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1 Introduction

A classical problem in algebraic geometry asks whether a given variety X is rational,
that is, whether it admits a birational map X 99K Pn for some n ≥ 0. Commonly, one
also introduces the weaker notion of X being stably rational, which means that X × Pr is
rational for some r ≥ 0. In general, very little is known about the class of rational or
stably rational varieties.

In this thesis, we will consider quadric surface bundles over P2, i. e. projective varieties
together with a flat morphism to P2 such that the generic fibre is a smooth quadric
surface. Unless otherwise stated, we always work over the field of complex numbers. For
these varieties, the rationality problem is a lot easier, since quadric surfaces are rational
if and only if they have a rational point.

The behaviour of rationality in families turns out to be quite interesting in this case: In
many natural families of quadric surface bundles, as we will prove, the locus of rational
members is dense, while on the other hand it is known for these families that the locus
of stably irrational members is dense as well.

A simple example for a quadric surface bundle is a smooth hypersurface in P2×P3 defined
by a homogeneous polynomial of bidegree (d, 2) for some integer d ≥ 0. Projection to
the first factor gives it the quadric bundle structure over P2. Apart from that, many
interesting fourfolds arising in algebraic geometry are birational to quadric surface bundles
over P2, for example

(i) a cubic fourfold containing a plane,

(ii) more generally, a hypersurface in P5 of degree d + 2 with multiplicity d along a
plane for some integer d ≥ 1 (see e. g. [Sch18a, Lemma 23]),

(iii) a double cover of P4 ramified in a quartic threefold singular along a line,

(iv) more generally, a double cover of P4 branched along a hypersurface in P4 of
degree d+ 2 with multiplicity d along a line for some even integer d ≥ 2 (see e. g.
[Sch18a, Lemma 24]),

(v) a smooth complete intersection of three quadrics in P7 (see e. g. [Bea77, Exem-
ple 1.4.4]).

Recently, a lot of progress was made in the rationality problem for fourfolds by showing
that in all examples from above except (i), a very general member is not stably rational.
By this, one means the following: One parametrizes all fourfolds of a certain type by
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1 Introduction

a smooth variety B and obtains a universal family f : X → B. Usually, B is a Zariski
open subset in a high-dimensional projective space consisting of the possible defining
equations for the examined varieties. We denote the fibre f−1({b}) at a point b ∈ B by
Xb. Now saying that a very general member of the family X → B is not stably rational
means that the set

{b ∈ B | Xb is stably rational}

is contained in a countable union of proper closed subvarieties of B.

This result was proven for smooth hypersurfaces in P2 × P3 of bidegree (2, 2) by Hassett,
Pirutka, and Tschinkel [HPT18a]. They also settled the case of quartic double fourfolds
[HPT18b] and of complete intersections of quadrics [HPT17]. In order to prove stable
irrationality of a very general member, they used the so called specialization method of
Voisin [Voi15b] and Colliot-Thélène–Pirutka [CTP16], which also allowed to disprove
rationality in several other families, see e. g. [Pir18] or [Voi18] for an overview.

Using his improvement [Sch18a] of the specialization method, Schreieder proved in
[Sch18b] that a very general quadric surface bundle is not stably rational for a large
class of families of quadric surface bundles over P2. His result includes all the remaining
examples from above except (i) as special cases.

To describe the families studied in [Sch18b], we introduce the notion of standard quadric
surface bundles. These underlie a general construction to obtain quadric surface bundles
and arise in a natural way, albeit not all quadric surface bundles over P2 are standard
ones (from the examples listed above, only item (v) is not). A standard quadric surface
bundle over P2 is given by an equation of the form∑

0≤i,j≤3
aijyiyj = 0 , (1.1)

where aij = aji is a homogeneous polynomial of degree 1
2(di+dj) in the three coordinates

of P2 for integers d0, d1, d2, d3 ≥ 0 of the same parity. Here, y0, y1, y2, y3 denote local
trivializations of a certain vector bundle E on P2 of rank 4, the details of which will be
explained later in Section 4.1. We then say that the quadric surface bundle X ⊂ P(E)
defined by equation (1.1) is of type (d0, d1, d2, d3).

With this notion, a hypersurface in P2 × P3 of bidegree (d, 2) for d ≥ 0 is a standard
quadric surface bundle of type (d, d, d, d). Further, the examples (ii) and (iv) from
above are birational to quadric surface bundles of type (d, d, d, d+ 2) and (0, d, d, d+ 2),
respectively.

Now, Schreieder has shown in [Sch18b] that a very general quadric surface bundle of
type (d0, d1, d2, d3) is not stably rational except for the two cases (1, 1, 1, 3) and (0, 2, 2, 2)
(up to reordering) which remain open and for trivial cases where the quadric surface
bundle always has a rational section and is hence rational. Thus, the irrationality results
of [HPT18a] and [HPT18b] can be generalized to almost any standard quadric surface
bundle.
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Hassett, Pirutka, and Tschinkel also proved in [HPT18a] for their family X → B of
hypersurfaces in P2 × P3 of bidegree (2, 2) that the locus

{b ∈ B | Xb is rational} ,

while being contained in a countable union of proper closed subvarieties of B, is at
the same time dense in B for the Euclidean topology. This is a striking result since it
shows that rationality of the fibres is in general not a closed property on the base. In
particular, rationality is not deformation invariant among smooth families, which was an
open question before.

Subsequently, further examples of smooth families containing both rational and stably
irrational fibres were identified, for example in [HPT18b], [HPT17], [Sch18a], [Sch18b],
[ABP18], and [HKT18]. Typically, it is easy to provide certain rational members in
the studied families. However, this does not exclude that the locus of rational fibres is
contained in a proper closed subset of the base. In only a few cases, it was shown that
the locus of rational fibres is dense in the moduli space.

The aim of this thesis is to prove the density assertion for any standard quadric surface
bundle over P2, thus showing that also in this large class of families the locus of rational
fibres is never contained in a proper closed subset of the moduli space. Concretely,
we want to give a detailed proof of the following new result, which also appeared in
[Pau18]:

Theorem 1.1. Let d0, d1, d2, d3 ≥ 0 be integers of the same parity and let X → B be the
universal family of smooth quadric surface bundles over P2 of type (d0, d1, d2, d3). Then
the set

{b ∈ B | Xb is rational}

is dense in B for the Euclidean topology.

The first case where such a density result for quadric surface bundles was proven was for
type (0, 2, 2, 4) and is due to Voisin [Voi15a, Section 2], see also [Sch18a, Proposition 25].
As mentioned, the case of type (2, 2, 2, 2) was shown in [HPT18a]. In particular, Theo-
rem 1.1 generalizes their density result to hypersurfaces in P2 × P3 of bidegree (d, 2) for
arbitrary d ≥ 0. It also provides a unified proof for the density of rational members in
the aforementioned families of fourfolds that are birational to standard quadric surface
bundles.

Further, Theorem 1.1 gives an affirmative answer to a question raised in [Sch18a, Re-
mark 49]. Namely, Schreieder proved in [Sch18a, Theorem 47] that for all integers n, r, d
such that n ≥ 2, 2n−1 − 1 ≤ r ≤ 2n − 2, d ≥ 2(n+ r)(r + 1), and d(r + 1) is even, there
exists a family X → B of r-fold quadric bundles over Pn whose degeneration loci are of
degree d such that Xb is stably irrational for a very general b ∈ B, but some fibres are
rational for r ≥ 2. Using Voisin’s density result for standard quadric surface bundles
of type (0, 2, 2, 4), he concluded that the locus of rational fibres is even dense in B (for
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1 Introduction

the Euclidean topology) if r ≥ 3 and d is even. As a consequence of Theorem 1.1, this
actually holds for all r ≥ 2 and without the restriction on the parity of d.

In order to prove Theorem 1.1, we follow Voisin’s approach from [Voi15a, Section 2] that
has later been used in [HPT18a] and [HPT17]. Using a theorem of Springer [Spr52] and
the fact that the integral Hodge conjecture is known in codimension two for quadric
bundles over surfaces [CTV12], we obtain a Hodge theoretic property guaranteeing the
rationality of quadric surface bundles over P2:

Proposition 1.2. Let π : X → P2 be a quadric surface bundle. Then X is rational if
there exists an integral Hodge class in H2,2(X,Z) meeting the generic fibre of π in odd
degree.

This leads to the study of the locus{
b ∈ B

∣∣∣ H2,2
odd(Xb,Z) 6= 0

}
. (1.2)

Here, H2,2
odd denotes the quotient ofH2,2 by the subgroup of classes having even intersection

number with the generic fibre.

Similar loci already appeared more than 30 years earlier in the context of the Noether–
Lefschetz theorem, which was conjectured by Noether and first proven by Lefschetz
[Lef24] in 1924. This theorem states that for all d ≥ 4, the Picard group of a very general
smooth surface in P3 of degree d has only rank 1, i. e. is generated by the restriction of
the line bundle OP3(1). In analogy to the issue of rationality in families discussed above,
it turns out that in the universal family X → B of smooth surfaces in P3 of degree d, the
so called Noether–Lefschetz locus

{b ∈ B | Pic(Xb) � Z · OP3(1)|Xb}

is dense in the moduli space B for the Euclidean topology. This was first shown in
[CHM88, Section 5] using an idea of Green and later by a different argument in [Kim91,
Section 3]. The Noether–Lefschetz locus can be rephrased in terms of integral Hodge
classes as the set {

b ∈ B
∣∣∣ H1,1

pr (Xb,Z) 6= 0
}
.

Here, the primitive cohomology H1,1
pr may be regarded as the quotient of H1,1 by the

subgroup generated by the Kähler class, which is dual to the intersection with a plane in
P3.

Both loci are defined via the existence of a non-zero integral Hodge class in (a quotient of)
the middle cohomology groupsH1,1 andH2,2, respectively. Since we haveH4,0 = H0,4 = 0
for quadric surface bundles over P2, their Hodge structure on H4 is only of weight 2.
Hence, we will call the subset (1.2) a Noether–Lefschetz locus as well.

In [Voi03b, Proposition 5.20], Voisin stated an infinitesimal criterion for the density of
such Noether–Lefschetz loci, based on Green’s idea in [CHM88, Section 5]. Roughly
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speaking, it suffices to check that for some b ∈ B there exists a class λ ∈ H1,1(Xb) such
that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H0,2(Xb)

is surjective (one has to replace H1,1 by H2,2 and H0,2 by H1,3 in the case of a Hodge
structure of weight 2 on H4). This criterion was also used in [Kim91] for reproving
the density result in the Noether–Lefschetz theorem, and in [Voi15a] and [HPT18a] for
proving rationality of quadric surface bundles over a dense set of the moduli space.

In all of these applications, one can explicitly describe the infinitesimal period map
∇b(λ) as a multiplication map in a certain quotient of a polynomial ring. Therefore, the
verification of the density criterion of Green and Voisin reduces to an elementary statement
involving the multiplication of polynomials. This problem was solved in [HPT18a] with
an explicit computation done in Macaulay2 on a randomly chosen example. This was
possible because they only dealt with quadric surface bundles of the fixed type (2, 2, 2, 2).
In [Voi15a, Section 2], Voisin proved the surjectivity of the infinitesimal period map for
quadric surface bundles of type (0, 2, 2, 4) via a more general argument. However, her
approach seems to work only in low dimensions of H1,3 and H2,2. The argument of Kim
in [Kim91, Section 3] for the density of the original Noether–Lefschetz locus is more
sophisticated, since it involves the unknown degree d of the surface. We will face a similar
challenge when handling quadric surface bundles of arbitrary type (d0, d1, d2, d3).

In order to prove Theorem 1.1, we use a result about the strong Lefschetz property of
certain complete intersections which was proven in [HW03, Proposition 30]. With our
approach involving the theory of Lefschetz properties, we can also simplify the argument
of [Kim91], see Section 4.4.

The thesis is structured as follows. In Chapter 2, we prove Proposition 1.2 and see how
the rationality of quadric surface bundles relates to the cohomology group H2,2 arising
in Hodge theory. In Chapter 3, we study Noether–Lefschetz loci in their generality and
prove a slightly generalized version of Voisin’s infinitesimal criterion for their density. In
Chapter 4, we first compute the cohomology of standard quadric surface bundles to give
an explicit description of the infinitesimal period map. Then we apply the preparations
of the previous two chapters in order to reduce Theorem 1.1 to a statement about
polynomials. Finally, we solve this problem in the last section.

Conventions

A variety is defined to be an integral separated scheme of finite type over a field. If not
stated otherwise, varieties are always understood to be over the field of complex numbers.
All Kähler manifolds are assumed to be compact and connected.

A quadric surface bundle over P2 is a complex projective variety X together with a flat
morphism π : X → P2 such that the generic fibre Xη over the generic point η ∈ P2 is a
smooth quadric surface over the function field C(P2).
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1 Introduction

Preliminaries from Hodge theory

Hodge theory is a powerful tool in complex algebraic geometry. We will use it extensively
in Chapter 3. We now recall some important results in order to introduce the notation
used throughout this thesis.

A smooth projective variety X of dimension n is a Kähler manifold and hence admits a
Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X) , Hp,q(X) = Hq,p(X)

for all 0 ≤ k ≤ 2n into the Hodge groups Hp,q(X) generated by forms of type (p, q) in
de Rham cohomology. The groups Hp,q(X) are naturally isomorphic to the Dolbeault
cohomology groups Hq(X,Ωp

X). Conversely, it is a non-obvious result that a Kähler
manifold embedded into projective space is algebraic and thus a smooth projective
variety.

Especially when studying families of Kähler manifolds, it is often useful to consider the
Hodge filtration

F kHk(X,C) ⊂ · · · ⊂ F 1Hk(X,C) ⊂ F 0Hk(X,C) = Hk(X,C)

where
F pHk(X,C) =

⊕
r≥p

Hr,k−r(X) .

One can get back the Hodge decomposition from the Hodge filtration via the relation

Hp,q(X) = F pHk(X,C) ∩ F qHk(X,C)

for p + q = k. The subspaces F pHk(X,C) can also be seen as the hypercohomology
groups Hk(X,Ω•≥pX ) of the truncated holomorphic de Rham complex

0→ Ωp
X → Ωp+1

X → · · · .

For p+ q = k, we write

Hp,q(X,Z) = Hp,q(X) ∩Hk(X,Z) ⊂ Hk(X,C)

for the Abelian group of integral classes of type (p, q), where Hk(X,Z) is identified with
its image in Hk(X,C) under the inclusion of sheaves Z ⊂ C. If p = q, these classes are
called integral Hodge classes. Since an integral class is real, we can express Hp,p(X,Z) in
terms of the Hodge filtration as

Hp,p(X,Z) = H2p(X,Z) ∩ F pH2p(X,C) .

This fact will be particularly useful in Chapter 3.
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If X is a smooth projective variety and Z ⊂ X is a subvariety of codimension k, we
denote by

[Z] ∈ H2k(X,Z)

the Poincaré dual of the homology class of Z. One can easily see that [Z] is of type (k, k).
Therefore, every integral algebraic 2k-cycle, i. e. a finite formal sum

∑
ni[Zi] with ni ∈ Z

and subvarieties Zi ⊂ X of codimension k, gives an element of Hk,k(X,Z). The integral
Hodge conjecture asserts that all integral Hodge classes are of this form. For k = 1,
this follows from the Lefschetz (1, 1)-theorem because the map PicX → H1,1(X,Z) is
surjective. For k > 1, however, the conjecture is false in general, as first shown by Atiyah
and Hirzebruch [AH61]. Replacing Z by Q everywhere in the above discussion, we obtain
the still unsolved (rational) Hodge conjecture, which is one of the seven Millennium Prize
Problems.
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2 Rationality of quadric surface bundles

The aim of this chapter is to prove Proposition 1.2, which gives a sufficient condition for
the rationality of quadric surface bundles over P2 in terms of integral Hodge classes. Our
treatment follows [Voi15a, Section 2] and [HPT18a, Section 3.1].

2.1 Quadric surfaces

Let us recall that a variety X of dimension n over a field k is called rational if it is
birational to Pnk . This means there are non-empty Zariski open subsets U ⊂ X and
V ⊂ Pnk which are isomorphic, or equivalently, the function field k(X) is isomorphic to the
purely transcendental extension k(Pnk) = k(x1, . . . , xn). While the problem of deciding
whether a given variety is rational or not is very hard in general, it is easy to solve for
quadric hypersurfaces. The following rationality criterion is well-known:

Lemma 2.1. Let Q ⊂ Pn+1
k be a smooth quadric hypersurface over a field k. Then Q is

rational if Q has a k-point.

Proof. Suppose there exists a k-point x ∈ Q. Let P ⊂ Pn+1
k be the hyperplane tangent

to Q at x. We claim that Q \ P and Ank are isomorphic. Then it will follow that Q
is rational because Q \ P ⊂ Q and Ank ⊂ Pnk are non-empty Zariski open subsets (as
Q is not contained in P ). To see the claim, first note that Ank parametrizes all lines
through x in Pn+1

k which are not contained in P . The intersection of a line ` ⊂ Pn+1
k

with ` 6⊂ P through x with the quadric hypersurface Q is determined by a quadratic
equation in t, where t ∈ P1

k parametrizes the points on ` such that t =∞ corresponds to
x ∈ `. Since we already know that x ∈ `∩Q, by Vieta’s formula there is a unique second
intersection point y ∈ ` ∩Q, whose coordinates depend rationally on those of x and of
the point in Ank describing `. Further, y is different from x because ` is not contained in
the tangent hyperplane of Q at x. Likewise, for any point y ∈ Q \ P there is a unique
line ` ⊂ Pn+1

k with ` 6⊂ P passing through x and y, whose associated point in Ank depends
rationally on y. The two constructions are inverse to each other, so we have constructed
an isomorphism between Q \ P and Ank .

In particular, over an algebraically closed field a smooth quadric hypersurface is always
rational. The converse of Lemma 2.1 also holds by the Lang–Nishimura lemma. However,
in this chapter we are mostly interested in sufficient conditions for rationality.

10



2.2 Springer’s theorem

Now we consider a complex quadric surface bundle π : X → P2. The generic fibre Xη is
a quadric surface over the function field k = C(P2). Since P2 is rational, X is rational as
soon as the generic fibre Xη is rational over k. Indeed, X is birational to Xη over k and
thus its function field C(X) is a purely transcendental extension of k. Since k = C(x1, x2)
itself is a purely transcendental extension of C, the same holds for C(X) and it follows
that X is rational (over C).

In view of Lemma 2.1, we conclude:

Corollary 2.2. Let π : X → P2 be a quadric surface bundle. Then X is rational if the
generic fibre Xη has a k-point where k = C(P2).

2.2 Springer’s theorem

The following theorem of Springer [Spr52] was originally a conjecture of Witt. It allows
us to considerably weaken the requirement of Xη having a k-point.

Proposition 2.3 (Springer). Let Q ⊂ Pn+1
k be a quadric hypersurface over a field k

and let K/k be a finite field extension of odd degree. If Q has a K-point, then Q has a
k-point.

The following proof only uses techniques from basic algebra.

Proof. The statement is obvious if K = k. Otherwise, let β ∈ K \ k. Then the degree
[K : k(β)] is odd and strictly less than [K : k], so we may assume by induction on
[K : k] that K = k(β). Let p ∈ k[x] be the minimal polynomial of β over k and let
d = [K : k] = deg p. Let f ∈ k[y0, . . . , yn+1] be the defining equation of Q, which is a
homogeneous polynomial of degree 2. The assumed K-point of Q can be written as

[g0(β) : . . . : gn+1(β)] ∈ Pn+1
K

with certain polynomials g0, . . . , gn+1 ∈ k[x] of degree less than d, not all being identically
zero. Since the polynomial f(g0, . . . , gn+1) ∈ k[x] has a zero at β ∈ K, it is divisible by
the minimal polynomial p, i. e.

f(g0, . . . , gn+1) = p · q

for some polynomial q ∈ k[x]. Let m ≥ 0 be the maximal degree occuring among
the polynomials g0, . . . , gn+1. By the choice of g0, . . . , gn+1, we have m < d. We may
assume that f(g0, . . . , gn+1) has degree 2m, since otherwise the coefficients of g0, . . . , gn+1
at degree m (which are not simultaneously zero) would already give a k-point of Q.
Therefore, deg q = 2m− d is odd and less than d. Now let us take an irreducible factor
of q having odd degree and consider one of its roots θ in an algebraic closure of k. It
follows that

f(g0(θ), . . . , gn+1(θ)) = p(θ) · q(θ) = 0 ,

11



2 Rationality of quadric surface bundles

so Q has a k(θ)-point. Since k(θ)/k is a finite field extension of odd degree ≤ deg q < d,
Q has a k-point by induction.

Together with Corollary 2.2, Proposition 2.3 implies that in order to prove rationality of
a quadric surface bundle π : X → P2, it suffices to find a K-point on Xη for some field
extension K/k of odd degree. This can be achieved through an odd degree multisection
of π, i. e. a surface Z ⊂ X such that

[Z] ∪ [Xη] ∈ H4,4(X,Z) ∼= Z

is odd. Indeed, given a multisection Z of odd degree d, the projection π|Z : Z → P2 is
a finite map of degree d, hence the extension C(Z)/C(P2) of function fields is of finite
degree d. Furthermore, Z intersects Xη in d points (counted with multiplicity), each one
being of course rational over C(Z). Setting K = C(Z), we therefore found a K-point on
Xη for a field extension K/k of odd degree.

To summarize:

Corollary 2.4. Let π : X → P2 be a quadric surface bundle. Then X is rational if π
has a rational multisection of odd degree, that is, there exists a surface Z ⊂ X such that
[Z] ∪ [Xη] is odd.

2.3 The integral Hodge conjecture

As mentioned in the introduction, the integral Hodge conjecture is false in general.
However, it is true for certain special varieties. For (2, 2)-classes on quadric bundles over
surfaces, the integral Hodge conjecture was proven by Jean-Louis Colliot-Thélène and
Claire Voisin [CTV12, Corollaire 8.2]. The following special case will be useful for us:

Proposition 2.5 (Colliot-Thélène–Voisin). Let π : X → P2 be a smooth quadric surface
bundle. Then the integral Hodge conjecture holds for H2,2(X,Z).

This allows us to transform Corollary 2.4 into a Hodge theoretic condition. We are now
ready to prove a reformulation of Proposition 1.2 from the introduction:

Corollary 2.6. Let π : X → P2 be a smooth quadric surface bundle. Then X is rational
if there exists an integral Hodge class α ∈ H2,2(X,Z) such that α ∪ [Xη] is odd.

Proof. By Proposition 2.5, there exist surfaces Z1, . . . , Zm ⊂ X such that

α =
m∑
i=1

ni[Zi] , ni ∈ Z .

Therefore, [Zi] ∪ [Xη] is odd for at least one i ∈ {1, . . . ,m}. Hence, X is rational by
Corollary 2.4.
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2.3 The integral Hodge conjecture

It should be mentioned that the rationality condition in Corollary 2.6 is not necessary,
because already the converse of Corollary 2.2 is not true in general. For example, the
authors of [ABBVA14] construct smooth quadric surface bundles of type (1, 1, 1, 3) which
are rational but do not have a rational section. Since our proof of Theorem 1.1 is based
on Corollary 2.6, our proof shows the even stronger statement that the locus of quadric
surface bundles of type (d0, d1, d2, d3) which admit a rational section is dense in the
moduli space.

The question whether a very general quadric surface bundle of type (1, 1, 1, 3) is irrational
is one of the two cases not handled by [Sch18b] and is still open. Actually, this is a
longstanding and famous question, since any cubic fourfold containing a plane is birational
to a quadric surface bundle of type (1, 1, 1, 3). It is conjectured that the answer is positive,
though not even a single cubic fourfold is currently proven to be irrational. However, one
can show that a very general quadric surface bundle of type (1, 1, 1, 3) does not have a
rational section. Therefore, the actual locus we show to be dense is also for type (1, 1, 1, 3)
a proper subset of the moduli space and, in particular, is not closed.
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3 Density of Noether–Lefschetz loci

In the last chapter, we have seen how Hodge theory provides a sufficient condition for
the rationality of quadric surface bundles over P2. In order to study the behaviour
of rationality in families, we thus need to examine how the Hodge structure varies in
families of Kähler manifolds. Therefore, in this chapter, we leave the algebraic world and
study Noether–Lefschetz loci and their density in a general setting, detached from their
applications to rationality. Our aim is to prove the infinitesimal criterion of Green and
Voisin in variations of Hodge structure of weight 2. The content of this chapter is based
on Voisin’s books [Voi03a] and [Voi03b].

3.1 Variations of Hodge structure

Families of complex manifolds

A family of complex manifolds is a proper submersive holomorphic map f : X → B
between complex manifolds. It follows that all fibres Xb = f−1({b}) are compact complex
manifolds. Sometimes we fix a base point 0 ∈ B. In this case, the manifolds Xb are called
deformations of X0. We say that f is a family of Kähler manifolds if in addition all fibres
are Kähler manifolds.

The following theorem from the theory of deformations is crucial:

Theorem 3.1 (Ehresmann’s lemma). Let f : X → B be a proper submersive smooth
map between smooth manifolds. If B is contractible, there exists a diffeomorphism
φ : X → B ×X0 such that f = pr1 ◦ φ, where 0 ∈ B is an arbitrary base point.

It is important to note that Ehresmann’s lemma applied to f only gives an isomorphism
between X and B × X0 as smooth manifolds but not as complex ones. Therefore, by
identifying different fibres Xb with X0 via the diffeomorphism φ, we get a varying complex
structure on the differentiable manifold X0. In particular, if f : X → B is a family of
Kähler manifolds, the Hodge groups Hp,q(Xb) depend on the complex structure while
the topological invariant Hk(Xb,Z) ∼= Hk(X0,Z) does not, so B parametrizes a varying
Hodge decomposition on the fixed vector space Hk(X0,C) = Hk(X0,Z)⊗ C.

14



3.1 Variations of Hodge structure

Local systems and the Gauß–Manin connection

Let f : X → B be a family of complex manifolds. Let us suppose that the base B
is connected but not necessarily contractible. In this case, different fibres Xb and
X0 are still diffeomorphic, but we cannot identify them globally for all b ∈ B in a
consistent way. However, we can do so locally since every b ∈ B has a contractible
neighbourhood. This can be utilized in cohomology when considering for k ≥ 0 the
higher direct image sheaf Rkf∗Z on B with stalk Hk(Xb,Z) at b ∈ B. Restricted to a
contractible neighbourhood of a point b ∈ B, this sheaf is isomorphic to the constant
sheaf with values in Hk(Xb,Z) ∼= Hk(X0,Z) (the last isomorphism is not canonical).
Sheaves which satisfy this property of being locally isomorphic to a constant sheaf with
a fixed stalk are called local systems. Actually, it turns out that a local system is already
trivial on every simply connected open subset.

As it may be easier to work with vector bundles, we consider the locally free OB-module

Hk = Rkf∗Z⊗OB .

Then Hk is the sheaf of sections of a holomorphic vector bundle on B which we also
denote by Hk. Its fibre Hkb at b ∈ B (not to be confused with the stalk of the sheaf Hk)
is the cohomology group Hk(Xb,C). Furthermore,

HkR = Rkf∗Z⊗ C∞B

is the sheaf of smooth sections of a real subbundle HkR ⊂ Hk on B such that Hkb =
HkR,b ⊗R C for all b ∈ B.

Since Rkf∗Z is a local system, the vector bundle Hk comes with a flat connection

∇ : Hk → Hk ⊗ ΩB .

On a local section
∑
σi ⊗ fi of Hk, it is given by ∇ (

∑
σi ⊗ fi) =

∑
σi ⊗ dfi. This is

well-defined because the sections σi of Rkf∗Z are locally constant. The connection is flat
since

∇ ◦∇ (
∑
σi ⊗ fi) = ∇ (

∑
σi ⊗ dfi) =

∑
(σi ⊗ dfi ∧ dfi + σi ⊗ ddfi) = 0

where ∇ extends to a map

∇ : Hk ⊗ ΩB → Hk ⊗ Ω2
B

via the rule ∇(σ ⊗ α) = σ ⊗ dα +∇σ ∧ α. We call ∇ the Gauß–Manin connection on
Hk. It naturally descends to a flat connection on HkR.

One can regard Rkf∗C = Rkf∗Z⊗ C as a subsheaf of Hk consisting exactly of the flat
sections of the vector bundle Hk, i. e. those sections annihilated by ∇. Similarly, the
local system Rkf∗R = Rkf∗Z⊗R is the sheaf of ∇-flat sections of the real vector bundle
HkR.
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3 Density of Noether–Lefschetz loci

The Kodaira–Spencer map

For b ∈ B, we have a short exact sequence of holomorphic vector bundles on X = Xb:

0→ TX → TX |X → f∗TB|X → 0 .

Note that the vector bundle f∗TB|X ∼= X × TB,b is trivial. The associated long exact
sequence in cohomology yields a map

ρ : TB,b = H0(X, f∗TB|X)→ H1(X,TX)

which is called the Kodaira–Spencer map.

Hodge bundles

Now suppose f : X → B is a family of Kähler manifolds, so we have a Hodge decomposi-
tion

Hkb = Hk(Xb,C) =
⊕
p+q=k

Hp,q(Xb)

on each fibre of the vector bundle Hk. Our aim is to study how this structure varies
along B. One approach to do so locally is by considering the differential of the period
map, which has values in a product of Grassmannians. Here, we will give a different
formulation only using the language of subbundles and the Gauß–Manin connection ∇.

Note that there cannot exist holomorphic vector subbundles Hp,q ⊂ Hk with fibre
Hp,qb = Hp,q(Xb) at b ∈ B for all p+ q = k because if Hp,q(Xb) ⊂ Hk(Xb,C) would vary
holomorphically, its conjugate Hq,p(Xb) = Hp,q(Xb) ⊂ Hk(Xb,C) would vary antiholo-
morphically. This deficiency is resolved by considering the Hodge filtration

F kHk(Xb,C) ⊂ · · · ⊂ F 1Hk(Xb,C) ⊂ F 0Hk(Xb,C) = Hk(Xb,C)

instead.

In order to define the holomorphic vector bundles induced by the Hodge filtration, we
first give another description of the sheaf Hk. For this, let us consider the sheaf of relative
holomorphic 1-forms ΩX/B = ΩX /f∗ΩB on X . We define Ωp

X/B =
∧p ΩX/B for p ≥ 1. By

the relative holomorphic Poincaré lemma, the relative holomorphic de Rham complex

0→ ΩX/B → Ω2
X/B → · · ·

is a resolution of the sheaf f∗OB on X . Therefore, we have

Hk = Rkf∗Z⊗OB = Rkf∗Ω•X/B .

For p ≥ 0, the truncated relative holomorphic de Rham complex

0→ Ωp
X/B → Ωp+1

X/B → · · ·
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3.1 Variations of Hodge structure

denoted by Ω•≥pX/B gives rise to a sheaf

F pHk = Rkf∗Ω•≥pX/B

on B. The degeneracy at E1 of the Frölicher spectral sequence on the fibres Xb implies
that this induces a decreasing filtration

F kHk ⊂ · · · ⊂ F 1Hk ⊂ F 0Hk = Hk

on Hk by holomorphic vector subbundles with the expected fibres. These vector subbun-
dles are called Hodge bundles.

For p+ q = k, we define the quotients

Hp,q = F pHk

F p+1Hk

which are holomorphic vector bundles on B. The fibre

Hp,qb = F pHkb
F p+1Hkb

= F pHk(Xb,C)
F p+1Hk(Xb,C)

can be identified withHp,q(Xb) for b ∈ B. However, the structure ofHp,q(Xb) as a C-linear
subspace of Hk(Xb,C) cannot be realized by some structure of Hp,q as a holomorphic
subbundle of Hk, as explained earlier.

Griffiths transversality and the infinitesimal period map

Since the local trivializations X|U ∼= U×Xb of f : X → B over contractible neighbourhoods
U ⊂ B of points b ∈ B do not respect the complex structure, the holomorphic Hodge
bundles F pHk are usually not flat with respect to ∇. However, Griffiths [Gri68] showed
the important transversality property

∇
(
F pHk

)
⊂ F p−1Hk ⊗ ΩB .

This allows to construct for p+ q = k a map

∇ : Hp,q → Hp−1,q+1 ⊗ ΩB

on the quotient Hp,q, called the infinitesimal period map. In contrast to ∇, the morphism
of sheaves ∇ is OB-linear, since Leibniz’ rule implies

∇(fλ) = λ⊗ df + f · ∇(λ) ≡ f · ∇(λ) (mod F pHk ⊗ ΩB)

for a local section λ of F pHk and hence ∇(fλ) = f · ∇(λ) for a local section λ of Hp,q.
Therefore, ∇ induces for all b ∈ B a C-linear map

∇b : Hp,qb → H
p−1,q+1
b ⊗ ΩB,b

17



3 Density of Noether–Lefschetz loci

on the fibres of the corresponding vector bundles. Via adjunction we obtain a map

∇b : TB,b → Hom
(
Hp,qb ,Hp−1,q+1

b

)
for all b ∈ B. Denoting X = Xb, Griffiths [Gri68] computed that this map is just the
Kodaira–Spencer map ρ : TB,b → H1(X,TX) followed by the map

H1(X,TX)→ Hom
(
Hq (X,Ωp

X) , Hq+1
(
X,Ωp−1

X

))
= Hom

(
Hp,q(X), Hp−1,q+1(X)

)
given by cup product and contraction.

Abstract setting

The above results motivate an axiomatic approach for the study of variations of Hodge
structure where the original fibration f : X → B is not needed anymore. Concretely, we
start with a local system H of finitely generated free Z-modules on a connected complex
manifold B and consider the holomorphic vector bundle H with sheaf of sections

H = H ⊗OB

together with its flat Gauß–Manin connection ∇. Let HR ⊂ H be the corresponding real
vector subbundle. We denote by HR = H ⊗ R and HC = H ⊗ C the induced real and
complex local systems, respectively. The inclusion of sheaves HC ⊂ H corresponds to the
∇-flat sections of the vector bundle H. We define an integral variation of Hodge structure
of weight k on H to be a filtration

F kH ⊂ · · · ⊂ F 1H ⊂ F 0H = H

by holomorphic vector subbundles on H such that Griffiths transversality

∇ (F pH) ⊂ F p−1H⊗ ΩB

is satisfied for all p. The quotients Hp,q and the infinitesimal period map ∇ are then
defined as above.

3.2 Hodge loci

Let (H,F •H) be an integral variation of Hodge structure of weight k on a connected
complex manifold B. Let λ be a local section of H, defined on a connected open subset
U ⊂ B. We may regard λ as a submanifold λ ⊂ H of the total space of the vector bundle
H. For p ≥ 0, the Hodge locus Upλ ⊂ U is defined as the image of the restricted projection
map λ ∩ F pH ⊂ H → B. In other words,

Upλ = {u ∈ U | λ(u) ∈ F pHu} .
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3.3 Noether–Lefschetz loci

Since Upλ is by definition the zero locus of the induced holomorphic section λ on the
quotient bundle H/F pH, the Hodge locus Upλ is a complex analytic subset of U . Clearly,
we have Upλ = U if λ = 0 or p = 0.

The case k = 2p is of particular interest, since in the geometric case where our variation of
Hodge structure originates from a family f : X → B of Kähler manifolds, Upλ is precisely
the locus of points u ∈ U where λ(u) is an integral Hodge class of type (p, p) for Xu. It
would be a consequence of the (rational) Hodge conjecture that the locus Upλ is then
actually algebraic. Surprisingly, Cattani, Deligne, and Kaplan [CDK95] showed in 1995
that Upλ is indeed algebraic in this setting. This is a strong indication of the validity of
the Hodge conjecture.

The above description of Upλ as the zero locus of the section λ on H/F pH shows that
the codimension of Upλ is not larger than the dimension of the vector bundle H/F pH.
Actually, one can show using Griffiths transversality that the codimension of Upλ is at
most

hp−1,k−p+1 = dimHp−1,k−p+1 ,

see [Voi03b, Proposition 5.14].

More generally, we may consider the Hodge locus Upλ for a section λ of HC defined on
U , where λ does not need to be integral anymore. Obviously, we have Upλ = Upzλ for all
z ∈ C∗, so Uλ actually only depends on a section of the projectivization P(HC). Still the
codimension of Upλ is at most hp−1,k−p+1.

3.3 Noether–Lefschetz loci

Let (H,F •H) be an integral variation of Hodge structure of weight 2 such that, as in the
geometric setting, we have

Hb = F 2Hb ⊕ F 1Hb (3.1)

for all b ∈ B. Let us consider the union of the Hodge loci U1
λ over all local sections λ 6= 0

of H, i. e. the subset
NL = {b ∈ B | Hb ∩ F 1Hb 6= 0} ⊂ B ,

which is the image of the projection H ∩ F 1H ⊂ H → B where H is regarded as a
submanifold of the total space H. In the geometric case, this agrees with the locus of
b ∈ B where the fibre Xb admits a non-zero integral Hodge class of type (1, 1) and is
thus of special interest. The set NL is called the Noether–Lefschetz locus of our variation
of Hodge structure (H,F •H). A priori, we only know from Section 3.2 that NL is a
countable union of locally analytic subsets of B of codimension at most h0,2, but for
instance, it is unclear whether NL is closed or in some sense large.

In [Voi03b, Proposition 5.20], Voisin stated the following infinitesimal criterion for the
density of NL, based on Green’s idea for the proof in [CHM88, Section 5] of the density
of the Noether–Lefschetz locus for the family of surfaces of degree d ≥ 4 in P3:
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3 Density of Noether–Lefschetz loci

Proposition 3.2 (Green–Voisin). Suppose there exists a point b ∈ B and a class λ ∈ H1,1
b

such that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H0,2
b

is surjective. Then the Noether–Lefschetz locus NL is dense in B for the Euclidean
topology.

Intuitively speaking, the surjectivity of ∇b(λ) means that the Hodge decompositions of
local sections of HC which are close to λ at b vary as much as possible, and hence the
locus where a rational (and hence integral) class of pure type (1, 1) exists is dense in a
neighbourhood of b. Since the stated property of λ is a Zariski open condition on H1,1,
the density of NL follows.

In this section, we aim to formulate and prove a slightly more general version of this
density criterion, which will be useful in our later application to the rationality of
quadric surface bundles. For this, we generalize the notion of the Noether–Lefschetz
locus naturally. Instead of taking the union of the Hodge loci for non-zero sections of H,
that is, of locally constant non-zero integral classes, we may consider an arbitrary local
subsystem of sets D ⊂ HC and define its associated Noether–Lefschetz locus as

NLD = {b ∈ B | Db ∩ F 1Hb 6= ∅} ⊂ B .

The local sections of D are certain designated ∇-flat sections of the holomorphic vector
bundle H, so we may regard D as a subset of the total space H and NLD is the image of
the restricted projection map D ∩ F 1H ⊂ H → B. If Db ⊂ HC,b is discrete for one (and
hence for all) b ∈ B, D ⊂ H is again a submanifold. As for NL, we have

NLD =
⋃
U1
λ

where the union is taken over all connected open subsets U ⊂ B and all sections λ ∈ D(U).
The Hodge loci U1

λ are called local components of NLD. We can get back the classical
Noether–Lefschetz locus NL by setting D = H \ {0} (this is the sheaf of sets which
assigns H(U) \ {0} to a connected open subset U ⊂ B and is clearly a local subsystem of
HC).

The above definition is motivated by the results of Chapter 2, which suggest the study of
the locus

{b ∈ B | ∃α ∈ H2,2(Xb,Z) : α ∪ [(Xb)η] ≡ 1 (mod 2)}

for a family X → B of quadric surface bundles over P2. This locus is precisely the
generalized Noether–Lefschetz locus NLD of a local system D with stalk

Db = {α ∈ H4(Xb,Z) | α ∪ [(Xb)η] ≡ 1 (mod 2)}

at b ∈ B.
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3.3 Noether–Lefschetz loci

If one takes a close look at Voisin’s proof of Proposition 3.2, one sees that the density
comes into play when arguing that the integral classes Hb at a point b ∈ B are multiples
of the rational classes HQ,b = Hb ⊗ Q, which in turn are dense in the real classes
HR,b = Hb⊗R. In place of this intermediate step involving HQ, one could instead directly
use the fact that R∗Hb ⊂ HR,b is dense. Therefore, let us consider any local subsystem
of sets D ⊂ HR such that R∗Db ⊂ HR,b is dense for one (and hence for all) b ∈ B. We
then want to prove the following criterion for the analytical density of the generalized
Noether–Lefschetz locus NLD:

Proposition 3.3. Let D ⊂ HR be a local subsystem of sets such that R∗Db ⊂ HR,b is
dense for at least one b ∈ B. Suppose there exists a point b ∈ B and a class λ ∈ H1,1

b

such that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H0,2
b

is surjective. Then the Noether–Lefschetz locus NLD is dense in B for the Euclidean
topology.

Proof. Let us consider the real vector subbundle

H1,1
R = HR ∩ F 1H ⊂ HR .

Condition (3.1) implies that H1,1
R,b ⊗R C may be identified with H1,1

b for all b ∈ B via the
restricted projection

p : H1,1
R ⊂ F

1H → F 1H/F 2H = H1,1 .

By definition, NLD is the image of the projection map D ∩H1,1
R ⊂ HR → B. Since H1,1

R
is a real vector bundle, the projections of D ∩H1,1

R and (R∗D)∩H1,1
R agree. By replacing

D with R∗D, we may thus assume that Db ⊂ HR,b is dense for one and hence for all
b ∈ B. It suffices to show that D ∩ H1,1

R is dense in H1,1
R because the projection map

H1,1
R → B is trivially surjective.

For this, we first observe that the surjectivity of ∇b(λ) only fails on a locally analytic
subset of the total space H1,1. Since H1,1 = H1,1

R ⊗R C, the condition is hence fulfilled
on a dense open subset of the real classes p(H1,1

R ) ⊂ H1,1. Therefore, it suffices to show
the statement locally in H1,1

R around some λ ∈ H1,1
R,b such that λ = p(λ) satisfies the

hypothesis. By shrinking B, we may assume that the local system H and hence the
vector bundles HR and H are trivial over B. We claim that the composed map

φ : H1,1
R ↪→ HR

∼=→ B ×HR,b → HR,b ,

obtained via inclusion, isomorphism, and projection, is a submersion at λ ∈ H1,1
R . Since

Db is dense in HR,b, it would then follow that the preimage φ−1(Db) = D ∩H1,1
R is dense

in H1,1
R around λ, which is what we wanted to show. It therefore remains to prove the

claim that φ is a submersion at λ ∈ H1,1
R . This is precisely the statement of [Voi03b,

Lemma 5.21]. We will present Voisin’s argument below.
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3 Density of Noether–Lefschetz loci

Proof of the claim. Let us consider the analogous composed map

ψ : F 1H ↪→ H
∼=→ B ×HC,b → HC,b

in the complex case. Then φ is just the restriction of ψ to H1,1
R = F 1H∩HR = ψ−1(HR,b).

Therefore, it suffices to show that ψ is a submersion at λ ∈ F 1H. This will follow from
the assumption that

∇b(λ) : TB,b → H0,2
b

is surjective for λ = p(λ) ∈ H1,1
b . Indeed, for a local section α around b of the vector

bundle F 1H, ∇(α) is a local section of H⊗ ΩB such that the induced map

∇b(α) : TB,b → Hb = HC,b

is exactly the differential of ψ ◦ α at b. Therefore, ∇b(λ) can be computed by choosing a
local section α of F 1H such that α(b) = λ and composing d(ψ ◦ α) with the projection
HC,b → HC,b/F

1Hb = H0,2
b (we have shown in Section 3.1 using Griffiths transversality

and Leibniz’ rule that ∇b(λ) is well-defined). In other words, the following diagram
commutes:

TF 1H,λ
dψλ // HC,b

��

TB,b

dαb

OO

∇b(λ) // HC,b/F
1Hb

To conclude that dψλ is surjective, it thus remains to prove that F 1Hb is contained in
the image of dψλ. This is obvious because the restriction of ψ to F 1Hb ⊂ F 1H is simply
the inclusion F 1Hb ⊂ HC,b and hence dψλ is the identity on TF 1Hb,λ = F 1Hb.

Conversely, the commutative diagram from above also shows that ∇b(λ) is surjective if
dψλ is surjective, because any tangent vector in TF 1H,λ is modulo TF 1Hb,λ = F 1Hb in the
image of dαb for a suitable section α of F 1H with α(b) = λ.

Proposition 3.3 has numerous applications. For instance, Voisin used this infinitesimal
condition in [Voi06] when proving the integral Hodge conjecture for (2, 2)-classes on
uniruled or Calabi–Yau threefolds. More recently, a real analogue of the criterion was
applied in [Ben18] to prove that sums of three squares are dense among bivariate positive
semidefinite real polynomials.

It is often not easy to verify the condition that ∇b(λ) is surjective somewhere and
different strategies have been developed to accomplish this task. While [Ben18] follows
the approach of [CL91] by constructing components of the Noether–Lefschetz locus of
maximal codimension, Kim gave in [Kim91, Theorem 2] a new proof of the density
theorem from [CHM88, Section 5] by proving a statement about the Jacobian rings
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3.3 Noether–Lefschetz loci

appearing in the description of ∇b(λ). The most general arguments are due to Voisin,
for example in [Voi00] and [Voi06].

In the next chapter, we present two applications of Proposition 3.3 where we use Kim’s
method of computing the infinitesimal period map explicitly, most prominently we give a
proof of Theorem 1.1. However, we solve the underlying algebraic problem in a different
manner than in [Kim91, Section 3]. Our approach involving the strong Lefschetz property,
the use of which seems to be new in this area, also allows to give a short proof for the
density of the original Noether–Lefschetz locus for surfaces in P3.

Note that the density criterion is not directly transferable to variations of Hodge structure
of weight k = 2p > 2, because by Griffiths transversality, ∇b(λ) : TB,b → Hb/F pHb cannot
be surjective unless F p+1H = H.
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In this chapter, we come back to an algebraic setting. We want to prove Theorem 1.1
by putting together the results of Chapters 2 and 3. For this, we need to show that the
infinitesimal period map is surjective somewhere. To tackle this, we regard standard
quadric surface bundles as toric hypersurfaces and explicitly describe their middle
cohomology groups and the map ∇ by polynomials. We then arrive at the question
whether, under some genericity conditions, certain polynomials in a bigraded polynomial
ring generate all polynomials of a specific bidegree. The theory of Lefschetz properties
will help us to solve this problem with an involved but quite elementary approach.

As another application of Proposition 3.3, we reprove the density result for the original
Noether–Lefschetz locus. It turns out that the surjectivity of the respective multiplication
map is a direct consequence of a classical result of Stanley [Sta80] and Watanabe [Wat87]
concerning the strong Lefschetz property.

4.1 Standard quadric surface bundles

The previous two chapters were motivated by our aim to prove Theorem 1.1, which states
that the locus

{b ∈ B | Xb is rational} (4.1)

is analytically dense in the moduli space B for the universal family X → B of smooth
quadric surface bundles of type (d0, d1, d2, d3). We yet have to explain how this family is
defined.

In Chapter 1, we introduced standard quadric surface bundles over P2 as zero sets of
equations of the form ∑

0≤i,j≤3
aijyiyj = 0 . (4.2)

We first give a more precise definition of standard quadric surface bundles, following
[Sch18a, Section 3.5]. For integers r0, r1, r2, r3 ≥ 0, let us consider the vector bundle

E =
3⊕
j=0
OP2(−rj)

on P2. For some integer d ≥ 0, let q : E → OP2(d) be a line bundle valued quadratic form
on E , i. e. a global section of Sym2 E∨⊗OP2(d). We assume that the quadratic form qη at
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4.1 Standard quadric surface bundles

the generic point η ∈ P2 is non-degenerate and that qs 6= 0 for all s ∈ P2. Then the zero
set X = {q = 0} ⊂ P(E) is a quadric surface bundle over P2. Indeed, the non-degeneracy
of qη implies that the generic fibre Xη is a smooth quadric surface, and the condition
qs 6= 0 for all s ∈ P2 implies that all fibres of the projection π : X ⊂ P(E)→ P2 have the
same Hilbert polynomial. Since X and P2 are projective varieties, this is equivalent to
the flatness of the morphism π : X → P2.

The deformation type of X only depends on the integers dj = 2rj + d for j ∈ {0, 1, 2, 3}.
We call X a standard quadric surface bundle over P2 of type (d0, d1, d2, d3). Conversely,
quadric surface bundles of type (d0, d1, d2, d3) for given integers dj ≥ 0 exist whenever
d0, d1, d2, d3 are of the same parity.

Let
V = H0

(
P2, Sym2 E∨ ⊗OP2(d)

)
∼=

⊕
0≤i≤j≤3

H0
(
P2,OP2(ri + rj + d)

)
.

Under this isomorphism, a quadratic form q ∈ V is indeed given by an equation of
the form (4.2) with homogeneous polynomials aij of degree ri + rj + d = 1

2(di + dj),
where yj is a local trivialization of OP2(−rj). Since the standard quadric surface bundle
associated to q ∈ V is just X = {q = 0} ⊂ P(E), we may parametrize the smooth quadric
surface bundles of type (d0, d1, d2, d3) by a non-empty Zariski open subset B ⊂ P(V ) in
the projectivization of the finite dimensional vector space V . In this way, we obtain a
family X → B with fibre Xb = {q = 0} at b = C · q ∈ B. This is called the universal
family of smooth quadric surface bundles of type (d0, d1, d2, d3), which we referred to in
Theorem 1.1.

In order to prove this theorem, it is enough by Corollary 2.6 to show that the Noether–
Lefschetz locus {

b ∈ B
∣∣∣ ∃α ∈ H2,2(Xb,Z) : α ∪ [(Xb)η] ≡ 1 (mod 2)

}
is dense in B for the Euclidean topology. Since it is easier to compute, we consider
instead the vanishing cohomology

H4
van(Xb,C) = {α ∈ H4(Xb,C) | α ∪ ι∗β = 0 ∀β ∈ H4(P(E),C)}

where the map ι∗ : H4(P(E),C) ↪→ H4(Xb,C) is induced by inclusion and is injective by
the Lefschetz hyperplane theorem. This construction is also applicable to the Hodge
groups Hp,q and gives a Hodge decomposition

H4
van(Xb,C) =

⊕
p+q=4

Hp,q
van(Xb) .

Using Proposition 3.3, we then want to show that the possibly smaller locus{
b ∈ B

∣∣∣ ∃α ∈ H2,2
van(Xb,Z) : α ∪ [(Xb)η] ≡ 1 (mod 2)

}
(4.3)

is dense in B for the Euclidean topology. We will now explain how our family X → B
fits to the setup required by Proposition 3.3.
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As for the usual integral cohomology, there exists a local system H of finitely generated
free Z-modules on B with stalk Hb = H4

van(Xb,Z) at b ∈ B. This is because the
definition of vanishing cohomology is independent of the complex structure on Xb. Since
H4,0

van(Xb) = H0,4
van(Xb) = 0 for all b ∈ B (for example, this follows from the explicit

computation of the middle cohomology groups of Xb in Section 4.2), the local system H
is endowed with a variation of Hodge structure of weight 2

F 2H ⊂ F 1H ⊂ F 0H = H

corresponding to the Hodge filtrations on the fibres Hb = H4
van(Xb,C) at b ∈ B. Note

that we reuse the notation introduced in Chapter 3. In particular, the infinitesimal period
map

∇ : H1,1 → H0,2 ⊗ ΩB

is defined. We may identify Hp,qb with Hp+1,q+1
van (Xb) for p+ q = 2 and b ∈ B.

For all b ∈ B, let us consider the discrete subset

Db = {α ∈ H4
van(Xb,Z) | α ∪ [(Xb)η] ≡ 1 (mod 2)} ⊂ HR,b .

Since the definition of Db is purely topological and thus compatible with the local
trivializations of X → B from Ehresmann’s lemma, we obtain a local subsystem of sets
D ⊂ HR. Note that the locus (4.3) is precisely the Noether–Lefschetz locus NLD from
Section 3.3. We are now able to prove the following result:

Proposition 4.1. Let X → B be the universal family of smooth quadric surface bundles
over P2 of type (d0, d1, d2, d3). Suppose there exists a point b ∈ B and a class λ ∈ H2,2

van(Xb)
such that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H1,3
van(Xb)

is surjective. Then the set
{b ∈ B | Xb is rational}

is dense in B for the Euclidean topology.

Proof. In view of Proposition 3.3, it remains to show that R∗Db ⊂ HR,b is dense for at
least one b ∈ B. By [Sch18a, Lemma 20], there exists a smooth quadric surface bundle Xb
of type (d0, d1, d2, d3) which admits a rational section. Therefore, Db 6= ∅ for this b ∈ B.
By definition, Db is then a coset of a subgroup of Hb of index 2. Since the integral classes
Hb form a lattice in HR,b = Hb ⊗ R, it is easy to see that R∗Db is dense in HR,b.

4.2 Computation of the cohomology

In order to prove Theorem 1.1, we need to understand the infinitesimal period map ∇ for
our family X → B. This will be done by using Griffiths description of ∇ and an explicit
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4.2 Computation of the cohomology

computation of the middle cohomology groups of standard quadric surface bundles using
results of [BC94] for toric hypersurfaces, which generalize earlier results of Griffiths
[Gri68] for projective hypersurfaces. To this end, we aim to interpret equation (4.2)
differently as a global equation inside the polynomial ring

S = C[x0, x1, x2; y0, y1, y2, y3] .

The equation will turn out to be homogeneous with respect to a non-standard bigrading.

By [CLS11, Example 7.3.5], the total space P(E) of a split vector bundle

E =
3⊕
j=0
OP2(−rj)

is a toric variety associated to a fan Σ in R2 × R3 and has coordinate ring S. If u1, u2
and v1, v2, v3 denote the standard basis vectors of R2 and R3, respectively, then the seven
1-dimensional cones of Σ are generated by u0, u1, u2, v0, v1, v2, v3 where

u0 = −
2∑
i=1

ui +
3∑
j=1

(rj − r0)vj and v0 = −
3∑
j=1

vj .

Further, the maximal cones of Σ are given by

〈u0, . . . , ûi, . . . , u2, v0, . . . , v̂j , . . . , v3〉 , i ∈ {0, 1, 2} , j ∈ {0, 1, 2, 3} .

By [BC94, Definition 1.7], we have Cl(Σ) ∼= Z7/ ImC where

C =



−1 −1 r1 − r0 r2 − r0 r3 − r0
1 0 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


∈ Hom(Z5,Z7) .

It is easy to see that the surjection

Z7 → Z2

(m0,m1,m2, n0, n1, n2, n3) 7→

 2∑
i=0

mi −
3∑
j=0

rjnj ,
3∑
j=0

nj


has kernel ImC. Hence, this map descends to an isomorphism Cl(Σ) ∼= Z2 and endowes
the coordinate ring S with the non-standard bigrading

deg xi = (1, 0) , deg yj = (−rj , 1)
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for i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}.

For m,n ∈ Z, we denote by S(m,n) the subspace of homogeneous polynomials of bidegree
(m,n) in S. This gives a decomposition

S =
⊕
m,n∈Z

S(m,n)

into finite dimensional complex vector spaces.

A quadratic form q : E → OP2(d) corresponds to an element in S(d, 2). In this way, the
local description (4.2) of the zero set of q can be seen globally as a defining equation for
a toric hypersurface X ⊂ P(E).

This allows us to compute the middle cohomology groups of a smooth quadric surface
bundle π : X → P2 of type (d0, d1, d2, d3) defined by a polynomial f ∈ S(d, 2) via the
method of [BC94]. According to [BC94, Theorem 10.13], we have

H1,3
van(X) = R(t, 4) and H2,2

van(X) = R(t− d, 2)

where
t = 4d− 3 + r0 + r1 + r2 + r3

and where R denotes the Jacobian ring of f , i. e. the quotient of S by all partial derivatives
of f . We also see that H4,0

van(X) = R(t− 3d,−2) = 0 and hence H0,4
van(X) = 0, as asserted

in Section 4.1.

Now we return to the family X → B of smooth quadric surface bundles of type
(d0, d1, d2, d3). If we identify TB,b ∼= (S/fS)(d, 2) where f ∈ S(d, 2) is the defining
equation of Xb for some b ∈ B, Griffiths has shown that the infinitesimal period map

∇b : TB,b ⊗H2,2
van(Xb)→ H1,3

van(Xb)

is given, up to a sign, as the multiplication map

(S/fS)(d, 2)⊗R(t− d, 2)→ R(t, 4) .

In order to show that the assumption of Proposition 4.1 holds, it therefore suffices
to provide polynomials f ∈ S(d, 2) and g ∈ S(t − d, 2) such that the quadric surface
bundle {f = 0} ⊂ P(E) is smooth and the composed map S(d, 2) → R(t, 4) given
by multiplication with g followed by projection is surjective. By Bertini’s theorem,
the hypersurface {f = 0} ⊂ P(E) is smooth for a general polynomial f ∈ S(d, 2).
The surjectivity part is equivalent to claiming that the ideal generated by g and all
partial derivatives of f contains all polynomials in S(t, 4). Consequently, we can reduce
Theorem 1.1 to an elementary statement:
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Proposition 4.2. Let X → B be the universal family of smooth quadric surface bundles
over P2 of type (d0, d1, d2, d3). Let r0, r1, r2, r3 ≥ 0 be integers such that dj = 2rj + d for
some integer d ≥ 0. Let S and t be defined as above. Suppose that for general polynomials
f ∈ S(d, 2) and g ∈ S(t− d, 2), the ideal in S generated by the polynomials

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂y0
,

∂f

∂y1
,

∂f

∂y2
,

∂f

∂y3
, g

contains all polynomials in S(t, 4). Then the locus

{b ∈ B | Xb is rational}

is dense in B for the Euclidean topology.

4.3 The strong Lefschetz property

Proposition 4.2 raises the following question about a bigraded polynomial ring: Under
which conditions do sufficiently general polynomials of fixed bidegrees generate all
polynomials of a certain bidegree? For the case of singly graded polynomial rings, this
question was already studied extensively, though no definitive answer is yet known.

As a first and easy observation, we show that this condition is open in the Zariski topology.
Of course, there is nothing special in the fact that the bigrading of our C-algebra S has
values in Z2, just any Abelian group works for this.

Lemma 4.3. Let G be an Abelian group and let A be a G-graded C-algebra whose
homogeneous components A(m) are finite dimensional C-vector spaces for all m ∈ G. Let
m0, . . . ,mk ∈ G. Then the set

{(f1, . . . , fk) ∈ A(m1)⊕ · · · ⊕A(mk) | A(m0) ⊂ f1A+ · · ·+ fkA}

is Zariski open.

Proof. The condition on (f1, . . . , fk) is equivalent to saying that the C-linear map

A(m0 −m1)⊕ · · · ⊕A(m0 −mk)→ A(m0)
(g1, . . . , gk) 7→ f1g1 + · · ·+ fkgk

is surjective. This map is represented by a matrix B with r = dimCA(m0) rows,
whose entries are linear polynomials in the coefficients of f1, . . . , fk. The locus in
A(m1) ⊕ · · · ⊕ A(mk) where this linear map is not surjective is precisely where the
determinants of all (r × r)-submatrices of B vanish (in particular, it is the whole affine
space if B has less than r columns) and thus Zariski closed. Therefore, the set in question
is open for the Zariski topology.
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Since taking partial derivatives is a linear and hence Zariski continuous map between
the respective bigraded pieces of S, Lemma 4.3 already shows that the assumption of
Proposition 4.2 is Zariski open on f and g.

Apart from S, we will often apply Lemma 4.3 to the polynomial ring C[x0, x1, x2] together
with its usual grading, since due to the chosen bigrading on S, C[x0, x1, x2] corresponds
to the homogeneous elements in S of bidegree (m, 0) for some m ≥ 0. For this situation,
we can give sufficient criteria whether three or four polynomials satisfy the Zariski open
condition in the lemma. More generally, for n ≥ 0 we can give such criteria for n+ 1 and
n+ 2 polynomials in the graded polynomial ring

Pn = C[t0, . . . , tn] =
⊕
m≥0

Pn(m) .

Lemma 4.4. If f0, . . . , fn ∈ Pn form a complete intersection, i. e. they have no common
zero in Pn, then

Pn(m) ⊂ f0Pn + · · ·+ fnPn

for all m ≥ m0 + · · ·+mn − n where fj ∈ Pn(mj) for j ∈ {0, . . . , n}.

Proof. This immediately follows from Macaulay’s Theorem (see for example [Voi03b,
Section 6.2.2]) which tells us that the quotient of Pn by the ideal generated by f0, . . . , fn
is a graded Gorenstein ring with socle degree

∑
(mj − 1), and hence its m-th graded

piece is zero-dimensional for all m ≥
∑
mj − n.

To state a sufficient criterion whether n + 2 polynomials in Pn belong to the Zariski
open set in Lemma 4.3, we use the so called strong Lefschetz property, see e. g. [Sta80].
A quotient Q of Pn by homogeneous polynomials f0, . . . , fn ∈ Pn is said to have the
strong Lefschetz property if there exists a linear homogeneous polynomial ` ∈ Pn(1) such
that the map Q(m)→ Q(m+ i) given by multiplication with `i has maximal rank for
all m, i ≥ 0. The polynomial ` is then called a strong Lefschetz element for the system
f0, . . . , fn.

Lemma 4.5. If f0, . . . , fn ∈ Pn form a complete intersection having the strong Lefschetz
property and fn+1 ∈ Pn is a power of a strong Lefschetz element for f0, . . . , fn, then

Pn(m) ⊂ f0Pn + · · ·+ fn+1Pn

for all m ≥ 1
2(m0 + · · ·+mn+1 − n− 1) where fj ∈ Pn(mj) for j ∈ {0, . . . , n+ 1}.

Proof. As in Lemma 4.4, the quotient Q of Pn by f0, . . . , fn is a graded Gorenstein ring
with socle degree s =

∑
(mj − 1). Macaulay’s Theorem also shows that dimCQ(i) =

dimCQ(s− i) for all i ∈ Z. Because of the strong Lefschetz property, dimCQ(i) needs to
be increasing for i ≤ s

2 and decreasing for i ≥ s
2 . The claimed statement is equivalent

to saying that the map Q(m − mn+1) → Q(m) given by multiplication with fn+1 is
surjective. Since fn+1 is a power of a strong Lefschetz element, it suffices to show
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4.4 Noether–Lefschetz loci for surfaces

dimCQ(m −mn+1) ≥ dimCQ(m). This is clear if m −mn+1 ≥ s
2 . For m −mn+1 ≤ s

2 ,
we have dimCQ(m) = dimCQ(s−m) ≤ dimCQ(m−mn+1) because s−m ≤ m−mn+1
holds due to the given bound on m.

To make use of Lemma 4.5, it is convenient to have a rich source of complete intersections
enjoying the strong Lefschetz property. The following important result, proved in 1980
by Stanley [Sta80] and independently in 1987 by Watanabe [Wat87], was the starting
point for the theory of Lefschetz properties:

Proposition 4.6 (Stanley–Watanabe). A monomial complete intersection xm0
0 , . . . , xmnn

in Pn with m0, . . . ,mn ≥ 0 has the strong Lefschetz property for all n ≥ 0.

It is known for n ≤ 1 and conjectured for n ≥ 2 that actually all complete intersections
in Pn have the strong Lefschetz property. For n = 2, the following partial result proven
in [HW03, Proposition 30] satisfies our needs for the proof of Theorem 1.1:

Proposition 4.7 (Harima–Watanabe). If f0, f1, f2 ∈ P2 = C[x0, x1, x2] form a complete
intersection such that f0 is a power of a linear polynomial, then f0, f1, f2 has the strong
Lefschetz property.

4.4 Noether–Lefschetz loci for surfaces

Before we prove Theorem 1.1 via Proposition 4.2, we show how the Lemmas 4.4 and 4.5
from the previous section can also be applied to other contexts where the infinitesimal
density criterion of Green and Voisin is used. Specifically, we want to simplify Kim’s proof
[Kim91, Section 3] for the density of the original Noether–Lefschetz locus for surfaces in
P3. We will solve the elementary problem underlying [Kim91, Theorem 2] in a different
manner which does not require the technical statement [Kim91, Proposition 3] anymore.
For this, we do not need the more recent result from [HW03] stated in Proposition 4.7,
but only Proposition 4.6. Since the setup here is a lot easier than in the case of standard
quadric surface bundles, this will also be a good preparation for the more involved
arguments in Section 4.5.

Let X ⊂ P3 be a surface of degree d ≥ 4. A natural question about X is whether
any curve on X is a complete intersection. In terms of the class group of X which is
isomorphic to the Picard group PicX of isomorphism classes of holomorphic line bundles
on X, this question asks whether PicX is generated by the class of the intersection of X
with a plane in P3, i. e. by the restriction of the line bundle OP3(1). By the Lefschetz
(1, 1)-theorem, the exponential exact sequence induces an exact sequence

0→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗X)→ H1,1(X,Z)→ 0

where
H1(X,OX) ∼= H0,1(X) ⊂ H1(X,C) and H1(X,O∗X) ∼= PicX .
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The image of an element of PicX in H1,1(X,Z) is also called its first Chern class. By
the Lefschetz hyperplane theorem, we have

H1(X,C) ∼= H1(P3,C) = 0 ,

hence the first Chern class gives an isomorphism PicX ∼= H1,1(X,Z) in our case. Choosing
the Fubini–Study metric on P3, the class of the Kähler form is integral and coincides
with the first Chern class of the line bundle OP3(1). By restriction, we obtain an integral
Kähler class on X, which is the Poincaré dual of the homology class of the intersection
of X with a plane in P3. The question whether PicX is generated by OX(1) = OP3(1)|X
is therefore equivalent to asking whether the integral primitive cohomology

H1,1
pr (X,Z) = {α ∈ H1,1(X,Z) | α ∪ [ωX ] = 0}

vanishes. Here, ωX ∈ H0(X,Ω2
X) denotes the restriction of the integral Kähler form ωP3

on P3 to X. Since H2(P3,Z) is generated by [ωP3 ], H1,1
pr (X,Z) actually agrees with the

vanishing cohomology we considered in Section 4.1 for standard quadric surface bundles.
In particular, H1,1

pr (X,Z) is defined via a purely topological property.

Let us consider the family X → B of all smooth surfaces in P3 having degree d, so
B ⊂ P(W ) is a non-empty Zariski open subset in the projectivization of the

(d+3
3
)
-

dimensional vector space

W = H0
(
P3,OP3(d)

)
= P3(d) .

The Noether–Lefschetz theorem says that for a very general b ∈ B, any curve on Xb is a
complete intersection. In other words, the Noether–Lefschetz locus

NLd =
{
b ∈ B

∣∣∣ H1,1
pr (Xb,Z) 6= 0

}
is contained in a countable union of proper closed subvarieties of B.

In [CHM88, Section 5] and [Kim91, Section 3] it was shown that NLd is analytically
dense in B for all d ≥ 4. Green’s argument in [CHM88, Section 5] was the foundation
for the infinitesimal density criterion developed in Chapter 3, but works a bit differently
than most later uses of this criterion, since the proof goes by providing one component
of NLd having maximal codimension in B and then deriving from this the density of the
union of all such components.

The proof in [Kim91, Section 3] is closer to the later approaches in [HPT18a] and [HPT17],
and also to our method, as it tries to explicitly prove the surjectivity of ∇b(λ) for at least
one b and λ. However, Kim introduces an additional step in her proof by first dualizing
the map ∇b(λ) and then using Macaulay’s Theorem in order to show an injectivity result
instead. With the help of Lemma 4.5, our proof for the density of the Noether–Lefschetz
locus for surfaces is fairly straightforward.
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4.4 Noether–Lefschetz loci for surfaces

Theorem 4.8. For d ≥ 4, let f : X → B ⊂ P(W ) be the family of smooth surfaces in P3

of degree d as above. Then the Noether–Lefschetz locus

NLd =
{
b ∈ B

∣∣∣ H1,1
pr (Xb,Z) 6= 0

}
is dense in B for the Euclidean topology.

Proof. Let H be the local system on B with stalk Hb = H2
pr(Xb,Z) at b ∈ B and let

F 2H ⊂ F 1H ⊂ F 0H = H

be the associated variation of Hodge structure of weight 2 on H = H ⊗OB , as explained
in Section 3.1. Note that NLd is precisely the classical Noether–Lefschetz locus from
Section 3.3. By Proposition 3.2, it suffices to show that there exists a point b ∈ B and a
class λ ∈ H1,1

pr (Xb) such that the infinitesimal period map evaluated at λ

∇b(λ) : TB,b → H0,2
pr (Xb)

is surjective.

For a surface X ⊂ P3 defined by a polynomial f ∈ P3(d), by [BC94, Theorem 10.13] (or
the earlier results of Griffiths) we have

H0,2
pr (X) = R(3d− 4) and H1,1

pr (X) = R(2d− 4)

where R denotes the Jacobian ring of f , i. e. the quotient of P3 by the four partial
derivatives of f . If we identify TB,b ∼= (P3/fP3)(d) where f ∈ P3(d) is the defining
equation of Xb for some b ∈ B, Griffiths has shown that the infinitesimal period map

∇b : TB,b ⊗H1,1
pr (Xb)→ H0,2

pr (Xb)

is given, up to a sign, as the multiplication map

(P3/fP3)(d)⊗R(2d− 4)→ R(3d− 4) .

Therefore, it suffices to find polynomials f ∈ P3(d) and g ∈ P3(2d − 4) such that the
surface {f = 0} ⊂ P3 is smooth and the ideal generated by g and the partial derivatives
of f contains the whole of P3(3d− 4).

One can achieve this with the Fermat surface defined by

f = xd0 + xd1 + xd2 + xd3 ,

which was also used in [Kim91, Section 3]. Clearly, the surface {f = 0} ⊂ P3 is smooth.
Since the complete intersection xd−1

0 , xd−1
1 , xd−1

2 , xd−1
3 consisting of the partial derivatives

of f has the strong Lefschetz property by Proposition 4.6, we can take g to be a power
of a corresponding strong Lefschetz element and obtain via Lemma 4.5

P3(m) ⊂ xd−1
0 P3 + xd−1

1 P3 + xd−1
2 P3 + xd−1

3 P3 + gP3

for all m ≥ 1
2(4(d− 1) + 2d− 4− 4) = 3d− 6. Since 3d− 4 ≥ 3d− 6, this finishes the

proof.

33



4 Applications

4.5 Proof of the main result

As we have seen in Proposition 4.2, Theorem 1.1 is proven once we can show the
following:

Proposition 4.9. For general polynomials f ∈ S(d, 2) and g ∈ S(t− d, 2), the ideal in
S generated by the polynomials

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂y0
,

∂f

∂y1
,

∂f

∂y2
,

∂f

∂y3
, g

contains all polynomials in S(t, 4).

Let us recall that the non-standard bigrading on the polynomial ring

S = C[x0, x1, x2; y0, y1, y2, y3]

is given by
deg xi = (1, 0) , deg yj = (−rj , 1)

for i ∈ {0, 1, 2} and j ∈ {0, 1, 2, 3}. Here, r0, r1, r2, r3 ≥ 0 are integers such that
dj = 2rj + d for some integer d ≥ 0. Without loss of generality, let d0 ≤ d1 ≤ d2 ≤ d3
and thus r0 ≤ r1 ≤ r2 ≤ r3. Let us further recall that

t = 4d− 3 + r0 + r1 + r2 + r3 .

By Lemma 4.3, the property stated in Proposition 4.9 is Zariski open on f and g. Hence,
it suffices to show the existence of polynomials f ∈ S(d, 2) and g ∈ S(t− d, 2) such that
the homogeneous ideal I ⊂ S generated by

∂f

∂x0
,

∂f

∂x1
,

∂f

∂x2
,

∂f

∂y0
,

∂f

∂y1
,

∂f

∂y2
,

∂f

∂y3
, g

contains all polynomials in S(t, 4).

Let
f = f0y

2
0 + f1y

2
1 + f2y

2
2 + f3y

2
3 ∈ S(d, 2)

where fj ∈ S(dj , 0) are general for j ∈ {0, 1, 2, 3}. Further let

g = g11y
2
1 + g33y

2
3 +

∑
0≤i<j≤3

gijyiyj ∈ S(t− d, 2)

where gij ∈ S(t − d + ri + rj , 0) are general for i, j ∈ {0, 1, 2, 3}. Instead of proving
directly that S(t, 4) ⊂ I, we will consider the homogeneous ideal

J =
⊕
m,n∈Z

{r ∈ S(m,n) | rS ∩ S(t, 4) ⊂ I} ,
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and aim to show J = S. One can think of J as all relations which hold if a polynomial
of bidegree (t, 4) is considered modulo I. Since I ⊂ J , the following congruences hold:

fjyj ≡ 0 (mod J) , j ∈ {0, 1, 2, 3} , (4.4)
∂f0
∂xi

y2
0 + ∂f1

∂xi
y2

1 + ∂f2
∂xi

y2
2 + ∂f3

∂xi
y2

3 ≡ 0 (mod J) , i ∈ {0, 1, 2} , (4.5)

g11y
2
1 + g33y

2
3 +

∑
0≤i<j≤3

gijyiyj ≡ 0 (mod J) . (4.6)

It suffices to show S(t, 4) ⊂ J . For this it is enough to prove the following four claims for
all permutations σ of {0, 1, 2, 3}:

(i) yσ(0)yσ(1)yσ(2) ∈ J

(ii) y3
σ(0)yσ(1) ∈ J

(iii) y2
σ(0)y

2
σ(1) ∈ J

(iv) y4
σ(0) ∈ J

These claims are proved in the Lemmas 4.10, 4.11, 4.12, and 4.13 below. For each
claim, it suffices to show that a given monomial of bidegree (t, 4) containing the specified
variables yj can be reduced to 0 modulo J using the congruences (4.4), (4.5), (4.6), and
the previous claims. Actually, the assertion r0 ≤ r1 ≤ r2 ≤ r3 and the congruence (4.6)
will not be used in Lemmas 4.10 and 4.11, so we are allowed to restrict ourselves to the
case σ = id in these two proofs.

Lemma 4.10. We have yσ(0)yσ(1)yσ(2) ∈ J for all permutations σ of {0, 1, 2, 3}.

Proof. Without loss of generality, let σ = id. We first note that

S(d0 + d1 + d2 − 2, 0) ⊂ f0S + f1S + f2S . (4.7)

This follows from Lemmas 4.3 and 4.4 because there are complete intersections f0, f1, f2
in C[x0, x1, x2]. Now let us take a monomial hy0y1y2yj ∈ S(t, 4) where j ∈ {0, 1, 2, 3}
and h ∈ S(t + r0 + r1 + r2 + rj , 0). We may assume that rj > 0 or d > 0, since for
dj = 2rj + d = 0 we have yj ≡ 0 (mod J) by (4.4) and hence hy0y1y2yj ≡ 0 (mod J).
In view of (4.4) and (4.7), it suffices to show that

t+ r0 + r1 + r2 + rj ≥ d0 + d1 + d2 − 2 .

This is equivalent to

2r0 + 2r1 + 2r2 + r3 + rj + 4d− 3 ≥ 2r0 + 2r1 + 2r2 + 3d− 2

or just r3 + rj + d ≥ 1, which is true because rj > 0 or d > 0.

Lemma 4.11. We have y3
σ(0)yσ(1) ∈ J for all permutations σ of {0, 1, 2, 3}.
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Proof. Without loss of generality, let σ = id. Multiplying (4.5) with y0y1 and using
Lemma 4.10 yields(

∂f0
∂xi

y2
0 + ∂f1

∂xi
y2

1

)
y0y1 ≡ 0 (mod J) , i ∈ {0, 1, 2} . (4.8)

We introduce the new polynomial ring T = C[x0, x1, x2; z0, z1] with the bigrading

deg xi = (1, 0) , deg zj = (−dj , 1)

for i ∈ {0, 1, 2} and j ∈ {0, 1}.
Claim. We have

T (d0 + d1 − 3, 1) ⊂ f0T + f1T +
(
∂f0
∂x0

z0 + ∂f1
∂x0

z1

)
T +

(
∂f0
∂x1

z0 + ∂f1
∂x1

z1

)
T . (4.9)

Proof of the claim. The claim is true if d0 = 0 or d1 = 0 because f0 or f1 is a unit then.
If d0, d1 > 0, setting f0 = (x0 + x1)d0 + xd0

2 and f1 = (x0 − x1)d1 + xd1
2 yields(

∂f0
∂x0

z0 + ∂f1
∂x0

z1

)
+
(
∂f0
∂x1

z0 + ∂f1
∂x1

z1

)
= 2d0(x0 + x1)d0−1z0 .

Since (x0 + x1)d0−1, f0, f1 form a complete intersection in C[x0, x1, x2], Lemma 4.4
implies that (4.9) holds for all polynomials in T (d0 + d1 − 3, 1) of type hz0 where
h ∈ T (2d0 + d1 − 3, 0). Similarly,(

∂f0
∂x0

z0 + ∂f1
∂x0

z1

)
−
(
∂f0
∂x1

z0 + ∂f1
∂x1

z1

)
= 2d1(x0 − x1)d1−1z1

and (x0 − x1)d1−1, f0, f1 are again a complete intersection, so all polynomials in T (d0 +
d1 − 3, 1) divisible by z1 fulfill (4.9) as well. Hence, the claim follows from Lemma 4.3
applied the polynomial ring T , since the coefficients of the four polynomials which are
supposed to generate T (d0 + d1 − 3, 1) depend linearly and thus Zariski continuously on
those of the general polynomials f0 and f1.

Now let us take a monomial hy3
0y1 ∈ S(t, 4) where h ∈ S(t+ 3r0 + r1, 0). We have

t+ 3r0 + r1 = 4r0 + 2r1 + r2 + r3 + 4d− 3 ≥ 4r0 + 2r1 + 3d− 3 = 2d0 + d1 − 3 .

Therefore, as a consequence of (4.9) we obtain

hz0 = h0f0 + h1f1 + h2

(
∂f0
∂x0

z0 + ∂f1
∂x0

z1

)
+ h3

(
∂f0
∂x1

z0 + ∂f1
∂x1

z1

)
for certain polynomials h0, h1, h2, h3 ∈ T . Substituting zj by y2

j for j ∈ {0, 1} and
multiplying with y0y1, we get by (4.4) and (4.8)

hy3
0y1 = h̃0f0y0y1 + h̃1f1y0y1 + h2

(
∂f0
∂x0

y2
0 + ∂f1

∂x0
y2

1

)
y0y1 + h3

(
∂f0
∂x0

y2
0 + ∂f1

∂x0
y2

1

)
y0y1

≡ h̃0y1 · 0 + h̃1y0 · 0 + h2 · 0 + h3 · 0 ≡ 0 (mod J)

where h̃0 and h̃1 denote the results of the substitution inside h0 and h1.
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Lemma 4.12. We have y2
σ(0)y

2
σ(1) ∈ J for all permutations σ of {0, 1, 2, 3}.

Proof. Multiplying (4.6) with yiyj for 0 ≤ i < j ≤ 3 and using Lemmas 4.10 and 4.11,
we obtain

gijy
2
i y

2
j ≡ 0 (mod J) . (4.10)

For j ∈ {0, 1, 2, 3}, let Âj be the (3 × 3)-matrix where we leave out the j-th column
(counted from 0) of the matrix (

∂fj
∂xi

)
i∈{0,1,2}
j∈{0,1,2,3}

.

An easy calculation shows that (4.5) implies(
det Âj

)
y2
i ≡ εij

(
det Âi

)
y2
j (mod J) , i, j ∈ {0, 1, 2, 3} (4.11)

where det Âj ∈ S(d0 + d1 + d2 + d3 − dj − 3, 0) for j ∈ {0, 1, 2, 3} and εij ∈ {±1} is a
sign depending on i, j ∈ {0, 1, 2, 3}. If d0 = 0, we have ∂f0

∂xi
= 0 for i ∈ {0, 1, 2} and hence

det Âi = det Âj = 0 for i, j ∈ {1, 2, 3} which makes (4.11) useless in these cases. However,
if we define in the case d0 = 0 the matrix Âj for j ∈ {1, 2, 3} to be the (2× 2)-matrix
where one leaves out the j-th column (counted from 1) of the matrix(

∂fj
∂xi

)
i∈{0,1}
j∈{1,2,3}

we observe that because (4.4) implies y0 ≡ 0 (mod J) one can still conclude from (4.5)
that (

det Âj
)
y2
i ≡ εij

(
det Âi

)
y2
j (mod J) , i, j ∈ {1, 2, 3} (4.12)

where det Âj ∈ S(d1 +d2 +d3−dj−2, 0) for j ∈ {1, 2, 3} and εij ∈ {±1} may be different
for i, j ∈ {1, 2, 3}.

Let us first suppose that {σ(0), σ(1)} = {1, 2}. Multiplying (4.6) with y2
2 and using

Lemmas 4.10 and 4.11 yields

g11y
2
1y

2
2 + g33y

2
2y

2
3 ≡ 0 (mod J) . (4.13)

Let us consider the polynomial ring U = C[x0, x1, x2; z1, z3] with the bigrading

deg xi = (1, 0) , deg zj = (−dj , 1)

for i ∈ {0, 1, 2} and j ∈ {1, 3}. We claim that

U(t− d+ 2r2, 1) ⊂ K , (4.14)

where K denotes the ideal in U generated by

f1z1 , f2 , f3z3 , g12z1 , g23z3 , g11z1 + g33z3 ,
(
det Â3

)
z1 − ε13

(
det Â1

)
z3 .

Since the coefficients of these seven polynomials in U depend algebraically on those of
f0, f1, f2, f3, g11, g12, g23, g33, Lemma 4.3 with A = U shows that it is enough to provide
a special choice for the general polynomials fj , gij ∈ C[x0, x1, x2] making (4.14) true.
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Claim. This can be achieved in the following way, where µ, ν ∈ U(1, 0) denote suitable
strong Lefschetz elements of complete intersections that will be specified later:

f0 = xd0
0 g11 = xt−d+2r1

2

f1 = xd1
0 g12 = νt−d+r1+r2

f2 = xd2
0 + xd2

1 g23 = µt−d+r2+r3

f3 = xd3
0 + xd3

2 g33 = µt−d+2r3

Proof of the claim. The claim is obvious for d2 = 0, so we may assume d2 > 0 in the
following. As in the case of the ideal I, we consider instead the larger homogeneous ideal

L =
⊕
m,n∈Z

{r ∈ U(m,n) | rU ∩ U(t− d+ 2r2, 1) ⊂ K}

and we want to show that U(t− d+ 2r2, 1) ⊂ L (or equivalently, L = U). This will be
done by proving first z1 ∈ L and then z3 ∈ L. Since K ⊂ L, we have

0 ≡ g11z1 + g33z3 = g11z1 + µr3−r2g23z3 ≡ g11z1 (mod L) .

By Proposition 4.7, the complete intersection f1, f2, g11 in C[x0, x1, x2] possesses the
strong Lefschetz property. We may thus assume that ν is a strong Lefschetz element for
f1, f2, g11. Lemma 4.5 then implies

z1U(m, 0) ⊂ f1z1U + f2z1U + g11z1U + g12z1U ⊂ L

for all m ≥ 1
2(d1 + d2 + t− d+ 2r1 + t− d+ r1 + r2 − 3). In order to show z1 ∈ L, we

thus need to check that

2(t− d+ 2r2 + d1) ≥ d1 + d2 + t− d+ 2r1 + t− d+ r1 + r2 − 3 .

This is equivalent to
4r2 + 2d1 ≥ d1 + d2 + 3r1 + r2 − 3 ,

which simplifies to r2 ≥ r1 − 3. The last inequality is obviously true.

Next we show z3 ∈ L. If d0 > 0, we have

det Â1 = det


d0x

d0−1
0 d2x

d2−1
0 d3x

d3−1
0

0 d2x
d2−1
1 0

0 0 d3x
d3−1
2

 = d0d2d3x
d0−1
0 xd2−1

1 xd3−1
2 .

Together with K ⊂ L and z1 ∈ L, this implies

0 ≡ (d0d2d3)−1x1x2
(
det Â1

)
z3 = xd0−1

0 xd2
1 x

d3
2 z3 ≡ xd0+d2+d3−1

0 z3 (mod L) .
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Similarly, for d0 = 0 we have

det Â1 = det

d2x
d2−1
0 d3x

d3−1
0

d2x
d2−1
1 0

 = −d2d3x
d3−1
0 xd2−1

1

and thus

0 ≡ (d2d3)−1x1
(
det Â1

)
z3 = −xd3−1

0 xd2
1 z3 ≡ xd0+d2+d3−1

0 z3 (mod L)

as well. By Proposition 4.7, the complete intersection xd0+d2+d3−1
0 , f2, f3 has the strong

Lefschetz property. Hence, we may assume that µ is a strong Lefschetz element for
xd0+d2+d3−1

0 , f2, f3. Lemma 4.5 implies

z3U(m, 0) ⊂ xd0+d2+d3−1
0 z3U + f2z3U + f3z3U + g23z3U ⊂ L

for all m ≥ 1
2(d0 + d2 + d3 − 1 + d2 + d3 + t− d+ r2 + r3 − 3). It thus remains to check

2(t− d+ 2r2 + d3) ≥ d0 + d2 + d3 − 1 + d2 + d3 + t− d+ r2 + r3 − 3

or
2r0 + 2r1 + 6r2 + 6r3 + 8d− 6 ≥ 3r0 + r1 + 6r2 + 6r3 + 8d− 7 .

This reduces to r1 ≥ r0 − 1, which is clearly true. This finishes the proof of (4.14).

Now let us take a monomial hy2
1y

2
2 ∈ S(t, 4) where h ∈ S(t + 2r1 + 2r2, 0). We have

hz1 ∈ U(t− d+ 2r2, 1) and thus

hz1 = h1f1z1 + h2f2 + h3f3z3 + h4g12z1 + h5g23z3

+ h6(g11z1 + g33z3) + h7
((

det Â3
)
z1 − ε13

(
det Â1

)
z3
)

for certain polynomials h1, . . . , h7 ∈ U . Substituting zj by y2
j for j ∈ {1, 3} and multiply-

ing with y2
2, we get

hy2
1y

2
2 = h1f1y

2
1y

2
2 + h̃2f2y

2
2 + h3f3y

2
2y

2
3 + h4g12y

2
1y

2
2 + h5g23y

2
2y

2
3

+ h6
(
g11y

2
1y

2
2 + g33y

2
2y

2
3

)
+ h7

((
det Â3

)
y2

1 − ε13
(
det Â1

)
y2

3

)
y2

2

≡ h1y1y
2
2 · 0 + h̃2y2 · 0 + h3y

2
2y3 · 0 + h4 · 0 + h5 · 0 + h6 · 0 + h7y

2
2 · 0

≡ 0 (mod J)

where we used the congruences (4.4), (4.10), (4.11), (4.12), and (4.13), and where h̃2
denotes the result of the substitution inside h2. This concludes the proof of y2

1y
2
2 ∈ J .

At this point, we are ready to handle the general case of {σ(0), σ(1)}. For this, we show
the following claim:
Claim. Any multiple of y2

τ(0)y
2
τ(1) in S(t, 4) can be replaced modulo J by a multiple of

y2
τ(0)y

2
τ(2) in S(t, 4) where τ is a permutation of {0, 1, 2, 3} such that τ(3) < τ(2).
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Proof of the claim. In view of (4.4), (4.10), (4.11), and (4.12), it suffices to show that

S(t+ 2rτ(0) + 2rτ(1), 0) ⊂ fτ(0)S + fτ(1)S + gτ(0)τ(1)S +
(
det Âτ(2)

)
S .

This will follow from Lemma 4.3 once we provide a special choice for the general
polynomials fτ(0), fτ(1), fτ(3), gτ(0)τ(1) satisfying this property. Let a = dτ(0), b = dτ(1),
and c = dτ(3). We may assume a, b > 0 because otherwise we would already have
y2
τ(0)y

2
τ(1) ≡ 0 (mod J) by (4.4). We take

fτ(0) = xa0 + xa1 , fτ(1) = xb0 + xb2 , fτ(3) = xc0 .

If also c > 0, we have

det Âτ(2) = ±det

ax
a−1
0 bxb−1

0 cxc−1
0

axa−1
1 0 0
0 bxb−1

2 0

 = ±abcxc−1
0 xa−1

1 xb−1
2 .

Therefore, we get

xa+b+c−1
0 ∈ fτ(0)S + fτ(1)S +

(
det Âτ(2)

)
S .

If c = 0, it follows that d0 = 0. Since a, b > 0 and τ(3) < τ(2), only τ(3) = 0 is possible.
Then we have

det Âτ(2) = ±det
(
axa−1

0 bxb−1
0

axa−1
1 0

)
= ∓abxb−1

0 xa−1
1

und thus again

xa+b+c−1
0 = xa+b−1

0 ∈ fτ(0)S + fτ(1)S +
(
det Âτ(2)

)
S .

In either case, the complete intersection xa+b+c−1
0 , fτ(0), fτ(1) has the strong Lefschetz

property by Proposition 4.7, so we may pick for gτ(0)τ(1) an adequate power of a strong
Lefschetz element and obtain via Lemma 4.5

S(m, 0) ⊂ fτ(0)S + fτ(1)S + gτ(0)τ(1)S +
(
det Âτ(2)

)
S

for all m ≥ 1
2(a+ b+ c− 1 + a+ b+ t− d+ rτ(0) + rτ(1) − 3). Therefore, it remains to

prove that

2(t+ 2rτ(0) + 2rτ(1)) ≥ a+ b+ c− 1 + a+ b+ t− d+ rτ(0) + rτ(1) − 3 .

This simplifies to

6rτ(0) + 6rτ(1) + 2rτ(2) + 2rτ(3) + 8d− 6 ≥ 6rτ(0) + 6rτ(1) + rτ(2) + 3rτ(3) + 8d− 6

or just rτ(2) ≥ rτ(3), which holds because τ(3) < τ(2).

40
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With this result at hand, we proceed as follows: We start with a monomial of degree (t, 4)
divisible by y2

σ(0)y
2
σ(1) and repeatedly apply transitions of the form

y2
τ(0)y

2
τ(1)  y2

τ(0)y
2
τ(2)

with τ(3) < τ(2) for a suitable permutation τ until we arrive at a polynomial divisible by
y2

1y
2
2, for which we have already shown that it vanishes modulo J . The fact that such a

sequence of transitions always exists can be most easily seen from the following diagram:

{0, 1}
2<3 --

2<3

��

{1, 3}

0<2

��

0<2

��

{0, 3}
1<2 -- {2, 3}

0<1 -- {1, 2}

{0, 2}

1<3

KK

1<3

99

The arrows are labeled with the inequalities τ(3) < τ(2) which hold for the employed
permutations τ . For every possible subset {σ(0), σ(1)} ⊂ {0, 1, 2, 3}, there exists at least
one directed path ending in {1, 2}. This completes the proof of Lemma 4.12.

Lemma 4.13. We have y4
j ∈ J for all j ∈ {0, 1, 2, 3}.

Proof. Let us take a monomial hy4
j where h ∈ S(t + 4rj , 0). If dj = 0, we are done by

(4.4). Otherwise, multiplying (4.5) with y2
j and using Lemma 4.12 produces

∂fj
∂xi

y4
j ≡ 0 (mod J) , i ∈ {0, 1, 2} .

First suppose j < 3. By Lemmas 4.3 and 4.4, we have

S(3dj − 5, 0) ⊂ ∂fj
∂x0

S + ∂fj
∂x1

S + ∂fj
∂x2

S

since the partial derivatives of fj = x
dj
0 +xdj1 +xdj2 form a complete intersection. Therefore,

it remains to show that t+ 4rj ≥ 3dj − 5. This is equivalent to

r0 + r1 + r2 + r3 + 4rj + 4d− 3 ≥ 6rj + 3d− 5 ,

which in turn is equivalent to

r0 + r1 + r2 + r3 + d+ 2 ≥ 2rj .
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The last inequality is true because j ≤ 2 implies r2 + r3 ≥ rj + rj .

Now let j = 3. If we multiply (4.6) with y2
3 and use Lemmas 4.10, 4.11, and 4.12, we

obtain
g33y

4
3 ≡ 0 (mod J) .

We claim that
S(t+ 4r3, 0) ⊂ ∂f3

∂x0
S + ∂f3

∂x1
S + ∂f3

∂x2
S + g33S .

By Lemma 4.3, it is enough to give one working example for f3 and g33. If we take again
f3 = xd3

0 + xd3
1 + xd3

2 , the complete intersection given by the partial derivatives of f3 has
the strong Lefschetz property by Proposition 4.7, so we may choose for g33 a power of a
strong Lefschetz element and obtain via Lemma 4.5 that

S(m, 0) ⊂ ∂f3
∂x0

S + ∂f3
∂x1

S + ∂f3
∂x2

S + g33S

for all m ≥ 1
2(3d3 − 3 + t− d+ 2r3 − 3). Therefore, we are finished if

2(t+ 4r3) ≥ 3d3 − 3 + t− d+ 2r3 − 3 .

This simplifies to

2r0 + 2r1 + 2r2 + 10r3 + 8d− 6 ≥ r0 + r1 + r2 + 9r3 + 6d− 9 ,

or equivalently,
r0 + r1 + r2 + r3 + 2d+ 3 ≥ 0 .

The last statement is clearly true.

Since every monomial in S(t, 4) is divisible by an element handled in one of the four
lemmas above, we obtain S(t, 4) ⊂ J as desired. This finally proves Proposition 4.9 and
thus Theorem 1.1.

Note that it was crucial in the choice of g to leave out the terms g00 and g22, i. e. the
ones belonging to the smallest and second-largest values among the degrees d0, d1, d2, d3.
With any other two indices, the above proof would not work. Furthermore, if we would
also set g33 = 0, the proof of Lemma 4.12 would be much simpler, but then Lemma 4.13
would work out only if d3 ≤ d0 + d1 + d2 + 4. And if we would instead set g11 = 0,
Lemma 4.13 could be left untouched, but Lemma 4.12, though its proof would be simpler,
would turn out right only if d3 ≤ d2 + 6. It is also worth to mention that the properties
of J we are proving in each of the four claims are in general not open on the polynomials
fj and gij , thus an argument where one specializes to g33 = 0 in one claim but not in
another one does not succeed.
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