CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups

7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H^* of a finite dimensional Hopf algebra H satisfies certain relations w.r.t. the evaluation map. The multiplication of H^* is derived from the comultiplication of H and the comultiplication of H^* is derived from the multiplication of H.

This kind of duality is restricted to the finite-dimensional situation. Nevertheless one wants to have a process that is close to the finite-dimensional situation. This short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the finite-dimensional situation to give a general definition.

Definition 2.7.1. Let *H* and *L* be Hopf algebras. Let

 $\operatorname{ev}: L \otimes H \ni a \otimes h \mapsto \langle a, h \rangle \in \mathbb{K}$

be a bilinear form satisfying

(1)
$$\langle a \otimes b, \sum h_{(1)} \otimes h_{(2)} \rangle = \langle ab, h \rangle, \quad \langle 1, h \rangle = \varepsilon(h)$$

(2)
$$\langle \sum a_{(1)} \otimes a_{(2)}, h \otimes j \rangle = \langle a, hj \rangle, \quad \langle a, 1 \rangle = \varepsilon(a)$$

(3)
$$\langle a, S(h) \rangle = \langle S(a), h \rangle$$

Such a map is called a *weak duality of Hopf algebras*. The bilinear form is called *left* (right) nondegenerate if $\langle a, H \rangle = 0$ implies a = 0 ($\langle L, h \rangle = 0$ implies h = 0). A duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. If *H* is a finite dimensional Hopf algebra then the usual evaluation ev : $H^* \otimes H \to \mathbb{K}$ defines a duality of Hopf algebras.

Remark 2.7.3. Assume that $ev: L \otimes H \to \mathbb{K}$ defines a weak duality. By A.4.15 we have isomorphisms $\operatorname{Hom}(L \otimes H, \mathbb{K}) \cong$ $\operatorname{Hom}(L, \operatorname{Hom}(H, \mathbb{K}))$ and $\operatorname{Hom}(L \otimes H, \mathbb{K}) \cong \operatorname{Hom}(H, \operatorname{Hom}(L, \mathbb{K}))$. Denote the homomorphisms associated with $ev: L \otimes K \to \mathbb{K}$ by $\varphi: L \to \operatorname{Hom}(H, \mathbb{K})$ resp. $\psi: H \to \operatorname{Hom}(L, \mathbb{K})$. They satisfy $\varphi(a)(h) = \operatorname{ev}(a \otimes h) = \psi(h)(a)$.

ev : $L \otimes K \to \mathbb{K}$ is left nondegenerate iff $\varphi : L \to \operatorname{Hom}(H, \mathbb{K})$ is injective. ev : $L \otimes K \to \mathbb{K}$ is right nondegenerate iff $\psi : H \to \operatorname{Hom}(L, \mathbb{K})$ is injective.

Lemma 2.7.4. 1. The bilinear form $ev : L \otimes H \to \mathbb{K}$ satisfies (1) if and only if $\varphi : L \to Hom(H, \mathbb{K})$ is a homomorphism of algebras.

2. The bilinear form $ev : L \otimes H \to \mathbb{K}$ satisfies (2) if and only if $\psi : H \to Hom(L, \mathbb{K})$ is a homomorphism of algebras.

PROOF. ev : $L \otimes H \to \mathbb{K}$ satisfies the right equation of (1) iff $\varphi(ab)(h) = \langle ab, h \rangle = \langle a \otimes b, \sum h_{(1)} \otimes h_{(2)} \rangle = \sum \langle a, h_{(1)} \rangle \langle b, h_{(2)} \rangle = \sum \varphi(a)(h_{(1)})\varphi(b)(h_{(2)}) = (\varphi(a) * \varphi(b))(h)$ by the definition of the algebra structure on $\operatorname{Hom}(H, \mathbb{K})$.

ev : $L \otimes H \to \mathbb{K}$ satisfies the left equation of (1) iff $\varphi(1)(h) = \langle 1, h \rangle = \varepsilon(h)$. The second part of the Lemma follows by symmetry.

Example 2.7.5. There is a weak duality between the quantum groups $SL_q(2)$ and $U_q(sl(2))$. (Kassel: Chapter VII.4).

Proposition 2.7.6. Let $ev : L \otimes H \to \mathbb{K}$ be a weak duality of Hopf algebras. Let $I := \operatorname{Ker}(\varphi : L \to \operatorname{Hom}(H, \mathbb{K}))$ and $J := \operatorname{Ker}(\psi : H \to \operatorname{Hom}(L, \mathbb{K}))$. Let $\overline{L} := L/I$ and $\overline{H} := H/J$. Then \overline{L} and \overline{H} are Hopf algebras and the induced bilinear form $\overline{ev} : \overline{L} \otimes \overline{H} \to \mathbb{K}$ is a duality.

PROOF. First observe that I and J are two sided ideals hence \overline{L} and \overline{H} are algebras. Then ev : $L \otimes H \to \mathbb{K}$ can be factored through $\overline{\text{ev}} : \overline{L} \otimes \overline{H} \to \mathbb{K}$ and the equations (1) and (2) are still satisfied for the residue classes.

The ideals I and J are biideals. In fact, let $x \in I$ then $\langle \Delta(x), a \otimes b \rangle = \langle x, ab \rangle = 0$ hence $\Delta(x) \in \operatorname{Ker}(\varphi \otimes \varphi : L \otimes L \to \operatorname{Hom}(H \otimes H, \mathbb{K}) = I \otimes L + L \otimes I$ (the last equality is an easy exercise in linear algebra) and $\varepsilon(x) = \langle x, 1 \rangle = 0$. Hence as in the proof of Theorem 2.6.3 we get that $\overline{L} = L/I$ and $\overline{H} = H/J$ are bialgebras. Since $\langle S(x), a \rangle = \langle x, S(a) \rangle = 0$ we have an induced homomorphism $\overline{S} : \overline{L} \to \overline{L}$. The identities satisfied in L hold also for the residue classes in \overline{L} so that L and similarly \overline{H} become Hopf algebras. Finally we have by definition of I that $\langle \overline{x}, \overline{a} \rangle = \langle x, a \rangle = 0$ for all $a \in H$ iff $a \in I$ or $\overline{a} = 0$. Thus the bilinear form $\overline{\operatorname{ev}} : \overline{L} \otimes \overline{H} \to K$ defines a duality.

Problem 2.7.1. (in Linear Algebra)

66

- 1. For $U \subseteq V$ define $U^{\perp} := \{f \in V^* | f(U) = 0\}$. For $Z \subseteq V^*$ define $Z^{\perp} := \{v \in V | Z(v) = 0\}$. Show that the following hold:
 - (a) $U \subseteq V \Longrightarrow U = U^{\perp \perp};$
 - (b) $Z \subseteq V^*$ and dim $Z < \infty \Longrightarrow Z = Z^{\perp \perp}$;
 - (c) $\{U \subseteq V | \dim V/U < \infty\} \cong \{Z \subseteq V^* | \dim Z < \infty\}$ under the maps $U \mapsto U^{\perp}$ and $Z \mapsto Z^{\perp}$.
- 2. Let $V = \bigoplus_{i=1}^{\infty} \mathbb{K} x_i$ be an infinite-dimensional vector space. Find an element $g \in (V \otimes V)^*$ that is not in $V^* \otimes V^* \quad (\subseteq (V \otimes V)^*)$.

Definition 2.7.7. Let A be an algebra. We define $A^{\circ} := \{f \in A^* | \exists \text{ ideal } _AI_A \subseteq A : \dim(A/I) < \infty \text{ and } f(I) = 0\}.$

Lemma 2.7.8. Let A be an algebra and $f \in A^*$. The following are equivalent: 1. $f \in A^\circ$; 2. there exists $I_A \subseteq A$ such that dim $A/I < \infty$ and f(I) = 0; 3. $A \cdot f \subseteq {}_A \operatorname{Hom}_{\mathbb{K}}(.A_A, .\mathbb{K})$ is finite dimensional; 4. $A \cdot f \cdot A$ is finite dimensional; 5. $\nabla^*(f) \in A^* \otimes A^*$.

PROOF. 1. \implies 2. and 4. \implies 3. are trivial.

2. \implies 3. Let $I_A \subseteq A$ with f(I) = 0 and $\dim A/I < \infty$. Write $A^* \otimes A \to \mathbb{K}$ as $\langle g, a \rangle$. Then $\langle af, i \rangle = \langle f, ia \rangle = 0$ hence $Af \subset I^{\perp}$ and $\dim Af < \infty$.

3. \implies 2. Let dim $Af < \infty$. Then $I_A := (Af)^{\perp}$ is an ideal of finite codimension in A and f(I) = 0 holds.

2. \implies 1. Let $I_A \subset A$ with $\dim A/I_A < \infty$ and f(I) = 0 be given. Then right multiplication induces $\varphi : A \to \operatorname{Hom}_{\mathbb{K}}(A/I., A/I.)$ and $\dim \operatorname{End}_{\mathbb{K}}(A/I) < \infty$. Thus $J = \operatorname{Ker}(\varphi) \subseteq A$ is a two sided ideal of finite codimension and $J \subset I$ (since $\varphi(j)(\overline{1}) = 0 = \overline{1} \cdot j = \overline{j}$ implies $j \in I$). Furthermore we have $f(J) \subseteq f(I) = 0$.

1. \implies 4. $\langle afb, i \rangle = \langle f, bia \rangle = 0$ implies $A \cdot f \cdot A \subseteq {}_{A}I_{A}^{\perp}$ hence dim $AfA < \infty$.

3. \implies 5. We observe that $\nabla^*(f) = f\nabla \in (A \otimes A)^*$. We want to show that $\nabla^*(f) \in A^* \otimes A^*$. Let g_1, \ldots, g_n be a basis of Af. Then there exist $h_1, \ldots, h_n \in A^*$ such that $bf = \sum h_i(b)g_i$. Let $a, b \in A$. Then $\langle \nabla^*(f), a \otimes b \rangle = \langle f, ab \rangle = \langle bf, a \rangle = \sum h_i(b)g_i(a) = \langle \sum g_i \otimes h_i, a \otimes b \rangle$ so that $\nabla^*(f) = \sum g_i \otimes h_i \in A^* \otimes A^*$.

5. \implies 3. Let $\nabla^*(f) = \sum g_i \otimes h_i \in A^* \otimes A^*$. Then $bf = \sum h_i(b)g_i$ for all $b \in A$ as before. Thus Af is generated by the g_1, \ldots, g_n .

Proposition 2.7.9. Let (A, m, u) be an algebra. Then we have $m^*(A^\circ) \subseteq A^\circ \otimes A^\circ$. Furthermore $(A^\circ, \Delta, \varepsilon)$ is a coalgebra with $\Delta = m^*$ and $\varepsilon = u^*$.

PROOF. Let $f \in A^{\circ}$ and let g_1, \ldots, g_n be a basis for Af. Then we have $m^*(f) = \sum g_i \otimes h_i$ for suitable $h_i \in A^*$ as in the proof of the previous proposition. Since $g_i \in Af$ we get $Ag_i \subseteq Af$ and $\dim(Ag_i) < \infty$ and hence $g_i \in A^{\circ}$. Choose $a_1, \ldots, a_n \in A$ such that $g_i(a_j) = \delta_{ij}$. Then $(fa_j)(a) = f(a_j a) = \langle m^*(f), a_j \otimes a \rangle = \sum g_i(a_j)h_i(a) = h_j(a)$ implies $fa_j = h_j \in fA$. Observe that $\dim(fA) < \infty$ hence $\dim(h_jA) < \infty$, so that $h_j \in A^{\circ}$. This proves $m^*(f) \in A^{\circ} \otimes A^{\circ}$.

One checks easily that counit law and coassociativity hold.

Theorem 2.7.10. (The Sweedler dual:) Let $(B, m, u, \Delta, \varepsilon)$ be a bialgebra. Then $(B^{\circ}, \Delta^*, \varepsilon^*, m^*, u^*)$ again is a bialgebra. If B = H is a Hopf algebra with antipode S, then S^{*} is an antipode for $B^{\circ} = H^{\circ}$.

PROOF. We know that $(B^*, \Delta^*, \varepsilon^*)$ is an algebra and that (B°, m^*, u^*) is a coalgebra. We show now that $B^\circ \subseteq B^*$ is a subalgebra. Let $f, g \in B^\circ$ with $\dim(Bf) < \infty$ and $\dim(Bg) < \infty$. Let $a \in B$. Then we have $(a(fg))(b) = (fg)(ba) = \sum f(b_{(1)}a_{(1)})g(b_{(2)}a_{(2)}) = \sum (a_{(1)}f)(b_{(1)})(a_{(2)}g)(b_{(2)}) = \sum ((a_{(1)}f)(a_{(2)}g))(b)$ hence $a(fg) = \sum (a_{(1)}f)(a_{(2)}g) \in (Bf)(Bg)$. Since $\dim(Bf)(Bg) < \infty$ we have $\dim(B(fg)) < \infty$ so that $fg \in B^\circ$. Furthermore we have $\varepsilon \in B^\circ$, since $\operatorname{Ker}(\varepsilon)$ has codimension 1. Thus $B^\circ \subseteq B^*$ is a subalgebra. It is now easy to see that B° is a bialgebra.

Now let S be the antipode of H. We show $S^*(H^\circ) \subseteq H^\circ$. Let $a \in H, f \in H^\circ$. Then $\langle aS^*(f), b \rangle = \langle S^*(f), ba \rangle = \langle f, S(ba) \rangle = \langle f, S(a)S(b) \rangle = \langle fS(a), S(b) \rangle = \langle S^*(fS(a)), b \rangle$. This implies $aS^*(f) = S^*(fS(a))$ and $HS^*(f) = S^*(fS(H)) \subseteq S^*(fH)$. Since $f \in H^\circ$ we get dim $(fH) < \infty$ so that dim $(S^*(fH)) < \infty$ and dim $(HS^*(f)) < \infty$. This shows $S^*(f) \in H^\circ$. The rest of the proof is now trivial. \Box

Definition 2.7.11. Let $G = \mathbb{K}$ -cAlg(H, -) be an affine group and $R \in \mathbb{K}$ -cAlg. We define $G \otimes_{\mathbb{K}} R := G|_{R-cAlg}$ to be the restriction to commutative *R*-algebras. The functor $G \otimes_{\mathbb{K}} R$ is represented by $H \otimes R \in R$ -cAlg:

$$G|_{R-\mathbf{cAlg}}(A) = \mathbb{K}-\mathbf{cAlg}(H, A) \cong R-\mathbf{cAlg}(H \otimes R, A).$$

Theorem 2.7.12. (The Cartier dual:) Let H be a finite dimensional commutative cocommutative Hopf algebra. Let $G = \mathbb{K}$ -cAlg(H, -) be the associated affine group and let $D(G) := \mathbb{K}$ -cAlg $(H^*, -)$ be the dual group. Then we have

$$D(G) = \mathcal{G}r(G, G_m)$$

where $\mathcal{G}r(G, G_m)(R) = \operatorname{Gr}(G \otimes_{\mathbb{K}} R, G_m \otimes_{\mathbb{K}} R)$ is the set of group (-functor) homomorphisms and G_m is the multiplicative group.

PROOF. We have $\mathcal{G}r(G, G_m)(R) = \operatorname{Gr}(G \otimes_{\mathbb{K}} R, G_M \otimes_{\mathbb{K}} R) \cong R$ -Hopf-Alg $(\mathbb{K}[t, t^{-1}] \otimes R, H \otimes R) \cong R$ -Hopf-Alg $(R[t, t^{-1}], H \otimes R) \cong \{x \in U(H \otimes R) | \Delta(x) = x \otimes x, \varepsilon(x) = 1\},$ since $\Delta(x) = x \otimes x$ and $\varepsilon(x) = 1$ imply $xS(x) = \varepsilon(x) = 1$.

Consider $x \in \operatorname{Hom}_R((H \otimes R)^*, R) = \operatorname{Hom}_R(H^* \otimes R, R)$. Then $\Delta(x) = x \otimes x$ iff $x(v^*w^*) = \langle x, v^*w^* \rangle = \langle \Delta(x), v^* \otimes w^* \rangle = x(v^*)x(w^*)$ and $\varepsilon(x) = 1$ iff $\langle x, \varepsilon \rangle = 1$. Hence $x \in R$ -cAlg $((H \otimes R)^*, R) \cong \mathbb{K}$ -cAlg $(H^*, R) = D(G)(R)$.