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6. Coalgebras

De�nition 8.6.1. A K-coalgebra is a K-module C together with a comultiplica-
tion or diagonal � : C �! C 
 C that is coassociative:

C 
 C C 
 C 
 C-
id
�

C C 
 C-�

?

�

?

�
id

and a counit or augmentation � : C �! K:

C C 
 C-�

?

�

?

id
�

C 
 C K 
 C �= C �= C 
 K:-
�
id

id

HHHHHHHHHj

A K-coalgebra C is cocommutative if the following diagram commutes

C 
 C C 
 C-�

C

�

�
�
�
���

�

A
A
A
AAU

Let C and D be K-coalgebras. A homomorphism of coalgebras f : C �! D is a
K-linear map such that the following diagrams commute:

C 
 C D 
D-
f
f

C D-f

?

�C

?

�D

and

K

�C

A
A
A
AAU

�D

�
�
�
���

C D:-f

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras
is again a homomorphism of coalgebras. Furthermore the identity map is a homo-
morphism of coalgebras. Hence the K-coalgebras form a category K-Coalg. The
category of cocommutative K-coalgebras will be denoted by K-cCoalg.
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Problem 8.6.1. 1. Show that V 
 V � is a coalgebra for every �nite dimensional
vector space V over a �eld K if the comultiplication is de�ned by �(v 
 v�) :=Pn

i=1 v 
 v�i 
 vi 
 v� where fvig and fv�i g are dual bases of V resp. V �.
2. Show that the free K-modules KX with the basis X and the comultiplication

�(x) = x
 x is a coalgebra. What is the counit? Is the counit unique?
3. Show that K � V with �(1) = 1
 1, �(v) = v
 1+ 1
 v de�nes a coalgebra.
4. Let C and D be coalgebras. Then C
D is a coalgebra with the comultiplication

�C
D := (1C 
 � 
 1D)(�C 
�D) : C 
D
C 
D �! C
D and counit " = "C
D :
C 
D �! K 
K �! K. (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we intro-
duce a notation �rst introduced by Sweedler similar to the notation r(a
 b) = ab
used for algebras. Instead of �(c) =

P
ci 
 c0i we write

�(c) =
X

c(1) 
 c(2):

Observe that only the complete expression on the right hand side makes sense, not
the components c(1) or c(2) which are not considered as families of elements of C. This
notation alone does not help much in the calculations we have to perform later on.
So we introduce a more general notation.

De�nition 8.6.3. (Sweedler Notation) Let M be an arbitrary K-module and C
be a K-coalgebra. Then there is a bijection between all multilinear maps

f : C � : : :� C �!M

and all linear maps

f 0 : C 
 : : :
 C �!M:

These maps are associated to each other by the formula

f(c1; : : : ; cn) = f 0(c1 
 : : :
 cn):

For c 2 C we de�ne X
f(c(1); : : : ; c(n)) := f 0(�n�1(c));

where �n�1 denotes the n � 1-fold application of �, for example �n�1 = (� 
 1 

: : :
 1) � (�
 1) ��.

In particular we obtain for the bilinear map 
 : C �C 3 (c; d) 7! c 
 d 2 C 
 C
X

c(1) 
 c(2) = �(c);

and for the multilinear map 
2 : C � C � C �! C 
 C 
C
X

c(1) 
 c(2) 
 c(3) = (�
 1)�(c) = (1 
�)�(c):

With this notation one veri�es easily
X

c(1) 
 : : :
�(c(i))
 : : :
 c(n) =
X

c(1) 
 : : :
 c(n+1)



6. COALGEBRAS 29

and P
c(1) 
 : : :
 �(c(i))
 : : :
 c(n) =

P
c(1) 
 : : :
 1
 : : :
 c(n�1)

=
P

c(1) 
 : : :
 c(n�1)

This notation and its application to multilinear maps will also be used in more
general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition
f � g := rA(f 
 g)�C de�nes a multiplication

Hom(C;A)
Hom(C;A) 3 f 
 g 7! f � g 2 Hom(C;A);

such that Hom(C;A) becomes an algebra. The unit element is given by K 3 � 7!
(c 7! �(��(c))) 2 Hom(C;A).

Proof. The multiplication of Hom(C;A) obviously is a bilinear map. The mul-
tiplication is associative since (f � g) � h = rA((rA(f 
 g)�C)
 h)�C = rA(rA 

1)((f 
g)
h)(�C
1)�C = rA(1
rA)(f
 (g
h))(1
�C)�C = rA(f 
 (rA(g

h)�C))�C = f � (g � h). Furthermore it is unitary with unit 1Hom(C;A) = �A�C since
�A�C � f = rA(�A�C 
 f)�C = rA(�A 
 1A)(1K 
 f)(�C 
 1C)�C = f and similarly
f � �A�C = f .

De�nition 8.6.5. The multiplication � : Hom(C;A)
Hom(C;A) �! Hom(C;A)
is called convolution.

Corollary 8.6.6. Let C be a K-coalgebra. Then C� = HomK(C;K) is an K-
algebra.

Proof. Use that K itself is a K-algebra.

Remark 8.6.7. If we write the evaluation as C� 
 C 3 a
 c 7! ha; ci 2 K then
an element a 2 C� is completely determined by the values of ha; ci for all c 2 C. So
the product of a and b in C� is uniquely determined by the formula

ha � b; ci = ha
 b;�(c)i =
X

a(c(1))b(c(2)):

The unit element of C� is � 2 C�.

Lemma 8.6.8. Let K be a �eld and A be a �nite dimensional K-algebra. Then
A� = HomK(A;K) is a K-coalgebra.

Proof. De�ne the comultiplication on C� by

� : A� r�

�! (A
A)�
can�1

�! A� 
A�:

The canonical map can : A�
A� �! (A
A)� is invertible, sinceA is �nite dimensional.
By a diagrammatic proof or by calculation with elements it is easy to show that A�

becomes a K-coalgebra.

Remark 8.6.9. If K is an arbitrary commutative ring, then A� = HomK(A;K)
is a K-coalgebra if A is a �nitely generated projective K-module.
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Problem 8.6.2. Find su�cient conditions for an algebra A resp. a coalgebra C
such that Hom(A;C) becomes a coalgebra with co-convolution as comultiplication.

De�nition 8.6.10. Let C be a K-coalgebra. A left C-comodule is a K-module
M together with a homomorphism �M : M �! C 
M , such that the diagrams

C 
M C 
 C 
M-
id
�

M C 
M-�

?

�

?

�
id

and
M

?

�

C 
M K 
M �= M:-
�
id

id

HHHHHHHHHj

commute.
Let CM and CN be C-comodules and let f : M �! N be a K-linear map. The

map f is called a homomorphism of comodules if the diagram

N C 
N-
�N

M C 
M-�M

?

f

?

1
f

commutes.
The left C-comodules and their homomorphisms form the category CM of comod-

ules.
Let N be an arbitrary K-module and M be a C-comodule. Then there is a

bijection between all multilinear maps

f : C � : : :�M �! N

and all linear maps

f 0 : C 
 : : :
M �! N:

These maps are associated to each other by the formula

f(c1; : : : ; cn;m) = f 0(c1 
 : : :
 cn 
m):

For m 2M we de�ne
X

f(m(1); : : : ;m(n);m(M)) := f 0(�n(m));

where �n denotes the n-fold application of �, i.e. �n = (1 
 : : :
 1
 �) � (1
 �) � �.
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In particular we obtain for the bilinear map 
 : C �M �! C 
M
X

m(1) 
m(M) = �(m);

and for the multilinear map 
2 : C � C �M �! C 
 C 
M
X

m(1) 
m(2) 
m(M) = (1 
 �)�(c) = (�
 1)�(m):

Problem 8.6.3. Show that a �nite dimensional vector space V is a comodule
over the coalgebra V 
 V � as de�ned in problem 8.11.1 with the coaction �(v) :=P

v 
 v�i 
 vi 2 (V 
 V �)
 V where
P

v�i 
 vi is the dual basis of V in V � 
 V .

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let K be a �eld. Let
M be a left C-comodule and let m 2M be given. Then there exists a �nite dimensional
subcoalgebra C 0 � C and a �nite dimensional C 0-comodule M 0 with m 2 M 0 � M
where M 0 �M is a K-submodule, such that the diagram

M C 
M-
�

M 0 C 0 
M 0-�0

? ?

commutes.

Corollary 8.6.12. 1. Each element c 2 C of a coalgebra is contained in a �nite
dimensional subcoalgebra of C.

2. Each element m 2 M of a comodule is contained in a �nite dimensional
subcomodule of M .

Corollary 8.6.13. 1. Each �nite dimensional subspace V of a coalgebra C is
contained in a �nite dimensional subcoalgebra C 0 of C.

2. Each �nite dimensional subspace V of a comodule M is contained in a �nite
dimensional subcomodule M 0 of M .

Corollary 8.6.14. 1. Each coalgebra is a union of �nite dimensional subcoalge-
bras.

2. Each comodule is a union of �nite dimensional subcomodules.

Proof. (of the Theorem) We can assume that m 6= 0 for else we can use M 0 = 0
and C 0 = 0.

Under the representations of �(m) 2 C
M as �nite sums of decomposable tensors
pick one

�(m) =

sX

i=1

ci 
mi
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of shortest length s. Then the families (ciji = 1; : : : ; s) and (miji = 1; : : : ; s) are
linearly independent. Choose coe�cients cij 2 C such that

�(cj) =

tX

i=1

ci 
 cij; 8j = 1; : : : ; s;

by suitably extending the linearly independent family (ciji = 1; : : : ; s) to a linearly
independent family (ciji = 1; : : : ; t) and t � s.

We �rst show that we can choose t = s. By coassociativity we have
Ps

i=1 ci 


�(mi) =
Ps

j=1�(cj) 
 mj =
Ps

j=1

Pt

i=1 ci 
 cij 
mj. Since the ci and the mj are
linearly independent we can compare coe�cients and get

�(mi) =
sX

j=1

cij 
mj; 8i = 1; : : : ; s(1)

and 0 =
Ps

j=1 cij 
mj for i > s. The last statement implies

cij = 0; 8i > s; j = 1; : : : ; s:

Hence we get t = s and

�(cj) =

sX

i=1

ci 
 cij; 8j = 1; : : : ; s:

De�ne �nite dimensional subspaces C 0 = hcij ji; j = 1; : : : ; si � C and M 0 =
hmiji = 1; : : : ; si � M . Then by (1) we get � : M 0 �! C 0 
M 0. We show that
m 2 M 0 and that the restriction of � to C 0 gives a linear map � : C 0 �! C 0 
 C 0

so that the required properties of the theorem are satis�ed. First observe that m =P
"(ci)mi 2M 0 and cj =

P
"(ci)cij 2 C 0. Using coassociativity we get

Pn

i;j=1 ci 
�(cij)
mj =
Ps

k;j=1�(ck)
 ckj 
mj

=
Ps

i;j;k=1 ci 
 cik 
 ckj 
mj

hence

�(cij) =
sX

k=1

cik 
 ckj :(2)

Remark 8.6.15. We give a sketch of a second proof which is somewhat more
technical. SinceC is a K-coalgebra, the dual C� is an algebra. The comodule structure
� : M �! C 
M leads to a module structure by � = (ev
1)(1 
 �) : C� 
M �!
C�
C
M �!M . Consider the submodule N := C�m. Then N is �nite dimensional,
since c�m =

Pn

i=1hc
�; ciimi for all c

� 2 C� where
Pn

i=1 ci 
mi = �(m). Observe that
C�m is a subspace of the space generated by the mi. But it does not depend on
the choice of the mi. Furthermore if we take �(m) =

P
ci 
 mi with a shortest
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representation then the mi are in C�m since c�m =
P
hc�; ciimi = mi for c� an

element of a dual basis of the ci.
N is a C-comodule since �(c�m) =

P
hc�; cii�(mi) =

P
hc�; ci(1)ici(2) 
 mi 2

C 
C�m.
Now we construct a subcoalgebra D of C such that N is a D-comodule with the

induced coaction. Let D := N 
 N�. By 8.13 N is a comodule over the coalgebra
N 
 N�. Construct a linear map � : D �! C by n 
 n� 7!

P
n(1)hn

�; n(N)i. By
de�nition of the dual basis we have n =

P
nihn�i ; ni. Thus we get

(�
 �)�D(n
 n�) = (�
 �)(
P

n
 n�i 
 ni 
 n�)
=
P

n(1)hn
�
i ; n(N)i 
 ni(1)hn

�; ni(N)i
=
P

n(1) 
 ni(1)hn
�; ni(N)ihn

�
i ; n(N)i

=
P

n(1) 
 n(2)hn
�; n(N)i =

P
�C(n(1))hn

�; n(N)i
= �C�(n
 n�):

Furthermore "C�(n 
 n�) = "(
P

n(1)hn
�; n(N)i = hn�;

P
"(n(1))n(N)i = hn�; ni =

"(n
n�). Hence � : D �! C is a homomorphism of coalgebras, D is �nite dimensional
and the image C 0 := �(D) is a �nite dimensional subcoalgebra of C. Clearly N is
also a C 0-comodule, since it is a D-comodule.

Finally we show that the D-comodule structure on N if lifted to the C-comodule
structure coincides with the one de�ned on M . We have

�C(c
�m) = �C(

P
hc�;m(1)im(M)) =

P
hc�;m(1)im(2) 
m(M)

=
P
hc�;m(1)im(2) 
mihm�

i ;m(M)i =
P
hc�;m(1)im(2)hm�

i ;m(M)i 
mi

= (�
 1)(
P
hc�;m(1)im(M) 
m�

i 
mi) = (�
 1)(
P

c�m
m�
i 
mi)

= (�
 1)�D(c�m):


