rest of the proof is the following. Let i0 ∈ I. By PEM, either i0 is maximal
in I, and we are done, or it is not. In the latter case, {i0} is a chain in I that contains no
maximal element of I i.e., {i0} ∈ C. Hence,

f
(
{i0}

)
∈ B∗

(
{i0}

)
=
{
i ∈ B

(
{i0}

)
| i 6∈ {i0}

}
i.e., f

(
{i0}

)
= i1, such that i0 ≺ i1 :⇔ i0 � i1 & i0 6= i1. Repeating the same argument, either

i1 is maximal in I, or not. In the latter case, {i0, i1} is a chain in I that contains no maximal
element of I i.e., {i0, i1} ∈ C. Consequently,

i0 ≺ i1 ≺ f
(
{i0, i1}

)
.

Proceeding similarly, and repeating these steps at most as many times as the cardinality of I,
the procedure will terminate, something which turns out to be equivalent to the existence of a
maximal element in I.

Theorem 1.5.5 (ZL). A non-trivial vector space X has a basis.

Proof. If we define the set

I(X) = {Y ⊆ X | Y is linearly independent},

then ∅ ∈ I(X), hence I(X) is non-empty. If Y,Z ∈ I(X), we define Y � Z :⇔ Y ⊆ Z, which
is a partial order on I(X). If C ⊆ I(X) is a chain in I(X), then⋃

C = {x ∈ X | ∃A∈C(x ∈ A)}

is a bound of C in P(X), and it is also a bound in I(X) i.e.,
⋃
C ∈ I(X). Show this, and

complete the proof using Zorn’s lemma.

Notice that the previous proof of existence of a basis is very “indirect”, as it provides no
algorithm, to find, or construct a basis. One can show8 that the existence of a basis of a
non-trivial vector space implies ZL, hence “the existence of a base of a linear space” and ZL are
equivalent (over ZF). One can show similarly the following stronger version of Theorem 1.5.5.

8For that see [6]. In [32] many statements from classical mathematics are shown to be equivalent to the
axiom of choice.

1.6. CANTOR SETS II AND BISHOP SETS 17

Theorem 1.5.6 (ZL). If Y is a linearly independent subset of a non-trivial linear space X,
there is a basis B of X, such that Y ⊆ B.

Proof. Exercise.

1.6 Cantor sets II and Bishop sets

In [8], pp. 114-5, Cantor described a set as follows:

A manifold (a sum, a set) of elements belonging to some conceptual sphere is
called well-defined if, on the basis of its definition and in accordance with the
logical principle of the excluded third, it must be regarded as internally determined,
both whether any object of that conceptual sphere belongs as an element to the
mentioned set, and also whether two objects belonging to the set, in spite of formal
differences in the mode of givenness, are equal to each other or not.

Errett Bishop (1928-1983) was an outstanding mathematician with contributions in the
theory of Banach spaces, like the Bishop-Phelps theorem, in the theory of complex manifolds,
like the embedding theorem for an n-dimensional Stein manifold, in the theory of integral
representation of points in compact convex sets, like the the Bishop-de Leeuw theorem,
and in many other areas of analysis. Moreover, with his work [4] and [5] he revolutionized
constructive analysis and the foundations of mathematics. He and Brouwer are the most
important constructive mathematicians of the previous century. Bishop developed the informal
system of constructive mathematics BISH, a common territory between classical mathematics,
intuitionism and recursive mathematics. This means that if p is a proof of a proposition Q in
BISH, then p is a proof of Q interpreted in classical mathematics, and at the same time p is a
proof ofQ interpreted in other intuitionistic systems of mathematics like Brouwer’s intuitionistic
mathematics INT, or Markov’s recursive mathematics RUSS. All these pairwise incompatible
disciplines can be seen then as special varieties of Bishop’s constructive mathematics. In
Bishop’s book [4], and in many publications after 1967, a large part of classical mathematics
has found its constructive counterpart in BISH.

Bishop’s intuitive notion of set is similar to Cantor’s, except that he does not invoke PEM.
In MLTT a Bishop set corresponds to the type-theoretic notion of a setoid. His informal system
of constructive mathematics BISH, in which large parts of mathematics can be developed
(see [4], [5]), has the following main features (see also [29]):

• The logic of proofs in BISH is intuitionistic.

• There is a primitive equality between terms, denoted by s := t, and it is understood as
a definitional, or logical, equality.

• There is one only basic, or primitive set, the set of natural numbers N for which the
Peano axioms hold.

• A (non-inductive)defined totality X is defined by a membership condition x ∈ X :⇔
MX(x), where MX is a formula with x as a free variable.

• A defined totality X with equality , or simply, a totality X with equality is a defined
totality X equipped with an equality condition x =X y :⇔ EX(x, y), where EX(x, y)
is a formula with free variables x and y that satisfies the conditions of an equivalence
relation i.e., EX(x, x) and EX(x, y)⇒ EX(y, x), and [EX(x, y) & EX(y, z)]⇒ EX(x, y).

18 CHAPTER 1. INTRODUCTION

• A defined set is a preset with a given equality.

• A set is either a primitive set, or a defined set. Clearly, each set X has its own equality
=X . This is in contrast to the “global” equality of sets in ZF.

• Sets are inductively defined in the extension BISH∗ of BISH with inductive definitions
with rules of countably many premisses.

• An undefined notion of mathematical construction, or algorithm, or of finite routine is
considered as primitive i.e., unexplained.

• Assignment routines are basic objects and functions are certain assignment routines.
Moreover, function extensionality holds by definition i.e., if F(X,Y) is the set of functions
from X to Y its equality is defined by

f =F(X,Y) g :⇔ ∀x∈X
(
f(x) =Y f(x)

)
.

• A global operation (·, ·) of pairing is also considered primitive. I.e., if s, t are terms, their
pair (s, t) is a new term. The corresponding equality axiom is

(s, t) := (s′, t′) :⇔ s := s′ & t := t′.

The global projection routines pr1(s, t) := s and pr2(s, t) := t are also primitive.

• Dependent assignment routines are basic objects and dependent functions are certain
dependent assignment routines.

• There is one open-ended universe V0 of sets. V0 is a not a set, but a proper class. Moreover,
V0 is by definition univalent i.e., its equality is given by the following condition

X =V0 Y :⇔ ∃f∈F(X,Y)∃g∈F(Y,X)

(
g ◦ f = idX & f ◦ g = idY

)

X Y X Y .
f g

f

idX

idY

In this case we write (f, g) : X =V0 Y .

• Proof-relevance can be added to some degree. E.g., in the definition of the canonical
equality of V0 above we write (f, g) : X =V0 Y and we define the set

Eq(X,Y) :=
{

(f, g) ∈ F(X,Y)× F(Y,X) | (f, g) : X =V0 Y
}

of all objects that “witness”, or “realise”, or prove the equality X =V0 Y . The equality of
Eq(X,Y) is the canonical one i.e., (f, g) =Eq(X,Y) (f ′, g′) :⇔ f =F(X,Y) f

′ & g =F(Y,X) g
′.

• Negation is avoided, as much as possible. Positively defined objects are used, as
counterparts to negatively defined concepts. E.g., inequality of elements x, x′ of a set
X is not defined by ¬(x =X x′), but through a positively defined inequality condition
x 6=X x′, for which we show that the axioms of an apartness relation are satisfied.

1.6. CANTOR SETS II AND BISHOP SETS 19

• A very weak form of choice, like the principle of countable choice (CC) is used

(CC) ∀m∈N∃y∈YR(m, y)⇒ ∃f∈F(N,Y)∀n∈NR(n, f(n)),

where R(m, y) is a relation on N× Y . The principle (CC) follows (exercise) from the
stronger principle of dependent choice (DC) that is also used. According to it:

(DC) ∀x∈X∃y∈X(Q(x, y))⇒ ∃f∈F(N,X)

(
f(0) = x0 & ∀n∈N(Q(f(n), f(n+1)))

)
,

where Q(x, x′) is a relation on X ×X and x0 ∈ X. It is useful to avoid CC and DC.

The proof-terms in Eq(X,Y) are compatible with the properties of the equivalence relation
X =V0 Y . This means that we can define a distinguished proof-term

refl(X) ∈ Eq(X,X)

that proves the reflexivity of X =V0 Y , an operation −1, such that

(f, g) : X =V0 Y ⇒ (f, g)−1 : Y =V0 X,

and an operation of “composition” ∗ of proof-terms, such that

(f, g) : X =V0 Y & (h, k) : Y =V0 Z ⇒ (f, g) ∗ (h, k) : X =V0 Z.

If h ∈ F(Y,W) and k ∈ F(W,Y), let

refl(X) :=
(
idX , idX

)
& (f, g)−1 := (g, f) & (f, g) ∗ (h, k) := (h ◦ f, g ◦ k).

It is immediate to see that these operations satisfy the groupoid laws:

(i) refl(X) ∗ (f, g) =Eq(X,Y) (f, g) and (f, g) ∗ refl(Y) =Eq(X,Y) (f, g).

(ii) (f, g) ∗ (f, g)−1 =Eq(X,X) refl(X) and (f, g)−1 ∗ (f, g) =Eq(Y,Y) refl(Y).

(iii)
(
(f, g) ∗ (h, k)

)
∗ (s, t) =Eq(X,W) (f, g) ∗

(
(h, k) ∗ (s, t)

)
.

Moreover, the following compatibility condition is satisfied:

(iv) If (f, g), (f ′, g′) ∈ Eq(X,Y) and (h, k), (h′, k′) ∈ Eq(Y,Z), then

(f, g) =Eq(X,Y) (f ′, g′) & (h, k) =Eq(Y,Z) (h′, k′)⇒ (f, g) ∗ (h, k) =Eq(X,Z) (f ′, g′) ∗ (h′, k′).

Definition 1.6.1. If X,Y are sets, their product X × Y is the defined totality with equality

(x, y) ∈ X × Y :⇔ x ∈ A & y ∈ B,

z ∈ X × Y :⇔ ∃x∈A∃y∈B
(
z := (x, y)

)
.

X ×Y is considered to be a set, and its membership condition is written simpler as follows:

(x, y) =X×Y (x′, y′) :⇔ x =X x′ & y =Y y′.

20 CHAPTER 1. INTRODUCTION

Definition 1.6.2. A bounded formula on a set X is called an extensional property on X, if

∀x,y∈X
(
[x =X y & P (x)]⇒ P (y)

)
.

The totality XP generated by P (x) is defined by x ∈ XP :⇔ x ∈ X & P (x),

x ∈ XP :⇔ x ∈ X & P (x),

and the equality of XP is inherited from the equality of X. We also write

XP := {x ∈ X | P (x)}.

The totality XP is a set, and it is called the extensional subset of X generated by P .

Using the properties of an equivalence relation, it is immediate to show that an equality
condition EX(x, y) on a totality X is an extensional property on the product X × X i.e.,
[(x, y) =X×Y (x′, y′) & x =X y]⇒ x′ =X y′. Let the following extensional subsets of N:

1 := {x ∈ N | x =N 0} := {0},

2 := {x ∈ N | x =N 0 ∨ x =N 1} := {0, 1}.

Since n =N m :⇔ n := m, the property P (x) :⇔ x =N 0 ∨ x =N 1 is extensional. In general,
not all elements of Eq(X,Y) are equal. One can find (exercise) sets X,Y and realizers

(f, g) : X =V0 Y & (f ′, g′) : X =V0 Y & ¬[(f, g) = (f ′, g′)].

Definition 1.6.3. If (X,=X) is a set, its diagonal is the extensional subset of X ×X

D(X,=X) := {(x, y) ∈ X ×X | x =X y}.

If =X is clear from the context, we just write D(X).

Definition 1.6.4. Let X be a set. An inequality on X, or an apartness relation on X, is a
relation x 6=X y such that the following conditions are satisfied:

(Ap1) ∀x,y∈X
(
x =X y & x 6=X y ⇒ ⊥

)
.

(Ap2) ∀x,y∈X
(
x 6=X y ⇒ y 6=X x

)
.

(Ap3) ∀x,y∈X
(
x 6=X y ⇒ ∀z∈X(z 6=X x ∨ z 6=X y)

)
.

We write (X,=X , 6=X) to denote the equality-inequality structure of a set X, and for simplicity
we refer the set (X,=X , 6=X). The set (X,=X , 6=X) is called discrete, if

∀x,y∈X
(
x =X y ∨ x 6=X y

)
.

An inequality 6=X on X is called tight, if ¬(x 6=X y)⇒ x =X y, for every x, y ∈ X.

Remark 1.6.5. An inequality relation x 6=X y is extensional on X ×X.

Proof. Exercise.

For example, if (X,=X , 6=X) and (Y,=Y , 6=Y) are given, the canonical inequality on X ×Y
induced by 6=X and 6=Y , is defined by

(x, y) 6=X×Y (x′, y′) :⇔ x 6=X x′ ∨ y 6=Y y′,

for every (x, y) and (x′, y′) ∈ X × Y .

1.6. CANTOR SETS II AND BISHOP SETS 21

Definition 1.6.6. Let X,Y be totalities. A non-dependent assignment routine f from X to
Y , in symbols f : X Y , is a finite routine that assigns an element y of Y to each given
element x of X. In this case we write f(x) := y. If g : X Y , let

f := g :⇔ ∀x∈X
(
f(x) := g(x)

)
.

If f := g, we say that f and g are definitionally equal. If (X,=X) and (Y,=Y) are sets, an
operation from X to Y is a non-dependent assignment routine from X to Y , while a function
from X to Y , in symbols f : X → Y , is an operation from X to Y that respects equality i.e.,

∀x,x′∈X
(
x =X x′ ⇒ f(x) =Y f(x′)

)
.

If f : X Y is a function from X to Y , we say that f is a function, without mentioning the
expression “from X to Y ”. A function f : X → Y is an embedding, in symbols f : X ↪→ Y , if

∀x,x′∈X
(
f(x) =Y f(x′)⇒ x =X x′).

Let the sets (X,=X , 6=X) and (Y,=Y , 6=Y). A function f : X → Y is strongly extensional, if

∀x,x′∈X
(
f(x) 6=Y f(x′)⇒ x 6=X x′

)
.

If X is a set, the identity map idX on X is the operation idX : X X, defined by
idX(x) := x, for every x ∈ X. Clearly, idX is an embedding, which is strongly extensional, if
6=X is a given inequality on X. If Y is also a set, the projection maps prX and prY on X and
Y , respectively, are the operations prX : X × Y X and prY : X × Y Y , where

prX(x, y) := pr1(x, y) := x & prY (x, y) := pr2(x, y) := y; (x, y) ∈ X × Y.

Definition 1.6.7. Let I be a set and λ0 : I V0 a non-dependent assignment routine from I
to V0. A dependent operation Φ over λ0, in symbols

Φ:
k

i∈I
λ0(i),

is an assignment routine that assigns to each element i in I an element Φ(i) in the set λ0(i).
If i ∈ I, we call Φ(i) the i-component of Φ, and we also use the notation Φi := Φ(i). An
assignment routine is either a non-dependent assignment routine, or a dependent operation
over some non-dependent assignment routine from a set to the universe. Let the non-dependent
assignment routines λ0 : I V0, µ0 : I V0, ν0 : I V0 and κ0 : I V0. Let F(λ0, µ0) : I
V0 be defined by F(λ0, µ0)(i) := F(λ0(i), µ0(i), for every i ∈ I. The identity operation Idλ0

over λ0 is the dependent operation

Idλ0 :
k

i∈I
F(λ0(i), λ0(i)) Idλ0(i) := idλ0(i); i ∈ I.

Let Ψ:
c
i∈I F(µ0(i), ν0(i)) and Φ:

c
i∈I F(λ0(i), µ0(i)). Their composition Ψ ◦Φ is defined by

Ψ ◦ Φ:
k

i∈I
F(λ0(i), ν0(i)) (Ψ ◦ Φ)i := Ψi ◦ Φi; i ∈ I.

If I is a set and λ0 : I V0, let A(I, λ0) be the totality of dependent operations over λ0,
equipped with the canonical equality:

Φ =A(I,λ0) Ψ :⇔ ∀i∈I
(
Φi =λ0(i) Ψi

)
.

The totality A(I, λ0) is considered to be a set. If 6=λ0(i) is an inequality on λ0(i), for every i ∈ I,
the canonical inequality 6=A(I,λ0) on A(I, λ0) is defined by Φ 6=A(I,λ0) Ψ :⇔ ∃i∈I

(
Φi 6=λ0(i) Ψi

)
.

22 CHAPTER 1. INTRODUCTION

1.7 Bishop subsets

Definition 1.7.1. Let X be a set. A subset of X is a pair (A, iXA), where A is a set and
ıXA : A ↪→ X is an embedding of A into X. If (A, iXA) and (B, iXB) are subsets of X, then A
is a subset of B, in symbols (A, iXA) ⊆ (B, iXB), or simpler A ⊆ B, if there is f : A→ B such
that the following diagram commutes

A B

X.

f

iXA iXB

In this case we use the notation f : A ⊆ B. Usually we write A instead of (A, iXA). The totality
of the subsets of X is the powerset P(X) of X, and it is equipped with the equality

(A, iXA) =P(X) (B, iXB) :⇔ A ⊆ B & B ⊆ A.

If f : A ⊆ B and g : B ⊆ A, we write (f, g) : A =P(X) B.

Since the membership condition for P(X) requires quantification over V0, the totality P(X)
is a class. Clearly, (X, idX) ⊆ X. If XP is an extensional subset of X (see Definition 1.6.2),
then (XP , i

X
P) ⊆ X, where iXP : XP X is defined by iXP (x) := x, for every x ∈ XP .

Proposition 1.7.2. If A,B ⊆ X, and f, g : A ⊆ B, then f is an embedding, and f =F(A,B) g

A B

X.

f

g

iXA iXB

Proof. Exercise.

The “internal” equality of subsets implies (exercise) their “external” equality as sets i.e.,
(f, g) : A =P(X) B ⇒ (f, g) : A =V0 B. Let the set

Eq(A,B) :=
{

(f, g) ∈ F(A,B)× F(B,A) | f : A ⊆ B & g : B ⊆ A
}
,

equipped with the canonical equality of pairs as in the case of Eq(X,Y). Because of Proposi-
tion 1.7.2, the set Eq(A,B) is a subsingleton i.e.,

(f, g) : A =P(X) B & (f ′, g′) : A =P(X) B ⇒ (f, g) = (f ′, g′).

If f ∈ F(A,B), g ∈ F(B,A), h ∈ F(B,C), and k ∈ F(C,B), let refl(A) :=
(
idA, idA

)
and

(f, g)−1 := (g, f), and (f, g) ∗ (h, k) := (h ◦ f, g ◦ k).

1.7. BISHOP SUBSETS 23

Remark 1.7.3. If P,Q are extensional properties on the set X, then

XP =P(X) XQ ⇔ ∀x∈X
(
P (x)⇔ Q(x)

)
.

Proof. The implication (⇐) is immediate to show, since the corresponding identity maps
witness the equality XP =P(X) XQ. For the converse implication, let (f, g) : XP =P(X) XQ.
Let x ∈ X such that P (x). By the commutativity of the following outer diagram

XP XQ

X

f

g

iXP iXQ

we get f(x) := iXQ (f(x)) =X iXP (x) := x, and by the extensionality of Q and the fact that
Q(f(x)) holds we get Q(x). By the commutativity of the above inner diagram and the
extensionality of P we get similarly the inverse implication.

Definition 1.7.4. If (A, iXA), (B, iXB) ⊆ X, their union A ∪B is the totality defined by

z ∈ A ∪B :⇔ z ∈ A ∨ z ∈ B,

equipped with the non-dependent assignment routine9 iXA∪B : A ∪B X, defined by

iXA∪B(z) :=

iXA (z) , z ∈ A

iXB (z) , z ∈ B.

If z, w ∈ A ∪B, we define z =A∪B w :⇔ iXA∪B(z) =X iXA∪B(w).

One can show (exercise) that =A∪B is an equality on A ∪ B, iXA∪B is an embedding of
A ∪B into X, and hence the pair

(
A ∪B, iXA∪B

)
is a subset of X.

Definition 1.7.5. If (A, iXA), (B, iXB) ⊆ X, their intersection A ∩B is the totality defined by
separation on A×B as follows:

A ∩B := {(a, b) ∈ A×B | iXA (a) =X iXB (b)}.

Let the non-dependent assignment routine iXA∩B : A ∩B X, defined by iXA∩B(a, b) := iXA (a),
for every (a, b) ∈ A ∩B. If (a, b) and (a′, b′) are in A ∩B, let

(a, b) =A∩B (a′, b′) :⇔ iXA∩B(a, b) =X iXA∩B(a′, b′) :⇔ iXA (a) =X iXA (a′).

We write A G B to denote that the intersection A ∩B is inhabited.

One can show (exercise) that =A∩B is an equality on A ∩ B, iXA∩B is an embedding of
A ∩B into X, and hence the pair

(
A ∩B, iXA∩B

)
is a subset of X.

9Here we define a non-dependent assignment routine on the totality A ∪B, without knowing beforehand
that A ∪B is a set. It turns out that A ∪B is set, but for that we need to define iXA∪B first.

24 CHAPTER 1. INTRODUCTION

Definition 1.7.6. Let X,Y be sets, (A, iXA)(C, iXC) ⊆ X, e : (A, iXA) ⊆ (C, iXC), f : C → Y ,
and (B, iYB) ⊆ Y . The restriction f|A of f to A is the function fA := f ◦ e

A C Y .
e f

f|A

The image f(A) of A under f is the pair f(A) := (A, fA), where A is equipped with the equality
a =f(A) a

′ :⇔ f|A(a) =Y f|A(a′), for every a, a′ ∈ A. We denote {f(a) | a ∈ A} := f(A). The
pre-image f−1(B) of B under f is the set

f−1(B) := {(c, b) ∈ C ×B | f(c) =Y iYB(b)}.

Let iC
f−1(B)

: f−1(B) ↪→ C, defined by iC
f−1(B)

(c, b) := c, for every (c, b) ∈ f−1(B). The equality

of the extensional subset f−1(B) of C ×B is inherited from the equality of C ×B.

Definition 1.7.7. Let X,Y be sets. A partial function from X to Y is a triplet (A, iXA , f
Y
A),

where (A, iXA) ⊆ X, and fYA ∈ F(A, Y). Often, we use only the symbol fYA instead of the
triplet (A, iXA , f

Y
A), and we also write fYA : X ⇀ Y . If (A, iXA , f

Y
A) and (B, iXB , f

Y
B) are partial

functions from X to Y , we call fYA a subfunction of fYB , in symbols (A, iXA , f
Y
A) ≤ (B, iXB , f

Y
B),

or simpler fYA ≤ fYB , if there is eAB : A→ B such that the following inner diagrams commute

A B

X

Y .

eAB

fYA fYB

iXA iXB

In this case we use the notation eAB : fYA ≤ fYB . The totality of partial functions from X to Y
is the partial function space F(X,Y), and it is equipped with the equality

(A, iXA , f
Y
A) =F(X,Y) (B, iXB , f

Y
B) :⇔ fYA ≤ fYB & fYB ≤ fYA .

If eAB : fYA ≤ fYB and eBA : fYB ≤ fYA , we write (eAB, eBA) : fYA =F(X,Y) f
Y
B .

Since the membership condition for F(X,Y) requires quantification over V0, the totality
F(X,Y) is a class. Clearly, if f : X → Y , then (X, idX , f) ∈ F(X,Y). If (eAB, eBA) :
fYA =F(X,Y) f

Y
B , then (eAB, eBA) : A =P(X) B, and (eAB, eBA) : A =V0 B. Let the set

Eq(fYA , f
Y
B) :=

{
(f, g) ∈ F(A,B)× F(B,A) | f : fYA ≤ fYB & g : fYB ≤ fYA

}
,

equipped with the canonical equality of the product. All the elements of Eq(fYA , f
Y
B) are equal

to each other. If f ∈ F(A,B), g ∈ F(B,A), h ∈ F(B,C), and k ∈ F(C,B), let

refl(fYA) :=
(
idA, idA

)
& (f, g)−1 := (g, f) & (f, g) ∗ (h, k) := (h ◦ f, g ◦ k).

If (A, iXA , f
Y
A) ∈ F(X,Y) and (B, iYB, g

Z
B) ∈ F(Y, Z), their composition can be defined

(exercise), which is a partial function in F(X,Z).

1.8. FAMILIES OF BISHOP SETS 25

1.8 Families of Bishop sets

Roughly speaking, a family of sets indexed by some set I is an assignment routine λ0 : I V0

that behaves like a function i.e., if i =I j, then λ0(i) =V0 λ0(j). Next follows an exact
formulation of this description that reveals the witnesses of the equality λ0(i) =V0 λ0(j).

Definition 1.8.1. If I is a set, a family of sets indexed by I, or an I-family of sets, is a pair
Λ := (λ0, λ1), where λ0 : I V0, and λ1, a modulus of function-likeness for λ0, is given by

λ1 :
k

(i,j)∈D(I)

F
(
λ0(i), λ0(j)

)
, λ1(i, j) := λij , (i, j) ∈ D(I),

such that the transport maps λij of Λ satisfy the following conditions:

(a) For every i ∈ I, we have that λii := idλ0(i).

(b) If i =I j and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

I is the index-set of the family Λ. If X is a set, the constant I-family of sets X is the pair
CX := (λX0 , λ

X
1), where λ0(i) := X, for every i ∈ I, and λ1(i, j) := idX , for every (i, j) ∈ D(I)

(see the left diagram in Definition 1.8.2).

The dependent operation λ1 should have been written as follows

λ1 :
k

z∈D(I)

F
(
λ0(pr1(z)), λ0(pr2(z))

)
,

but, for simplicity, we avoid the use of the primitive projections pr1,pr2. Condition (a) of
Definition 1.8.1 could have been written as λii =F(λ0(i),λ0(i)) idλ0(i). If i =I j, then by conditions
(b) and (a) of Definition 1.8.1 we get idλ0(i) := λii = λji ◦ λij and idλ0(j) := λjj = λij ◦ λji i.e.,
(λij , λji) : λ0(i) =V0 λ0(j). In this sense λ1 is a modulus of function-likeness for λ0.

Definition 1.8.2. The pair Λ2 := (λ2
0 , λ

2
1), where λ2

0 : 2 V0 with λ2
0(0) := X, λ2

0(1) := Y ,
and λ2

1(0, 0) := idX and λ2
1(1, 1) := idY , is the 2-family of X and Y

X X

X

Y

Y

Y .
idX

idX idX

idY

idY idY

The n-family Λn of the sets X1, . . . Xn, where n ≥ 1, and the N-family ΛN := (λN
0 , λ

N
1) of the

sets (Xn)n∈N are defined similarly10.

10It is immediate to show that Λn is an n-family, and ΛN is an N-family.

26 CHAPTER 1. INTRODUCTION

Definition 1.8.3. Let Λ := (λ0, λ1) be an I-family of sets. The exterior union, or disjoint
union, or the

∑
-set

∑
i∈I λ0(i) of Λ, and its canonical equality are defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)

(
w := (i, x)

)
,

(i, x) =∑
i∈I λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y.

The
∑

-set of the 2-family Λ2 of the sets X and Y is the coproduct of X and Y , and we write

X + Y :=
∑
i∈2

λ2
0(i).

Proposition 1.8.4. The equality on
∑

i∈I λ0(i) satisfies the conditions of an equivalence
relation.

Proof. Exercise.

Definition 1.8.5. Let Λ := (λ0, λ1),M := (µ0, µ1) be I-families of sets. The coproduct family
of Λ and M is the pair Λ +M := (λ0 + µ0, λ1 + µ1), where (λ0 + µ0)(i) := λ0(i) + µ0(i), for
every i ∈ I, and the map

(
λ1 + µ1

)
ij

: λ0(i) + µ0(i)→ λ0(j) + µ0(j) is defined by

(
λ1 + µ1

)
ij

(w) :=

{ (
0, λij(x)

)
, w := (0, x)(

1, µij(y)
)

, w := (1, y)
; w ∈ λ0(i) + µ0(i).

It is straightforward to show that Λ +M is an I-family of sets.

Proposition 1.8.6. If Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I), then

∑
i∈I

(
λ0(i) + µ0(i)

)
=V0

(∑
i∈I

λ0(i)

)
+

(∑
i∈I

µ0(i)

)
.

Proof. Exercise.

Proposition 1.8.7. Let Λ := (λ0, λ1), M := (µ0, µ1) be I-families of sets, and

Ψ:
k

i∈I
F
(
λ0(i), µ0(i)

)
such that for every (i, j) ∈ D(I) the following diagram commutes

µ0(i) µ0(j).

λ0(j)λ0(i)

µij

λij

Ψi Ψj

1.8. FAMILIES OF BISHOP SETS 27

(i) For every i ∈ I the operation eΛ
i : λ0(i)

∑
i∈I λ0(i), defined by eΛ

i (x) := (i, x), for every
x ∈ λ0(i), is an embedding.

(ii) The operation ΣΨ :
∑

i∈I λ0(i)
∑

i∈I µ0(i), defined by

ΣΨ(i, x) := (i,Ψi(x)); (i, x) ∈
∑
i∈I

λ0(i),

is a function, such that for every i ∈ I the following diagram commutes

∑
i∈I λ0(i)

∑
i∈I µ0(i).

µ0(i)λ0(i)

ΣΨ

Ψi

eΛ
i eMi

(iii) If Ψi is an embedding, for every i ∈ I, then ΣΨ is an embedding.

Proof. Exercise.

Definition 1.8.8. Let Λ := (λ0, λ1) be an I-family of sets. The first projection on
∑

i∈I λ0(i)
is the operation prΛ

1 :
∑

i∈I λ0(i) I, defined by prΛ
1 (i, x) := pr1(i, x) := i, for every

(i, x) ∈
∑

i∈I λ0(i). We may only write pr1, if Λ is clearly understood from the context.

By the definition of the canonical equality on
∑

i∈I λ0(i) we get that prΛ
1 is a function.

Definition 1.8.9. Let Λ := (λ0, λ1) be an I-family of sets. The second projection on
∑

i∈I λ0(i)
is the dependent operation prΛ

2 :
c

(i,x)∈
∑
i∈I λ0(i) λ0(i), defined by prΛ

2 (i, x) := pr2(i, x) := x,

for every (i, x) ∈
∑

i∈I λ0(i). We may only write pr2, when the family of sets Λ is clearly
understood from the context.

Definition 1.8.10. Let Λ := (λ0, λ1) be an I-family of sets. The totality
∏
i∈I λ0(i) of

dependent functions over Λ, or the
∏

-set of Λ, is defined by

Θ ∈
∏
i∈I

λ0(i) :⇔ Θ ∈ A(I, λ0) & ∀(i,j)∈D(I)

(
Θj =λ0(j) λij(Θi)

)
,

and it is equipped with the canonical equality and the canonical inequality of the set A(I, λ0).
If X is a set and ΛX is the constant I-family X (see Definition 1.8.1), we use the notation

XI :=
∏
i∈I

X.

Clearly, the property P (Φ) :⇔ ∀(i,j)∈D(I)

(
Θj =λ0(j) λij(Θi)

)
is extensional on A(I, λ0), the

equality on
∏
i∈I λ0(i) is an equivalence relation.

∏
i∈I λ0(i) is considered to be a set.

Definition 1.8.11. Let Λ := (λ0, λ1) be an I-family of sets. The
∑

-indexing of Λ is the
pair ΣΛ := (σΛ

0 , σ
Λ
1), where σΛ

0 :
∑

i∈I λ0(i) V0 is defined by σΛ
0 (i, x) := λ0(i), for every

(i, x) ∈
∑

i∈I λ0(i), and σΛ
1

(
(i, x), (j, y)

)
:= λij, for every

(
(i, x), (j, y)

)
∈ D

(∑
i∈I λ0(i)

)
.

Remark 1.8.12. If Λ := (λ0, λ1) is an I-family of sets and ΣΛ := (σΛ
0 , σ

Λ
1) is the

∑
-indexing

of Λ, then prΛ
2 is a dependent function over ΣΛ.

28 CHAPTER 1. INTRODUCTION

Proof. Exercise.

Remark 1.8.13. (i) If Λ2 is the 2-family of the sets X and Y , then
∏
i∈2 λ

2
0(i) =V0 X × Y .

(ii) If I, A are sets, and Λ := (λA0 , λ1) is the constant I-family A, then AI =V0 F(I, A).

Proof. Exercise.

In general, we may want to have more than one transport maps from λ0(i) to λ0(j), if
i =I j. In this case, to each (i, j) ∈ D(I) we associate a set of transport maps.

Definition 1.8.14. If I is a set, a set-relevant family of sets indexed by I, is a triplet
Λ∗ :=

(
λ0, ε

λ
0 , λ2), where λ0 : I V0, ελ0 : D(I) V0, and

λ2 :
k

(i,j)∈D(I)

k

p∈ελ0 (i,j)

F
(
λ0(i), λ0(j)

)
, λ2

(
(i, j), p

)
:= λpij , (i, j) ∈ D(I), p ∈ ελ0(i, j),

such that the following conditions hold:

(i) For every i ∈ I there is p ∈ ελ0(i, i) such that λpii =F(λ0(i),λ0(i)) idλ0(i).

(ii) For every (i, j) ∈ D(I) and every p ∈ ελ0(i, j) there is some q ∈ ελ0(j, i) such that such that
the following left diagram commutes

λ0(j) λ0(i)

λ0(i)

λ0(j)

λ0(i)

λ0(k).
λqji

λpij idλ0(i) λpij λrik

λqjk

(iii) If i =I j =I k, then for every p ∈ ελ0(i, j) and every q ∈ ελ0(j, k) there is r ∈ ελ0(i, k) such
that the above right diagram commutes.

We call Λ∗ function-like, if ∀(i,j)∈D(I)∀p,p′∈ελ0 (i,j)

(
p =ελ0 (i,j) p

′ ⇒ λpij =F(λ0(i),λ0(j)) λ
p′

ij

)
.

It is immediate to show that if Λ := (λ0, λ1) ∈ Fam(I), then Λ generates a set-relevant
family over I, where ελ0(i, j) := 1, and λ2

(
(i, j), p)

)
:= λij , for every (i, j) ∈ D(I).

Definition 1.8.15. Let Λ∗ :=
(
λ0, ε

λ
0 , λ2

)
∈ Fam∗(I). The exterior union

∑∗
i∈I λ0(i) of Λ∗ is

the totality
∑

i∈I λ0(i), equipped with the following equality

(i, x) =∑∗
i∈I λ0(i) (j, y) :⇔ i =I j & ∃p∈ελ0 (i,j)

(
λpij(x) =λ0(j) y

)
.

The totality
∏∗
i∈I λ0(i) of dependent functions over Λ∗ is defined by

Θ ∈
∗∏
i∈I

λ0(i) :⇔ Θ ∈ A(I, λ0) & ∀(i,j)∈D(I)∀p∈ελ0 (i,j)

(
Θj =λ0(j) λ

p
ij(Θi)

)
,

and it is equipped with the pointwise equality.

One can show (exercise) that the equalities on
∑∗

i∈I λ0(i) and
∏∗
i∈I λ0(i) satisfy the

conditions of an equivalence relation.

Chapter 2

Basic types of Martin-Löf Type
Theory

In this chapter we present intensional MLTT in a naive, or informal manner following [?].
Initially, MLTT was designed as a formal system for BISH. It turned out to be a fundamental
functional programming language. Some basic features of MLTT are the following:

• The “logic” of MLTT is intuitionistic. This is why MLTT is also called intuitionisitic
type theory.

• Moreover, logic is built in (Curry-Howard identification, instead of Curry-Howard
correspondence).

• The BHK-interpretation is “satisfied”.

• Every term (closed or not) is typed i.e., we always have a : A, a is a term of type A.

• There is a primitive equality between terms, denoted by a ≡ b : A, or simpler a ≡ b, and
it is understood as a definitional equality between the terms a and b of type A.

• There is a hierarchy of open-ended universes universes (Martin-Löf’s option), which are
types themselves..

• The main objects are the types, which are defined inductively. The universes are also
types, but they are not defined inductively in this open-ended approach towards them.

• It consists of rules. No axioms are used.

• Proof-terms are first-class citizens.

• Functions (non-dependent and dependent) are basic objects.

• Each type A has its own equality =A, which is an inductively defined type. The the
behavior of this equality type though, is treated in a uniform way for all types.

• The distinction between intensional and extensional MLTT lies on the treatment of
equality. Namely, in extensional MLTT there is no distinction between a ≡ b and a =A b
for objects a, b of type A. In intensional MLTT both equalities are used.

• The type-theoretic axiom of choice is provable. This is a result of the proof-relevant
character of MLTT.

30 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

2.1 Propositions and Judgments

A proposition A is a mathematical expression that can be proved, and it is going to be a
type. A judgment is a mathematical expression that can be used in the ambient space of a
proposition. We can use a judgment as a hypothesis in a proof (hypothetical judgment), we
can derive a judgment (derivation judgment), but we cannot treat a judgment as a proposition
e.g., we cannot negate a judgment.

Definition 2.1.1. The basic judgments of MLTT are the following:

(i) a : A i.e., a is an object (or a term) of type A. The judgment A : U is special case, and it
is understood intuitively as “the type A is in the universe U”.

(ii) a ≡ b : A, or a ≡A b, or simpler a ≡ b i.e., a, b are definitionally equal objects (or terms)
of type A. The judgment A ≡ B : U is special case, and it is understood as “the types A,B are
by definition equal in the universe U”.

Formula/Proposition/Type Proof

A a : A

Table 2.1: A closed term of type A is a “proof” of A

Notice that in ZF the mathematical expressions a ∈ A, or a = b, are formulas, while
in MLTT the corresponding mathematical expressions a : A, or a ≡ b, are judgments. For
simplicity we write a, b : A, instead of a : A, b : A.

2.2 Universes of types

As we cannot negate judgments in MLTT, the mathematical expression ¬(A : A) has no
meaning, and hence the Russell paradox cannot be even formulated in MLTT. If we consider
one only universe U though, the set-theoretic Burali-Forti paradox1 was formulated in a
type-teoretic way by Girard. Based on an informal notion of natural number, a hierarchy of
universes of types is used, and the paradox of Girard in a version of MLTT with one universe
is avoided. This hierarchy of universes in MLTT is motivated by Grothendieck’s hierarchy
of set-universes. Grothendieck introduced the notion of a Grothendieck universe, in order to
avoid the use of proper classes in algebraic geometry.

Definition 2.2.1. A Grothendieck universe (of small sets) is a set U that satisfies the following
properties:

(GU1) If x ∈ a ∈ U , then x ∈ U .

(GU2) If a, b ∈ U , then {a, b} and a× b are in U .

(GU3) If a ∈ U , then
⋃
a and P(a) are in U .

1According to it, the set of all ordinals On leads to the contradiction On < On and ¬(On < On). Hence On
has to be a proper class.

2.2. UNIVERSES OF TYPES 31

(GU4) If f : a→ b is a surjection, a ∈ U and b ⊆ U , then b ∈ U .

(GU5) N ∈ U .

One can show that
(
U ,∈|U×U

)
satisfies the axioms of ZFC i.e., it is a small (inner) model

of ZFC. By Gödel’s second incompleteness theorem, ZFC cannot prove the existence of a
Grothendieck universe (notice that the empty set satisfies conditions (GU1)-(GU4), but not
(GU5). To ZFC one can add the Grothendieck Universe-axiom :

(GUA) For every set a there is a Grothendieck universe U such that a ∈ U .

As U is a set itself, by this axiom there is another Grothendieck universe U ′ such that

U ∈ U ′.

By (GU1) we have that

a ∈ U ∈ U ′ ⇒ a ∈ U ′ i.e., U ⊆ U ′.

This hierearchy of Grothendieck universes is incorporated into MLTT.

Definition 2.2.2. There is a hierarchy of universes of (small) types

U0 : U1 : U2 : . . . ,

such that for every n ∈ N we have that

A : Un
A : Un+1

.

Usually we work with a single universe U the index of which is omitted i.e., we write A : U ,
instead of A : Un. In this case, the universe U ′ denotes the immediate next universe Un+1 in
the given hierarchy of universes. The conversion rule for types in a universe is the following:

A : U , B : U , A ≡ B : U , a : A

a : B
.

We use capital letters for variables of a universe-type i.e., we write Xn, Yn, Zn : Un, or simpler
X,Y, Z : U and X ′, Y ′, Z ′ : U ′.

In MLTT the axiom (GUA) is incorporated, rather than satisfied, in the sense that every
(small) type A is understood, or given, always as a term of some type Un, where n ∈ N. As
A : Un+1 and A : Un+2 and so on, there is no unique typing for types A. No Un : Un is ever
used. As already said, we do not accommodate universes with some induction principle, as we
want the the notion of type to be open-ended i.e., to add new types, if necessary. We can give
examples of types A,B : U such that A ≡ B : U after introducing type families over a type
(see next section). Universes are essential in order to define type families over a type and to
prove inequalities such as 02 6=2 12, 0N 6=N 1N, where 2 is the type of booleans and N is the
type of natural numbers within MLTT.

32 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

2.3 Function type

An inductive definition of a type in MLTT is determined by three main rules: its formation rule,
its introduction rule, and the elimination or induction rule. The computation and uniqueness
rules are optional.

Definition 2.3.1. Form→ :

A,B : U
A→ B ∈ U .

I.e., given A,B : U the function type A → B of (non-dependent) functions with domain A
and codomain B is in U . We write f : A→ B to denote that f is a term of type A→ B and
φ, ψ, θ : A→ B are variables of type A→ B.

Intro→ :

[x : A, b(x) : B]

(λx : A.b(x) : B) : A→ B
.

I.e., if x is a variable of type A and b(x) is a term of type B, where the free variables of b
are included in {x}, then the λ-term λx : A.b(x) : B, or simpler λx : A.b(x) is a term of type
A→ B. This rule is also called λ-abstraction and it introduces the “canonical” elements of
the type A→ B.

Elim→, or Ind→ :

f : A→ B, a : A

f(a) : B
.

Hence the application of f on the term a : A is the term f(a) ≡ f [x/a] resulting from the
substitution of x : A by a : A in f .

Comp→ :

[λx : A.b(x) : B] : A→ B, a : A

[λx : A.b(x) : B](a) ≡ b(a) : B
,

where b(a) ≡ b[a/x] is the term resulting after the substitution of x : by a : A in b. This
computation rule, which explains the application of the elimination rule to the introduction
rule, is also known as β-conversion.

Uniq→ :

f : A→ B

f ≡ [λx : A.f(x) : B] : A→ B
.

This optional uniqueness principle, which expresses that every element of the type A→ B is
uniquely determined by is elimination and abstraction, is called η-conversion.

Example 2.3.2 (The constant function). By the introduction rule for →, if

x : A, b : B

[λx : A.b] : A→ B
,

2.3. FUNCTION TYPE 33

Formula / Type Proof-term

A⇒ B / A→ B f : A→ B

Table 2.2: A function f : A→ B is a “proof” of the type-theoretic implication

we set Const(A,B, b) ≡ λx : A.b for the constant function on A : U with value b : B, where
B : U too. By the computation rule for →, if a : A, we get the expected definitional equality

[λx : A.b](a) ≡ b.

Example 2.3.3 (The identity function). By the introduction rule for →, if

x : A, x : A

[λx : A.x] : A→ A
,

we set idA ≡ λx : A.x for the identity function on A : U . By the computation rule for →, if
a : A, we get the expected definitional equality

[λx : A.x](a) ≡ a.

Example 2.3.4 (The composite function). By the introduction rule for →, if f : A→ B and
g : B → C

x : A, g(f(x)) : C

[λx : A.g(f(x)) : C] : A→ B
,

we set g ◦ f ≡ λx : A.g(f(x)) for the composite function on A : U with values in C, where
B,C : U too. By the computation rule for →, if a : A, we get the expected definitional equality

[λx : A.(g(f(x))](a) ≡ g(f(a)).

We use the following notation conventions:

A→ B → C ≡ A→ (B → C),

and if g : A→ B → C, then
g(x, y) ≡ g(x)(y),

for every x : A and y : B.

Definition 2.3.5. If A : U , a function P : A→ U is called a family of types over A in U , or a
type family over A in U . Notice that from the rules for the hierarchy of universes we have that

A : U , hence A : U ′, and U : U ′,

where U ′ is the immediate next universe to U . By the rule Form→ we get

A,U : U ′

A→ U ∈ U ′ .

We write Π, R : A→ U for variables of type A→ U .

34 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Example 2.3.6 (The constant type family). The term

(λx : A.B) : A→ U

is the constant type family B : U in U over A : U .

Example 2.3.7 (A type family over a universe). The term

(λX : U .X → X) : U → U

is a type family in U over U . We have the following definitional equality between types A : U

P (A) ≡ A→ A.

2.4 Dependent function type

Next follows the dependent version of the function type.

Definition 2.4.1. Form∏ :

A : U , P : A→ U∏
x : A P (x) : U .

I.e., given A : U and a type family over A the type of dependent functions with respect to A
and P is in U . A term

F :
∏
x : A

P (x)

is called a dependent function or a section of the type family P over A. We use capital
letters F,G,H :

∏
x : A P (x) for closed terms and Greek capital letters Φ,Ψ,Θ:

∏
x : A P (x) for

variables of this type.

Intro∏ :

A : U , P : A→ U ,
[
x : A, b(x) : P (x)

]
[λx : A.b(x) : P (x)] :

∏
x : A P (x)

.

I.e., if x is a variable of type A and b(x) is a term of type P (x), where the free variables of b
are included in {x}, then the dependent λ-term λx : A.b(x) : P (x), or simpler λx : A.b(x) is a
term of type

∏
x : A P (x). This rule is also called the dependent λ-abstraction and it introduces

the “canonical” elements of the type
∏
x : A P (x).

Elim∏, or Ind∏ :

F :
∏
x : A P (x), a : A

F (a) : P (a)
.

Hence the application of F on the term a : A is the term F (a) ≡ F [x/a] resulting from the
substitution of x by a in F .

Comp∏ :

[λx : A.b(x) : P (x)] :
∏
x : A P (x), a : A

[λx : A.b(x) : P (x)](a) ≡ b(a) : P (a)
,

2.4. DEPENDENT FUNCTION TYPE 35

Figure 2.1: A dependent function F :
∏
x : A P (x) is a section of the type family P : A→ U

where b(a) ≡ b[a/x] is the term resulting after the substitution of x by a in b. This computation
rule, which explains the application of the elimination rule to the introduction rule, is the
dependent version of β-conversion.

Uniq∏:

F :
∏
x : A P (x)

F ≡ [λx : A.F (x) : P (x)] :
∏
x : A P (x)

.

This optional uniqueness principle, which expresses that every element of the type
∏
x : A P (x) is

uniquely determined by is elimination and abstraction, is the dependent version of η-conversion.

Formula / Type Proof-term

∀x∈AP (x) /
∏
x : A P (x) F :

∏
x : A P (x)

Table 2.3: A dependent function F :
∏
x : A P (x) is a “proof” of the type-theoretic universal

formula

Example 2.4.2 (The dependent functions over the constant type family). If P ≡ λx : A.B : A→
U is the constant type family B : U in U over A : U , then∏

x : A

P (x) ≡
∏
x : A

B ≡ A→ B.

36 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Example 2.4.3 (The dependent identity function). If P ≡ (λX : U .X → X) : U → U , the
dependent dependent function

Id:
∏
X : U

(X → X)

is defined by
Id ≡ λX : U .idX ,

hence Id(A) ≡ idA, for every A : U .

Example 2.4.4 (Composition of a dependent function with a function). If A,B : U , f : A→ B
Q : B → U and G :

∏
y : B Q(y), then

(Q ◦ f) : A→ U ,

and we define the dependent function

(G ◦ f) :
∏
x : A

(Q ◦ f)(x) ≡
∏
x : A

(Q(f(x))

by
G ◦ f ≡ λx : A.G(f(x)),

hence (G ◦ f)(a) ≡ G(f(a)), for every a : A.

We use the following notational convention∏
x,y : A

≡
∏
x : A

∏
y : A

.

2.5 Product type

Definition 2.5.1. Form× :

A,B : U
A×B : U .

I.e., given A,B : U the cartesian product, or simply the product A×B of A,B is in U .

Intro× :

a : A, b : B

(a, b) : A×B .

Rec× :

A,B,C : U , g : A→ B → C

f : A×B → C, f((a, b)) ≡ g(a, b) ≡ g(a)(b), for every a : A, b : B
.

Ind× :

A,B : U , P : A×B → U , G :
∏
x : A

∏
y : B P ((x, y))

F :
∏
z : A×B P (z), F ((a, b)) ≡ G(a, b) ≡ G(a)(b), for every a : A, b : B

.

2.5. PRODUCT TYPE 37

Figure 2.2: The recursion rule for the product A×B

Figure 2.3: The induction rule for the product A×B

38 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Formula / Type Proof-term

A ∧B / A×B (a, b) : A×B

Table 2.4: A pair (a, b) : A×B is a “proof” of the type-theoretic conjunction

The recursion principle Rec× presents the data necessary to the definition of a function
f on the defined type, here A × B, and the way this function f operates on the canonical
elements of the type, here on the pairs of the form (a, b) with a : A and b : B. Namely, if C : U
and g : A→ B → C are given, then there is a function

f : A×B → C,

defined by

f((a, b)) ≡ g(a, b) ≡ g(a)(b),

for every a : A and b : B. We can write this recursion rule as the existence of a term

Rec× :
∏

X,Y,Z : U
(X → Y → Z)→ (X × Y)→ Z

satisfying the computation rule

Rec×(A,B,C, g, (a, b)) ≡ RecA×B(C, g, (a, b)) ≡ g(a)(b)

i.e.,

f ≡ Rec×(A,B,C, g) ≡ RecA×B(C, g).

The induction principle Ind× presents the data necessary to the definition of a dependent
function F on the defined type, here A×B, and the way this dependent function F operates
on the canonical elements of the type, here on the pairs of the form (a, b) with a : A and b : B.
Namely, If P : A×B → U and

G :
∏
x : A

∏
y : B

P ((x, y))

are given, there is a dependent function

F :
∏

z:A×B
P (z)

such that

F ((a, b)) ≡ G(a, b),

for every a : A and b : B. We can write this induction rule as the existence of a term

Ind× :
∏

X,Y : U

∏
Π: X×Y→U

∏
Φ:

∏
x : X

∏
y : Y Π((x,y))

∏
z:X×Y

Π(z)

2.5. PRODUCT TYPE 39

satisfying the computation rule

Ind×(A,B, P,G, (a, b)) ≡ IndA×B(P,G, (a, b)) ≡ G(a)(b)

i.e.,

F ≡ Ind×(A,B, P,G) ≡ IndA×B(P,G).

The induction rule of an inductively defined type implies the corresponding recursion rule by
considering the constant type family. This is also the case here.

Proposition 2.5.2. The induction rule IndA×B implies the recursion rule RecA×B i.e., if
there is a term

IndA×B :
∏

Π: A×B→U

∏
Φ:

∏
x : A

∏
y : B Π((x,y))

∏
z:A×B

Π(z),

satisfying the computation rule IndA×B(P,G, (a, b)) ≡ G(a)(b), then there is a term

RecA×B :
∏
Z : U

(A→ B → Z)→ (A×B)→ Z,

satisfying the computation rule RecA×B(C, g, (a, b)) ≡ g(a)(b).

Proof. Exercise.

In other words, we find a term of type(∏
X,Y : U

∏
Π: X×Y→U

∏
Φ:

∏
x : X

∏
y : Y Π((x,y))

∏
z:X×Y

Π(z)

)
→
(∏
X,Y,Z : U

(X → Y → Z)→ (X×Y)→ Z

)
.

Proposition 2.5.3. If A,B : U , the first and second projection functions

pr1,A×B : A×B → A, pr1,A×B((a, b)) ≡ a, a : A, b : B

pr2,A×B : A×B → B, pr2,A×B((a, b)) ≡ b, a : A, b : B,

are defined through the recursion principle for A×B.

Proof. Exercise.

We also write pr1, instead of pr1,A×B, and pr2, instead of pr2,A×B. The converse to
Proposition 2.5.3 holds. Namely, given the projection functions, the recursion term is definable.

Proposition 2.5.4. If the projection functions pr1,A×B and pr2,A×B, together with their
computation rules pr1,A×B((a, b)) ≡ a and pr2,A×B((a, b)) ≡ b, for every a : A and b : B, are
given, then the recursion term RecA×B is derivable.

Proof. Exercise.

Definition 2.5.5. If A,B : U , let the new type A↔ B ≡ (A→ B)× (B → A).

Proposition 2.5.6. If A,B,C : U , fA : C → A and fB : C → B, there is a function h : C →
A×B, such that

40 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

A A×B B.

C

pr1 pr2

fA fBh

(pr1 ◦ h)(c) ≡ fA(c) & (pr2 ◦ h)(c) ≡ fB(c),

for every c : C.

Proof. Let h ≡ λx : C .(fA(x), fB(x)), and use β-conversion.

Corollary 2.5.7. If A,B,A′, B′ : U , f : A → B and f ′ : A′ → B′, there is a function f ×
f ′ : A×A′ → B ×B′, such that for every a : A and a′ : A′

B B ×B′ B′

A×A′

A A′

pr1

pr2

f

pr1

f × f ′

pr1

f ′

(pr1 ◦ (f × f ′))((a, a′)) ≡ f(a) & (pr2 ◦ (f × f ′))((a, a′)) ≡ f ′(a′).

Proof. Exercise.

In summary, we have a universal-property term for A×B of the following type:

UnivA×B :
∏
X : U

[X → (A×B)]↔ (X → A)× (X → B).

2.6 Coproduct type

Next we define the type that corresponds to the disjoint union of two sets.

Definition 2.6.1. Form+ :

A,B : U
A+B : U .

I.e., given A,B : U the coproduct, or the disjoint union A+B of A,B is in U .

Intro+ :

a : A
inl(a) : A+B

b : B
inr(b) : A+B .

I.e., every term a : A is left-injected into A + B and every term b : B is right-injected into
A+B. Notice that for simplicity we write inl(a), instead of inlA+B(a), and inr(b), instead of
inrA+B(b).

2.6. COPRODUCT TYPE 41

Figure 2.4: Canonical terms of the type A+B

Rec+ :

A,B,C : U , gl : A→ C, gr : B → C

f : A+B → C, f(inl(a)) ≡ gl(a), f(inr(b)) ≡ gr(b), for every a : A, b : B
.

Ind+ :

A,B : U , P : A+B → U , Gl :
∏
x : A P (inl(x)), Gr :

∏
y : B P (inr(y))

F :
∏
z : A+B P (z), F (inl(a)) ≡ Gl(a), F (inr(b)) ≡ Gr(b), for every a : A, b : B

.

Formula / Type Proof-term

A ∨B / A+B inl(a), inr(b) : A+B

Table 2.5: A term inl(a), or inr(b) is a “proof” of the type-theoretic disjunction

The recursion principle Rec+ presents the data necessary to the definition of a function
f on the defined type, here A + B, and the way this function f operates on the canonical
elements of the type, here on the terms of the form inl(a), or inr(b), with a : A and b : B.
Namely, if C : U and if functions gl : A→ C and gr : B → C are given, then there is a function

f : A+B → C,

defined by
f(inl(a)) ≡ gl(a), f(inr(b)) ≡ gr(b),

42 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Figure 2.5: The recursion rule for the coproduct A+B

Figure 2.6: The induction rule for the coproduct A+B

2.6. COPRODUCT TYPE 43

for every a : A and b : B. We can write this recursion rule as the existence of a term

Rec+ :
∏

X,Y,Z : U
(X → Z)→ (Y → Z)→ (X + Y)→ Z

satisfying the computation rules

Rec+(A,B,C, gl, gr, inl(a)) ≡ RecA+B(C, gl, gr, inl(a)) ≡ gl(a),

Rec+(A,B,C, gl, gr, inr(b)) ≡ RecA+B(C, gl, gr, inr(b)) ≡ gr(b)

i.e.,
f ≡ Rec+(A,B,C, gl, gr) ≡ RecA+B(C, gl, gr).

The induction principle Ind+ presents the data necessary to the definition of a dependent
function F on A×B and the way this dependent function F operates on the canonical elements
inl(a), or inr(b) of A + B, with a : A and b : B. Namely, If P : A + B → U and dependent
functions

Gl :
∏
x : A

P (inl(x)), Gr :
∏
y : B

P (inr(y))

are given, there is a dependent function

F :
∏

z:A+B

P (z)

such that
F (inl(a)) ≡ Gl(a), F (inr(b)) ≡ Gr(b),

for every a : A and b : B. We can write this induction rule as the existence of a term

Ind+ :
∏

X,Y : U

∏
Π: X+Y→U

∏
Φl :

∏
x : A Π(inl(x))

∏
Φr :

∏
y : B Π(inr(y))

∏
z:X+Y

Π(z)

satisfying the computation rules

Ind+(A,B, P,Gl, Gr, inl(a)) ≡ IndA+B(P,Gl, Gr, inl(a)) ≡ Gl(a),

Ind+(A,B, P,Gl, Gr, inr(b) ≡ IndA+B(P,Gl, Gr, inr(b)) ≡ Gr(b)

i.e.,
F ≡ Ind+(A,B, P,Gl, Gr) ≡ IndA+B(P,Gl, Gr).

The above induction rule implies the above recursion rule.

Proposition 2.6.2. The induction rule IndA+B implies the recursion rule RecA+B i.e., if
there is a term

IndA+B :
∏

Π: X+Y→U

∏
Φl :

∏
x : A Π(inl(x))

∏
Φr :

∏
y : B Π(inr(y))

∏
z:X+Y

Π(z),

satisfying the above computation rules, then there is a term

RecA+B :
∏
Z : U

(A→ Z)→ (B → Z)→ (A+B)→ Z,

satisfying the above computation rules.

44 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Proof. Exercise.

Proposition 2.6.3. If A,B : U , let the left and right injections

inlA+B : A→ A+B, inlA+B ≡ λx : A.inl(x),

inrA+B : A→ A+B, inrA+B ≡ λy : B.inr(y).

If C : U and gl : A→ C, gr : B → C, there is f : A+B → C such that for every a : A and b : B

A A+B B.

C

inlA+B inrA+B

gl grf

(f ◦ inlA+B)(a) ≡ gl(a), & (f ◦ inrA+B)(b) ≡ gr(b),

Proof. Exercise.

For simplicity, we write inl, instead of inlA+B, and inr, instead of inrA+B. In contrast to
what happens in the product type, the converse to Proposition 2.6.3 cannot be shown (why?).

Corollary 2.6.4. If A,B,A′, B′ : U , f : B → A and f ′ : B′ → A′, there is a function f +
f ′ : B +B′ → A+A′, such that

B B +B′ B′

A+A′

A A′

inl

inl
f

inr

f + f ′

inr
f ′

(
f + f ′

)
(inl(b)) ≡ inl(f(b)) &

(
f + f ′

)
(inr(b′)) ≡ inr(f ′(b′)),

for every b : B and b′ : B′.

Proof. Exercise.

In summary, we have a universal-property term for A+B of the following type:

UnivA+B :
∏
X : U

[(A+B)→ X]↔ (A→ X)× (B → X).

Notice that we cannot prove now that the injection of A under inl into A+B is “disjoint” to
the injection of B under inr into A+B.

2.7. DEPENDENT PAIR TYPE 45

Figure 2.7: Canonical terms of the type
∑

x : A P (x)

2.7 Dependent pair type

Next we define the dependent version of the product type.

Definition 2.7.1. Form∑ :

A : U , P : A→ U∑
x : A P (x) : U .

I.e., given A : U and a type family P : A→ U , the dependent pair type
∑

x : A P (x) is in U .

Intro∑ :

a : A, b : P (a)

(a, b) :
∑

x : A P (x)
.

I.e., a canonical term of
∑

x : A P (x) is a pair (a, b), where a : A and b : P (a).

Rec∑ :

A,C : U , P : A→ U , G :
∏
x : A

(
P (x)→ C

)
f :
(∑

x : A P (x)
)
→ C, f((a, b)) ≡ G((a, b)) ≡ G(a)(b), for every a : A, b : P (a)

.

Ind∑ :

A : U , P : A→ U , Q :
(∑

x : A P (x)
)
→ U , G :

∏
x : A

∏
y : P (x)Q((x, y))

F :
∏
z :

∑
x : A P (x)Q(z), F ((a, b)) ≡ G(a, b) ≡ G(a)(b), for every a : A, b : P (a)

.

46 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Formula / Type Proof-term

∃x∈AP (x) /
∑

x : A P (x) (a, b) :
∑

x : A P (x)

Table 2.6: A dependent pair (a, b) :
∑

x : A P (x) is a “proof” of the type-theoretic existential
formula

Figure 2.8: Recursion rule for the Sigma-type

If we interpret a type family P : A→ U over A as a predicate on A, then we can correspond
the type

∑
x : A P (x) to the set

XP = {x ∈ A | P (x)}.

The rule Rec∑ presents the data necessary to the definition of a function f on
∑

x : A P (x)
and the way this function f operates on the canonical elements of it i..e, on the pairs of the
form (a, b) with a : A and b : P (a). Namely, if C : U and G :

∏
x : A(P (x)→ C), there exists

f :

(∑
x : A

P (x)

)
→ C

such that

f((a, b)) ≡ G(a, b) ≡ G(a)(b),

for every a : A and b : P (a). We can write this recursion rule as the existence of a term

Rec∑ :
∏

X,Z : U

∏
Π: X→U

∏
Φ:

∏
x : X

(
Π(x)→Z

)
[(∑

x : X

Π(x)

)
→ Z

]

2.7. DEPENDENT PAIR TYPE 47

Figure 2.9: Induction rule for the Sigma-type

satisfying the computation rule

Rec∑(A,C, P,G, (a, b)) ≡ Rec∑
x : A P (x)(C,G, (a, b)) ≡ G(a)(b)

i.e.,
f ≡ Rec∑(A,C, P,G) ≡ Rec∑

x : A P (x)(C,G).

The induction principle Ind∑ presents the data necessary to the definition of a dependent
function F on

∑
x : A P (x) and the way this dependent function F operates on the canonical

elements of
∑

x : A P (x). Namely, if Q :
(∑

x : A P (x)
)
→ U , and

G :
∏
x : A

∏
y : P (x)

Q((x, y)),

there is a dependent function

F :
∏

z :
∑
x : A P (x)

Q(z),

such that
F ((a, b)) ≡ G(a, b) ≡ G(a)(b),

for every a : A and b : P (a). We can write this induction rule as the existence of a term

Ind∑ :
∏
X : U

∏
Π: X→U

∏
R :
(∑

x : X Π(x)
)
→U

∏
Φ:

∏
x : X

∏
y : Π(x) R((x,y))

∏
z :

∑
x : X Π(x)

R(z)

satisfying the computation rule

Ind∑(A,P,Q,G, (a, b)) ≡ Ind∑
x : A P (x)(Q,G, (a, b)) ≡ G(a)(b)

i.e.,
F ≡ Ind∑(A,P,Q,G) ≡ Ind∑

x : A P (x)(Q,G).

Next we explain why
∑

x : A P (x) is called the type of dependent pairs.

48 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Remark 2.7.2. If P : A→ U is the constant type family B : U , then∑
x : A

P (x) ≡
∑
x : A

B ≡ A×B.

Proof. Exercise.

Proposition 2.7.3. The induction rule Ind∑
x : A P (x) implies the recursion rule Rec∑

x : A P (x)

i.e., if there is a term

Ind∑ :
∏
X : U

∏
Π: X→U

∏
R :
(∑

x : X Π(x)
)
→U

∏
Φ:

∏
x : X

∏
y : Π(x)R((x,y))

∏
z :

∑
x : X Π(x)

R(z),

satisfying the computation rule Ind∑
x : A P (x)(Q,G, (a, b)) ≡ G(a)(b), then there is a term

Rec∑ :
∏

X,Z : U

∏
Π: X→U

∏
Φ:

∏
x : X

(
Π(x)→Z

)
[(∑

x : X

Π(x)

)
→ Z

]
,

satisfying the computation rule Rec∑
x : A P (x)(C,G, (a, b)) ≡ G(a)(b).

Proof. Exercise.

Proposition 2.7.4. Let A : U and P : A→ U .

(i) The first projection function

pr1,
∑ :

(∑
x : A

P (x)

)
→ A, pr1,

∑((a, b)) ≡ a, a : A, b : P (a),

is defined through the recursion principle for
∑

x : A P (x).

(ii) The second projection (dependent) function

pr2,
∑ :

∏
z:
∑
x : A P (x)

P (pr1,
∑(z)), pr2,

∑((a, b)) ≡ b, a : A, b : P (a),

is defined through the induction principle for
∑

x : A P (x).

Proof. (i) With the use of Rec∑, if G :
∏
x:A(P (x)→ A) is defined by

G ≡ λx : A.
(
λy : P (x).x

)
,

then there is a function

pr1,
∑ :

(∑
x : A

P (x)

)
→ A

that satisfies the computation rule

pr1,
∑((a, b)) ≡ G(a, b) ≡ G(a)(b) ≡

(
λy : P (a).a

)
(b) ≡ a,

for every a : A and b : P (x).

2.8. THE TYPE-THEORETIC AXIOM OF CHOICE 49

(ii) Use the induction principle Ind∑ for the type family

Q :

(∑
x : A

P (x)

)
→ U ,

defined by
Q ≡ λz :

∑
x : A P (x).P

(
pr1,

∑(z)
)
,

and an appropriately defined term

G :
∏
x : A

∏
y : P (x)

Q((x, y)).

Next we write the dependent version of Proposition 2.5.4.

Proposition 2.7.5. Let A : U , P : A→ U and

G :
∏
x : A

(
P (x)→ C

)
.

If the projection functions pr1,
∑ and pr2,

∑, together with their computation rules are given,
then the recursion term Rec∑(A,C, P,G), together with its computation rule, are derivable.

Proof. Exercise.

2.8 The type-theoretic axiom of choice

In MLTT the type-theoretic formulation of the following form of the axiom of choice

∀x∈A∃y∈BR(x, y)⇒ ∃f∈F(A,B)∀x∈AR(x, f(x)),

where R ⊆ A × B, is provable! Although the type-theoretic axiom of choice is the direct
translation of the axiom of choice in MLTT, it does not involve a “choice”, as the classical
one. The reason behind its provability is the proof-relevant character of the types involved.

Theorem 2.8.1. If A,B : U and R : A→ B → U , there is a term

ACA,B,R :

(∏
x : A

∑
y : B

R(x, y)

)
→
(∑
φ : A→B

∏
x : A

R(x, φ(x))

)
.

Proof. Let a term

G :
∏
x : A

∑
y : B

R(x, y).

By η-conversion we have that

G ≡ λx : A.

[
G(x) :

∑
y : B

R(x, y)

]
.

We show that this term G carries enough information to define its value

ACA,B,R(G) :
∑

φ : A→B

∏
x : A

R(x, φ(x)).

50 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Clearly
pr1,

∑(G(x)
)

: B & pr2,
∑(G(x)

)
: R
(
x, pr1,

∑(G(x)
))
.

Hence

fG ≡
[
λx : A.pr1,

∑(G(x)
)

: B

]
: A→ B,

FG ≡
[
λx : A.pr2,

∑(G(x)
)

: R
(
x, pr1,

∑(G(x)
))]

:
∏
x : A

R(x, fG(x)).

Consequently, we define

ACA,B,R ≡ λΦ:
∏
x : A

∑
y : B R(x,y).

(
fΦ, FΦ

)
,

where

fΦ ≡
[
λx : A.pr1,

∑(Φ(x)
)

: B

]
: A→ B,

FΦ ≡
[
λx : A.pr2,

∑(Φ(x)
)

: R
(
x, pr1,

∑(Φ(x)
))]

:
∏
x : A

R(x, fΦ(x)).

The converse to Theorem 2.8.1 also holds.

Proposition 2.8.2. If A,B : U and R : A→ B → U , there is a term

CAA,B,R :

(∑
φ : A→B

∏
x : A

R(x, φ(x))

)
→
(∏
x : A

∑
y : B

R(x, y)

)
.

Proof. Exercise.

2.9 The empty type

Next we define the type corresponding to the empty set.

Definition 2.9.1. Form0 :

0 : U .

I.e., the empty type 0 is in U .

Intro0 : There is no such rule i.e., there is no canonical element of 0.

Rec0 :

A : U
EfqA : 0→ A .

I.e., if A : U , there is always a term EfqA : 0→ A without giving some computation rule for it.

Ind0 :

P : 0→ U
EFQP :

∏
x : 0 P (x) .

I.e., if P : 0→ U , there is always a term EFQP :
∏
x : 0 P (x) without giving some computation

rule for it.

2.10. THE UNIT TYPE 51

Formula / Type Proof-term

⊥ / 0 −

Table 2.7: There is no term or “proof” of the type-theoretic absurdity

The rule Rec0 corresponds to the intuitionistic principle ex falso quodlibet

⊥ → A,

for every formula A. We can write the above rules as terms

Rec0 ≡ Efq:
∏
X : U

(0→ X),

Ind0 ≡ EFQ:
∏

Π: 0→U

∏
x : 0

Π(x).

Trivially, the existence of Ind0 implies the existence of Rec0.

Definition 2.9.2. If A : U , the negation ¬A of A is the type in U defined by

¬A ≡ A→ 0.

We say that A is inhabited, if there is a closed term a : A, and we say that A is not inhabited,
or empty, if ¬A is inhabited.

Remark 2.9.3. (i) The type 0 is empty.

(ii) If A : U is inhabited, then a term of type 0→ A is definable.

Proof. (i) By Definition 2.9.2 it suffices to show that ¬0 ≡ 0 → 0 is inhabited. Clearly,
Efq0 : 0→ 0.

(ii) If a : A, let f : 0→ A be defined by f ≡ λx : 0.a.

2.10 The unit type

Next we define the type-theoretic version of a singleton.

Definition 2.10.1. Form1 :

1 : U .

I.e., the unit type 1 is in U .

Intro1 :

01 : 1 .

I.e., the unit type has a single canonical term 01.

52 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Rec1 :

A : U , a : A

f : 1→ A, f(01) ≡ a .

Ind1 :

P : 1→ U , a : P (01)

F :
∏
x : 1 P (x), F (01) ≡ a .

By Rec1, if A : U , then to define a function f : 1 → A, it suffices to know a term a : A.
Similarly, if P : 1→ U , then by Ind1 to define a dependent function F :

∏
x : 1 P (x), it suffices

to know a term a : P (01).

Formula / Type Proof-term

> / 1 01 : 1

Table 2.8: There is term or “proof” of the type-theoretic verum (truth)

Remark 2.10.2. If A : U , there is a term 1A : A→ 1.

Proof. Exercise.

2.11 The type of booleans

Next we define the type-theoretic version of the set of truth-values.

Definition 2.11.1. Form2 :

2 : U .

I.e., the type of booleans 2 is in U .

Intro2 :

02 : 2 , 12 : 2 .

I.e., the type of booleans has the canonical terms 02, 12.

Rec2 :

A : U , a, b : A

f : 2→ A, f(02) ≡ a, f(12) ≡ b .

Ind2 :

P : 2→ U , a : P (02), b : P (12)

F :
∏
x : 2 P (x), F (02) ≡ a F (12) ≡ b .

2.11. THE TYPE OF BOOLEANS 53

Figure 2.10: Rec2 and Ind2

By Rec2, if A : U , then to define a function f : 2→ A, it suffices to know two terms a, b : A.
Similarly, if P : 2→ U , then by Ind2 to define a dependent function F :

∏
x : 2 P (x), it suffices

to know terms a : P (02) and b : P (12).

Remark 2.11.2. (i) There is a function sw : 2→ 2 such that sw(02) ≡ 12 and sw(12) ≡ 02.

(ii) There is a function f : 2→ 1 + 1 such that f(02) ≡ inl(01) and f(12) ≡ inr(01).

(iii) There is a function g : 1 + 1→ 2 such that g
(
inl(01)

)
≡ 02 and g

(
inr(01)

)
≡ 12.

Proof. Exercise.

Notice that we cannot show yet that 02 and 12 are “different” terms. Later we will see
that with the help of the above functions f, g the type 2 and the coproduct 1 + 1 not only are
logically equivalent, but also they can be identified. All recursion and induction principles
mentioned so far are relative to a given universe and we have a recursion and induction such
principle for each universe in the hierarchy of universes. This fact can be used as follows.

Proposition 2.11.3. If A,B : U , there is a type family P : 2′ → U , where 2′ : U ′ is the type
of booleans in the immediate successor universe U ′ to U , such that

P (02) ≡ A & P (12) ≡ B.

Moreover, there are non-trivial logical equivalences∏
x : 2

P (x)↔ A×B &
∑
x : 2

P (x)↔ A+B.

Proof. As A,B,U : U ′, by Rec2′ in U ′, there is such a type family P in U ′. The required logical
equivalences are straightforward to define.

Later we will see that the above types can be identified, hence the product and coproduct
of types are redundant in the presence of the type of booleans, the dependent products , the
dependent pairs, and the hierarchy of universes.

54 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

2.12 The type of naturals

Next we define the type-theoretic version of the set of natural numbers.

Definition 2.12.1. FormN :

N : U .

I.e., the type of natural numbers N is in U .

IntroN :

0N : N ,
n : N

succ(n) : N ,

I.e., the type of naturals has the canonical terms 0N, succ(0N), succ(succ(0N)), etc..

RecN :

A : U , a : A, s : N→ A→ A

f : N→ A, f(0N) ≡ a, f(succ(n)) ≡ s
(
n, f(n)

) .
IndN :

P : N→ U , a : P (0N), S :
∏
x : N

(
P (x)→ P (succ(x)

)
F :

∏
x : N P (x), F (0N) ≡ a, F (succ(n)) ≡ S(n, F (n))

.

We define the following canonical terms of N:

1 ≡ succ(0),

2 ≡ succ(1) ≡ succ(succ(0)),

3 ≡ succ(2) ≡ succ(succ(succ(0))),

4 ≡ succ(3) ≡ succ(succ(succ(succ(0)))),

and so on. Recall the set-theoretic induction principle IndN for N:[
P (0) & ∀n∈N(P (n)⇒ P (Succ(n)))

]
⇒ ∀n∈N(P (n)),

where P (n) is an arbitrary formula on the set of naturals N. The induction principle of
the type N is a proof-relevant version of IndN, as a : P (0N) witnesses that P (0) is true,
S :

∏
x : N

(
P (x) → P (succ(x)

)
witnesses that for an arbitrary n : N, if a : P (n), then

[S(n)](a) : P (succ(n), and hence F :
∏
x : N P (x) witnesses the universal validity of P on

N. The computation-part of IndN expresses the fact that the way F proves
∏
x : N P (x) is

determined from the proof-terms a and S.
By RecN, if A : U , to define a function f : N→ A, it suffices to know a term a : A and a

function s : N→ A→ A. In this case f : N→ A satisfies the computation rules

f(0N) ≡ a,

f(succ(n)) ≡ s(n, f(n)),

and we say that it is defined by primitive recursion.

2.12. THE TYPE OF NATURALS 55

Figure 2.11: IndN

Figure 2.12: RecN

56 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Example 2.12.2. There is a function pred: N→ N satisfying the computation rules

pred(0N) ≡ 0N,

pred(succ(n)) ≡ n.

Use RecN on s : N→ N→ N, where s(m,n) ≡ m. Clearly, pred(2) ≡ pred(succ(1)) ≡ 1.

Example 2.12.3. There is a function double : N→ N satisfying the computation rules

double(0N) ≡ 0N,

double(succ(n)) ≡ succ(succ(double(n))).

It is straightforward to show that double(2) ≡ 4.

Example 2.12.4. There is a function add: N→ N→ N satisfying the computation rules

add(0N, n) ≡ n,

add(succ(m), n) ≡ succ(add(m,n)).

It is straightforward to show that add(2, 2) ≡ 4. Usually we write m+ n ≡ add(m,n), where
m,n : N.

The types N and 1 are logically equivalent, but as expected, they will not be equivalent
in an interesting sense. In other words, logical equivalence is not an interesting notion of
equivalence for types. Actually, any two inhabited types are logically equivalent !

Remark 2.12.5. There is a term (f, g) : N↔ 1.

Proof. Exercise.

If P : N → U , then by IndN to define a dependent function F :
∏
x : N P (x), it suffices

to know terms a : P (0N) and a dependent function S :
∏
x : N

(
P (x)→ P (succ(x)

)
. Clearly,

IndN is the type-theoretic version of the set-theoretic induction principle for natural numbers
that we mentioned in section 1.2.

Example 2.12.6. Let N′ be the type of natural numbers in U ′. There is a type family
Fin: N′ → U satisfying the computation rules

Fin(0N′) ≡ 1,

Fin(succ(n′)) ≡ 1 + Fin(n′).

If one defines a term
S :

∏
x : N′

(
Fin(x′)→ Fin(succ(x′)

)
,

one gets a dependent function

F :
∏
x : N′

Fin(x′)

with the help of IndN′ .

Definition 2.12.7. The successor function succ : N→ N is defined by succ ≡ λx : N.succ(x).

2.13. THE EQUALITY TYPE FAMILY 57

Figure 2.13: Terms of the equality type as paths

2.13 The equality type family

Next follows the type-theoretic version of the set-theoretic equality. The equality between
terms a, b of a type A in a universe U is a new type

a =A b

in U , and its induction principle is the most important proof-tool of MLTT. We represent a
term p : a =A b as a path from a : A to b : A, while the introduced, canonical path refla : a =A a
as a loop at a : A. This representation is motivated by the homotopic interpretation of MLTT
given by Voevodsky and discussed later in the course.

Definition 2.13.1. If A : U , the type family =A : A→ A→ U , where

a =A b ≡=A (a, b) : U ,

is defined by the following rules. Notice that we use Greek letter π,$, ρ, σ for variables of type
x =A y and Latin letters p, q, r, s for closed terms of the equality type.

Intro=A:

reflA :
∏
x : A

x =A x.

If a : A, we denote for simplicity the object reflA(a) : a =A a by refla.

Ind=A:

Q :
∏
x,y : A

∏
π : x=Ay

U , R :
∏
x : AQ(x, x, reflx)

R̂ :
∏
x,y : A

∏
π : x=Ay

Q(x, y, π), R̂(a, a, refla) ≡ R(a)
.

58 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Figure 2.14: The J-rule

The type a =A b is also called the identity type from a to b, and the induction principle
Ind=A is also called Martin-Löf’s J-rule. The J-rule expresses an extension-property, since,
according to it, if

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
,

together with a term

R :
∏
x : A

Q(x, x, reflx)

are given, then there is a dependent function

R̂ :
∏
x,y : A

∏
π : x=Ay

Q(x, y, π)

that extends R in the sense that for every a : A

R̂(a, a, refla) ≡ R(a).

The notation R̂ does not indicate a unique term of that type that satisfies the above
computation rule, although, if the axiom of function extensionality is added to MLTT, then
uniqueness of extension, up to the corresponding equality, is provable (see Proposition 3.1.4).
We can package the induction principle Ind=A into a single function

JA ≡ Ind=A :
∏

Φ:
∏
x,y : A

∏
π : x=Ay

U

∏
Θ:

∏
x : A Φ(x,x,reflx)

 ∏
x,y : A

∏
π : x=Ay

Φ(x, y, π)

with the defining equation

JA(Q,R, a, a, refla) ≡ R(a).

The recursion rule corresponding to the equality types of A : U takes the following form.

2.13. THE EQUALITY TYPE FAMILY 59

Figure 2.15: The infinity structure of the equality types

Corollary 2.13.2 (Rec=A). Let A,B : U and f : A→ B. There is a term

f̂ :
∏
x,y : A

∏
π : x=Ay

B ≡
∏
x,y : A

(x =A y → B)

such that f̂(a, a, refla) ≡ f(a), for every a : A.

Proof. Let

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
,

defined by Q(a, b, p) ≡ B i.e.,

Q ≡ λx : Aλy : Aλπ : x=Ay.B.

Moreover, let

R :
∏
x : A

Q(x, x, reflx) ≡
∏
x : A

B ≡ A→ B,

defined by R ≡ f . By the J-rule there is a term f̂ with f̂(a, a, refla) ≡ R(a) ≡ f(a).

Notice that the above rule follows trivially without the use of the J-rule, hence it is not
interesting. As a =A b is a type in U , if p, q : a =A b, then we have the new type

p =a=Ab
q.

This procedure of forming new equality types can be repeated infinitely many times. If
r, s : p =a=Ab

q, we get the new type

r =p=a=Ab
q s.

Although at the moment we cannor say, if the terms p, q : a =A b are always equal or not, we
can associate a family of equality types as a bove to every type A : U . The next chapter is
devoted in the understanding of the equality type family and to the study of its implications.

60 CHAPTER 2. BASIC TYPES OF MARTIN-LÖF TYPE THEORY

Chapter 3

General properties of the equality
type-family

In this chapter we present applications of the J-rule to the study of the general equality type
family =A : A → A → U . The general “technique” of applying the J-rule in a proof is the
following:

Step 1: Create a type Q(a, b, p) out of the given data A : U , a, b : A, p : a =A b, and the
property to be proven i.e., translate what is to be proven into a type Q(a, b, p).

Step 2: Define through Step 1 the term

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
.

Step 3: Define the term

R :
∏
x : A

Q(x, x, reflx)

by unfolding Q(x, x, reflx). I most cases the definition of R(x) is straightforward.

Step 4: Apply the J-rule on Q and R to get the required term

R̂ :
∏
x,y : A

∏
π : x=Ay

Q(x, y, π)

with the computation rule R̂(a, a, refla) ≡ R(a).

3.1 Transport and least reflexive relation

Next we show that two equal terms of a type have the same properties. This result is also
known as indiscernability of identicals, and it expresses the fact that if a =A b, and a : A
satisfies property P i.e., the type P (a) is inhabited, then b : A satisfies P too i.e., the type
P (b) is also inhabited.

Proposition 3.1.1 (Transport). If A : U , a, b : A, p : a =A b, and P : A → U , there is a
function p∗ : P (a)→ P (b) such that, if p ≡ refla, then (refla)∗ ≡ idP (a).

62 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Figure 3.1: The transport p∗ : P (a)→ P (b) of an equality term p : a =A b

Proof. Let

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
,

defined by

Q(a, b, p) ≡ P (a)→ P (b)

i.e.,

Q ≡ λx : Aλy : Bλπ : x=Ay.
(
P (x)→ P (y)

)
.

Let

R :
∏
x : A

Q(x, x, reflx),

defined by

R(a) ≡ idP (a) : C(a, a, refla) ≡ P (a)→ P (a)

i.e.,

R ≡ λx : A.idP (x).

By the J-rule there is

R̂ :
∏
x,y : A

∏
π : x=Ay

(P (x)→ P (y))

such that

R̂(a, a, refla) ≡ idP (a).

We define p∗ ≡ R̂(a, b, p). Hence, if p ≡ refla, we get (refla)∗ ≡ R̂(a, a, refla) ≡ idP (a).

3.1. TRANSPORT AND LEAST REFLEXIVE RELATION 63

Hence, if a =A b and P (a) holds i.e., there is a term u : P (a), then P (b) also holds, since
p∗(u) : P (b). If necessary, we write pP∗ , instead of p∗, to denote the transport of the equality
term p : a =A b with respect to the type family P over A : U . We can package the above result
in a single term as follows:

TransportA :
∏

Π: A→U

∏
x,y : A

∏
π : x=Ay

(
Π(x)→ Π(y)

)
TransportA(P, a, a, refla) ≡ idP (a), a : A.

Next we show that the J-rule implies that the type family

=A : A→ A→ U

is the least reflexive relation on A i.e., a relation of the form

R : A→ A→ U .

Proposition 3.1.2 (Least reflexive relation). Let A : U and R : A → A → U a reflexive
relation on A i.e., there is a term

reflR :
∏
x : A

R(x, x).

Then there is a term

r̂eflR :
∏
x,y : A

∏
π : x=Ay

R(x, y) ≡
∏
x,y : A

(
x =A y → R(x, y)

)
.

such that r̂eflR(a, a, refla) ≡ reflR(a), for every a : A.

Proof. Let the term

Q :
∏
x,y : A

∏
π : x=Ay

U ,

defined by
Q(a, b, p) ≡ R(a, b); a : A, b : A, p : a =A b.

Let
reflR :

∏
x : A

Q(x, x, reflx) ≡
∏
x : A

R(x, x).

By the J-rule there is

r̂eflR :
∏
x,y : A

∏
π : x=Ay

Q(x, y, π) ≡
∏
x,y : A

R(x, y),

such that r̂eflR(a, a, refla) ≡ reflR(a).

We can package the above result in a single term as follows:

LeastReflA :
∏

Σ: A→A→U

∏
σ :

∏
x : A Σ(x,x)

∏
x,y : A

∏
π : x=Ay

Σ(x, y),

LeastReflA(R, reflR, a, a, refla) ≡ reflR(a), a : A.

64 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Proposition 3.1.3. The following are equivalent:

(i) There is a term

TransportA :
∏

Π: A→U

∏
x,y : A

∏
π : x=Ay

(
Π(x)→ Π(y)

)
such that TransportA(P, a, a, refla) ≡ idP (a), for every a : A.

(ii) There is a term

LeastReflA :
∏

Σ: A→A→U

∏
σ :

∏
x : A Σ(x,x)

∏
x,y : A

∏
π : x=Ay

Σ(x, y),

such that LeastReflA(R, reflR, a, a, refla) ≡ reflR(a), for every a : A.

Proof. Exercise.

Proposition 3.1.4 (Pointwise equality of extensions). Let terms

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
,

R :
∏
x : A

Q(x, x, reflx).

If there are dependent functions

F,G :
∏
x,y : A

∏
π : x=Ay

Q(x, y, π),

such that

F (x, x, reflx) ≡ R(x) ≡ G(x, x, reflx),

for every x : A, then ∏
x,y : A

∏
π : x=Ay

F (x, y, π) =Q(x,y,π) G(x, y, π).

Proof. Exercise.

One needs the axiom of function extensionality to conclude that

F =∏
x,y : A

∏
π : x=Ay

Q(x,y,π) G.

3.2 The uniqueness-rule associated to the equality type-family

Let the term

Q :
∏
x : A

∏
π : x=Ax

U ≡
∏
x : A

(
x =A x→ U

)
,

defined by

Q(x, π) ≡ π =x=Ax reflx.

3.2. THE UNIQUENESS-RULE ASSOCIATED TO THE EQUALITY TYPE-FAMILY 65

Figure 3.2: The pointwise uniqueness of two extensios of R

Let also the term

R :
∏
x : A

Q(x, reflx) ≡
∏
x : A

(
reflx =x=Ax reflx

)
,

defined by
R(x) ≡ reflreflx .

The J-rule does not imply (why?) from the existence of the term R the existence of a term

F :
∏
x : A

∏
π : x=Ax

(
π =x=Ax reflx

)
i.e., we cannot prove (in this way) that all terms of type a =A a are equal to refla. Next
follows the uniqueness-rule that corresponds to the equality type.

Proposition 3.2.1 (Uniqueness-rule of the equality type family). If A : U and x : A, let the
singleton type1

Sx ≡
∑
y : A

(x =A y).

There is a term
UniqueA :

∏
x,y : A

∏
π : x=Ay

(
(x, reflx) =Sx (y, π)

)
,

such that for every a : A we have that

UniqueA
(
a, a, refla)

)
≡ refl(a,refla).

1if A is a set, and a ∈ A, the singleton {a} can be defined as the set {a} = {x ∈ A | a = x}. In MLTT if
A : U and a : A, the singleton type is the corresponding

∑
-type

Sa ≡
∑
x : A

(a =A x).

66 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Proof. Let the term

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x : A

(
x =A y → U

)
,

defined by
Q(x, y, π) ≡

(
(x, reflx) =Sx (y, π)

)
.

Let also the term

R :
∏
x : A

Q(x, x, reflx) ≡
∏
x : A

(
(x, reflx) =Sx (x, reflx)

)
,

defined by
R(x) ≡ refl(x,reflx).

Then by the J-rule we get UniqueA ≡ R̂.

Corollary 3.2.2 (Contractibility of the singleton type). If A : U and a : A, let the singleton
type

Sa ≡
∑
y : A

(a =A y).

There is a term
Uniquea :

∏
z : Sa

(
(a, refla) =Sa z

)
,

such that
Uniquea

(
a, refla)

)
≡ refl(a,refla).

Proof. To find such a dependent function over Sa we use the induction rule Ind∑. Let
Pa : A→ U , defined by Pa(y) ≡ (a =A y), Clearly,

Sa ≡
∑
y : A

Pa(y).

Let Qa : Sa → U , defined by

Qa(z) ≡
(
(a, refla) =Sa z

)
.

We define the term

Ga :
∏
y : A

∏
π : Pa(y)

Qa
(
(y, π)

)
≡
∏
y : A

∏
π : a=Ay

(
(a, refla) =Sa (y, π)

)
by Ga ≡ UniqueA(a), where the term UniqueA is given in Proposition 3.2.1. By Ind∑ there
is a term

Uniquea :
∏
z : Sa

Qa(z) ≡
∏
z : Sa

(
(a, refla) =Sa z

)
,

such that
Uniquea

(
(b, p)

)
≡ Ga(b, p) ≡ UniqueA

(
a, (b, p)

)
.

Hence

Uniquea
(
a, refla)

)
≡ UniqueA

(
a, (a, refla)

)
≡ refl(a,refla).

3.2. THE UNIQUENESS-RULE ASSOCIATED TO THE EQUALITY TYPE-FAMILY 67

Although we cannot show that refla is equal in a =A a to an arbitrary term p : a =A a,
the pair (a, refla) id equal in Sa to the arbitrary pair (b, p), where p : a =A b. This is the
“uniqueness”-rule associated to the equality type.

Definition 3.2.3. If A : U , we call A contractible, if there is a term a : A, the center of
contraction, such that ∏

x : A

a =A x.

According to Corollary 3.2.2, Sa is contractible with (a, refla) center of contraction.

Corollary 3.2.4 (Equality reflection rule). Suppose that we add to MLTT the following
equality reflection rule:

A : U , a, b : A, p : a =A b

a ≡ b .

Then if p : a =A a, we get p ≡ refla.

Proof. Exercise.

So far we have seen that the J-rule for A : U implies both TransportA and UniqueA.
Following [10], we show the converse i.e., TransportA and UniqueA (or LeastReflA and
UniqueA) imply the J-rule2. Combining this result with Proposition 3.1.3 we get the following
diagram of equivalences:

TransportA + UniqueA TransportA + LeastReflA

JA.

Theorem 3.2.5 (Coquand). If A : U , then terms TransportA and UniqueA, or equivalently
LeastReflA and UniqueA, together with their computation rules imply the J-rule for A
together with its computation-rule.

Proof. Let terms

Q :
∏
x,y : A

∏
π : x=Ay

U ≡
∏
x,y : A

(
x =A y → U

)
,

R :
∏
x : A

Q(x, x, reflx).

Let
Gx :

∏
y : A

(
(x =A y)→ U

)
,

defined by
Gx ≡ λy : Aλπ : x=Ay.Q(x, y, π) : U .

If Sx ≡
∑

y : A(x =A y), then by Rec∑ there is a function Tx : Sx → U , such that

Tx
(
(b, p)

)
≡ Gx(b, p) ≡ Q(x, b, p).

2The proof in [10] uses the based version of the J-rule, which we avoid here.

68 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

By hypothesis we have that

UniqueA(x, y, π) : (x, reflx) =Sx (y, π),

hence by TransportA we have that[
UniqueA(x, y, π)

]Tx
∗ : Tx

(
(x, reflx)

)
→ Tx

(
(y, π)

)
i.e., [

UniqueA(x, y, π)
]Tx
∗ : Q(x, x, reflx)→ Q(x, y, π).

Hence we define
R̂ :

∏
x,y : A

∏
π : x=Ay

Q(x, y, π)

by

R̂ ≡ λx : Aλy : Aλπ : x=Ay.
[
UniqueA(x, y, π)

]Tx
∗
(
R(x)

)
.

By the computation rules associated to UniqueA and TransportA we get

R̂(a, a, refla) ≡
[
UniqueA(a, a, refla)

]Ta
∗
(
R(a)

)
≡
[
refl(a,refla)

]Ta
∗
(
R(a)

)
≡ id

Ta
(

(a,refla)
)(R(a)

)
≡ idQ(a,a,refla)

(
R(a)

)
≡ R(a).

3.3 The based version of the J-rule

In [28] Paulin-Mohring introduced the following based-version of the J-rule, which is the
induction principle of the inductive definition of the type family =a : A→ U , where a : A and
=a (b) ≡ (a =A b) : U , for every a : A, with introduction rule refla : a =A a.

Definition 3.3.1. If A : U and a : A, the type family =a : A→ U , where

a =A b ≡=a (b) : U ,

is defined by the following rules.

Intro=a :
refla : a =A a.

Ind=a :

Qa :
∏
x : A

∏
π : a=Ax

U , r : Qa(a, refla)

r̂ :
∏
x : A

∏
π : a=Ax

Qa(x, π), r̂(a, refla) ≡ r
.

Ind=a ≡ ja is the based version of Martin-Löf ’s J-rule. The j-rule is the term

j :
∏
y : A

∏
Qy :

∏
x : A

∏
π : y=Ax

U

∏
σ : Qy(x,reflx)

∏
x : A

∏
π : y=Ax

Qy(x, π),

satisfying the computation-rule j(a,Qa, r, a, refla) ≡ r.

3.3. THE BASED VERSION OF THE J-RULE 69

Figure 3.3: The j-rule

The ja-rule expresses an extension-property, since, according to it, if

Qa :
∏
x : A

∏
π : a=Ax

U

and r : Qa(a, refla), then we can “extend” the term r to a dependent function

r̂ :
∏
x : A

∏
π : a=Ax

Qa(x, π).

As in the case of the J-rule, the j-rule does not imply (why?) the existence of a term

F :
∏
x : A

∏
π : x=Ax

(
π =x=Ax reflx

)
.

Next follow the based-versions of TransportA, of LeastReflA, and of UniqueA.

Proposition 3.3.2. Let A : U , a : A, and let the singleton type Sa ≡
∑

x : A a =A x. The
following are shown with the use of the based version of the J-rule:

(i) There is a term

Transporta :
∏

Πa : A→U

∏
x : A

∏
π : a=Ax

(Πa(a)→ Πa(x)),

such that Transporta(Pa, a, refla) ≡ idPa(a).

(ii) There is a term

LeastRefla :
∏

Σa : A→U

∏
x : Σa(a)

∏
x : A

∏
π : a=Ax

Σa(x),

such that LeastRefla(Ra, r, a, refla) ≡ r.

70 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

(iii) There is a term

Uniquea :
∏
z : Sa

(a, refla) =Sa z,

such that Uniquea
(
(a, refla)

)
≡ refl(a,refla).

Proof. Exercise.

Proposition 3.3.3. The j-rule implies the JA-rule.

Proof. Exercise.

Theorem 3.3.4. The JA-rule implies the j-rule.

Proof. As we have seen, the JA-rule implies TransportA and UniqueA. It is straightforward
to show that TransportA implies Transporta and UniqueA implies Uniquea, for every a : A.
Similarly to Theorem 3.2.5, the rules Transporta and Uniquea imply the ja-rule. Hence, the
JA-rule implies the j-rule.

3.4 The equality type family is an equivalence relation

An equality relation must satisfy the properties of an equivalence relation. In this section we
show that the equality type family =A : A→ A→ U is, in type-theoretic terms, an equivalence
relation.

Definition 3.4.1. If A : U , then R : A→ A→ U is called reflexive, if there is a term

reflR :
∏
x : A

R(x, x).

R is called symmetric, if there is a term

symmR :
∏
x,y : A

(
R(x, y)→ R(y, x)

)
.

R is called transitive, if there is a term

transR :
∏

x,y,z : A

(
R(x, y)→ R(y, z)→ R(x, z)

)
.

Moreover, R is called an equivalence relation, if it is reflexive, symmetric and transitive.

Clearly, =A is reflexive, with refl=A ≡ reflA.

Proposition 3.4.2. Let A : U .

(i) There is a term

symmA :
∏
x,y : A

(
x =A y → y =A x

)
.

such that symmA(a, a, refla) ≡ refla.

(ii) There is a term

transA :
∏

x,y,z : A

(
x =A y → y =A z → x =A z

)
.

such that transA(a, a, a, refla, refla) ≡ refla.

3.4. THE EQUALITY TYPE FAMILY IS AN EQUIVALENCE RELATION 71

Figure 3.4: The inverse and the concatenation of equality terms

Proof. (i) Let the term Q :
∏
x,y : A

(
x =A y)→ U , defined by

Q(x, y, π) ≡ y =A x.

As reflx : Q(x, x, reflx) ≡ x =A x, by the JA-rule we get the required term symmA. Clearly,
symmA(a, a, refla) ≡ refla.
(ii) Let the term Q′ :

∏
x,y : A

(
x =A y)→ U , defined by

Q′(x, y, π) ≡
∏
z : A

(y =A z → x =A z).

Let
R :

∏
x : A

Q′(x, x, reflx) ≡
∏
x : A

∏
z : A

(
x =A z → x =A z

)
,

defined by R(x) ≡ λz : Aλπ : x=Az.π By the JA-rule we get the required term

transA ≡ R̂ :
∏
x,y : A

Q′(x, y, π) ≡
∏

x,y,z : A

(
x =A y → y =A z → x =A z

)
,

satisfying, transA(a, a, a, refla, refla) ≡ [R(a)](refla) ≡ refla.

Definition 3.4.3. If A : U , a, b, c, d, e : A, p : a =A b, q : c =A d and r : d =A e, we use the
following notations:

p−1 ≡ symmA(a, b, p),

q ∗ r ≡ transA(c, d, e, q, r),

and we call p−1 : b =A a the inverse proof-term of p and q ∗ r : c =A e the composite term, or
the concatenation of q and r.

Hence, the computation-rules of symmA and transA are rewritten as follows:

(refla)
−1 ≡ refla & refla ∗ refla ≡ refla.

72 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

3.5 The higher groupoid structure of a type

Proposition 3.5.1. Let A : U , a, b, c, d : A, p : a =A b, q : b =A c and r : c =A d.

(i) p ∗ reflb =a=Ab p =a=Ab refla ∗ p.

(ii) p−1 ∗ p =b=Ab reflb.

(iii) p ∗ p−1 =a=Aa refla.

(iv) (p−1)−1 =a=Ab p.

(v) p ∗ (q ∗ r) =a=Ad (p ∗ q) ∗ r.
(vi) (p ∗ q)−1 =c=Aa q

−1 ∗ p−1.

Proof. (i) Let Q(x, y, π) ≡ π ∗ refly =x=Ay π. By the computation-rule of the term transA
we have that

R(x) ≡ reflreflx : Q(x, x, reflx) ≡ reflx ∗ reflx = reflx ≡ reflx = reflx.

We use the JA-rule to get a term

R̂ :
∏
x,y : A

∏
π : x=Ay

π ∗ refly =x=Ay π,

such that R̂(a, a, refla) ≡ reflrefla .
(ii)-(vi) Exercise.

Because of Proposition 3.5.1(i) we draw the equality term refla : a =A a as the constant
path a, and the loop-representation of refla in Figure 2.13 is not accurate. Because of
Proposition 3.5.1(iii)-(iv) we draw the inverse equality term p−1 as the inverse of the path p
(see Figure 3.4). Next we see how the transport of a proof term p : a =A b depends on the
type family P : A→ U , when P is defined through an equality type. Notice that the figures
drawn suggest the behavior of these transports!

Proposition 3.5.2. Let A : U , a, b, c : A, p : a =A b, and let the type families

P : A→ U , P (x) ≡ c =A x,

Q : A→ U , Q(x) ≡ x =A c,

R : A→ U , R(x) ≡ x =A x.

(i) pP∗ : P (a)→ P (b) ≡ (c =A a)→ (c =A b) is given by pP∗ (q) = q ∗ p.

(ii) pQ∗ : Q(a)→ Q(b) ≡ (a =A c)→ (b =A c) is given by pQ∗ (q) = p−1 ∗ q.
(iii) pR∗ : R(a)→ R(b) ≡ (a =A a)→ (b =A b) is given by pR∗ (q) = p−1 ∗ q ∗ p.

Proof. (i) Let T (x, y, π) ≡ πP∗ ($) = $ ∗ π, where $: c =A x. Then, the type

T (x, x, reflx) ≡ (reflx)P∗ ($) = $ ∗ reflx
≡ idP (x)($) = $ ∗ reflx
≡ $ = $ ∗ reflx

is inhabited by Proposition 3.5.1(i) and the term symmA. Then we use the J-rule.
(ii) and (iii) Exercise.

3.5. THE HIGHER GROUPOID STRUCTURE OF A TYPE 73

Figure 3.5: The calculation of basic transports w.r.t. equality

Figure 3.6: The transport of the concatenation “is” the composition of transports

74 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Figure 3.7: The transport of the inverse equality term “is” the inverse of the transport

Next we show how transport relates to concatenation of equality terms.

Proposition 3.5.3. Let A : U , a, b, c : A, p : a =A b and q : b =A c. If P : A → U , u : P (a)
and v : P (b), the following hold:

(i) (p ∗ q)P∗ (u) =P (c)

[
qP∗
](
pP∗
(
u)
)
.

(ii) u =P (a)

[
(p)−1)P∗

](
pP∗
(
u)
)
.

(iii) v =P (b)

[(
pP∗
]((

p−1
)P
∗ (u)

)
.

Proof. Exercise.

Proposition 3.5.4. Let A : U , a, b : A, p, q : a =A b and α : p =A q. If P : A→ U , then∏
u : P (a)

(
pP∗ (u) =P (b) q

P
∗ (u)

)
.

Proof. Exercise.

3.6 Loop spaces and the Eckmann-Hilton theorem

We give a flavor of the study of higher equality terms (paths). We also show that the
concatenation of equal equality terms preserves equality. We use bold letters for higher
equality terms.

Proposition 3.6.1 (Right horizontal composition of a 2-dimensional equality term with an
1-dimensional one). Let A : U , a, b, c : A, p, q : a =A b, and r : b =A c. If α : p =a=Ab q, there
is a term

α ∗right r : p ∗ r =a=Ac q ∗ r.

3.6. LOOP SPACES AND THE ECKMANN-HILTON THEOREM 75

Figure 3.8: Equal equality terms induce “equal” transports

Figure 3.9: The right horizontal composition α ∗right r : p ∗ r =a=Ac q ∗ r

76 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Figure 3.10: A proof term t : p ∗ reflb = q ∗ reflb

Figure 3.11: The left horizontal composition q ∗left β : q ∗ r =a=Ac q ∗ s

3.6. LOOP SPACES AND THE ECKMANN-HILTON THEOREM 77

Figure 3.12: The horizontal composition α~ β : p ∗ r = q ∗ s

Proof. We apply the based J-rule on r : b =A c. Let Qb :
∏
z : A

∏
π : b=Az

U , defined by
Qb(z, π) ≡ p ∗ π = q ∗ π. We need to find a term of type

t : Qb(b, reflb) ≡ p ∗ reflb = q ∗ reflb.

By Proposition 3.5.1(i) there are terms R̂(a, b, p) : p ∗ reflb = p, and R̂(a, b, q) : q ∗ reflb = q,
hence we define t ≡ R̂(a, b, p) ∗α ∗ [R̂(a, b, q)]−1 (see Figure 3.10).

Proposition 3.6.2 (Left horizontal composition of a 2-dimensional equality term with an
1-dimensional one). Let A : U , a, b, c : A, q : a =A b, and r, s : b =A c. If β : r =a=Ab s, there is
a term

q ∗left β : q ∗ r =a=Ac q ∗ s.

Proof. We work similarly to the proof of Proposition 3.6.1, using the terms Ŝ(b, c, r) : reflb∗r =
r and Ŝ(b, c, s) : reflb ∗ s = s.

Definition 3.6.3 (Horizontal compositions of 2-dimensional equality terms). Let A : U ,
a, b, c : A, q : a =A b, and r, s : b =A c. If α : p =a=Ab q and β : r =a=Ab s, we define the
horizontal compositions

α~ β : p ∗ r = q ∗ s where p ∗ r = q ∗ r & q ∗ r = q ∗ s,

α~ ′β : p ∗ r = q ∗ s where p ∗ r = p ∗ s & p ∗ s = q ∗ s,

by

α~ β ≡ (α ∗right r) ∗ (q ∗left β),

α~ ′β ≡ (p ∗left β) ∗ (α ∗right s).

78 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Figure 3.13: The composition α ∗ β : refla = refla of α,β : refla =A refla

Lemma 3.6.4. Let terms α ~ β,α ~ ′β : p ∗ r = q ∗ s as above, where a ≡ b ≡ c and
p ≡ q ≡ r ≡ s ≡ refla.

(i) α~ β = α ∗ β.

(ii) α~ ′β = β ~α.

(iii) α~ β = α~ ′β.

Proof. (i) By the computation-rules of the terms R̂ and Ŝ in the proof of Proposition 3.5.1(i)
we get

α~ β ≡ (α ∗right refla) ∗ (refla ∗left β)

≡
(
R̂(a, a, refla) ∗α ∗ [R̂(a, a, refla)]

−1
)

∗
(
[Ŝ(a, a, refla)]

−1 ∗ β ∗ Ŝ(a, a, refla)
)

≡
(
reflrefla ∗α ∗ [reflrefla]−1

)
∗
(
reflrefla ∗ β ∗ [reflrefla]−1

)
≡
(
reflrefla ∗α ∗ reflrefla]

)
∗
(
reflrefla ∗ β ∗ reflrefla

)
= α ∗ β.

(ii) We work similarly to (i).
(iii) By induction on α and β.

Definition 3.6.5. Let A : U , and a : A. The pair (A, a) is called a pointed type, and a is its
base-point. The loop space of (A, a) is the pointed type

Ω(A, a) ≡
(
a =A a, refla

)
of the loops at a : A. If n : N, we define recursively the n-loop space Ωn(A, a) as follows:

Ω0(A, a) ≡ (A, a),

Ωn+1(A, a) ≡ Ωn
(
Ω(A, a)

)
.

3.6. LOOP SPACES AND THE ECKMANN-HILTON THEOREM 79

Hence, we have that
Ω1(A, a) ≡ Ω0

(
Ω(A, a)

)
≡ Ω(A, a),

and

Ω2(A, a) ≡ Ω1
(
Ω(A, a)

)
≡ Ω

(
Ω(A, a)

)
≡ Ω

(
a =A a, refla

)
≡
(
refla =a=Aa refla, reflrefla

)
.

Clearly, the concatenation of loops is a loop i.e., using the same symbol ∗ for simplicity,
there is a function

∗ : Ω(A, a)× Ω(A, a)→ Ω(A, a),

(α,β) 7→ α ∗ β.

Theorem 3.6.6 (Eckmann-Hilton theorem). Let A : U , and a : A. If α,β : Ω2(A, a), then

α ∗ β = β ∗α.

Proof. It follows immediately from Lemma 3.6.4.

80 CHAPTER 3. GENERAL PROPERTIES OF THE EQUALITY TYPE-FAMILY

Chapter 4

Equality and basic types

In this chapter we examine how the equality type family =A : A→ A→ U interacts with the
basic types of MLTT, other than the equality type-family itself and the universes.

4.1 Equality and the function type

Functions preserve equality in the following proof-relevant sense.

Proposition 4.1.1. Let A,B : U and f : A→ B. There is a term

apf :
∏
x,y : A

x =A y → f(x) =B f(y),

such that apf (a, a, refla) ≡ reflf(a), for every a : A. If a, b : A are fixed we may also write

apf : a =A b→ f(a) =B f(b),

p 7→ f(p) ≡ apf (p),

with f(refla) ≡ apf (refla) ≡ reflf(a), for every a : A.

Proof. Let the term Q :
∏
x,y : A

(
x =A y)→ U , defined by Q(x, y, π) ≡ f(x) =B f(y). Clearly,

reflf(x) : Q(x, x, reflx) ≡ f(x) =B f(x).

The required term and its computation rule follow immediately from the J-rule.

Hence, apf is “applied” to equality terms of type a =A b and outputs equality terms of
type f(a) =B f(b). The application of a function can be iterated as follows.

Definition 4.1.2. If A,B : U , a, b : A and f : A → B. As apf : a =A b → f(a) =B f(b), if
p, q : a =A b, we get the application of apf , or the second-application function of f i.e.,

ap2
f ≡ apapf

: p =a=Ab q → f(p) =f(a)=Bf(b) f(q),

r 7→ f2(r) ≡ ap2
f (r),

such that f2(reflp) ≡ ap2
f (reflp) ≡ reflf(p), for every p : a =A b. Actually, we have that

ap2
f :

∏
x,y : A

∏
p,q : x=Ay

p =a=Ab q → f(p) =f(a)=Bf(b) f(q),

such that ap2
f (a, b, p, p, reflp) ≡ reflf(p).

82 CHAPTER 4. EQUALITY AND BASIC TYPES

Figure 4.1: If p : a =A b, then apf (p) : f(a) =B f(b)

Figure 4.2: The second-application function of f : A→ B

4.1. EQUALITY AND THE FUNCTION TYPE 83

Figure 4.3: The transport pP◦f∗

Proposition 4.1.3. Let A,B,C : U , a, b, c : A, f : A → B and g : B → C. If p : a =A b and
q : b =A c, the following hold:

(i) f(p ∗ q) =f(a)=Bf(c) f(p) ∗ f(q).

(ii) f
(
p−1
)

=f(b)=Bf(a) f(p)−1.

(iii) g(f(p)) =g(f(a))=Cg(f(b)) (g ◦ f)(p).

(iv) idA(p) =f(a)=Bf(a) p.

(v) If b0 : B and h ≡ λx : A.b0, then aph is a constant function.

Proof. (i) Let the term Q :
∏
x,y : A

(
x =A y)→ U , defined by

Q(x, y, π) ≡
∏
z : A

∏
$: y=Az

f(π ∗$) = f(π) ∗ f($).

Hence,

Q(x, x, reflx) ≡
∏
z : A

∏
$: x=Az

f(reflx ∗$) = f(reflx) ∗ f($)

≡
∏
z : A

∏
$: x=Az

f(reflx ∗$) = reflf(x) ∗ f($).

By Proposition 3.5.1(i) reflx ∗$ = $, hence using the second-application function we get a
term of type f(reflx∗$) = f($). By Proposition 3.5.1(i) again we get reflf(x)∗f($) = f($).
As reflf($) : f($) = f($), we find a term of type Q(x, x, reflx).
(ii)-(v) Exercise.

Proposition 4.1.4. Let A,B : U , f : A→ B. If P : B → U , let

P ◦ f : A→ U , (P ◦ f)(x) ≡ P (f(x).

84 CHAPTER 4. EQUALITY AND BASIC TYPES

Figure 4.4: The application F (p) of a dependent function F an an equality term p : a =A b

If p : a =A b, then pP◦f∗ : P (f(a)) → P (f(b)). If u : P (f(a)), one can determine the term

pP◦f∗ (u) : P (f(b)).

Proof. Exercise.

The equality of functions implies their pointwise equality.

Proposition 4.1.5. Let A,B : U . There is a term

eqtopointeq :
∏

φ,θ : A→B

∏
π : φ=A→Bθ

∏
x : A

φ(x) =B θ(x),

such that eqtopointeq(f, f, reflf , a) ≡ reflf(a), for every a : A.

Proof. Exercise.

4.2 Equality and the dependent function type

Next follows the dependent version of the application of a function.

Proposition 4.2.1. Let A : U , P : A→ U , and F :
∏
x : A P (x). There is a term

apF :
∏
x,y : A

∏
π : x=Ay

πP∗ (F (x)) =P (y) F (y),

(a, b, p) 7→ F (p) ≡ apF (a, b, p),

such that apF (a, a, refla) ≡ reflF (a), for every a : A.

Proof. Exercise.

One studies the dependent application as the non-dependent one.

4.3. EQUALITY AND THE PRODUCT TYPE 85

Figure 4.5: The relation between the transports and a dependent function

Proposition 4.2.2. Let A : U , P,Q : A→ U , and

F :
∏
x : A

(
P (x)→ Q(x)

)
.

If p : a =A b, then pP∗ : P (a)→ P (b) and pQ∗ : Q(a)→ Q(b). If u : P (a), then

F
(
b, pP∗ (u)

)
=Q(b) p

Q
∗
(
F (a, u)

)
.

Proof. Exercise.

The equality of dependent functions implies their pointwise equality.

Proposition 4.2.3. Let A : U and P : A→ U . There is a term

EqtoPointEq :
∏

Φ,Θ:
∏
x : A P (x)

∏
π : Φ=∏

x : A P (x)Θ

∏
x : A

Φ(x) =P (x) Θ(x),

such that EqtoPointEq(F, F, reflF , a) ≡ reflF (a), for every a : A.

Proof. Exercise.

4.3 Equality and the product type

Proposition 4.3.1. If A,B : U , there is a term

MA×B :
∏

z : A×B
z =A×B

(
pr1(z), pr2(z)

)
,

such that MA×B

(
(a, b)

)
≡ refl(a,b), for every a : A and b : A.

86 CHAPTER 4. EQUALITY AND BASIC TYPES

Proof. Let P : A× B → U , defined by P (z) ≡ z =A×B
(
pr1(z), pr2(z)

)
. In order to use the

induction rule for A×B, we need to find

G :
∏
x : A

∏
y : B

(
(x, y) =A×B

(
pr1((x, y)), pr2((x, y))

))
≡
∏
x : A

∏
y : B

(x, y) =A×B (x, y).

For that we define G(x, y) ≡ refl(x,y).

Corollary 4.3.2. If A,B : U and c : A×B, there are a : A, b : A such that c =A×B (a, b).

Proof. It follows immediately from Proposition 4.3.1.

Proposition 4.3.3. If A,B : U , there is a term

eqtocompeq× :
∏

z,w : A×B
(z =A×B w)→

(
pr1(z) =A pr1(w)× pr2(z) =B pr2(w)

)
,

such that eqtocompeq×(c, c, reflc) ≡
(
reflpr1(c), reflpr2(c)

)
, for every c : A×B.

Proof. If π : z =A×B w, let eqtocompeq×(z, w, π) ≡
(
pr1(π), pr2(π)

)
, and he required computation-

rule follows from the computation-rule of apf in Proposition 4.1.1.

The above function has an “inverse”.

Proposition 4.3.4. If A,B : U , there is a term

compeqtoeq× :
∏

z,w : A×B

(
pr1(z) =A pr1(w)× pr2(z) =B pr2(w)

)
→ (z =A×B w),

such that compeqtoeq×(c, c, reflpr1(c), reflpr1(c)) ≡ reflc, for every c : A×B.

Proof. If we find a term

N :
∏

x,x′ : A

∏
y,y′ : B

(x =A x
′ × y =B y′)→ (x, y) =A×B (x′, y′),

then by Proposition 4.3.1 we get

z =
(
pr1(z), pr2(z)

)
=
(
pr1(w), pr2(w)

)
= w.

In order to use the J-rule, it suffices to find a term

N ′ :
∏

x,x′ : A

∏
π : x=Ax′

(∏
y,y′ : B

∏
$: y=By′

(x, y) =A×B (x′, y′)

)
.

Let

QA(x, x′, π) ≡
∏

y,y′ : B

∏
$: y=By′

(x, y) =A×B (x′, y′).

4.4. EQUALITY AND THE DEPENDENT PAIR TYPE 87

We need to find a term

RA : QA(x, x, reflx) ≡
∏

y,y′ : B

∏
$: y=By′

(x, y) =A×B (x, y′).

For that let
QB :

∏
y,y′ : B

∏
$: y=By′

U ,

defined by
QB(y, y′, $) ≡ (x, y) =A×B (x, y′).

Clearly,
RB(y) ≡ refl(x,y) : QB(y, y, refly) ≡ (x, y) =A×B (x, y).

Hence by the JB-rule, let

RA ≡ R̂B : QA(x, x, reflx) ≡
∏

y,y′ : B

∏
$: y=By′

(x, y) =A×B (x, y′).

Hence by the JA-rule, let

N ′ ≡ R̂A ≡
̂̂
RB :

∏
x,x′ : A

∏
π : x=Ax′

(∏
y,y′ : B

∏
$: y=By′

(x, y) =A×B (x′, y′)

)
.

The two maps eqtocompeq× and compeqtoeq× can be shown to be “inverse” to each other.

4.4 Equality and the dependent pair type

The results of section 4.3 are generalised to the case of dependent pairs.

Proposition 4.4.1. If A : U and P : A→ U , there is a term

M∑
x : A P (x) :

∏
z :

∑
x : A P (x)

z =∑
x : A P (x)

(
pr

∑
1 (z), pr

∑
2 (z)

)
,

such that M∑
x : A P (x)

(
(a, u)

)
≡ refl(a,u), for every a : A and u : P (a).

Proof. Exercise.

Corollary 4.4.2. If A : U and P : A→ U , there are terms a : A and u : P (a) such that

c =∑
x : A P (x) (a, u).

Proof. It follows immediately from Proposition 4.4.1.

Proposition 4.4.3. If A : U and P : A→ U , there is a term eqtocompeq∑ of type

∏
z,w :

∑
x : A P (x)

((
z =∑

x : A P (x) w
)
→

∑
π : pr

∑
1 (z)=Apr

∑
1 (w)

πP∗
(
pr

∑
2 (z) =

P (pr

∑
1 (z))

pr
∑
2 (w)

)
,

such that eqtocompeq∑(c, c, reflc) ≡
(
refl

pr
∑
1 (c)

, refl
pr

∑
2 (c)

)
, for every c :

∑
x : A P (x).

88 CHAPTER 4. EQUALITY AND BASIC TYPES

Figure 4.6: The path π is lifted to the path Lift(a,u)(x, π) in
∑

x : A P (x)

Proof. Let the dependent function

Q :
∏

z,w :
∑
x : A P (x)

∏
$: z=w

U

defined by

Q(z, w,$) ≡
∑

π : pr
∑
1 (z)=Apr

∑
1 (w)

πP∗
(
pr

∑
2 (z) =

P (pr

∑
1 (z))

pr
∑
2 (w).

hence

Q(z, z, reflz) ≡
∑

π : pr
∑
1 (z)=Apr

∑
1 (z)

πP∗
(
pr

∑
2 (z) =

P (pr

∑
1 (z))

pr
∑
2 (z).

Since pr
∑
1 :

∑
x : A P (x)→ A, we get

ap
pr

∑
1

(reflz) ≡ pr
∑
1 (reflz) ≡ refl

pr
∑
1 (z)

: pr
∑
1 (z) =A pr

∑
1 (z),

hence, (
refl

pr
∑
1 (c)

, refl
pr

∑
2 (c)

)
: Q(z, z, reflz),

and the required term follows from the J-rule.

Proposition 4.4.4. If A : U and P : A→ U , there is a term compeqtoeq∑ of type

∏
z,w :

∑
x : A P (x)

[∑
π : pr

∑
1 (z)=Apr

∑
1 (w)

πP∗
(
pr

∑
2 (z) =

P (pr

∑
1 (w))

pr
∑
2 (w)

]
→
(
z =∑

x : A P (x) w
)
,

such that compeqtoeq∑(c, c, refl
pr

∑
1 (c)

, refl
pr

∑
2 (c)

) ≡ reflc, for every c :
∑

x : A P (x).

Proof. Exercise.

4.5. EQUALITY AND THE COPRODUCT TYPE 89

Proposition 4.4.5 (The path-lifting property). If A : U , a : A, P : A → U , and u : P (a),
there is a term

Lift(a,u) :
∏
x : A

∏
π : a=Ax

(a, u) =∑
x : A P (x)

(
x, πP∗ (u)

)
,

such that Lift(a,u)(a, refla) ≡ refl(a,u).

Proof. Exercise.

4.5 Equality and the coproduct type

The coproduct A+B is the union of inl(A) and inr(B).

Proposition 4.5.1. If A,B : U , there is a term of type∏
z : A+B

(∑
w : A

z =A+B inl(w) +
∑
u : B

z =A+B inr(u)

)
.

Proof. Exercise.

Next we show that the left and right injections are indeed injections i.e.,

inl(a0) =A+B inl(a)→ a0 =A a, a0, a : A

inr(b0) =A+B inr(b)→ b0 =B b, b0, b : B.

The converse “implications” follow immediately by the application of the functions inl : A→
A + B and inr : B → A + B i.e., if p : a0 =A a, then inl(p) : inl(a0) =A+B inl(a), and if
q : b0 =B b, then inr(q) : inr(b0) =A+B inr(b). Moreover, we show that A+ B is the disjoint
union of A and B (or of inl(A) and inr(B)) i.e., we prove that the following type is inhabited:

inl(a0) =A+B inr(b0)→ 0,

for every a0 : A and b0 : B. For that the proof-technique of “code” will be used. If a0 : A and
b0 : B, then by Rec+ (in the next universe U ′) there are type-families codel : A+B → U and
coder : A+B → U with

codel(inl(a)) ≡ a0 =A a & codel(inr(b)) ≡ 0,

coder(inl(b)) ≡ b0 =B b & coder(inl(a)) ≡ 0,

for every a : A and b : B.

Proposition 4.5.2. If A,B : U , a0 : A and b0 : B, there are terms

encodel :
∏

z : A+B

∏
π : inl(a0)=A+Bz

codel(z),

encoder :
∏

z : A+B

∏
π : inr(b0)=A+Bz

coder(z).

90 CHAPTER 4. EQUALITY AND BASIC TYPES

Proof. If z : A+B and π : inl(a0) =A+B z, then

πcodel∗ : codel(inl(a0))→ codel(z) ≡ (a0 =A a0)→ codel(z).

Hence we define
encodel(z, π) ≡ πcodel∗ (refla0).

For the definition of encoder we work similarly.

To prove the injectivity of inl we use the term

i : inl(a0) =A+B inl(a)→ a0 =A a,

i(p) ≡ encodel(inl(a), p) : codel(inl(a) ≡ a0 =A a.

To prove the injectivity of inr we use the term

j : inr(b0) =A+B inr(b)→ b0 =B b,

j(q) ≡ encoder(inr(b), q) : coder(inr(b) ≡ b0 =B b.

To prove that A+B is the disjoint union of A and B we use the term

k : inl(a0) =A+B inr(b0)→ 0,

k(r) ≡ encodel(inr(b0), r) : codel(inr(b0) ≡ 0.

Corollary 4.5.3. There is a term of type 02 =2 12 → 0.

Proof. Exercise. Actually, a more accurate formulation of this is about 2′ : U ′.

Proposition 4.5.4. If A,B : U , a : A and b : B, there are terms of type∏
z : A+B

∏
π : inl(a)=z

∑
x : A

z =A+B inl(x),

∏
z : A+B

∏
π : inr(b)=z

∑
y : B

z =A+B inr(y)

Proof. Exercise.

4.6 Equality and the unit type

Proposition 4.6.1. There is a term

M1 :
∏
x : 1

(x =1 01),

such that M1(01) ≡ refl01.

Proof. By Ind1 it sufficed to find a term of type 01 =1 01. This term is refl01 .

Proposition 4.6.2. If x, y : 01, then there are functions f : 1→ x =01 y and g : x =01 y → 1,
which are inverse to each other.

4.7. EQUALITY AND THE TYPE OF NATURALS 91

Proof. Let g ≡ λπ : x=01y
.01, and let f : 1→ x =01 y be defined by Rec1 through the term

f(01) ≡M1(x) ∗ [M1(y)]−1 : x =01 y,

where M1 is determined in Proposition 4.6.1. Clearly,∏
x : 1

g(f(x)) =1 x

is inhabited, as by Ind1 we have that g(f(01)) =1 01. Next we use the J-rule to inhabit the
type ∏

x,y : 1

∏
π : x=01y

f(g(π)) = π.

If Q(x, y, π) ≡ f(g(π) = π, then it suffices to inhabit the type

Q(x, x, reflx) ≡ f(g(reflx)) = reflx.

This follows from the following equalities

f(g(reflx)) ≡ f(01)

≡M1(x) ∗ [M1(x)]−1

= reflx.

Hence all proofs of equality between x, y : 1 are equal (why?).

4.7 Equality and the type of naturals

Next we use the code-method to show some of the Peano axioms (see 1.3.3) for the type of
naturals N′ : U ′, where N′ is the type of natural numbers in the next universe U ′ to U . For
that we use only primitive recursion RecN′ .

Theorem 4.7.1. There is a function codeN′ : N′ → N′ → U satisfying the following condi-
tions:

codeN′(0N
′, 0N

′) ≡ 1,

codeN′(succ
′(m′), 0N

′) ≡ 0,

codeN′(0N, succ
′(n′)) ≡ 0,

codeN′(succ
′(m′), succ′(n′)) ≡ codeN′(m

′, n′).

Proof. There is h : N′ → U satisfying

h(0N
′) ≡ 1,

h(succ′(n′)) ≡ 0.

To define h we use RecN′ , where 1 : U and s′ : N′ → U → U is the term

s′ ≡ λx′ : N′ .λX : U .0.

92 CHAPTER 4. EQUALITY AND BASIC TYPES

Clearly, codeN′(0N
′) ≡ h. Then we define

s : N′ → (N′ → U)→ (N′ → U),

such that
codeN′(succ

′(m′), 0N
′) ≡ 0 ≡ [s(m′, codeN′(m

′)](0N
′),

and
codeN′(succ

′(m′), succ′(n′)) ≡ codeN′(m
′, n′)

≡ [codeN′(m
′)](n′) ≡ [s(m′, codeN′(m

′)](succ′(n′)).

For that we define
s ≡ λx′ : N′.λf ′ : N′→U .s(m

′, f ′),

where s(m′, f ′) : N′ → U satisfies the conditions:

[s(m′, f ′)](0N
′) ≡ 0,

[s(m′, f ′)](succ′(n′)) ≡ f(n).

The existence of such a function s(m′, f ′) follows again from RecN′ (exercise).

To get a function codeN : N → N → U that satisfies the same definitional equalities as
codeN′ , we need to have a function i : N→ N′ in U ′ such that i(0N) ≡ 0N

′ and i(succ(n)) ≡
succ′(i(n)), and then define codeN(m,n) ≡ codeN′(i(m), i(n)).

Lemma 4.7.2. There is a term

R :
∏
x′ : N′

codeN′(x
′, x′),

such that
R(0N

′) ≡ 01,

R(succ′(n′)) ≡ R(n′).

Proof. Let P ′ : N′ → U with P ′(x′) ≡ codeN′(x
′, x′). Clearly, 01 : P (0N

′) ≡ codeN′(0N
′, 0N

′) ≡
1. We define next

S
∏
x′ : N′

codeN′(x
′, x′)→ codeN′(succ

′(x′), succ′(x′))

by S(x′, z) ≡ z. By IndN′ R(0N
′) ≡ 01 and

R(succ′(n′)) ≡ S(n′, R(n′)) ≡ R(n′).

Theorem 4.7.3. There are terms

encodeN′ :
∏

x′,y′ : N′

(
x′ =N′ y

′ → codeN′(x
′, y′)

)
,

decodeN′ :
∏

x′,y′ : N′

(
codeN′(x

′, y′)→ x′ =N′ y
′).

4.7. EQUALITY AND THE TYPE OF NATURALS 93

Proof. If π : x′ =N′ y
′, then codeN′(x

′,−) : N′ → U , hence codeN′(x
′,−) : N′ → U ′. Conse-

quently,

π
codeN′ (x

′,−)
∗ : codeN′(x

′, x′)→ codeN′(x
′, y′).

Hence we define
encodeN′(x

′, y′, π) ≡ πcodeN′ (x
′,−)

∗
(
R(x′)

)
.

To define decodeN′ , let Q : N′ → U ′ with

Q(x′) ≡
∏
y′ : N′

(
codeN′(x

′, y′)→ x′ =N′ y
′).

It is easy to inhabit Q(0N
′). Then one needs to define a term

S
∏
x′ : N′

(
Q(x′)→ Q(succ′(x′))

)
i.e., if

φ :
∏
y′ : N′

(
codeN′(x

′, y′)→ x′ =N′ y
′),

[S(x′)](φ) :
∏
y′ : N′

(
codeN′(succ

′(x′), y′)→ succ′(x′) =N′ y
′).

This follows by IndN′ again.

One can show that encodeN′(x
′, y′) and decodeN′(x

′, y′) are inverse to each other.

Corollary 4.7.4. There is a term of type succ′(x′) =N′ succ
′(y′) → x′ =N′ y

′, for every
x′, y′ : N′.

Proof. Exercise.

Corollary 4.7.5. There is a term of type succ′(x′) =N′ 0N
′ → 0, for every x′ : N′.

Proof. Exercise.

If we define addition on N′, the remaining Peano axioms are also provable.

94 CHAPTER 4. EQUALITY AND BASIC TYPES

Chapter 5

Homotopy type theory

In this chapter we present the basics of Homotopy Type Theory (HoTT), which is an extension
of intensional Martin-Löf Type Theory with Voevodsky’s axiom of univalence and higher
inductive types. The axiom of univalence embodies the interplay between the universe and
the equality type.

5.1 Homotopies

Definition 5.1.1. Let A : U P : A→ U and F,G :
∏
x : A P (x). A homotopy from F to G is

a term
H : F ∼ G ≡

∏
x : A

F (x) =P (x) G(x).

Consequently, if A,B : U and f, g : A→ B, a homotopy from f to g is term

H : f ∼ f ≡
∏
x : A

f(x) =B g(x).

As types are interpreted as spaces, equality proofs as paths, and function-terms as “continuous”
functions, a homotopy H fromf to g corresponds to a continuous deformation of f to g i.e.,
to a homotopy H from topology:

H : A× [0, 1]
cnt→ B,

H(x, 0) = f(x), x ∈ A,
H(x, 1) = g(x), x ∈ A.

In this case H(x,−) : [0, 1]→ Y is a continuous path from f(x) to g(x) in B, for every x ∈ A.

Proposition 5.1.2. If A,B : U , the following types are inhabited:∏
f : A→B

f ∼ f,

∏
f,g : A→B

f ∼ g → g ∼ f,

∏
f,g,h : A→B

f ∼ g → g ∼ h→ f ∼ h.

96 CHAPTER 5. HOMOTOPY TYPE THEORY

Figure 5.1: A homotopy H between dependent functions F,G

Figure 5.2: A homotopy H between non-dependent functions f, g

5.2. EQUIVALENCES 97

Figure 5.3: A homotopy H behaves like a natural transformation

Proof. Exercise.

Definition 5.1.3. If H : f ∼ g, let H−1 : g ∼ f , defined by H−1(x) ≡ H(x)−1. If G : g ∼ h,
let H ∗G : f ∼ h, defined by (H ∗G)(x) ≡ H(x) ∗G(x), for every x : A.

Proposition 5.1.4. If A,B : U , f, g : A→ B and p : a =A b, then if H : f ∼ g, we have that

H(a) ∗ g(p) = f(p) ∗H(b).

Proof. Exercise.

Proposition 5.1.5. If A : U , f : A→ A, and a : A, then if H : f ∼ idA, we have that

H(f(a)) = f(H(a))).

Proof. Exercise.

5.2 Equivalences

Next concept is the direct type-theoretic translation of the homotopic equivalence between
two topological spaces. Although this is going to be a very workable notion of equivalence of
types, it is the notion of Voevodsky’s equivalence that will fully capture the equivalence of
types in HoTT.

Definition 5.2.1. If A,B : U and f : A→ B, the type “f is a quasi-inverse” is defined by

qinv(f) ≡
∑

g : B→A
[(f ◦ g ∼ idB)× (g ◦ f ∼ idA)].

Th quasi-equivalence between A,B is the type

A 'q B ≡
∑

f : A→B
qinv(f).

98 CHAPTER 5. HOMOTOPY TYPE THEORY

Figure 5.4: The geometry of Proposition 5.1.5

For example, if A : U , then (idA, reflA, reflA) : qinv(idA), where

reflA : idA ◦ idA ∼ idA ≡
∏
x : A

x =A x.

If p : a =A b and P : A→ U , then by Proposition 3.5.4(ii)-(iii) we get qinv(pP∗).

Definition 5.2.2. If A,B : U and f : A→ B, the type “f is an equivalence” is defined by

isequiv(f) ≡
(∑
g : B→A

(f ◦ g) ∼ idB)

)
×
(∑
h : B→A

(h ◦ f) ∼ idA)

)
.

The equivalence, or Voevodsky-equivalence, between A,B is the type

A 'U B ≡
∑

f : A→B
isequiv(f).

When the universe is clear from the context we also write A ' B.

The two notions of equivalence for a function f : A→ B are logically equivalent.

Proposition 5.2.3. If A,B : U and f : A→ B, the following hold:

(i) qinv(f)→ isequiv(f).

(ii) isequiv(f)→ qinv(f).

Proof. (i) Let qi : qinv(f)→ isequiv(f), defined by

qi(g,H,G) ≡
(
(g,H), (g,G)

)
.

(ii) Let iq : isequiv(f)→ qinv(f), defined by

iq
(
(g,G), (h,H)

)
≡ (e,G′, H ′),

where e ≡ h ◦ f ◦ g.

5.3. FUNCTION EXTENSIONALITY AXIOM 99

The equivalence of type is an equivalence relation on U .

Proposition 5.2.4. If A,B,C : U , the following types are inhabited.

(i) A ' A.

(ii) A ' B → B ' A.

(iii) A ' B → B ' B ' C → A ' C.

Proof. Exercise.

Definition 5.2.5. Let A,B,C : U . If

(e, p) : A ' B ≡
∑

e : A→B
isequiv(e),

we only write e : A ' B, as the type isequiv(e) will be shown to be a mere proposition.
Moreover, we write e−1 : B ' A. If j : B ' C, let j ◦ e : A ' C.

5.3 Function extensionality axiom

By Proposition 4.1.5 if A,B : U , there is a term

eqtopointeq :
∏

φ,θ : A→B

∏
π : φ=A→Bθ

∏
x : A

φ(x) =B θ(x),

such that eqtopointeq(f, f, reflf , a) ≡ reflf(a), for every a : A. Hence, if f, g : A → B,
there is a function

eqtopointeqf,g : f =A→B g → f ∼ g ≡
∏
x : A

f(x) =B g(x),

such that
eqtopointeqf,f (reflf) ≡ λx : A.reflf(x).

Function extensionality axiom (FunExt): The following function is an equivalence

eqtopointeqf,g : f =A→B g → f ∼ g.

Let funextf,g : f ∼ g → f =A→B g be the quasi-inverse to eqtopointeqf,g. By this we mean

the following. If
(
(g,G), (h,H)

)
: isequiv(eqtopointeqf,g), then

iq
(
(g,G), (h,H)

)
≡ (funextf,g, G

′, H ′) : qinv(eqtopointeqf,g).

By the definition of the type qinv(eqtopointeqf,g) we get

funextf,g ◦ eqtopointeqf,g ∼ idf=g

i.e.,

G′ :
∏

π : f=g

funextf,g
(
eqtopointeqf,g(π)

)
= π.

Moreover,
eqtopointeqf,g ◦ funextf,g ∼ idf∼g

100 CHAPTER 5. HOMOTOPY TYPE THEORY

i.e.,

H ′ :
∏

K : f∼g
eqtopointeqf,g

(
funextf,g(K)

)
= K.

Hence, by G′ we get

reflf = funextf,f
(
eqtopointeqf,f (reflf)

)
≡ funextf,f

(
λx : A.reflf(x))

)
.

Proposition 5.3.1. Let A,B : U , f, g, h : A→ B, p : f = g and q : g = h. As eqtopointeqf,g : f =
g → f ∼ g and eqtopointeqg,h : g = h→ g ∼ h, we have that

eqtopointeqf,g(p) : f ∼ g & eqtopointeqg,h(q) : g ∼ h,

hence

funextf,g
(
eqtopointeqf,g(p)

)
: f = g & funextg,h

(
eqtopointeqg,h(q)

)
: g = h.

Considering the inverse and the concatenation of homotopies from Definition 5.1.3, we get[
eqtopointeqf,g(p)

]−1
: g ∼ f & eqtopointeqf,g(p) ∗ eqtopointeqg,h(q) : f ∼ h.

(i) funextg,f

([
eqtopointeqf,g(p)

]−1
)

= p−1.

(ii) funextf,h

(
eqtopointeqf,g(p) ∗ eqtopointeqg,h(q)

)
= p ∗ q.

Proof. Exercise.

By Proposition 4.2.3 if A : U and P : A→ U , there is a term

EqtoPointEq :
∏

Φ,Θ:
∏
x : A P (x)

∏
π : Φ=∏

x : A P (x)Θ

∏
x : A

Φ(x) =P (x) Θ(x),

such that EqtoPointEq(F, F, reflF , a) ≡ reflF (a), for every a : A. If F,G :
∏
x : A P (x), then

EqtoPointEqF.G : F =∏
x : A P (x) G→ F ∼ G ≡

∏
x : A

F (x) =P (x) G(x),

EqtoPointEqF,F (reflF) ≡ λx : A.reflF (x).

Function extensionality axiom-(dependent): The following function is an equivalence

EqtoPointEqF,G : F =∏
x : A P (x) G→ F ∼ G.

If FunextF,F : F ∼ G→ F =∏
x : A P (x) G is its quasi-inverse, we work as above.

5.4. PROPOSITIONS AND SETS 101

5.4 Propositions and sets

A type A is a mere proposition, or simply a proposition, if it is true or not i.e., if it is inhabited
or not. In the first case, all inhabitands of A must must be equal, as its truth (inhabitedness)
is only that matters.

Definition 5.4.1. If A : U , the type “A is a proposition” is defined by

isProp(A) ≡
∏
x,y : A

x =A y.

Clearly, 0,1 are propositions. Voevodsky’s equivalence generalises logical equivalence between
propositions.

Proposition 5.4.2. Let A,B : U , such that isProp(A) and isProp(B).

(i) If A is inhabited, then A ' 1.

(ii) If A↔ B, then A ' B.

(iii) isProp(A) is a mere proposition.

(iv) isProp(A×B).

(v) If C : U , then isProp(C → A).

(vi) isProp(¬A).

Proof. Exercise.

Clearly, 2 is not a proposition, hence propositions are not closed under coproducts (why?).
Similarly, they are not closed under dependent pairs. If P : A→ U such that isProp(P (x)),
for every x : A, then by Proposition 4.3.4 we get

pr1(z) = pr1(w)→ z =∑
x : A P (x) w.

Using the axiom of function extensionality, the type qinv(idA) is written as follows:

qinv(idA) ≡
∑

g : A→A
[(idA ◦ g ∼ idA)× (g ◦ idA ∼ idA)]

≡
∑

g : A→A
[g ∼ idA × g ∼ idA)

≡
∑

g : A→A

[(∏
x : A

g(x) =A x

)
×
(∏
x : A

g(x) =A x

)]

'
∑

g : A→A

[(
g =A→A idA

)
×
(∏
x : A

g(x) =A x

)]
'
∏
x : A

x =A x,

since by Corollary 3.2.2 the type
∑

g : A→A
(
g =A→A idA

)
is contractible. It can be shown that

there is a type A such that ∏
x : A

x =A x

102 CHAPTER 5. HOMOTOPY TYPE THEORY

is not a mere proposition. Hence, the type qinv(f) is not a mere proposition too. However,
one can show that

isProp(isequiv(f)).

hence, to show that two proofs of A ' B are equal, it suffices to show that the corresponding
equivalences are equal functions of type A→ B. Tis is an important advantage of Voevodsky’s
notion of equivalence.

5.5 Sets

A type A is a set, if it is characterised by its inhabitands i.e., its inhabitands matter and not
the proofs of their equalities.

Definition 5.5.1. If A : U , the type “A is a set” is defined by

isSet(A) ≡
∏
x,y : A

∏
π,$: x=Ay

π = $.

Proposition 5.5.2. If A : U , then isProp(A)→ isSet(A).

Proof. If F : isProp(A) and x : A, let Px : A → U , defined by Px(y) ≡ x =A y. Let
Gx :

∏
y : A Px(y), defined by Gx(y) ≡ F (x, y). If y, z : A, by Proposition 3.5.2(i) we have that

apG(y, z) :
∏

π : y=Az

πP∗ (G(y)) = G(z) ≡
∏

π : y=Az

G(y) ∗ π = G(z).

Hence, π = G(y)−1 ∗G(z).

Similarly, one shows that if isSet(A), then∏
x,y : A

∏
π,$: x=Ay

∏
r,s : π=$

r = s.

The types 2 and N are sets (why?), which are not propositions. We need the univalence axiom,
in order to show that there are types which are not sets.

5.6 Voevodsky’s axiom of univalence

The axiom of univalence asserts that A =U B ≡U ′ A ≡U B.

Proposition 5.6.1. If A,B : U , there is a function in U ′

eqtoequivA,B : A =U B → A ' B,

such that eqtoequivA,A(reflA) ≡
(
(idA, reflA), (idA, reflA)

)
.

Proof. Let the dependent function

Q :
∏

X,Y : U

∏
π : X=UY

U ′,

defined by Q(X,Y, π) ≡ X ' Y . As(
(idX , reflX), (idX , reflX)

)
: Q(X,X, reflX) ≡ X ' X,

the existence of the required function follows from the J-rule (in the next universe U ′).

5.6. VOEVODSKY’S AXIOM OF UNIVALENCE 103

Another, more informative proof of Proposition 5.6.1 goes as follows. Let the type family
idU : U → U ′, where idU ≡ λX : U .X : U ′. If p : A =U B, then

pidU
∗ : idU (A)→ idU (B) ≡ A→ B.

By Proposition 3.5.4(ii)-(iii) pidU
∗ is an equivalence, such that (reflA)idU

∗ = ididU (A) = idA.

Proposition 5.6.2. Let A : U , P : A→ U and q : a =A b. Then

qP∗ = eqtoequivP (a),P (b)

(
apP (q)

)
.

Proof. Exercise.

Voevodsky’s univalence axiom (UA): The following function is an equivalence in U ′

eqtoequivA,B : A =U B → A ' B.

Let
uaA,B : A ' B → A =U B

be the quasi-inverse to eqtoequivA,B. By this we mean the following. If(
(g,G), (h,H)

)
: isequiv(eqtoequivA,B),

then
iq
(
(g,G), (h,H)

)
≡ (uaA,B, G

′, H ′) : qinv(uaA,B).

By the definition of the type qinv(uaA,B) we get

uaA,B ◦ eqtoequivA,B ∼ idA=UB

i.e.,

G′ :
∏

π : A=UB

uaA,B
(
eqtoequivA,B(π)

)
= π.

Moreover,
eqtoequivA,B ◦ uaA,B ∼ idA∼B

i.e.,

H ′ :
∏

K : A∼B
eqtoequivA,B

(
uaA,B(K)

)
= K.

Hence, by G′ we get

reflA = uaA,A
(
eqtoequivA,A(reflA)

)
≡ uaA,A

((
(idA, reflA), (idA, reflA)

))
.

Proposition 5.6.3. Let A,B : U , p : A =U B and q : B =U C. As eqtoequivA,B : A =U B →
A ' B and eqtoequivB,C : B =U C → B ' C, we have that

eqtoequivA,B(p) : A ' B & eqtoequivB,C(q) : B ' C,

hence

uaA,B
(
eqtoequivA,B(p)

)
: A =U B & uaB,C

(
eqtoequivB,C(q)

)
: B =U C.

104 CHAPTER 5. HOMOTOPY TYPE THEORY

Considering the inverse and the composition of equivalences from Definition 5.2.5, we get[
eqtoequivA,B(p)

]−1
: B ' A & eqtoequivB,C(q) ◦ eqtoequivA,B(p) : A ' C.

(i) uaB,A

([
eqtoequivA,B(p)

]−1
)

= p−1.

(ii) uaA,C

(
eqtoequivB,C(q) ◦ eqtoequivA,B(p)

)
= p ∗ q.

Proof. We work similarly to the proof of Proposition 5.3.1.

Corollary 5.6.4. Let A,B : U , e : A ' B and j : B ' C. Considering the inverse and the
composition of equivalences from Definition 5.2.5, we have that:

(i)
[
uaA,B(e)

]−1
= uaB,A

(
e−1
)
.

(ii) uaA,B(e) ∗ uaB,C(j) = uaA,C(j ◦ e).

Proof. Exercise.

Proposition 5.6.5. Let A : U , P : A → U and l : a =A a. If f : P (a) → P (a) such that
isequiv(f) and apP (l) = uaP (a),P (a)(f), then

lP∗ = f.

Proof. Exercise.

The universe U is not a set.

Proposition 5.6.6. isSet(U)→ 0.

Proof. By Definition 5.5.1

isSet(U) ≡
∏

X,Y : U

∏
π,$: X=UY

π = $.

Clearly, isequiv(sw2). Hence, ua2,2(sw2) : 2 =U 2. Of course, refl2 : 2 =U 2 too. Let

ua2,2(sw2) = refl2.

Hence

eqtoequiv2,2
(
ua2,2(sw2)

)
= eqtoequiv2,2

(
refl2

)
.

Consequently,

sw2 = id2,

which implies 02 = 12. From that we get a term of type 0.

5.7. PROPOSITIONAL TRUNCATION AS A HIGHER INDUCTIVE TYPE 105

5.7 Propositional truncation as a higher inductive type

If A : U , its (−1)-truncation ||A|| : U is a mere proposition generated by A by truncating, or
squashing, all information regarding the elements of A. In HoTT the truncation ||A| of A is
defined as a higher inductive type i.e., introduction rules for canonical elements and paths
between them are included in its definition.

Definition 5.7.1. Form||A|| :

A : U
||A|| : U .

Intro||A|| :

a : A
|a| : ||A|| ,

c, d : ||A||
pc,d : c =||A|| d

.

Rec||A|| :

B : U , b, b′ : B, qb,b′ : b =B b′, f : A→ B

|f | : ||A|| → B, |f |(|a|) ≡ f(a), a : A, |f |(pc,d) = q|f |(c),|f |(d)
.

Ind||A|| :

P : ||A|| → U , G :
∏
x : A P (|x|), c, d : ||A||, u : P (c), w : P (d), qc,d : (pc,d)

P
∗ (u) =P (d) w; c, d : ||A||

F :
∏
x : ||A|| P (x), F (|a|) ≡ G(a); a : A, F (pc,d) = qc,d

.

The first introduction rule introduces a function |.| : A→ ||A||, where

|.| ≡ λx : A.|x| : ||A||.

Clearly, if A is inhabited, then ||A|| is also inhabited. The second introduction rule introduces
a term of type (

λx,y : ||A||.px,y
)

: isProp
(
||A||

)
.

The rule Rec||A|| says that if B is a competitor type to A i.e., a mere proposition, and if
f : A→ B competes with |.|, then the following diagram commutes

||A|| B.

A

|f |

|.| f

In other words, if B follows from A, then it follows from ||A|| too. The equality |f |(pc,d) =
q|f |(c),|f |(d) is a natural compatibility condition that needs to be added, because of the second
introduction rule. The rule Ind||A|| is the dependent analogue to the rule Rec||A||. Notice that

if P is the constant type family B over A, then by the J-rule we get (pc,d)
P
∗ (u) =B u, and

the equality (pc,d)
P
∗ (u) =B w induces the equality u =B w. As expected, the truncation of a

proposition A is shown to be equivalent to A, hence by univalence equal to A.

106 CHAPTER 5. HOMOTOPY TYPE THEORY

Figure 5.5: Rec||A||

Proposition 5.7.2. Let A : U such that isProp(A). Then A ' ||A||.

Proof. As A and ||A|| are mere propositions, it suffices to show that A↔ ||A||. Clearly,

||A|| A.

A

|idA|

|.| idA

|.| : A→ ||A||, while |idA| : ||A|| → A

The 0-truncation of A, which defines a set from A, is defined similarly.

5.8 Propositionally truncated logic

We can use the axiom of univalence, and the propositional truncation ||A|| of A as a HIT,
in order to translate a bounded formula of first-order logic into HoTT. In Table 5.1 A,B
are mere propositions in U , S is a set in U , and P : S → U , such that P (x) is a proposition,
for every x : S. In this way, all types in HoTT given on Table 5.1 are mere propositions.
Notice that A⇔ B corresponds to A↔ B, which is equivalent to A ' B, as A,B are mere
propositions. By UA this type is equivalent to A =U B. To show that in this case A =U B is a
proposition, we use UA again. By it

A =U B ' A ' B ≡
∑

φ : A→B
isequiv(φ),

and we use the fact that both A→ B and isequiv(φ) are mere propositions. Within univalent
logic, if isSet(A), isSet(B), and if R : A→ B → U , such that isProp(R(a, b), for every a : A

5.9. THE HIGHER INDUCTIVE TYPE INTERVAL 107

and b : B, the set-theoretic axiom of choice is translated as the following type in univalent
logic: (∏

x : A

∣∣∣∣∣∣∣∣∑
y : B

R(x, y)

∣∣∣∣∣∣∣∣)→ ∣∣∣∣∣∣∣∣ ∑
φ : A→B

∏
x : A

R(x, φ(x))

∣∣∣∣∣∣∣∣.
This type cannot be shown to be inhabited, as the information on the sigma-type is suppressed
through truncation.

Corollary 5.8.1 (Unique-choice). Let A : U and P : A → U , such that isProp(P (x)) and
||P (x)|| is inhabited, for every x : A. Then the type∏

x : A

P (x)

is inhabited.

Proof. By Proposition 5.7.2 P (x) ' ||P (x), for every x : A. Then a term of type
∏
x : A P (x)

is defined by the inhabitedness of P (x), for every x : A.

5.9 The higher inductive type interval

Next we define an abstract notion of a unit interval as a HIT.

Definition 5.9.1. FormI :

I : U .

IntroI :

0I : I , 1I : I , seg : 0I =I 1I .

I.e., the interval I has the canonical terms 0I , 1I and an equality path seg between them.

RecI :

B : U , b0, b1 : B, p : b0 =B b1
f : I → B, f(0I) ≡ b0, f(1I) ≡ b1, f(seg) = p

.

IndI :

P : I → U , b0 : P (0I), b1 : P (1I), p : segP∗ (b0) =P (1I) b1

F :
∏
x : I P (x), F (0I) ≡ b0 F (1I) ≡ b1, F (seg) = p

.

The following obvious equivalence supports the homotopic interpretation of the equality
type as a path-type:

a =A b '
∑

φ : I→A

(
f(0I) =A a

)
×
(
f(1I) =A b

)
.

As b1 ≡ segP∗ (b0) : P (1I) and

reflb1 : segP∗ (b0) =P (1I) b1,

108 CHAPTER 5. HOMOTOPY TYPE THEORY

Figure 5.6: RecI and IndI

in order to find
F :

∏
x : I

P (x),

it suffices to find b0 : P (0I). This remark implies immediately the contractibility of I i.e.,∏
x : I

0I =I x.

The interval type implies the axiom of function-extensionality.

Theorem 5.9.2. MLTT + I ` FunExt.

Proof. Let f, g : A→ B and H : f ∼ g. By the equivalence

f =A→B g '
∑

φ : I→(A→B)

φ(0I) = f × φ(1I) = g,

it suffices to find h : I → (A → B) such that h(0I) = f and h(1I) = g. If x : A, then
H(x) : f(x) =B g(x). By RecI there is hx : I → B, such that hx(0I) ≡ f(x), hx(1I) ≡ g(x)
and hx(seg) = H(x). Let

h ≡ λi : Iλx : A.hx(i).

Then we get
h(0I) ≡ λx : A.hx(0I) ≡ λx : A.f(x) ≡ f,

h(1I) ≡ λx : A.hx(1I) ≡ λx : A.g(x) ≡ g.

5.9. THE HIGHER INDUCTIVE TYPE INTERVAL 109

Bounded formula Type in HoTT

> 1

⊥ 0

A ∧B A×B

A⇒ B A→ B

A⇔ B A =U B

¬A A→ 0

A ∨B ||A+B||

∀x∈SP (x)
∏
x : S P (x)

∃x∈SP (x)

∣∣∣∣∣∣∣∣∑x : S P (x)

∣∣∣∣∣∣∣∣

Table 5.1: Propositionally truncated logic, or univalent logic

110 CHAPTER 5. HOMOTOPY TYPE THEORY

Bibliography

[1] P. Aczel, M. Rathjen: Constructive Set Theory, book draft, 2010.

[2] S. Awodey: Category Theory, Oxford University Press, 2010.

[3] S. Awodey, M. A. Warren. Homotopy theoretic models of identity types, Mathematical
Proceedings of the Cambridge Philosophical Society, 2009, 146:45-55.

[4] E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.

[5] E. Bishop and D. S. Bridges: Constructive Analysis, Grundlehren der math. Wis-
senschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.

[6] A. Blass: Existence of bases implies the axiom of choice, Contemporary Mathematics,
Volume 31, 1984, 31-33.

[7] D. S. Bridges and F. Richman: Varieties of Constructive Mathematics, Cambridge
University Press, 1987.

[8] G. Cantor: Über unendliche, lineare Punktmannichfaltigkeiten, Nummer 3. Mathematische
Annalen, 20, 1882, 113–121.

[9] C. C. Chang, A. H. Keisler: Model Theory, Dover, 2012.

[10] T. Coquand: A remark on singleton types, manuscript, 2014.

[11] J. Dugundji: Topology, Allyn and Bacon,1966.

[12] H. B. Enderton: Elements of Set Theory, Academic Press, 1977.

[13] M. Escardó: Using Yoneda rather than J to present the identity type, preprint, in
http://www.cs.bham.ac.uk/∼mhe/yoneda/yoneda.html.

[14] G. Gentzen: Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik,
Galley proof, Mathematische Annalen (received 15th March 1933). First published in
English translation in The collected papers of Gerhard Gentzen, M.E. Szabo (editor),
53-67, Amsterdam (North-Holland).

[15] G. Gentzen: Untersuchungen über das logische Schließen I, II, Mathematische Zeitschrift,
39, 1935, 176-210, 405-431.

112 BIBLIOGRAPHY

[16] K. Gödel: Zur intuitionistisohen Arithmetik und Zahlentheorie, in : Ergebnisse eines
mathematischen Kolloquiums, Heft 4 (for 1931-1932, appeared in 1933), 34-38. Translated
into English in The undecidable, M. Davis (editor), 75-81, under the title “On intuitionistic
arithmetic and number theory”. For corrections of the translation see review in J.S.L. 31
(1966), 484-494.

[17] R. Goldblatt: Topoi, The Categorial Analysis of Logic, Dover, 2006.

[18] M. Hofmann, T. Streicher: The groupoid interpretation of type theory, G. Sambin, J. M.
Smith (Eds.) Twenty-five years of constructive type theory (Venice, 1995), volume 36 of
Oxford Logic Guides, Oxford University Press, 1998, 83-111.

[19] S. Huber: Cubical Interpretations of Type Theory, PhD Thesis, University of Gothenburg,
2016.

[20] C. Kapulkin, P. LeFanu Lumsdaine, V. Voevodsky: The simplicial model of univalent
foundations, arXiv:1211.2851, 2012.

[21] K. Kunen: Set Theory, Individual author and College Publications, 2013.

[22] T. Jech: Set theory, Springer, 2002.

[23] A. N. Kolmogorov. On the principle of the excluded middle (in Russian). Mat. Sb., 32,
1925, 646-667.

[24] J. Lambek, P. J. Scott: Introduction to higher order categorical logic, Cambridge University
Press, 1986.

[25] P. Martin-Löf: An intuitionistic theory of types: predicative part, in H. E. Rose and J. C.
Shepherdson (Eds.) Logic Colloquium’73, pp.73-118, North-Holland, 1975.

[26] P. Martin-Löf: Intuitionistic type theory: Notes by Giovanni Sambin on a series of lectures
given in Padua, June 1980, Napoli: Bibliopolis, 1984.

[27] P. Martin-Löf: An intuitionistic theory of types, in G. Sambin, J. M. Smith (Eds.)
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic
Guides, Oxford University Press, 1998, 127-172.

[28] C. Paulin-Mohring: Inductive Definitions in the System Coq - Rules and Properties, in
M. Bezem, J. F. Groote (Eds.) Proceedings of TLCA, LNM 664, Springer, 1993.

[29] I. Petrakis: Families of Sets in Bishop Set Theory, Habilitationsschrift, LMU, 2020.

[30] E. Rijke: Homotopy Type Theory, Master Thesis, Utrecht University 2012.

[31] H. Rogers: Theory of Recursive Functions and Effective Computability, McGraw-Hill,
1967.

[32] H. Rubin, J. E. Rubin: Equivalents of the axiom of choice II, North-Holland, 1985.

[33] H. Schwichtenberg, A. Troelstra: Basic Proof Theory, Cambridge University Press 1996.

[34] H. Schwichtenberg, S. Wainer: Proofs and Computations, Cambridge University Press
2012.

BIBLIOGRAPHY 113

[35] T. Streicher: Realizability, Lecture Notes, TU Darmstadt, 2018.

[36] The Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of
Mathematics, Institute for Advanced Study, Princeton, 2013.

[37] V. Voevodsky. A very short note on the homotopy λ-calculus, in
http://www.math.ias.edu/∼vladimir/Site3/Univalent−Foundations−files
/Hlambda−short−current.pdf, 2006

	Introduction
	Intuitionistic logic and constructive mathematics
	Inductive definitions
	First-order logic in a nutshell
	The Brouwer-Heyting-Kolmogorov-interpretation
	Cantor sets I and Zermelo-Fraenkel sets
	Cantor sets II and Bishop sets
	Bishop subsets
	Families of Bishop sets

	Basic types of Martin-Löf Type Theory
	Propositions and Judgments
	Universes of types
	Function type
	Dependent function type
	Product type
	Coproduct type
	Dependent pair type
	The type-theoretic axiom of choice
	The empty type
	The unit type
	The type of booleans
	The type of naturals
	The equality type family

	General properties of the equality type-family
	Transport and least reflexive relation
	The uniqueness-rule associated to the equality type-family
	The based version of the J-rule
	The equality type family is an equivalence relation
	The higher groupoid structure of a type
	Loop spaces and the Eckmann-Hilton theorem

	Equality and basic types
	Equality and the function type
	Equality and the dependent function type
	Equality and the product type
	Equality and the dependent pair type
	Equality and the coproduct type
	Equality and the unit type
	Equality and the type of naturals

	Homotopy type theory
	Homotopies
	Equivalences
	Function extensionality axiom
	Propositions and sets
	Sets
	Voevodsky's axiom of univalence
	Propositional truncation as a higher inductive type
	Propositionally truncated logic
	The higher inductive type interval

