CHAPTER 8

Toolbox

6. Coalgebras

Definition 8.6.1. A \mathbb{K} -coalgebra is a \mathbb{K} -module C together with a comultiplication or diagonal $\Delta : C \to C \otimes C$ that is coassociative:

and a counit or augmentation $\epsilon: C \to \mathbb{K}$:

A K-coalgebra C is *cocommutative* if the following diagram commutes

Let C and D be K-coalgebras. A homomorphism of coalgebras $f : C \to D$ is a K-linear map such that the following diagrams commute:

and

Remark 8.6.2. Obviously the composition of two homomorphisms of coalgebras is again a homomorphism of coalgebras. Furthermore the identity map is a homomorphism of coalgebras. Hence the K-coalgebras form a category K-Coalg. The category of cocommutative K-coalgebras will be denoted by K-cCoalg.

Problem 8.6.1. 1. Show that $V \otimes V^*$ is a coalgebra for every finite dimensional vector space V over a field \mathbb{K} if the comultiplication is defined by $\Delta(v \otimes v^*) := \sum_{i=1}^{n} v \otimes v_i^* \otimes v_i \otimes v^*$ where $\{v_i\}$ and $\{v_i^*\}$ are dual bases of V resp. V^* .

2. Show that the free K-modules $\mathbb{K}X$ with the basis X and the comultiplication $\Delta(x) = x \otimes x$ is a coalgebra. What is the counit? Is the counit unique?

3. Show that $\mathbb{K} \oplus V$ with $\Delta(1) = 1 \otimes 1$, $\Delta(v) = v \otimes 1 + 1 \otimes v$ defines a coalgebra.

4. Let C and D be coalgebras. Then $C \otimes D$ is a coalgebra with the comultiplication $\Delta_{C \otimes D} := (1_C \otimes \tau \otimes 1_D)(\Delta_C \otimes \Delta_D) : C \otimes D \otimes C \otimes D \to C \otimes D$ and counit $\varepsilon = \varepsilon_{C \otimes D} : C \otimes D \to \mathbb{K} \otimes K \to \mathbb{K}$. (The proof is analogous to the proof of Lemma 8.5.3.)

To describe the comultiplication of a K-coalgebra in terms of elements we introduce a notation first introduced by Sweedler similar to the notation $\nabla(a \otimes b) = ab$ used for algebras. Instead of $\Delta(c) = \sum c_i \otimes c'_i$ we write

$$\Delta(c) = \sum c_{(1)} \otimes c_{(2)}.$$

Observe that only the complete expression on the right hand side makes sense, not the components $c_{(1)}$ or $c_{(2)}$ which are *not* considered as families of elements of C. This notation alone does not help much in the calculations we have to perform later on. So we introduce a more general notation.

Definition 8.6.3. (Sweedler Notation) Let M be an arbitrary K-module and C be a K-coalgebra. Then there is a bijection between all multilinear maps

$$f: C \times \ldots \times C \to M$$

and all linear maps

$$f': C \otimes \ldots \otimes C \to M.$$

These maps are associated to each other by the formula

$$f(c_1,\ldots,c_n)=f'(c_1\otimes\ldots\otimes c_n).$$

For $c \in C$ we define

$$\sum f(c_{(1)}, \dots, c_{(n)}) := f'(\Delta^{n-1}(c)),$$

where Δ^{n-1} denotes the n-1-fold application of Δ , for example $\Delta^{n-1} = (\Delta \otimes 1 \otimes \ldots \otimes 1) \circ (\Delta \otimes 1) \circ \Delta$.

In particular we obtain for the bilinear map $\otimes : C \times C \ni (c, d) \mapsto c \otimes d \in C \otimes C$

$$\sum c_{(1)} \otimes c_{(2)} = \Delta(c),$$

and for the multilinear map $\otimes^2 : C \times C \times C \to C \otimes C \otimes C$

$$\sum c_{(1)} \otimes c_{(2)} \otimes c_{(3)} = (\Delta \otimes 1)\Delta(c) = (1 \otimes \Delta)\Delta(c).$$

With this notation one verifies easily

$$\sum c_{(1)} \otimes \ldots \otimes \Delta(c_{(i)}) \otimes \ldots \otimes c_{(n)} = \sum c_{(1)} \otimes \ldots \otimes c_{(n+1)}$$

and

$$\sum c_{(1)} \otimes \ldots \otimes \epsilon(c_{(i)}) \otimes \ldots \otimes c_{(n)} = \sum c_{(1)} \otimes \ldots \otimes 1 \otimes \ldots \otimes c_{(n-1)}$$
$$= \sum c_{(1)} \otimes \ldots \otimes c_{(n-1)}$$

This notation and its application to multilinear maps will also be used in more general contexts like comodules.

Proposition 8.6.4. Let C be a coalgebra and A an algebra. Then the composition $f * g := \nabla_A (f \otimes g) \Delta_{\mathcal{C}}$ defines a multiplication

$$\operatorname{Hom}(C, A) \otimes \operatorname{Hom}(C, A) \ni f \otimes g \mapsto f * g \in \operatorname{Hom}(C, A),$$

such that $\operatorname{Hom}(C, A)$ becomes an algebra. The unit element is given by $\mathbb{K} \ni \alpha \mapsto (c \mapsto \eta(\alpha \epsilon(c))) \in \operatorname{Hom}(C, A)$.

PROOF. The multiplication of $\operatorname{Hom}(C, A)$ obviously is a bilinear map. The multiplication is associative since $(f * g) * h = \nabla_A((\nabla_A(f \otimes g)\Delta_C) \otimes h)\Delta_C = \nabla_A(\nabla_A \otimes 1)((f \otimes g) \otimes h)(\Delta_C \otimes 1)\Delta_C = \nabla_A(1 \otimes \nabla_A)(f \otimes (g \otimes h))(1 \otimes \Delta_C)\Delta_C = \nabla_A(f \otimes (\nabla_A(g \otimes h)\Delta_C))\Delta_C = f * (g * h)$. Furthermore it is unitary with unit $1_{\operatorname{Hom}(C,A)} = \eta_A \epsilon_C$ since $\eta_A \epsilon_C * f = \nabla_A(\eta_A \epsilon_C \otimes f)\Delta_C = \nabla_A(\eta_A \otimes 1_A)(1_K \otimes f)(\epsilon_C \otimes 1_C)\Delta_C = f$ and similarly $f * \eta_A \epsilon_C = f$.

Definition 8.6.5. The multiplication *: Hom $(C, A) \otimes$ Hom $(C, A) \rightarrow$ Hom(C, A) is called *convolution*.

Corollary 8.6.6. Let C be a \mathbb{K} -coalgebra. Then $C^* = \operatorname{Hom}_K(C, \mathbb{K})$ is an \mathbb{K} -algebra.

PROOF. Use that \mathbb{K} itself is a \mathbb{K} -algebra.

Remark 8.6.7. If we write the evaluation as $C^* \otimes C \ni a \otimes c \mapsto \langle a, c \rangle \in \mathbb{K}$ then an element $a \in C^*$ is completely determined by the values of $\langle a, c \rangle$ for all $c \in C$. So the product of a and b in C^* is uniquely determined by the formula

$$\langle a * b, c \rangle = \langle a \otimes b, \Delta(c) \rangle = \sum a(c_{(1)})b(c_{(2)}).$$

The unit element of C^* is $\epsilon \in C^*$.

Lemma 8.6.8. Let \mathbb{K} be a field and A be a finite dimensional \mathbb{K} -algebra. Then $A^* = \operatorname{Hom}_K(A, \mathbb{K})$ is a \mathbb{K} -coalgebra.

PROOF. Define the comultiplication on C^* by

$$\Delta: A^* \xrightarrow{\nabla^*} (A \otimes A)^* \xrightarrow{\operatorname{can}^{-1}} A^* \otimes A^*.$$

The canonical map can : $A^* \otimes A^* \to (A \otimes A)^*$ is invertible, since A is finite dimensional. By a diagrammatic proof or by calculation with elements it is easy to show that A^* becomes a K-coalgebra.

Remark 8.6.9. If \mathbb{K} is an arbitrary commutative ring, then $A^* = \text{Hom}_K(A, \mathbb{K})$ is a \mathbb{K} -coalgebra if A is a finitely generated projective \mathbb{K} -module.

Problem 8.6.2. Find sufficient conditions for an algebra A resp. a coalgebra C such that Hom(A, C) becomes a coalgebra with co-convolution as comultiplication.

Definition 8.6.10. Let C be a K-coalgebra. A left C-comodule is a K-module M together with a homomorphism $\delta_M : M \to C \otimes M$, such that the diagrams

and

commute.

Let ${}^{C}M$ and ${}^{C}N$ be C-comodules and let $f: M \to N$ be a K-linear map. The map f is called a *homomorphism of comodules* if the diagram

commutes.

The left C-comodules and their homomorphisms form the category ${}^{C}\mathcal{M}$ of comodules.

Let N be an arbitrary \mathbb{K} -module and M be a C-comodule. Then there is a bijection between all multilinear maps

$$f: C \times \ldots \times M \to N$$

and all linear maps

 $f': C \otimes \ldots \otimes M \to N.$

These maps are associated to each other by the formula

$$f(c_1,\ldots,c_n,m)=f'(c_1\otimes\ldots\otimes c_n\otimes m).$$

For $m \in M$ we define

$$\sum f(m_{(1)}, \ldots, m_{(n)}, m_{(M)}) := f'(\delta^n(m)),$$

where δ^n denotes the *n*-fold application of δ , i.e. $\delta^n = (1 \otimes \ldots \otimes 1 \otimes \delta) \circ (1 \otimes \delta) \circ \delta$.

30

In particular we obtain for the bilinear map $\otimes : C \times M \to C \otimes M$

$$\sum m_{(1)} \otimes m_{(M)} = \delta(m),$$

and for the multilinear map $\otimes^2: C \times C \times M \to C \otimes C \otimes M$

$$\sum m_{(1)} \otimes m_{(2)} \otimes m_{(M)} = (1 \otimes \delta)\delta(c) = (\Delta \otimes 1)\delta(m).$$

Problem 8.6.3. Show that a finite dimensional vector space V is a comodule over the coalgebra $V \otimes V^*$ as defined in problem 8.11.1 with the coaction $\delta(v) := \sum v \otimes v_i^* \otimes v_i \in (V \otimes V^*) \otimes V$ where $\sum v_i^* \otimes v_i$ is the dual basis of V in $V^* \otimes V$.

Theorem 8.6.11. (Fundamental Theorem for Comodules) Let \mathbb{K} be a field. Let M be a left C-comodule and let $m \in M$ be given. Then there exists a finite dimensional subcoalgebra $C' \subseteq C$ and a finite dimensional C'-comodule M' with $m \in M' \subseteq M$ where $M' \subseteq M$ is a \mathbb{K} -submodule, such that the diagram

commutes.

Corollary 8.6.12. 1. Each element $c \in C$ of a coalgebra is contained in a finite dimensional subcoalgebra of C.

2. Each element $m \in M$ of a comodule is contained in a finite dimensional subcomodule of M.

Corollary 8.6.13. 1. Each finite dimensional subspace V of a coalgebra C is contained in a finite dimensional subcoalgebra C' of C.

2. Each finite dimensional subspace V of a comodule M is contained in a finite dimensional subcomodule M' of M.

Corollary 8.6.14. 1. Each coalgebra is a union of finite dimensional subcoalgebras.

2. Each comodule is a union of finite dimensional subcomodules.

PROOF. (of the Theorem) We can assume that $m \neq 0$ for else we can use M' = 0 and C' = 0.

Under the representations of $\delta(m) \in C \otimes M$ as finite sums of decomposable tensors pick one

$$\delta(m) = \sum_{i=1}^{s} c_i \otimes m_i$$

8. TOOLBOX

of shortest length s. Then the families $(c_i|i = 1, ..., s)$ and $(m_i|i = 1, ..., s)$ are linearly independent. Choose coefficients $c_{ij} \in C$ such that

$$\Delta(c_j) = \sum_{i=1}^t c_i \otimes c_{ij}, \quad \forall j = 1, \dots, s,$$

by suitably extending the linearly independent family $(c_i|i = 1, ..., s)$ to a linearly independent family $(c_i|i = 1, ..., t)$ and $t \ge s$.

We first show that we can choose t = s. By coassociativity we have $\sum_{i=1}^{s} c_i \otimes \delta(m_i) = \sum_{j=1}^{s} \Delta(c_j) \otimes m_j = \sum_{j=1}^{s} \sum_{i=1}^{t} c_i \otimes c_{ij} \otimes m_j$. Since the c_i and the m_j are linearly independent we can compare coefficients and get

(1)
$$\delta(m_i) = \sum_{j=1}^s c_{ij} \otimes m_j, \quad \forall i = 1, \dots, s$$

and $0 = \sum_{j=1}^{s} c_{ij} \otimes m_j$ for i > s. The last statement implies

$$c_{ij} = 0, \quad \forall i > s, j = 1, \dots, s.$$

Hence we get t = s and

$$\Delta(c_j) = \sum_{i=1}^s c_i \otimes c_{ij}, \quad \forall j = 1, \dots, s.$$

Define finite dimensional subspaces $C' = \langle c_{ij} | i, j = 1, \ldots, s \rangle \subseteq C$ and $M' = \langle m_i | i = 1, \ldots, s \rangle \subseteq M$. Then by (1) we get $\delta : M' \to C' \otimes M'$. We show that $m \in M'$ and that the restriction of Δ to C' gives a linear map $\Delta : C' \to C' \otimes C'$ so that the required properties of the theorem are satisfied. First observe that $m = \sum \varepsilon(c_i)m_i \in M'$ and $c_j = \sum \varepsilon(c_i)c_{ij} \in C'$. Using coassociativity we get

$$\sum_{i,j=1}^{n} c_i \otimes \Delta(c_{ij}) \otimes m_j = \sum_{k,j=1}^{s} \Delta(c_k) \otimes c_{kj} \otimes m_j \\ = \sum_{i,j,k=1}^{s} c_i \otimes c_{ik} \otimes c_{kj} \otimes m_j$$

hence

(2)
$$\Delta(c_{ij}) = \sum_{k=1}^{s} c_{ik} \otimes c_{kj}.$$

Remark 8.6.15. We give a sketch of a second proof which is somewhat more technical. Since C is a K-coalgebra, the dual C^* is an algebra. The comodule structure $\delta : M \to C \otimes M$ leads to a module structure by $\rho = (\text{ev} \otimes 1)(1 \otimes \delta) : C^* \otimes M \to C^* \otimes C \otimes M \to M$. Consider the submodule $N := C^*m$. Then N is finite dimensional, since $c^*m = \sum_{i=1}^n \langle c^*, c_i \rangle m_i$ for all $c^* \in C^*$ where $\sum_{i=1}^n c_i \otimes m_i = \delta(m)$. Observe that C^*m is a subspace of the space generated by the m_i . But it does not depend on the choice of the m_i . Furthermore if we take $\delta(m) = \sum c_i \otimes m_i$ with a shortest

representation then the m_i are in C^*m since $c^*m = \sum \langle c^*, c_i \rangle m_i = m_i$ for c^* an element of a dual basis of the c_i .

N is a *C*-comodule since $\delta(c^*m) = \sum \langle c^*, c_i \rangle \delta(m_i) = \sum \langle c^*, c_{i(1)} \rangle c_{i(2)} \otimes m_i \in C \otimes C^*m$.

Now we construct a subcoalgebra D of C such that N is a D-comodule with the induced coaction. Let $D := N \otimes N^*$. By 8.13 N is a comodule over the coalgebra $N \otimes N^*$. Construct a linear map $\phi : D \to C$ by $n \otimes n^* \mapsto \sum n_{(1)} \langle n^*, n_{(N)} \rangle$. By definition of the dual basis we have $n = \sum n_i \langle n_i^*, n \rangle$. Thus we get

$$(\phi \otimes \phi)\Delta_D(n \otimes n^*) = (\phi \otimes \phi)(\sum n \otimes n_i^* \otimes n_i \otimes n^*)$$

= $\sum n_{(1)}\langle n_i^*, n_{(N)} \rangle \otimes n_{i(1)}\langle n^*, n_{i(N)} \rangle$
= $\sum n_{(1)} \otimes n_{i(1)}\langle n^*, n_{i(N)} \rangle \langle n_i^*, n_{(N)} \rangle$
= $\sum n_{(1)} \otimes n_{(2)}\langle n^*, n_{(N)} \rangle = \sum \Delta_C(n_{(1)})\langle n^*, n_{(N)} \rangle$
= $\Delta_C \phi(n \otimes n^*).$

Furthermore $\varepsilon_C \phi(n \otimes n^*) = \varepsilon(\sum n_{(1)} \langle n^*, n_{(N)} \rangle = \langle n^*, \sum \varepsilon(n_{(1)}) n_{(N)} \rangle = \langle n^*, n \rangle = \varepsilon(n \otimes n^*)$. Hence $\phi : D \to C$ is a homomorphism of coalgebras, D is finite dimensional and the image $C' := \phi(D)$ is a finite dimensional subcoalgebra of C. Clearly N is also a C'-comodule, since it is a D-comodule.

Finally we show that the D-comodule structure on N if lifted to the C-comodule structure coincides with the one defined on M. We have

$$\delta_C(c^*m) = \delta_C(\sum \langle c^*, m_{(1)} \rangle m_{(M)}) = \sum \langle c^*, m_{(1)} \rangle m_{(2)} \otimes m_{(M)}$$

= $\sum \langle c^*, m_{(1)} \rangle m_{(2)} \otimes m_i \langle m_i^*, m_{(M)} \rangle = \sum \langle c^*, m_{(1)} \rangle m_{(2)} \langle m_i^*, m_{(M)} \rangle \otimes m_i$
= $(\phi \otimes 1)(\sum \langle c^*, m_{(1)} \rangle m_{(M)} \otimes m_i^* \otimes m_i) = (\phi \otimes 1)(\sum c^*m \otimes m_i^* \otimes m_i)$
= $(\phi \otimes 1)\delta_D(c^*m).$