CHAPTER 3

Hopf Algebras, Algebraic, Formal, and Quantum Groups

3. Dual Objects

At the end of the first section in Corollary 3.1 .15 we saw that the dual of an H module can be constructed. We did not show the corresponding result for comodules. In fact such a construction for comodules needs some finiteness conditions. With this restriction the notion of a dual object can be introduced in an arbitrary monoidal category.

Definition 3.3.1. Let (\mathcal{C}, \otimes) be a monoidal category $M \in \mathcal{C}$ be an object. An object $M^{*} \in \mathcal{C}$ together with a morphism ev : $M^{*} \otimes M \rightarrow I$ is called a left dual for M if there exists a morphism $\mathrm{db}: I \rightarrow M \otimes M^{*}$ in \mathcal{C} such that

$$
\begin{gathered}
\left(M \xrightarrow{\mathrm{db} \otimes 1} M \otimes M^{*} \otimes M \xrightarrow{1 \otimes \mathrm{ev}} M\right)=1_{M} \\
\left(M^{*} \xrightarrow{1 \otimes \mathrm{db}} M^{*} \otimes M \otimes M^{*} \xrightarrow{\mathrm{ev} \otimes 1} M^{*}\right)=1_{M^{*}} .
\end{gathered}
$$

A monoidal category is called left rigid if each object $M \in \mathcal{C}$ has a left dual.
Symmetrically we define: an object ${ }^{*} M \in \mathcal{C}$ together with a morphism ev : $M \otimes^{*} M$ $\rightarrow I$ is called a right dual for M if there exists a morphism $\mathrm{db}: I \rightarrow{ }^{*} M \otimes M$ in \mathcal{C} such that

$$
\begin{gathered}
\left(M \xrightarrow{1 \otimes \mathrm{db}} M \otimes{ }^{*} M \otimes M \xrightarrow{\mathrm{ev} \otimes 1} M\right)=1_{M} \\
\left({ }^{*} M \xrightarrow{\mathrm{db} \otimes 1}{ }^{*} M \otimes M \otimes{ }^{*} M \xrightarrow{1 \otimes \mathrm{ev}}{ }^{*} M\right)=1_{* M} .
\end{gathered}
$$

A monoidal category is called right rigid if each object $M \in \mathcal{C}$ has a left dual.
The morphisms ev and db are called the evaluation respectively the dual basis.
Remark 3.3.2. If (M^{*}, ev) is a left dual for M then obviously (M, ev) is a right dual for M^{*} and conversely. One uses the same morphism $\mathrm{db}: I \rightarrow M \otimes M^{*}$.

Lemma 3.3.3. Let $\left(M^{*}, \mathrm{ev}\right)$ be a left dual for M. Then there is a natural isomorphism

$$
\operatorname{Mor}_{\mathcal{C}}(-\otimes M,-) \cong \operatorname{Mor}_{\mathcal{C}}\left(-,-\otimes M^{*}\right),
$$

i. e. the functor $-\otimes M: \mathcal{C} \rightarrow \mathcal{C}$ is left adjoint to the functor $-\otimes M^{*}: \mathcal{C} \rightarrow \mathcal{C}$.

Proof. We give the unit and the counit of the pair of adjoint functors. We define $\Phi(A):=1_{A} \otimes \mathrm{db}: A \rightarrow A \otimes M \otimes M^{*}$ and $\Psi(B):=1_{B} \otimes \mathrm{ev}: B \otimes M^{*} \otimes M \rightarrow B$. These are obviously natural transformations. We have commutative diagrams

$$
\left(A \otimes M \xrightarrow[1_{A} \otimes \mathrm{db} \otimes 1_{M}]{\mathcal{F} \Phi(A)=} A \otimes M \otimes M^{*} \otimes M \xrightarrow[1_{A} \otimes 1_{M} \otimes \mathrm{ev}]{\Psi \mathcal{F}(A)=} A \otimes M\right)=1_{A \otimes M}
$$

and

$$
\left(B \otimes M^{*} \frac{\Phi \mathcal{G}(B)=}{1_{B} \otimes 1_{M^{*}} \otimes \mathrm{db}} B \otimes M^{*} \otimes M \otimes M^{*} \frac{\mathcal{G} \Psi(B)=}{1_{B} \otimes \mathrm{ev} \otimes 1_{M^{*}}} B \otimes M^{*}\right)=1_{B \otimes M^{*}}
$$

thus the Lemma has been proved by Corollary A.9.11.
The converse holds as well. If $-\otimes M$ is left adjoint to $-\otimes M^{*}$ then the unit Φ gives a morphism db $:=\Phi(I): I \rightarrow M \otimes M^{*}$ and the counit Ψ gives a morphism ev $:=\Psi(I): M^{*} \otimes M \rightarrow I$ satisfying the required properties. Thus we have

Corollary 3.3.4. If $-\otimes M: \mathcal{C} \longrightarrow \mathcal{C}$ is left adjoint to $-\otimes M^{*}: \mathcal{C} \longrightarrow \mathcal{C}$ then M^{*} is a left dual for M.

Corollary 3.3.5. (M^{*}, ev) is a left dual for M if and only if there is a natural isomorphism

$$
\operatorname{Mor}_{\mathcal{C}}\left(M^{*} \otimes-,-\right) \cong \operatorname{Mor}_{\mathcal{C}}(-, M \otimes-),
$$

i. e. the functor $M^{*} \otimes-: \mathcal{C} \rightarrow \mathcal{C}$ is left adjoint to the functor $M \otimes-: \mathcal{C} \rightarrow \mathcal{C}$. The natural isomorphism if given by

$$
\left(f: M^{*} \otimes N \rightarrow P\right) \mapsto\left(\left(1_{M} \otimes f\right)\left(\mathrm{db} \otimes 1_{N}\right): N \rightarrow M \otimes M^{*} \otimes N \rightarrow M \otimes P\right)
$$

and

$$
(g: N \rightarrow M \otimes P) \mapsto\left(\left(\mathrm{ev} \otimes 1_{P}\right)\left(1_{M^{*}} \otimes g\right): M^{*} \otimes N \rightarrow M^{*} \otimes M \otimes P \rightarrow P\right) .
$$

Proof. We have a natural isomorphism

$$
\operatorname{Mor}_{\mathcal{C}}\left(M^{*} \otimes-,-\right) \cong \operatorname{Mor}_{\mathcal{C}}(-, M \otimes-)
$$

iff (M, ev) is a right dual for M^{*} (as a symmetric statement to Lemma 3.3.3) iff (M^{*}, ev) is a left dual for M.

Corollary 3.3.6. If M has a left dual then this is unique up to isomorphism.
Proof. Let (M^{*}, ev) and ($M^{!}, \mathrm{ev}^{!}$) be left duals for M. Then the functors - $\otimes M^{*}$ and $-\otimes M^{!}$are isomorphic by Lemma A.9.7. In particular we have $M^{*} \cong I \otimes M^{*} \cong$ $I \otimes M^{!} \cong M^{!}$. If we consider the construction of the isomorphism then we get in particular that $\left(\mathrm{ev}^{!} \otimes 1\right)(1 \otimes \mathrm{db}): M^{!} \rightarrow M^{!} \otimes M \otimes M^{*} \rightarrow M^{*}$ is the given isomorphism.

Problem 3.3.1. Let (M^{*}, ev) be a left dual for M. Then there is a unique morphism $\mathrm{db}: I \rightarrow M \otimes M^{*}$ satisfying the conditions of Definition 3.3.1.

Definition 3.3.7. Let $\left(M^{*}, \mathrm{ev}_{M}\right)$ and $\left(N^{*}, \mathrm{ev}_{N}\right)$ be left duals for M resp. N. For each morphism $f: M \rightarrow N$ we define the transposed morphism

$$
\left(f^{*}: N^{*} \rightarrow M^{*}\right):=\left(N^{*} \xrightarrow{1 \otimes \mathrm{db}^{M}} N^{*} \otimes M \otimes M^{*} \xrightarrow{1 \otimes f \otimes 1} N^{*} \otimes N \otimes M^{*} \xrightarrow{\mathrm{ev}_{N} \otimes 1} M^{*}\right) .
$$

With this definition we get that the left dual is a contravariant functor, since we have

Lemma 3.3.8. Let $\left(M^{*}, \mathrm{ev}_{M}\right),\left(N^{*}, \mathrm{ev}_{N}\right)$, and $\left(P^{*}, \mathrm{ev}_{P}\right)$ be left duals for M, N and P respectively.

1. We have $\left(1_{M}\right)^{*}=1_{M^{*}}$.
2. If $f: M \rightarrow N$ and $g: N \rightarrow P$ are given then $(g f)^{*}=f^{*} g^{*}$ holds.

Proof. 1. $\left(1_{M}\right)^{*}=(e v \otimes 1)(1 \otimes 1 \otimes 1)(1 \otimes \mathrm{db})=1_{M^{*}}$.
2. The following diagram commutes

Hence we have $g f=\left(1 \otimes \mathrm{ev}_{N}\right)(g \otimes 1 \otimes f)\left(\mathrm{db}_{N} \otimes 1\right)$. Thus the following diagram commutes

Problem 3.3.2. 1. In the category of \mathbb{N}-graded vector spaces determine all objects M that have a left dual.
2. In the category of chain complexes \mathbb{K}-Comp determine all objects M that have a left dual.
3. In the category of cochain complexes \mathbb{K}-Cocomp determine all objects M that have a left dual.
4. Let (M^{*}, ev) be a left dual for M. Show that $\mathrm{db}: I \rightarrow M \otimes M^{*}$ is uniquely determined by M, M^{*}, and ev. (Uniqueness of the dual basis.)
5. Let $\left(M^{*}\right.$, ev $)$ be a left dual for M. Show that ev : $M^{*} \otimes M \rightarrow I$ is uniquely determined by M, M^{*}, and db .

Corollary 3.3.9. Let M, N have the left duals $\left(M^{*}, \mathrm{ev}_{M}\right)$ and $\left(N^{*}, \mathrm{ev}_{N}\right)$ and let $f: M \rightarrow N$ be a morphism in \mathcal{C}. Then the following diagram commutes

Proof. The following diagram commutes

This implies $\left(f \otimes 1_{M^{*}}\right) \mathrm{db}_{M}=\left(\left(1_{N} \otimes \mathrm{ev}_{N}\right)\left(1_{N} \otimes 1_{N^{*}} \otimes f\right)\left(\mathrm{db}_{N} \otimes 1_{M}\right) \otimes 1_{M^{*}}\right) \mathrm{db}_{M}=$ $\left(1_{N} \otimes \mathrm{ev}_{N} \otimes 1_{M^{*}}\right)\left(1_{N} \otimes 1_{N^{*}} \otimes f \otimes 1_{M^{*}}\right)\left(\mathrm{db}_{N} \otimes 1_{M} \otimes 1_{M^{*}}\right) \mathrm{db}_{M}=\left(1_{N} \otimes \mathrm{ev}_{N} \otimes 1_{M^{*}}\right)\left(1_{N} \otimes\right.$ $\left.1_{N^{*}} \otimes f \otimes 1_{M^{*}}\right)\left(1_{N} \otimes 1_{N^{*}} \otimes \mathrm{db}_{M}\right) \mathrm{db}_{N}=\left(1_{N} \otimes\left(\mathrm{ev}_{N} \otimes 1_{M^{*}}\right)\left(1_{N^{*}} \otimes f \otimes 1_{M^{*}}\right)\left(1_{N^{*}} \otimes\right.\right.$ $\left.\left.\mathrm{db}_{M}\right)\right) \mathrm{db}_{N}=\left(1_{N} \otimes f^{*}\right) \mathrm{db}_{N}$.

Corollary 3.3.10. Let M, N have the left duals $\left(M^{*}, \mathrm{ev}_{M}\right)$ and $\left(N^{*}, \mathrm{ev}_{N}\right)$ and let $f: M \rightarrow N$ be a morphism in \mathcal{C}. Then the following diagram commutes

Proof. This statement follows immediately from the symmetry of the definition of a left dual.

Example 3.3.11. Let $M \in{ }_{R} \mathcal{M}_{R}$ be an R - R-bimodule. Then $\operatorname{Hom}_{R}(M ., R$.) is an R - R-bimodule by $(r f s)(x)=r f(s x)$. Furthermore we have the morphism ev : $\operatorname{Hom}_{R}(M ., R.) \otimes_{R} M \rightarrow R$ defined by $\operatorname{ev}\left(f \otimes_{R} m\right)=f(m)$.
(Dual Basis Lemma:) A module $M \in \mathcal{M}_{R}$ is called finitely generated and projective if there are elements $m_{1}, \ldots, m_{n} \in M$ und $m^{1}, \ldots, m^{n} \in \operatorname{Hom}_{R}(M ., R$.) such that

$$
\forall m \in M: \sum_{i=1}^{n} m_{i} m^{i}(m)=m
$$

Actually this is a consequence of the dual basis lemma. But this definition is equivalent to the usual definition.

Let $M \in{ }_{R} \mathcal{M}_{R} . M$ as a right R-module is finitely generated and projective iff M has a left dual. The left dual is isomorphic to $\operatorname{Hom}_{R}(M ., R$.).

If M_{R} is finitely generated projective then we use $\mathrm{db}: R \rightarrow M \otimes_{R} \operatorname{Hom}_{R}(M ., R$. with $\mathrm{db}(1)=\sum_{i=1}^{n} m_{i} \otimes_{R} m^{i}$. In fact we have $\left(1 \otimes_{R} \mathrm{ev}\right)\left(\mathrm{db} \otimes_{R} 1\right)(m)=\left(1 \otimes_{R}\right.$ $\mathrm{ev})\left(\sum m_{i} \otimes_{R} m^{i} \otimes_{R} m\right)=\sum m_{i} m^{i}(m)=m$. We have furthermore $\left(\mathrm{ev} \otimes_{R} 1\right)\left(1 \otimes_{R}\right.$ $\mathrm{db})(f)(m)=\left(\mathrm{ev} \otimes_{R} 1\right)\left(\sum_{i=1}^{n} f \otimes_{R} m_{i} \otimes_{R} m^{i}\right)(m)=\sum f\left(m_{i}\right) m^{i}(m)=f\left(\sum m_{i} m^{i}(m)\right)$ $=f(m)$ for all $m \in M$ hence $\left(\mathrm{ev} \otimes_{R} 1\right)\left(1 \otimes_{R} \mathrm{db}\right)(f)=f$.

Conversely if M has a left dual M^{*} then ev : $M^{*} \otimes_{R} M \rightarrow R$ defines a homomorphism $\iota: M^{*} \rightarrow \operatorname{Hom}_{R}\left(M ., R\right.$.) in ${ }_{R} \mathcal{M}_{R}$ by $\iota\left(m^{*}\right)(m)=\operatorname{ev}\left(m^{*} \otimes_{R} m\right)$. We define $\sum_{i=1}^{n} m_{i} \otimes m^{i}:=\mathrm{db}(1) \in M \otimes M^{*}$, then $m=(1 \otimes \mathrm{ev})(\mathrm{db} \otimes 1)(m)=(1 \otimes \mathrm{ev})\left(\sum m_{i} \otimes\right.$ $\left.m^{i} \otimes m\right)=\sum m_{i} \iota\left(m^{i}\right)(m)$ so that $m_{1}, \ldots, m_{n} \in M$ and $\iota\left(m^{1}\right), \ldots, \iota\left(m^{n}\right) \in$ $\operatorname{Hom}_{R}(M ., R$.) form a dual basis for M, i. e. M is finitely generated and projective as an R-module. Thus M^{*} and $\operatorname{Hom}_{R}(M ., R$.) are isomorphic by the map ι.

Analogously $\operatorname{Hom}_{R}(. M, . R)$ is a right dual for M iff M is finitely generated and projective as a left R-module.

Problem 3.3.3. Find an example of an object M in a monoidal category \mathcal{C} that has a left dual but no right dual.

Definition 3.3.12. Given objects M, N in \mathcal{C}. An object $[M, N]$ is called a left inner Hom of M and N if there is a natural isomorphism $\operatorname{Mor}_{\mathcal{C}}(-\otimes M, N) \cong$ $\operatorname{Mor}_{\mathcal{C}}(-,[M, N])$, i. e. if it represents the functor $\operatorname{Mor}_{\mathcal{C}}(-\otimes M, N)$.

If there is an isomorphism $\operatorname{Mor}_{\mathcal{C}}(P \otimes M, N) \cong \operatorname{Mor}_{\mathcal{C}}(P,[M, N])$ natural in the three variable M, N, P then the category \mathcal{C} is called monoidal and left closed.

If there is an isomorphism $\operatorname{Mor}_{\mathcal{C}}(M \otimes P, N) \cong \operatorname{Mor}_{\mathcal{C}}(P,[M, N])$ natural in the three variable M, N, P then the category \mathcal{C} is called monoidal and right closed.

If M has a left dual M^{*} in \mathcal{C} then there are inner Homs [$M,-$] defined by $[M, N]:=N \otimes M^{*}$. In particular left rigid monoidal categories are left closed.

Example 3.3.13. 1. The category of finite dimensional vector spaces is a monoidal category where each object has a (left and right) dual. Hence it is (left and right) closed and rigid.
2. Let Ban be the category of (complex) Banach spaces where the morphisms satisfy $\|f(m)\| \leq\|m\|$ i. e. the maps are bounded by 1 or contracting. Ban is a monoidal category by the complete tensor product $M \widehat{\otimes} N$. In Ban exists an inner Hom functor $[M, N]$ that consists of the set of bounded linear maps from M to N made into a Banach space by an appropriate topology. Thus Ban is a monoidal closed category.
3. Let H be a Hopf algebra. The category H-Mod of left H-modules is a monoidal category (see Example 3.2.4 2.). Then $\operatorname{Hom}_{\mathbb{K}}(M, N)$ is an object in H-Mod by the multiplication

$$
(h f)(m):=\sum h_{(1)} f\left(m S\left(h_{(2)}\right)\right.
$$

as in Proposition 3.1.14.
$\operatorname{Hom}_{\mathbb{K}}(M, N)$ is an inner Hom functor in the monoidal category H-Mod. The isomorphism $\phi: \operatorname{Hom}_{\mathbb{K}}\left(P, \operatorname{Hom}_{\mathbb{K}}(M, N)\right) \cong \operatorname{Hom}_{\mathbb{K}}(P \otimes M, N)$ can be restricted to an isomorphism

$$
\operatorname{Hom}_{H}\left(P, \operatorname{Hom}_{\mathbb{K}}(M, N)\right) \cong \operatorname{Hom}_{H}(P \otimes M, N),
$$

because $\phi(f)(h(p \otimes m))=\phi(f)\left(\sum h_{(1)} p \otimes h_{(2)} m\right)=\sum f\left(h_{(1)} p\right)\left(h_{(2)} m\right)=$ $\sum\left(h_{(1)}(f(p))\right)\left(h_{(2)} m\right)=\sum h_{(1)}\left(f(p)\left(S\left(h_{(2)}\right) h_{(3)} m\right)\right)=h(f(p)(m))=h(\phi(f)$ $(p \otimes m))$ and conversely $(h(f(p)))(m)=\sum h_{(1)}\left(f(p)\left(S\left(h_{(2)}\right) m\right)\right)=\sum h_{(1)}(\phi(f)$ $\left.\left(p \otimes S\left(h_{(2)}\right) m\right)\right)=\sum \phi(f)\left(h_{(1)} p \otimes h_{(2)} S\left(h_{(3)}\right) m\right)=\phi(f)(h p \otimes m)=f(h p)(m)$. Thus H-Mod is left closed.

If $M \in H$-Mod is a finite dimensional vector space then the dual vector space $M^{*}:=\operatorname{Hom}_{\mathbb{K}}(M, \mathbb{K})$ again is an H-module by $(h f)(m):=f(S(h) m)$. Furthermore M^{*} is a left dual for M with the morphisms

$$
\mathrm{db}: \mathbb{K} \ni 1 \mapsto \sum_{i} m_{i} \otimes m^{i} \in M \otimes M^{*}
$$

and

$$
\mathrm{ev}: M^{*} \otimes M \ni f \otimes m \mapsto f(m) \in \mathbb{K}
$$

where m_{i} and m^{i} are a dual basis of the vector space M. Clearly we have $(1 \otimes \mathrm{ev})(\mathrm{db} \otimes 1)=1_{M}$ and $(\mathrm{ev} \otimes 1)(1 \otimes \mathrm{db})=1_{M^{*}}$ since M is a finite dimensional vector space. We have to show that db and ev are H-module homomorphisms. We have

$$
\begin{aligned}
& (h \mathrm{db}(1))(m)=\left(h\left(\sum m_{i} \otimes m^{i}\right)\right)(m)=\left(\sum_{(1)} h_{i} \otimes h_{(2)} m^{i}\right)(m)= \\
& \sum\left(h_{(1)} m_{i}\right)\left(\left(h_{(2)} m^{i}\right)(m)\right)=\sum\left(h_{(1)} m_{i}\right)\left(m^{i}\left(S\left(h_{(2)}\right) m\right)\right)= \\
& \sum h_{(1)} S\left(h_{(2)}\right) m=\varepsilon(h) m=\varepsilon(h)\left(\sum m_{i} \otimes m^{i}\right)(m)=\varepsilon(h) \mathrm{db}(1)(m)= \\
& \mathrm{db}(\varepsilon(h) 1)(m)=\mathrm{db}(h 1)(m),
\end{aligned}
$$

hence $h \mathrm{db}(1)=\mathrm{db}(h 1)$. Furthermore we have

$$
\begin{aligned}
& h \operatorname{ev}(f \otimes m)=h f(m)=\sum h_{(1)} f\left(S\left(h_{(2)}\right) h_{(3)} m\right)=\sum\left(h_{(1)} f\right)\left(h_{(2)} m\right)= \\
& \sum \operatorname{ev}\left(h_{(1)} f \otimes h_{(2)} m\right)=\operatorname{ev}(h(f \otimes m)) .
\end{aligned}
$$

4. Let H be a Hopf algebra. Then the category of left H-comodules (see Example 3.2.4 3.) is a monoidal category. Let $M \in H$-Comod be a finite dimensional vector space. Let m_{i} be a basis for M and let the comultiplication of the comodule be $\delta\left(m_{i}\right)=\sum h_{i j} \otimes m_{j}$. Then we have $\Delta\left(h_{i k}\right)=\sum h_{i j} \otimes h_{j k} . M^{*}:=$ $\operatorname{Hom}_{\mathbb{K}}(M, \mathbb{K})$ becomes a left H-comodule $\delta\left(m^{j}\right):=\sum S\left(h_{i j}\right) \otimes m^{i}$. One verifies that M^{*} is a left dual for M.

Lemma 3.3.14. Let $M \in \mathcal{C}$ be an object with left dual (M^{*}, ev). Then

1. $M \otimes M^{*}$ is an algebra with multiplication

$$
\nabla:=1_{M} \otimes \mathrm{ev} \otimes 1_{M^{*}}: M \otimes M^{*} \otimes M \otimes M^{*} \rightarrow M \otimes M^{*}
$$

and unit

$$
u:=\mathrm{db}: I \rightarrow M \otimes M^{*} ;
$$

2. $M^{*} \otimes M$ is a coalgebra with comultiplication

$$
\Delta:=1_{M^{*}} \otimes \mathrm{db} \otimes 1_{M}: M^{*} \otimes M \rightarrow M^{*} \otimes M \otimes M^{*} \otimes M
$$

and counit

$$
\varepsilon:=\mathrm{ev}: M^{*} \otimes M \longrightarrow I .
$$

Proof. 1. The associativity is given by $(\nabla \otimes 1) \nabla=\left(1_{M} \otimes \operatorname{ev} \otimes 1_{M^{*}} \otimes 1_{M} \otimes\right.$ $\left.1_{M^{*}}\right)\left(1_{M} \otimes \mathrm{ev} \otimes 1_{M^{*}}\right)=1_{M} \otimes \mathrm{ev} \otimes \mathrm{ev} \otimes 1_{M^{*}}=\left(1_{M} \otimes 1_{M^{*}} \otimes 1_{M} \otimes \mathrm{ev} \otimes 1_{M^{*}}\right)\left(1_{M} \otimes\right.$ $\left.\mathrm{ev} \otimes 1_{M^{*}}\right)=(1 \otimes \nabla) \nabla$. The axiom for the left unit is $\nabla(u \otimes 1)=\left(1_{M} \otimes \mathrm{ev} \otimes 1_{M^{*}}\right)(\mathrm{db} \otimes$ $\left.1_{M} \otimes 1_{M^{*}}\right)=1_{M} \otimes 1_{M^{*}}$.
2. is dual to the statement for algebras.

Lemma 3.3.15. 1. Let A be an algebra in \mathcal{C} and left $M \in \mathcal{C}$ be a left rigid object with left dual $\left(M^{*}, \mathrm{ev}\right)$. There is a bijection between the set of morphisms $f: A \otimes M$ $\rightarrow M$ making M a left A-module and the set of algebra morphisms $\tilde{f}: A \rightarrow M \otimes M^{*}$. 2. Let C be a coalgebra in \mathcal{C} and left $M \in \mathcal{C}$ be a left rigid object with left dual (M^{*}, ev). There is a bijection between the set of morphisms $f: M \rightarrow M \otimes C$ making M a right C-comodule and the set of coalgebra morphisms $\tilde{f}: M^{*} \otimes M \rightarrow C$.

Proof. 1. By Lemma 3.3.14 the object $M \otimes M^{*}$ is an algebra. Given $f: A \otimes M$ $\rightarrow M$ such that M becomes an A-module. By Lemma 3.3.3 we associate $\tilde{f}:=$ $(f \otimes 1)(1 \otimes \mathrm{db}): A \rightarrow A \otimes M \otimes M^{*} \rightarrow M \otimes M^{*}$. The compatibility of \tilde{f} with the multiplication is given by the commutative diagram

The unit axiom is given by

Conversely let $g: A \rightarrow M \otimes M^{*}$ be an algebra homomorphism and consider $\widetilde{g}:=$ $(1 \otimes \mathrm{ev})(g \otimes 1): A \otimes M \rightarrow M \otimes M^{*} \otimes M \rightarrow M$. Then M becomes a left A-module since

and

commute.
2. (M^{*}, ev $)$ is a left dual for M in the category \mathcal{C} if and only if (M^{*}, db) is the right dual for M in the dual category $\mathcal{C}^{o p}$. So if we dualize the result of part 1 . we have to change sides, hence 2 .

