CHAPTER 8

Toolbox

6. Coalgebras

Definition 8.6.1. A \mathbb{K}-coalgebra is a \mathbb{K}-module C together with a comultiplication or diagonal $\Delta: C \rightarrow C \otimes C$ that is coassociative:

and a counit or augmentation $\epsilon: C \rightarrow \mathbb{K}$:

A \mathbb{K}-coalgebra C is cocommutative if the following diagram commutes

Let C and D be \mathbb{K}-coalgebras. A homomorphism of coalgebras $f: C \rightarrow D$ is a \mathbb{K}-linear map such that the following diagrams commute:

and

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras is again a homomorphism of coalgebras. Furthermore the identity map is a homomorphism of coalgebras. Hence the \mathbb{K}-coalgebras form a category \mathbb{K}-Coalg. The category of cocommutative \mathbb{K}-coalgebras will be denoted by \mathbb{K}-cCoalg.

Problem 8.6.1. 1. Show that $V \otimes V^{*}$ is a coalgebra for every finite dimensional vector space V over a field \mathbb{K} if the comultiplication is defined by $\Delta\left(v \otimes v^{*}\right):=$ $\sum_{i=1}^{n} v \otimes v_{i}^{*} \otimes v_{i} \otimes v^{*}$ where $\left\{v_{i}\right\}$ and $\left\{v_{i}^{*}\right\}$ are dual bases of V resp. V^{*}.
2. Show that the free \mathbb{K}-modules $\mathbb{K} X$ with the basis X and the comultiplication $\Delta(x)=x \otimes x$ is a coalgebra. What is the counit? Is the counit unique?
3. Show that $\mathbb{K} \oplus V$ with $\Delta(1)=1 \otimes 1, \Delta(v)=v \otimes 1+1 \otimes v$ defines a coalgebra.
4. Let C and D be coalgebras. Then $C \otimes D$ is a coalgebra with the comultiplication $\Delta_{C \otimes D}:=\left(1_{C} \otimes \tau \otimes 1_{D}\right)\left(\Delta_{C} \otimes \Delta_{D}\right): C \otimes D \otimes C \otimes D \rightarrow C \otimes D$ and counit $\varepsilon=\varepsilon_{C \otimes D}:$ $C \otimes D \rightarrow \mathbb{K} \otimes K \rightarrow \mathbb{K}$. (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a \mathbb{K}-coalgebra in terms of elements we introduce a notation first introduced by Sweedler similar to the notation $\nabla(a \otimes b)=a b$ used for algebras. Instead of $\Delta(c)=\sum c_{i} \otimes c_{i}^{\prime}$ we write

$$
\Delta(c)=\sum c_{(1)} \otimes c_{(2)} .
$$

Observe that only the complete expression on the right hand side makes sense, not the components $c_{(1)}$ or $c_{(2)}$ which are not considered as families of elements of C. This notation alone does not help much in the calculations we have to perform later on. So we introduce a more general notation.

Definition 8.6.3. (Sweedler Notation) Let M be an arbitrary \mathbb{K}-module and C be a \mathbb{K}-coalgebra. Then there is a bijection between all multilinear maps

$$
f: C \times \ldots \times C \rightarrow M
$$

and all linear maps

$$
f^{\prime}: C \otimes \ldots \otimes C \rightarrow M .
$$

These maps are associated to each other by the formula

$$
f\left(c_{1}, \ldots, c_{n}\right)=f^{\prime}\left(c_{1} \otimes \ldots \otimes c_{n}\right) .
$$

For $c \in C$ we define

$$
\sum f\left(c_{(1)}, \ldots, c_{(n)}\right):=f^{\prime}\left(\Delta^{n-1}(c)\right)
$$

where Δ^{n-1} denotes the $n-1$-fold application of Δ, for example $\Delta^{n-1}=(\Delta \otimes 1 \otimes$ $\ldots \otimes 1) \circ(\Delta \otimes 1) \circ \Delta$.

In particular we obtain for the bilinear map $\otimes: C \times C \ni(c, d) \mapsto c \otimes d \in C \otimes C$

$$
\sum c_{(1)} \otimes c_{(2)}=\Delta(c)
$$

and for the multilinear map $\otimes^{2}: C \times C \times C \rightarrow C \otimes C \otimes C$

$$
\sum c_{(1)} \otimes c_{(2)} \otimes c_{(3)}=(\Delta \otimes 1) \Delta(c)=(1 \otimes \Delta) \Delta(c) .
$$

With this notation one verifies easily

$$
\sum c_{(1)} \otimes \ldots \otimes \Delta\left(c_{(i)}\right) \otimes \ldots \otimes c_{(n)}=\sum c_{(1)} \otimes \ldots \otimes c_{(n+1)}
$$

and

$$
\begin{aligned}
\sum c_{(1)} \otimes \ldots \otimes \epsilon\left(c_{(i)}\right) \otimes \ldots \otimes c_{(n)} & =\sum c_{(1)} \otimes \ldots \otimes 1 \otimes \ldots \otimes c_{(n-1)} \\
& =\sum c_{(1)} \otimes \ldots \otimes c_{(n-1)}
\end{aligned}
$$

This notation and its application to multilinear maps will also be used in more general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition $f * g:=\nabla_{A}(f \otimes g) \Delta_{\mathcal{C}}$ defines a multiplication

$$
\operatorname{Hom}(C, A) \otimes \operatorname{Hom}(C, A) \ni f \otimes g \mapsto f * g \in \operatorname{Hom}(C, A),
$$

such that $\operatorname{Hom}(C, A)$ becomes an algebra. The unit element is given by $\mathbb{K} \ni \alpha \mapsto$ $(c \mapsto \eta(\alpha \epsilon(c))) \in \operatorname{Hom}(C, A)$.

Proof. The multiplication of $\operatorname{Hom}(C, A)$ obviously is a bilinear map. The multiplication is associative since $(f * g) * h=\nabla_{A}\left(\left(\nabla_{A}(f \otimes g) \Delta_{C}\right) \otimes h\right) \Delta_{C}=\nabla_{A}\left(\nabla_{A} \otimes\right.$ $1)((f \otimes g) \otimes h)\left(\Delta_{C} \otimes 1\right) \Delta_{C}=\nabla_{A}\left(1 \otimes \nabla_{A}\right)(f \otimes(g \otimes h))\left(1 \otimes \Delta_{C}\right) \Delta_{C}=\nabla_{A}\left(f \otimes\left(\nabla_{A}(g \otimes\right.\right.$ $\left.\left.h) \Delta_{C}\right)\right) \Delta_{C}=f *(g * h)$. Furthermore it is unitary with unit $1_{\operatorname{Hom}(C, A)}=\eta_{A} \epsilon_{C}$ since $\eta_{A} \epsilon_{C} * f=\nabla_{A}\left(\eta_{A} \epsilon_{C} \otimes f\right) \Delta_{C}=\nabla_{A}\left(\eta_{A} \otimes 1_{A}\right)\left(1_{K} \otimes f\right)\left(\epsilon_{C} \otimes 1_{C}\right) \Delta_{C}=f$ and similarly $f * \eta_{A} \epsilon_{C}=f$.

Definition 8.6.5. The multiplication $*: \operatorname{Hom}(C, A) \otimes \operatorname{Hom}(C, A) \rightarrow \operatorname{Hom}(C, A)$ is called convolution.

Corollary 8.6.6. Let C be a \mathbb{K}-coalgebra. Then $C^{*}=\operatorname{Hom}_{K}(C, \mathbb{K})$ is an \mathbb{K} algebra.

Proof. Use that \mathbb{K} itself is a \mathbb{K}-algebra.
Remark 8.6.7. If we write the evaluation as $C^{*} \otimes C \ni a \otimes c \mapsto\langle a, c\rangle \in \mathbb{K}$ then an element $a \in C^{*}$ is completely determined by the values of $\langle a, c\rangle$ for all $c \in C$. So the product of a and b in C^{*} is uniquely determined by the formula

$$
\langle a * b, c\rangle=\langle a \otimes b, \Delta(c)\rangle=\sum a\left(c_{(1)}\right) b\left(c_{(2)}\right) .
$$

The unit element of C^{*} is $\epsilon \in C^{*}$.
Lemma 8.6.8. Let \mathbb{K} be a field and A be a finite dimensional \mathbb{K}-algebra. Then $A^{*}=\operatorname{Hom}_{K}(A, \mathbb{K})$ is a \mathbb{K}-coalgebra.

Proof. Define the comultiplication on C^{*} by

$$
\Delta: A^{*} \xrightarrow{\nabla^{*}}(A \otimes A)^{*} \xrightarrow{\mathrm{can}^{-1}} A^{*} \otimes A^{*} .
$$

The canonical map can : $A^{*} \otimes A^{*} \rightarrow(A \otimes A)^{*}$ is invertible, since A is finite dimensional. By a diagrammatic proof or by calculation with elements it is easy to show that A^{*} becomes a \mathbb{K}-coalgebra.

Remark 8.6.9. If \mathbb{K} is an arbitrary commutative ring, then $A^{*}=\operatorname{Hom}_{K}(A, \mathbb{K})$ is a \mathbb{K}-coalgebra if A is a finitely generated projective \mathbb{K}-module.

Problem 8.6.2. Find sufficient conditions for an algebra A resp. a coalgebra C such that $\operatorname{Hom}(A, C)$ becomes a coalgebra with co-convolution as comultiplication.

Definition 8.6.10. Let C be a \mathbb{K}-coalgebra. A left C-comodule is a \mathbb{K}-module M together with a homomorphism $\delta_{M}: M \rightarrow C \otimes M$, such that the diagrams

and

commute.
Let ${ }^{C} M$ and ${ }^{C} N$ be C-comodules and let $f: M \rightarrow N$ be a \mathbb{K}-linear map. The map f is called a homomorphism of comodules if the diagram

commutes.
The left C-comodules and their homomorphisms form the category ${ }^{C} \mathcal{M}$ of comodules.

Let N be an arbitrary \mathbb{K}-module and M be a C-comodule. Then there is a bijection between all multilinear maps

$$
f: C \times \ldots \times M \rightarrow N
$$

and all linear maps

$$
f^{\prime}: C \otimes \ldots \otimes M \rightarrow N .
$$

These maps are associated to each other by the formula

$$
f\left(c_{1}, \ldots, c_{n}, m\right)=f^{\prime}\left(c_{1} \otimes \ldots \otimes c_{n} \otimes m\right)
$$

For $m \in M$ we define

$$
\sum f\left(m_{(1)}, \ldots, m_{(n)}, m_{(M)}\right):=f^{\prime}\left(\delta^{n}(m)\right)
$$

where δ^{n} denotes the n-fold application of δ, i.e. $\delta^{n}=(1 \otimes \ldots \otimes 1 \otimes \delta) \circ(1 \otimes \delta) \circ \delta$.

In particular we obtain for the bilinear map $\otimes: C \times M \rightarrow C \otimes M$

$$
\sum m_{(1)} \otimes m_{(M)}=\delta(m)
$$

and for the multilinear map $\otimes^{2}: C \times C \times M \rightarrow C \otimes C \otimes M$

$$
\sum m_{(1)} \otimes m_{(2)} \otimes m_{(M)}=(1 \otimes \delta) \delta(c)=(\Delta \otimes 1) \delta(m)
$$

Problem 8.6.3. Show that a finite dimensional vector space V is a comodule over the coalgebra $V \otimes V^{*}$ as defined in problem 8.11.1 with the coaction $\delta(v):=$ $\sum v \otimes v_{i}^{*} \otimes v_{i} \in\left(V \otimes V^{*}\right) \otimes V$ where $\sum v_{i}^{*} \otimes v_{i}$ is the dual basis of V in $V^{*} \otimes V$.

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let \mathbb{K} be a field. Let M be a left C-comodule and let $m \in M$ be given. Then there exists a finite dimensional subcoalgebra $C^{\prime} \subseteq C$ and a finite dimensional C^{\prime}-comodule M^{\prime} with $m \in M^{\prime} \subseteq M$ where $M^{\prime} \subseteq M$ is a \mathbb{K}-submodule, such that the diagram

commutes.
Corollary 8.6.12. 1. Each element $c \in C$ of a coalgebra is contained in a finite dimensional subcoalgebra of C.
2. Each element $m \in M$ of a comodule is contained in a finite dimensional subcomodule of M.

Corollary 8.6.13. 1. Each finite dimensional subspace V of a coalgebra C is contained in a finite dimensional subcoalgebra C^{\prime} of C.
2. Each finite dimensional subspace V of a comodule M is contained in a finite dimensional subcomodule M^{\prime} of M.

Corollary 8.6.14. 1. Each coalgebra is a union of finite dimensional subcoalgebras.
D. Each comodule is a union of finite dimensional subcomodules.

Proof. (of the Theorem) We can assume that $m \neq 0$ for else we can use $M^{\prime}=0$ and $C^{\prime}=0$.

Under the representations of $\delta(m) \in C \otimes M$ as finite sums of decomposable tensors pick one

$$
\delta(m)=\sum_{i=1}^{s} c_{i} \otimes m_{i}
$$

of shortest length s. Then the families $\left(c_{i} \mid i=1, \ldots, s\right)$ and $\left(m_{i} \mid i=1, \ldots, s\right)$ are linearly independent. Choose coefficients $c_{i j} \in C$ such that

$$
\Delta\left(c_{j}\right)=\sum_{i=1}^{t} c_{i} \otimes c_{i j}, \quad \forall j=1, \ldots, s,
$$

by suitably extending the linearly independent family $\left(c_{i} \mid i=1, \ldots, s\right)$ to a linearly independent family $\left(c_{i} \mid i=1, \ldots, t\right)$ and $t \geq s$.

We first show that we can choose $t=s$. By coassociativity we have $\sum_{i=1}^{s} c_{i} \otimes$ $\delta\left(m_{i}\right)=\sum_{j=1}^{s} \Delta\left(c_{j}\right) \otimes m_{j}=\sum_{j=1}^{s} \sum_{i=1}^{t} c_{i} \otimes c_{i j} \otimes m_{j}$. Since the c_{i} and the m_{j} are linearly independent we can compare coefficients and get

$$
\begin{equation*}
\delta\left(m_{i}\right)=\sum_{j=1}^{s} c_{i j} \otimes m_{j}, \quad \forall i=1, \ldots, s \tag{1}
\end{equation*}
$$

and $0=\sum_{j=1}^{s} c_{i j} \otimes m_{j}$ for $i>s$. The last statement implies

$$
c_{i j}=0, \quad \forall i>s, j=1, \ldots, s
$$

Hence we get $t=s$ and

$$
\Delta\left(c_{j}\right)=\sum_{i=1}^{s} c_{i} \otimes c_{i j}, \quad \forall j=1, \ldots, s
$$

Define finite dimensional subspaces $C^{\prime}=\left\langle c_{i j} \mid i, j=1, \ldots, s\right\rangle \subseteq C$ and $M^{\prime}=$ $\left\langle m_{i} \mid i=1, \ldots, s\right\rangle \subseteq M$. Then by (1) we get $\delta: M^{\prime} \rightarrow C^{\prime} \otimes M^{\prime}$. We show that $m \in M^{\prime}$ and that the restriction of Δ to C^{\prime} gives a linear map $\Delta: C^{\prime} \rightarrow C^{\prime} \otimes C^{\prime}$ so that the required properties of the theorem are satisfied. First observe that $m=$ $\sum \varepsilon\left(c_{i}\right) m_{i} \in M^{\prime}$ and $c_{j}=\sum \varepsilon\left(c_{i}\right) c_{i j} \in C^{\prime}$. Using coassociativity we get

$$
\begin{aligned}
\sum_{i, j=1}^{n} c_{i} \otimes \Delta\left(c_{i j}\right) \otimes m_{j} & =\sum_{k, j=1}^{s} \Delta\left(c_{k}\right) \otimes c_{k j} \otimes m_{j} \\
& =\sum_{i, j, k=1}^{s} c_{i} \otimes c_{i k} \otimes c_{k j} \otimes m_{j}
\end{aligned}
$$

hence

$$
\begin{equation*}
\Delta\left(c_{i j}\right)=\sum_{k=1}^{s} c_{i k} \otimes c_{k j} \tag{2}
\end{equation*}
$$

Remark 8.6.15. We give a sketch of a second proof which is somewhat more technical. Since C is a \mathbb{K}-coalgebra, the dual C^{*} is an algebra. The comodule structure $\delta: M \rightarrow C \otimes M$ leads to a module structure by $\rho=(\mathrm{ev} \otimes 1)(1 \otimes \delta): C^{*} \otimes M \rightarrow$ $C^{*} \otimes C \otimes M \rightarrow M$. Consider the submodule $N:=C^{*} m$. Then N is finite dimensional, since $c^{*} m=\sum_{i=1}^{n}\left\langle c^{*}, c_{i}\right\rangle m_{i}$ for all $c^{*} \in C^{*}$ where $\sum_{i=1}^{n} c_{i} \otimes m_{i}=\delta(m)$. Observe that $C^{*} m$ is a subspace of the space generated by the m_{i}. But it does not depend on the choice of the m_{i}. Furthermore if we take $\delta(m)=\sum c_{i} \otimes m_{i}$ with a shortest
representation then the m_{i} are in $C^{*} m$ since $c^{*} m=\sum\left\langle c^{*}, c_{i}\right\rangle m_{i}=m_{i}$ for c^{*} an element of a dual basis of the c_{i}.
N is a C-comodule since $\delta\left(c^{*} m\right)=\sum\left\langle c^{*}, c_{i}\right\rangle \delta\left(m_{i}\right)=\sum\left\langle c^{*}, c_{i(1)}\right\rangle c_{i(2)} \otimes m_{i} \in$ $C \otimes C^{*} m$.

Now we construct a subcoalgebra D of C such that N is a D-comodule with the induced coaction. Let $D:=N \otimes N^{*}$. By $8.13 N$ is a comodule over the coalgebra $N \otimes N^{*}$. Construct a linear map $\phi: D \rightarrow C$ by $n \otimes n^{*} \mapsto \sum n_{(1)}\left\langle n^{*}, n_{(N)}\right\rangle$. By definition of the dual basis we have $n=\sum n_{i}\left\langle n_{i}^{*}, n\right\rangle$. Thus we get

$$
\begin{aligned}
(\phi \otimes \phi) \Delta_{D}\left(n \otimes n^{*}\right) & =(\phi \otimes \phi)\left(\sum n \otimes n_{i}^{*} \otimes n_{i} \otimes n^{*}\right) \\
& =\sum n_{(1)}\left\langle n_{i}^{*}, n_{(N)}\right\rangle \otimes n_{i(1)}\left\langle n^{*}, n_{i(N)}\right\rangle \\
& =\sum n_{(1)} \otimes n_{i(1)}\left\langle n^{*}, n_{i(N)}\right\rangle\left\langle n_{i}^{*}, n_{(N)}\right\rangle \\
& =\sum n_{(1)} \otimes n_{(2)}\left\langle n^{*}, n_{(N)}\right\rangle=\sum \Delta_{C}\left(n_{(1)}\right)\left\langle n^{*}, n_{(N)}\right\rangle \\
& =\Delta_{C} \phi\left(n \otimes n^{*}\right) .
\end{aligned}
$$

Furthermore $\varepsilon_{C} \phi\left(n \otimes n^{*}\right)=\varepsilon\left(\sum n_{(1)}\left\langle n^{*}, n_{(N)}\right\rangle=\left\langle n^{*}, \sum \varepsilon\left(n_{(1)}\right) n_{(N)}\right\rangle=\left\langle n^{*}, n\right\rangle=\right.$ $\varepsilon\left(n \otimes n^{*}\right)$. Hence $\phi: D \rightarrow C$ is a homomorphism of coalgebras, D is finite dimensional and the image $C^{\prime}:=\phi(D)$ is a finite dimensional subcoalgebra of C. Clearly N is also a C^{\prime}-comodule, since it is a D-comodule.

Finally we show that the D-comodule structure on N if lifted to the C-comodule structure coincides with the one defined on M. We have

$$
\begin{aligned}
\delta_{C}\left(c^{*} m\right) & =\delta_{C}\left(\sum\left\langle c^{*}, m_{(1)}\right\rangle m_{(M)}\right)=\sum\left\langle c^{*}, m_{(1)}\right\rangle m_{(2)} \otimes m_{(M)} \\
& =\sum\left\langle c^{*}, m_{(1)}\right\rangle m_{(2)} \otimes m_{i}\left\langle m_{i}^{*}, m_{(M)}\right\rangle=\sum\left\langle c^{*}, m_{(1)}\right\rangle m_{(2)}\left\langle m_{i}^{*}, m_{(M)}\right\rangle \otimes m_{i} \\
& =(\phi \otimes 1)\left(\sum\left\langle c^{*}, m_{(1)}\right\rangle m_{(M)} \otimes m_{i}^{*} \otimes m_{i}\right)=(\phi \otimes 1)\left(\sum c^{*} m^{2} \otimes m_{i}^{*} \otimes m_{i}\right) \\
& =(\phi \otimes 1) \delta_{D}\left(c^{*} m\right) .
\end{aligned}
$$

