Hopf Algebras, Algebraic, Formal, and Quantum Groups

7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H^{*} of a finite dimensional Hopf algebra H satisfies certain relations w.r.t. the evaluation map. The multiplication of H^{*} is derived from the comultiplication of H and the comultiplication of H^{*} is derived from the multiplication of H.

This kind of duality is restricted to the finite-dimensional situation. Nevertheless one wants to have a process that is close to the finite-dimensional situation. This short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the finite-dimensional situation to give a general definition.

Definition 2.7.1. Let H and L be Hopf algebras. Let

$$
\mathrm{ev}: L \otimes H \ni a \otimes h \mapsto\langle a, h\rangle \in \mathbb{K}
$$

be a bilinear form satisfying

$$
\begin{align*}
\left\langle a \otimes b, \sum h_{(1)} \otimes h_{(2)}\right\rangle & =\langle a b, h\rangle, \quad\langle 1, h\rangle=\varepsilon(h) \tag{1}\\
\left\langle\sum a_{(1)} \otimes a_{(2)}, h \otimes j\right\rangle & =\langle a, h j\rangle, \quad\langle a, 1\rangle=\varepsilon(a) \tag{2}\\
\langle a, S(h)\rangle & =\langle S(a), h\rangle \tag{3}
\end{align*}
$$

Such a map is called a weak duality of Hopf algebras. The bilinear form is called left (right) nondegenerate if $\langle a, H\rangle=0$ implies $a=0 \quad(\langle L, h\rangle=0$ implies $h=0)$. A duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. If H is a finite dimensional Hopf algebra then the usual evaluation ev : $H^{*} \otimes H \rightarrow \mathbb{K}$ defines a duality of Hopf algebras.

Remark 2.7.3. Assume that ev : $L \otimes H \rightarrow \mathbb{K}$ defines a weak duality. By A.4.15 we have isomorphisms $\operatorname{Hom}(L \quad \otimes \quad H, \mathbb{K}) \cong$ $\operatorname{Hom}(L, \operatorname{Hom}(H, \mathbb{K}))$ and $\operatorname{Hom}(L \otimes H, \mathbb{K}) \cong \operatorname{Hom}(H, \operatorname{Hom}(L, \mathbb{K}))$. Denote the homomorphisms associated with ev $: L \otimes K \rightarrow \mathbb{K}$ by $\varphi: L \rightarrow \operatorname{Hom}(H, \mathbb{K})$ resp. $\psi: H \rightarrow \operatorname{Hom}(L, \mathbb{K})$. They satisfy $\varphi(a)(h)=\operatorname{ev}(a \otimes h)=\psi(h)(a)$.
ev $: L \otimes K \rightarrow \mathbb{K}$ is left nondegenerate iff $\varphi: L \rightarrow \operatorname{Hom}(H, \mathbb{K})$ is injective. ev : $L \otimes K \rightarrow \mathbb{K}$ is right nondegenerate iff $\psi: H \rightarrow \operatorname{Hom}(L, \mathbb{K})$ is injective.

Lemma 2.7.4. 1. The bilinear form ev $: L \otimes H \rightarrow \mathbb{K}$ satisfies (1) if and only if $\varphi: L \rightarrow \operatorname{Hom}(H, \mathbb{K})$ is a homomorphism of algebras.
2. The bilinear form ev : $L \otimes H \rightarrow \mathbb{K}$ satisfies (2) if and only if $\psi: H \rightarrow$ $\operatorname{Hom}(L, \mathbb{K})$ is a homomorphism of algebras.

Proof. ev : $L \otimes H \rightarrow \mathbb{K}$ satisfies the right equation of (1) iff $\varphi(a b)(h)=\langle a b, h\rangle=$ $\left\langle a \otimes b, \sum h_{(1)} \otimes h_{(2)}\right\rangle=\sum\left\langle a, h_{(1)}\right\rangle\left\langle b, h_{(2)}\right\rangle=\sum \varphi(a)\left(h_{(1)}\right) \varphi(b)\left(h_{(2)}\right)=(\varphi(a) * \varphi(b))(h)$ by the definition of the algebra structure on $\operatorname{Hom}(H, \mathbb{K})$.
ev $: L \otimes H \rightarrow \mathbb{K}$ satisfies the left equation of (1) iff $\varphi(1)(h)=\langle 1, h\rangle=\varepsilon(h)$. The second part of the Lemma follows by symmetry.
Example 2.7.5. There is a weak duality between the quantum groups $\mathbb{S}_{q}(2)$ and $U_{q}(s l(2))$. (Kassel: Chapter VII.4).

Proposition 2.7.6. Let ev : $L \otimes H \rightarrow \mathbb{K}$ be a weak duality of Hopf algebras. Let $I:=\operatorname{Ker}(\varphi: L \rightarrow \operatorname{Hom}(H, \mathbb{K}))$ and $J:=\operatorname{Ker}(\psi: H \rightarrow \operatorname{Hom}(L, \mathbb{K}))$. Let $\bar{L}:=L / I$ and $\bar{H}:=H / J$. Then \bar{L} and \bar{H} are Hopf algebras and the induced bilinear form $\overline{\mathrm{ev}}: \bar{L} \otimes \bar{H} \longrightarrow \mathbb{K}$ is a duality.

Proof. First observe that I and J are two sided ideals hence \bar{L} and \bar{H} are algebras. Then ev $: L \otimes H \rightarrow \mathbb{K}$ can be factored through $\overline{\mathrm{ev}}: \bar{L} \otimes \bar{H} \rightarrow \mathbb{K}$ and the equations (1) and (2) are still satisfied for the residue classes.

The ideals I and J are biideals. In fact, let $x \in I$ then $\langle\Delta(x), a \otimes b\rangle=\langle x, a b\rangle=0$ hence $\Delta(x) \in \operatorname{Ker}(\varphi \otimes \varphi: L \otimes L \rightarrow \operatorname{Hom}(H \otimes H, \mathbb{K})=I \otimes L+L \otimes I$ (the last equality is an easy exercise in linear algebra) and $\varepsilon(x)=\langle x, 1\rangle=0$. Hence as in the proof of Theorem 2.6.3 we get that $\bar{L}=L / I$ and $\bar{H}=H / J$ are bialgebras. Since $\langle S(x), a\rangle=\langle x, S(a)\rangle=0$ we have an induced homomorphism $\bar{S}: \bar{L} \rightarrow \bar{L}$. The identities satisfied in L hold also for the residue classes in \bar{L} so that L and similarly \bar{H} become Hopf algebras. Finally we have by definition of I that $\langle\bar{x}, \bar{a}\rangle=\langle x, a\rangle=0$ for all $a \in H$ iff $a \in I$ or $\bar{a}=0$. Thus the bilinear form $\overline{\mathrm{ev}}: \bar{L} \otimes \bar{H} \rightarrow K$ defines a duality.

Problem 2.7.1. (in Linear Algebra)

1. For $U \subseteq V$ define $U^{\perp}:=\left\{f \in V^{*} \mid f(U)=0\right\}$. For $Z \subseteq V^{*}$ define $Z^{\perp}:=\{v \in$ $V \mid Z(v)=0\}$. Show that the following hold:
(a) $U \subseteq V \Longrightarrow U=U^{\perp \perp}$;
(b) $Z \subseteq V^{*}$ and $\operatorname{dim} Z<\infty \Longrightarrow Z=Z^{\perp \perp}$;
(c) $\{U \subseteq V \mid \operatorname{dim} V / U<\infty\} \cong\left\{Z \subseteq V^{*} \mid \operatorname{dim} Z<\infty\right\}$ under the maps $U \mapsto U^{\perp}$ and $Z \mapsto Z^{\perp}$.
2. Let $V=\bigoplus_{i=1}^{\infty} \mathbb{K} x_{i}$ be an infinite-dimensional vector space. Find an element $g \in(V \otimes V)^{*}$ that is not in $V^{*} \otimes V^{*}\left(\subseteq(V \otimes V)^{*}\right)$.
Definition 2.7.7. Let A be an algebra. We define $A^{\circ}:=\left\{f \in A^{*} \mid \exists\right.$ ideal ${ }_{A} I_{A} \subseteq$ $A: \operatorname{dim}(A / I)<\infty$ and $f(I)=0\}$.

Lemma 2.7.8. Let A be an algebra and $f \in A^{*}$. The following are equivalent:

1. $f \in A^{\circ}$;
2. there exists $I_{A} \subseteq A$ such that $\operatorname{dim} A / I<\infty$ and $f(I)=0$;
3. $A \cdot f \subseteq{ }_{A} \operatorname{Hom}_{\mathbb{K}}\left(. A_{A}, . \mathbb{K}\right)$ is finite dimensional;
4. $A \cdot f \cdot A$ is finite dimensional;
5. $\nabla^{*}(f) \in A^{*} \otimes A^{*}$.

Proof. 1. \Longrightarrow 2. and 4. $\Longrightarrow 3$. are trivial.
2. \Longrightarrow 3. Let $I_{A} \subseteq A$ with $f(I)=0$ and $\operatorname{dim} A / I<\infty$. Write $A^{*} \otimes A \rightarrow \mathbb{K}$ as $\langle g, a\rangle$. Then $\langle a f, i\rangle=\langle f, i a\rangle=0$ hence $A f \subset I^{\perp}$ and $\operatorname{dim} A f<\infty$.
3. \Longrightarrow 2. Let $\operatorname{dim} A f<\infty$. Then $I_{A}:=(A f)^{\perp}$ is an ideal of finite codimension in A and $f(I)=0$ holds.
2. \Longrightarrow 1. Let $I_{A} \subset A$ with $\operatorname{dim} A / I_{A}<\infty$ and $f(I)=0$ be given. Then right multiplication induces $\varphi: A \rightarrow \operatorname{Hom}_{\mathbb{K}}\left(A / I ., A / I\right.$.) and $\operatorname{dim}_{\operatorname{End}}^{\mathbb{K}}(A / I)<\infty$. Thus $J=\operatorname{Ker}(\varphi) \subseteq A$ is a two sided ideal of finite codimension and $J \subset I$ (since $\varphi(j)(\overline{1})=0=\overline{1} \cdot j=\bar{j}$ implies $j \in I)$. Furthermore we have $f(J) \subseteq f(I)=0$.

1. $\Longrightarrow 4 .\langle a f b, i\rangle=\langle f, b i a\rangle=0$ implies $A \cdot f \cdot A \subseteq{ }_{A} I_{A}^{\perp}$ hence $\operatorname{dim} A f A<\infty$.

3 . $\Longrightarrow 5$. We observe that $\nabla^{*}(f)=f \nabla \in(A \otimes A)^{*}$. We want to show that $\nabla^{*}(f) \in A^{*} \otimes A^{*}$. Let g_{1}, \ldots, g_{n} be a basis of $A f$. Then there exist $h_{1}, \ldots, h_{n} \in A^{*}$ such that $b f=\sum h_{i}(b) g_{i}$. Let $a, b \in A$. Then $\left\langle\nabla^{*}(f), a \otimes b\right\rangle=\langle f, a b\rangle=\langle b f, a\rangle=$ $\sum h_{i}(b) g_{i}(a)=\left\langle\sum g_{i} \otimes h_{i}, a \otimes b\right\rangle$ so that $\nabla^{*}(f)=\sum g_{i} \otimes h_{i} \in A^{*} \otimes A^{*}$.

5 . $\Longrightarrow 3$. Let $\nabla^{*}(f)=\sum g_{i} \otimes h_{i} \in A^{*} \otimes A^{*}$. Then $b f=\sum h_{i}(b) g_{i}$ for all $b \in A$ as before. Thus $A f$ is generated by the g_{1}, \ldots, g_{n}.

Proposition 2.7.9. Let (A, m, u) be an algebra. Then we have $m^{*}\left(A^{\circ}\right) \subseteq A^{\circ} \otimes A^{\circ}$. Furthermore $\left(A^{\circ}, \Delta, \varepsilon\right)$ is a coalgebra with $\Delta=m^{*}$ and $\varepsilon=u^{*}$.

Proof. Let $f \in A^{\circ}$ and let g_{1}, \ldots, g_{n} be a basis for $A f$. Then we have $m^{*}(f)=$ $\sum g_{i} \otimes h_{i}$ for suitable $h_{i} \in A^{*}$ as in the proof of the previous proposition. Since $g_{i} \in A f$ we get $A g_{i} \subseteq A f$ and $\operatorname{dim}\left(A g_{i}\right)<\infty$ and hence $g_{i} \in A^{\circ}$. Choose $a_{1}, \ldots, a_{n} \in A$ such that $g_{i}\left(a_{j}\right)=\delta_{i j}$. Then $\left(f a_{j}\right)(a)=f\left(a_{j} a\right)=\left\langle m^{*}(f), a_{j} \otimes a\right\rangle=\sum g_{i}\left(a_{j}\right) h_{i}(a)=h_{j}(a)$ implies $f a_{j}=h_{j} \in f A$. Observe that $\operatorname{dim}(f A)<\infty$ hence $\operatorname{dim}\left(h_{j} A\right)<\infty$, so that $h_{j} \in A^{\circ}$. This proves $m^{*}(f) \in A^{\circ} \otimes A^{\circ}$.

One checks easily that counit law and coassociativity hold.
Theorem 2.7.10. (The Sweedler dual:) Let ($B, m, u, \Delta, \varepsilon$) be a bialgebra. Then $\left(B^{\circ}, \Delta^{*}, \varepsilon^{*}, m^{*}, u^{*}\right)$ again is a bialgebra. If $B=H$ is a Hopf algebra with antipode S, then S^{*} is an antipode for $B^{\circ}=H^{\circ}$.

Proof. We know that $\left(B^{*}, \Delta^{*}, \varepsilon^{*}\right)$ is an algebra and that $\left(B^{\circ}, m^{*}, u^{*}\right)$ is a coalgebra. We show now that $B^{\circ} \subseteq B^{*}$ is a subalgebra. Let $f, g \in B^{\circ}$ with $\operatorname{dim}(B f)<$ ∞ and $\operatorname{dim}(B g)<\infty$. Let $a \in B$. Then we have $(a(f g))(b)=(f g)(b a)=$ $\sum f\left(b_{(1)} a_{(1)}\right) g\left(b_{(2)} a_{(2)}\right)=\sum\left(a_{(1)} f\right)\left(b_{(1)}\right)\left(a_{(2)} g\right)\left(b_{(2)}\right)=\sum\left(\left(a_{(1)} f\right)\left(a_{(2)} g\right)\right)(b)$ hence $a(f g)=\sum\left(a_{(1)} f\right)\left(a_{(2)} g\right) \in(B f)(B g)$. Since $\operatorname{dim}(B f)(B g)<\infty$ we have $\operatorname{dim}(B(f g))<\infty$ so that $f g \in B^{\circ}$. Furthermore we have $\varepsilon \in B^{\circ}$, since $\operatorname{Ker}(\varepsilon)$ has codimension 1 . Thus $B^{\circ} \subseteq B^{*}$ is a subalgebra. It is now easy to see that B° is a bialgebra.

Now let S be the antipode of H. We show $S^{*}\left(H^{\circ}\right) \subseteq H^{\circ}$. Let $a \in H, f \in H^{\circ}$. Then $\left\langle a S^{*}(f), b\right\rangle=\left\langle S^{*}(f), b a\right\rangle=\langle f, S(b a)\rangle=\langle f, S(a) S(b)\rangle=\langle f S(a), S(b)\rangle=$ $\left\langle S^{*}(f S(a)), b\right\rangle$. This implies $a S^{*}(f)=S^{*}(f S(a))$ and $H S^{*}(f)=S^{*}(f S(H)) \subseteq$ $S^{*}(f H)$. Since $f \in H^{\circ}$ we get $\operatorname{dim}(f H)<\infty$ so that $\operatorname{dim}\left(S^{*}(f H)\right)<\infty$ and $\operatorname{dim}\left(H S^{*}(f)\right)<\infty$. This shows $S^{*}(f) \in H^{\circ}$. The rest of the proof is now trivial.

Definition 2.7.11. Let $G=\mathbb{K}$ - $\mathbf{c A l g}(H,-)$ be an affine group and $R \in \mathbb{K}$ - $\mathbf{c A l g}$. We define $G \otimes_{\mathbb{K}} R:=\left.G\right|_{R \text {-cAlg }}$ to be the restriction to commutative R-algebras. The functor $G \otimes_{\mathbb{K}} R$ is represented by $H \otimes R \in R$-cAlg:

$$
\left.G\right|_{R-\mathbf{c}} \mathbf{A l g}(A)=\mathbb{K} \mathbf{c} \mathbf{A} \lg (H, A) \cong R-\mathbf{c} \mathbf{A} \lg (H \otimes R, A)
$$

Theorem 2.7.12. (The Cartier dual:) Let H be a finite dimensional commutative cocommutative Hopf algebra. Let $G=\mathbb{K}-\mathbf{c A l g}(H,-)$ be the associated affine group and let $D(G):=\mathbb{K}-\mathbf{c} \mathbf{A l g}\left(H^{*},-\right)$ be the dual group. Then we have

$$
D(G)=\mathcal{G} r\left(G, G_{m}\right)
$$

where $\mathcal{G} r\left(G, G_{m}\right)(R)=\operatorname{Gr}\left(G \otimes_{\mathbb{K}} R, G_{m} \otimes_{\mathbb{K}} R\right)$ is the set of group (-functor) homomorphisms and G_{m} is the multiplicative group.

Proof. We have $\mathcal{G} r\left(G, G_{m}\right)(R)=\operatorname{Gr}\left(G \otimes_{\mathbb{K}} R, G_{M} \otimes_{\mathbb{K}} R\right) \cong R$-Hopf- $\operatorname{Alg}\left(\mathbb{K}\left[t, t^{-1}\right] \otimes\right.$ $R, H \otimes R) \cong R$-Hopf-Alg $\left(R\left[t, t^{-1}\right], H \otimes R\right) \cong\{x \in U(H \otimes R) \mid \Delta(x)=x \otimes x, \varepsilon(x)=1\}$, since $\Delta(x)=x \otimes x$ and $\varepsilon(x)=1$ imply $x S(x)=\varepsilon(x)=1$.

Consider $x \in \operatorname{Hom}_{R}\left((H \otimes R)^{*}, R\right)=\operatorname{Hom}_{R}\left(H^{*} \otimes R, R\right)$. Then $\Delta(x)=x \otimes x$ iff $x\left(v^{*} w^{*}\right)=\left\langle x, v^{*} w^{*}\right\rangle=\left\langle\Delta(x), v^{*} \otimes w^{*}\right\rangle=x\left(v^{*}\right) x\left(w^{*}\right)$ and $\varepsilon(x)=1 \mathrm{iff}\langle x, \varepsilon\rangle=1$. Hence $x \in R$ - $\mathbf{c A l g}\left((H \otimes R)^{*}, R\right) \cong \mathbb{K}-\mathbf{c A l g}\left(H^{*}, R\right)=D(G)(R)$.

