Hopf Algebras, Algebraic, Formal, and Quantum Groups

6. Quantum Automorphism Groups

Lemma 2.6.1. The category \mathbb{K} - $\mathbf{A l g}$ of \mathbb{K}-algebras has arbitrary coproducts.
Proof. This is a well known fact from universal algebra. In fact all equationally defined algebraic categories are complete and cocomplete. We indicate the construction of the coproduct of a family $\left(A_{i} \mid i \in I\right)$ of \mathbb{K}-algebras.

Define $\coprod_{i \in I} A_{i}:=T\left(\bigoplus_{i \in I} A_{i}\right) / L$ where T denotes the tensor algebra and where L is the two sided ideal in $T\left(\bigoplus_{i \in I} A_{i}\right)$ generated by the set

$$
J:=\left\{\iota j_{k}\left(x_{k} y_{k}\right)-\iota\left(j_{k}\left(x_{k}\right)\right) \iota\left(j_{k}\left(y_{k}\right)\right), 1_{T\left(\oplus A_{i}\right)}-\iota j_{k}\left(1_{A_{k}}\right) \mid x_{k}, y_{k} \in A_{k}, k \in I\right\} .
$$

Then one checks easily for a family of algebra homomorphisms $\left(f_{k}: A_{k} \rightarrow B \mid k \in I\right)$ that the following diagram gives the required universal property

Corollary 2.6.2. The category of bialgebras has finite coproducts.
Proof. The coproduct $\coprod B_{i}$ of bialgebras $\left(B_{i} \mid i \in I\right)$ in \mathbb{K} - $\mathbf{A l g}$ is an algebra. For the diagonal and the counit we obtain the following commutative diagrams

since in both cases $\coprod B_{i}$ is a coproduct in \mathbb{K} - Alg. Then it is easy to show that these homomorphisms define a bialgebra structure on $\coprod B_{i}$ and that $\coprod B_{i}$ satisfies the universal property for bialgebras.

Theorem 2.6.3. Let B be a bialgebra. Then there exists a Hopf algebra $H(B)$ and a homomorphism of bialgebras $\iota: B \rightarrow H(B)$ such that for every Hopf algebra H and for every homomorphism of bialgebras $f: B \rightarrow H$ there is a unique
homomorphism of Hopf algebras $g: H(B) \rightarrow H$ such that the diagram

commutes.
Proof. Define a sequence of bialgebras $\left(B_{i} \mid i \in \mathbb{N}\right)$ by

$$
\begin{aligned}
& B_{0}:=B \\
& B_{i+1}:=B_{i}^{\text {opcop }}, i \in \mathbb{N} .
\end{aligned}
$$

Let B^{\prime} be the coproduct of the family $\left(B_{i} \mid i \in \mathbb{N}\right)$ with injections $\iota_{i}: B_{i} \rightarrow B^{\prime}$. Because B^{\prime} is a coproduct of bialgebras there is a unique homomorphism of bialgebras $S^{\prime}: B^{\prime} \rightarrow B^{\prime \text { opcop }}$ such that the diagrams

commute.
Now let I be the two sided ideal in B^{\prime} generated by

$$
\left\{\left(S^{\prime} * 1-u \varepsilon\right)\left(x_{i}\right),\left(1 * S^{\prime}-u \varepsilon\right)\left(x_{i}\right) \mid x_{i} \in \iota_{i}\left(B_{i}\right), i \in \mathbb{N}\right\} .
$$

I is a coideal, i.e. $\varepsilon_{B^{\prime}}(I)=0$ and $\Delta_{B^{\prime}}(I) \subseteq I \otimes B^{\prime}+B^{\prime} \otimes I$.
Since $\varepsilon_{B^{\prime}}$ and $\Delta_{B^{\prime}}$ are homomorphisms of algebras it suffices to check this for the generating elements of I. Let $x \in B_{i}$ be given. Then we have $\varepsilon\left(\left(1 * S^{\prime}\right) \iota_{i}(x)\right)=$ $\varepsilon\left(\nabla\left(1 \otimes S^{\prime}\right) \Delta \iota_{i}(x)\right)=\nabla_{\mathbb{K}}\left(\varepsilon \otimes \varepsilon S^{\prime}\right)\left(\iota_{i} \otimes \iota_{i}\right) \Delta_{i}(x)=\left(\varepsilon \iota_{i} \otimes \varepsilon \iota_{i}\right) \Delta_{i}(x)=\varepsilon_{i}(x)=\varepsilon\left(u \varepsilon \iota_{i}(x)\right)$. Symmetrically we have $\varepsilon\left(\left(S^{\prime} * 1\right) \iota_{i}(x)\right)=\varepsilon\left(u \varepsilon \iota_{i}(x)\right)$. Furthermore we have

$$
\begin{aligned}
& \Delta\left(\left(1 * S^{\prime}\right) \iota_{i}(x)\right) \\
& =\Delta \nabla\left(1 \otimes S^{\prime}\right) \Delta \iota_{i}(x) \\
& =(\nabla \otimes \nabla)(1 \otimes \tau \otimes 1)(\Delta \otimes \Delta)\left(1 \otimes S^{\prime}\right)\left(\iota_{i} \otimes \iota_{i}\right) \Delta_{i}(x) \\
& =(\nabla \otimes \nabla)(1 \otimes \tau \otimes 1)\left(\Delta \otimes \tau\left(S^{\prime} \otimes S^{\prime}\right) \Delta\right)\left(\iota_{i} \otimes \iota_{i}\right) \Delta_{i}(x) \\
& =\sum(\nabla \otimes \nabla)(1 \otimes \tau \otimes 1)\left(\iota_{i}\left(x_{(1)}\right) \otimes \iota_{i}\left(x_{(2)}\right) \otimes S^{\prime} \iota_{i}\left(x_{(4)}\right) \otimes S^{\prime} \iota_{i}\left(x_{(3)}\right)\right) \\
& =\sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(4)}\right) \otimes \iota_{i}\left(x_{(2)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \\
& =\sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \otimes\left(1 * S^{\prime}\right) \iota_{i}\left(x_{(2)}\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \Delta\left(\left(1 * S^{\prime}-u \varepsilon\right) \iota_{i}(x)\right) \\
&= \sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \otimes\left(1 * S^{\prime}\right) \iota_{i}\left(x_{(2)}\right)-\Delta u \varepsilon \iota_{i}(x) \\
&= \sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \otimes\left(\left(1 * S^{\prime}\right)-u \varepsilon\right) \iota_{i}\left(x_{(2)}\right) \\
& \quad+\sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \otimes u \varepsilon \iota_{i}\left(x_{(2)}\right)-\Delta u \varepsilon \iota_{i}(x) \\
&= \sum \iota_{i}\left(x_{(1)}\right) S^{\prime} t_{i}\left(x_{(3)}\right) \otimes\left(1 * S^{\prime}-u \varepsilon\right) \iota_{i}\left(x_{(2)}\right) \\
& \quad+\sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(2)}\right) \otimes 1_{B^{\prime}}-u \varepsilon \iota_{i}(x) \otimes 1_{B^{\prime}} \\
&= \sum \iota_{i}\left(x_{(1)}\right) S^{\prime} \iota_{i}\left(x_{(3)}\right) \otimes\left(1 * S^{\prime}-u \varepsilon\right) \iota_{i}\left(x_{(2)}\right) \\
& \quad+\left(1 * S^{\prime}-u \varepsilon\right) \iota_{i}(x) \otimes 1_{B^{\prime}} \\
& \in B^{\prime} \otimes I+I \otimes B^{\prime} .
\end{aligned}
$$

Thus I is a coideal and a biideal of B^{\prime}.
Now let $H(B):=B^{\prime} / I$ and let $\nu: B^{\prime} \rightarrow H(B)$ be the residue class homomorphism. We show that $H(B)$ is a bialgebra and ν is a homomorphism of bialgebras. $H(B)$ is an algebra and ν is a homomorphism of algebras since I is a two sided ideal. Since $I \subseteq \operatorname{Ker}(\varepsilon)$ there is a unique factorization

where $\varepsilon: B^{\prime} / I \rightarrow \mathbb{K}$ is a homomorphism of algebras. Since $\Delta(I) \subseteq B^{\prime} \otimes I+I \otimes B^{\prime} \subseteq$ $\operatorname{Ker}\left(\nu \otimes \nu: B^{\prime} \otimes B^{\prime} \rightarrow B^{\prime} / I \otimes B^{\prime} / I\right)$ and thus $I \subseteq \operatorname{Ker}(\Delta(\nu \otimes \nu))$ we have a unique factorization

by an algebra homomorphism $\Delta: B^{\prime} / I \rightarrow B^{\prime} / I \otimes B^{\prime} / I$. Now it is easy to verify that B^{\prime} / I becomes a bialgebra and ν a bialgebra homomorphism.

We show that the map $\nu S^{\prime}: B^{\prime} \rightarrow B^{\prime} / I$ can be factorized through B^{\prime} / I in the commutative diagram

This holds if $I \subseteq \operatorname{Ker}\left(\nu S^{\prime}\right)$. Since $\operatorname{Ker}(\nu)=I$ it suffices to show $S^{\prime}(I) \subseteq I$. We have

$$
\begin{aligned}
& S^{\prime}\left(\left(S^{\prime} * 1\right) \iota_{i}(x)\right)= \\
& =\nabla \tau\left(S^{\prime 2} \iota_{i} \otimes S^{\prime} \iota_{i}\right) \Delta_{i}(x) \\
& =\nabla \tau\left(S^{\prime} \otimes 1\right)\left(\iota_{i+1} \otimes \iota_{i+1}\right) \Delta_{i}(x) \\
& =\nabla\left(1 \otimes S^{\prime}\right)\left(\iota_{i+1} \otimes \iota_{i+1}\right) \tau \Delta_{i}(x) \\
& =\nabla\left(1 \otimes S^{\prime}\right)\left(\iota_{i+1} \otimes \iota_{i+1}\right) \Delta_{i+1}(x) \\
& =\left(1 * S^{\prime}\right) \iota_{i+1}(x)
\end{aligned}
$$

and

$$
S^{\prime}\left(u \varepsilon \iota_{i}(x)\right)=S^{\prime}(1) \varepsilon_{i}(x)=S^{\prime}(1) \varepsilon_{i+1}(x)=S^{\prime}\left(u \varepsilon \iota_{i+1}(x)\right)
$$

hence we get

$$
S^{\prime}\left(\left(S^{\prime} * 1-u \varepsilon\right) \iota_{i}(x)\right)=\left(1 * S^{\prime}-u \varepsilon\right) \iota_{i+1}(x) \in I
$$

This shows $S^{\prime}(I) \subseteq I$. So there is a unique homomorphism of bialgebras $S: H(B) \rightarrow$ $H(B)^{\text {opcop }}$ such that the diagram

commutes.
Now we show that $H(B)$ is a Hopf algebra with antipode S. By Proposition 2.1.3 it suffices to test on generators of $H(B)$ hence on images $\nu \nu_{i}(x)$ of elements $x \in B_{i}$. We have

$$
\begin{gathered}
(1 * S) \nu \iota_{i}(x)=\nabla(\nu \otimes S \nu) \Delta \iota_{i}(x)=\nabla(\nu \otimes \nu)\left(1 \otimes S^{\prime}\right) \Delta \iota_{i}(x)= \\
=\nu\left(1 * S^{\prime}\right) \iota_{i}(x)=\nu u \varepsilon \iota_{i}(x)=u \varepsilon \nu \iota_{i}(x)
\end{gathered}
$$

By Proposition 2.1.3 S is an antipode for $H(B)$.
We prove now that $H(B)$ together with $\iota:=\nu \iota_{0}: B \rightarrow H(B)$ is a free Hopf algebra over B. Let H be a Hopf algebra and let $f: B \rightarrow H$ be a homomorphism of bialgebras. We will show that there is a unique homomorphism $\bar{f}: H(B) \rightarrow H$ such that

commutes.
We define a family of homomorphisms of bialgebras $f_{i}: B_{i} \rightarrow H$ by

$$
\begin{aligned}
& f_{0}:=f \\
& f_{i+1}:=S_{H} f_{i}, i \in \mathbb{N} .
\end{aligned}
$$

We have in particular $f_{i}=S_{H}^{i} f$ for all $i \in \mathbb{N}$. Thus there is a unique homomorphism of bialgebras $f^{\prime}: B^{\prime}=\coprod B_{i} \rightarrow H$ such that $f^{\prime} \iota_{i}=f_{i}$ for all $i \in \mathbb{N}$.

We show that $f^{\prime}(I)=0$. Let $x \in B_{i}$. Then

$$
\begin{aligned}
f^{\prime}\left(\left(1 * S^{\prime}\right) \iota_{i}(x)\right) & =f^{\prime}\left(\nabla\left(1 \otimes S^{\prime}\right)\left(\iota_{i} \otimes \iota_{i}\right) \Delta_{i}(x)\right) \\
& =\sum f^{\prime} \iota_{i}\left(x_{(1)}\right) f^{\prime} S^{\prime} \iota_{i}\left(x_{(2)}\right) \\
& =\sum f^{\prime} \iota_{i}\left(x_{(1)}\right) f^{\prime} \iota_{i+1}\left(x_{(2)}\right) \\
& =\sum f_{i}\left(x_{(1)}\right) f_{i+1}\left(x_{(2)}\right) \\
& =\sum f_{i}\left(x_{(1)}\right) S f_{i}\left(x_{(2)}\right) \\
& =(1 * S) f_{i}(x)=u \varepsilon f_{i}(x)=u \varepsilon_{i}(x) \\
& =f^{\prime}\left(u \varepsilon \iota_{i}(x)\right) .
\end{aligned}
$$

This together with the symmetric statement gives $f^{\prime}(I)=0$. Hence there is a unique factorization through a homomorphism of algebras $\bar{f}: H(B) \rightarrow H$ such that $f^{\prime}=\bar{f} \nu$.

The homomorphism $\bar{f}: H(B) \rightarrow H$ is a homomorphism of bialgebras since the diagram

commutes with the possible exception of the right hand square $\Delta \bar{f}$ and $(\bar{f} \otimes \bar{f}) \Delta^{\prime}$. But ν is surjective so also the last square commutes. Similarly we get $\varepsilon_{H} \bar{f}=\varepsilon_{H(B)}$. Thus \bar{f} is a homomorphism of bialgebras and hence a homomorphism of Hopf algebras.

Remark 2.6.4. In chapter 1 we have constructed universal bialgebras $M(A)$ with coaction $\delta: A \rightarrow M(A) \otimes A$ for certain algebras A (see 1.3.12). This induces a homomorphism of algebras

$$
\delta^{\prime}: A \rightarrow H(M(A)) \otimes A
$$

such that A is a comodule-algebra over the Hopf algebra $H(M(A))$. If H is a Hopf algebra and A is an H-comodule algebra by $\partial: A \rightarrow H \otimes A$ then there is a unique homomorphism of bialgebras $f: M(A) \rightarrow H$ such that

commutes. Since the $f: M(A) \rightarrow H$ factorizes uniquely through $\bar{f}: H(M(A)) \rightarrow H$ we get a commutative diagram

with a unique homomorphism of Hopf algebras $\bar{f}: H(M(A)) \rightarrow H$.
This proof depends only on the existence of a universal algebra $M(A)$ for the algebra A. Hence we have

Corollary 2.6.5. Let \mathcal{X} be a quantum space with universal quantum space (and quantum monoid) $\mathcal{M}(\mathcal{X})$. Then there is a unique (up to isomorphism) quantum group $\mathcal{H}(\mathcal{M}(\mathcal{X}))$ acting universally on \mathcal{X}.

This quantum group $\mathcal{H}(\mathcal{M}(\mathcal{X}))$ can be considered as the "quantum subgroup of invertible elements" of $\mathcal{M}(\mathcal{X})$ or the quantum group of "quantum automorphisms" of \mathcal{X}.

