
CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups

Introduction

In the �rst chapter we have encountered quantum monoids and studied their
role as monoids operating on quantum spaces. The \elements" of quantum monoids
operating on quantum spaces should be understood as endomorphisms of the quantum
spaces. In the construction of the multiplication for universal quantum monoids of
quantum spaces we have seen that this multiplication is essentially the \composition"
of endomorphisms.

We are, however, primarily interested in automorphisms and we know that auto-
morphisms should form a group under composition. This chapter is devoted to �nding
group structures on quantum monoids, i.e. to de�ne and study quantum groups.

This is easy in the commutative situation, i.e. if the representing algebra of
a quantum monoid is commutative. Then we can de�ne a morphism that sends
elements of the quantum group to their inverses. This will lead us to the notion of
a�ne algebraic groups.

In the noncommutative situation, however, it will turn out that such an inversion
morphism (of quantum spaces) does not exist. It will have to be replaced by a more
complicated construction. Thus quantum groups will not be groups in the sense of
category theory. Still we will be able to perform one of the most important and most
basic constructions in group theory, the formation of the group of invertible elements
of a monoid. In the case of a quantum monoid acting universally on a quantum
space this will lead to the good de�nition of a quantum automorphism group of the
quantum space.

In order to have the appropriate tools for introducing quantum groups we �rst
introduce Hopf algebras which will be the representing algebras of quantum groups.
Furthermore we need the notion of a monoid and of a group in a category. We will see,
however, that quantum groups are in general not groups in the category of quantum
spaces.

We �rst study the simple cases of a�ne algebraic groups and of formal groups.
They will have Hopf algebras as representing objects and will indeed be groups in
reasonable categories. Then we come to quantum groups, and construct quantum
automorphism groups of quantum spaces.

At the end of the chapter you should

� know what a Hopf algebra is,
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� know what a group in a category is,
� know the de�nition and examples of a�ne algebraic groups and formal groups,
� know the de�nition and examples of quantum groups and be able to construct
quantum automorphism groups for small quantum spaces,

� understand why a Hopf algebra is a reasonable representing algebra for a quan-
tum group.
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1. Hopf Algebras

The di�erence between a monoid and a group lies in the existence of an additional
map S : G 3 g 7! g�1 2 G for a group G that allows forming inverses. This map
satis�es the equation S(g)g = 1 or in a diagrammatic form

G f1g-" G-1

?
�

G �G G�G-S�id

6
mult

We want to carry this property over to a de�nition of quantum groups. We know
already that quantum monoids G are represented by bialgebras H. So an \inverse
map" should be a morphism S : G �! G with a certain property, if G is to become
a quantum group, or an algebra homomorphism S : H �! H for the representing
bialgebra H of G. We need a slightly more general de�nition of Hopf algebras. They
will then be the representing algebras for quantum groups.

De�nition 2.1.1. A left Hopf algebra H is a bialgebra H together with a left

antipode S : H �! H, i.e. a linear map S such that the following diagram commutes:

H K-
"

H-
�

?
�

H 
H H 
H-S
id

6
r

Symmetrically we de�ne a right Hopf algebra H. A Hopf algebra is a left and right
Hopf algebra. The map S is called a (left, right, two-sided) antipode.

Using the Sweedler notation (A.6.3) the commutative diagram above can also be
expressed by the equation X

S(a(1))a(2) = �"(a)

for all a 2 H. Observe that we do not require that S : H �! H is an algebra
homomorphism.

Problem 2.1.1. 1. Let H be a bialgebra and S 2 Hom(H;H). Then S is an
antipode for H (and H is a Hopf algebra) i� S is a two sided inverse for id in the
algebra (Hom(H;H); �; �") (see A.6.4). In particular S is uniquely determined.

2. Let H be a Hopf algebra. Then S is an antihomomorphism of algebras and
coalgebras i.e. S \inverts the order of the multiplication and the comultiplication".

3. Let H and K be Hopf algebras and let f : H �! K be a homomorphism of
bialgebras. Then fSH = SKf , i.e. f is compatible with the antipode.

De�nition 2.1.2. Because of Problem 2.1.1 3. every homomorphism of bialge-
bras between Hopf algebras is compatible with the antipodes. So we de�ne a homo-

morphism of Hopf algebras to be a homomorphism of bialgebras. The category of
Hopf algebras will be denoted by K-Hopf.
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Proposition 2.1.3. Let H be a bialgebra with an algebra generating set X. Let

S : H �! Hop be an algebra homomorphism such that
P

S(x(1))x(2) = �"(x) for all

x 2 X. Then S is a left antipode of H.

Proof. Assume a; b 2 H such that
P

S(a(1))a(2) = �"(a) and
P

S(b(1))b(2) =
�"(b). Then

P
S((ab)(1))(ab)(2) =

P
S(a(1)b(1))a(2)b(2) =

P
S(b(1))S(a(1))a(2)b(2)

=
P

S(b(1))�"(a)b(2) = �"(a)�"(b) = �"(ab):

Since every element of H is a �nite sum of �nite products of elements in X, for which
the equality holds, this equality extends to all of H by induction.

Example 2.1.4. 1. Let V be a vector space and T (V ) the tensor algebra over V .
We have seen in Problem A.5.6 that T (V ) is a bialgebra and that V generates T (V )
as an algebra. De�ne S : V �! T (V )op by S(v) := �v for all v 2 V . By the universal
property of the tensor algebra this map extends to an algebra homomorphism S :
T (V ) �! T (V )op. Since �(v) = v
1+1
v we have

P
S(v(1))v(2) = r(S
1)�(v) =

�v + v = 0 = �"(v) for all v 2 V , hence T (V ) is a Hopf algebra by the preceding
proposition.

2. Let V be a vector space and S(V ) the symmetric algebra over V (that is
commutative). We have seen in Problem A.5.7 that S(V ) is a bialgebra and that V
generates S(V ) as an algebra. De�ne S : V �! S(V ) by S(v) := �v for all v 2 V . S
extends to an algebra homomorphism S : S(V ) �! S(V ). Since �(v) = v
 1 + 1
 v
we have

P
S(v(1))v(2) = r(S 
 1)�(v) = �v + v = 0 = �"(v) for all v 2 V , hence

S(V ) is a Hopf algebra by the preceding proposition.

Example 2.1.5. (Group Algebras) For each algebra A we can form the group

of units U(A) := fa 2 Aj9a�1 2 Ag with the multiplication of A as composition of
the group. Then U is a covariant functor U : K-Alg �! Gr. This functor leads to
the following universal problem.

Let G be a group. An algebra KG together with a group homomorphism � : G �!
U(KG) is called a (the) group algebra of G, if for every algebra A and for every group
homomorphism f : G �! U(A) there exists a unique homomorphism of algebras
g : KG �! A such that the following diagram commutes

G U(KG)-�

f
@
@
@
@@R
U(A):
?

g

The group algebra KG is (if it exists) unique up to isomorphism. It is generated
as an algebra by the image of G. The map � : G �! U(KG) � KG is injective and
the image of G in KG is a basis.
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The group algebra can be constructed as the free vector space KG with basis G
and the algebra structure of KG is given by KG 
 KG 3 g 
 h 7! gh 2 KG and the
unit � : K 3 � 7! �e 2 KG.

The group algebra KG is a Hopf algebra. The comultiplication is given by the
diagram

G KG-�

f

@
@
@
@@R
KG 
 KG

?

�

with f(g) := g 
 g which de�nes a group homomorphism f : G �! U(KG 
 KG).
The counit is given by

G KG-�

f

@
@
@
@@R
K

?

"

where f(g) = 1 for all g 2 G. One shows easily by using the universal property, that
� is coassociative and has counit ". De�ne an algebra homomorphism S : KG �!
(KG)op by

G KG-�

f

@
@
@
@@R
(KG)op
?

S

with f(g) := g�1 which is a group homomorphism f : G �! U((KG)op). Then
Proposition 1.3 shows that KG is a Hopf algebra.

The preceding example of a Hopf algebra gives rise to the de�nition of particular
elements in arbitrary Hopf algebras, that share certain properties with elements of a
group. We will use and study these elements later on in chapter 5.

De�nition 2.1.6. Let H be a Hopf algebra. An element g 2 H; g 6= 0 is called a
group-like element if

�(g) = g 
 g:

Observe that "(g) = 1 for each group-like element g in a Hopf algebra H. In fact
we have g = r("
 1)�(g) = "(g)g 6= 0 hence "(g) = 1. If the base ring is not a �eld
then one adds this property to the de�nition of a group-like element.

Problem 2.1.2. 1. Let K be a �eld. Show that an element x 2 KG satis�es
�(x) = x
 x and "(x) = 1 if and only if x = g 2 G.

2. Show that the group-like elements of a Hopf algebra form a group under
multiplication of the Hopf algebra.
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Example 2.1.7. (Universal Enveloping Algebras) A Lie algebra consists of
a vector space g together with a (linear) multiplication g 
 g 3 x 
 y 7! [x; y] 2 g

such that the following laws hold:

[x; x] = 0;
[x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0 (Jacobi identity).

A homomorphism of Lie algebras f : g �! h is a linear map f such that f([x; y]) =
[f(x); f(y)]. Thus Lie algebras form a category K-Lie.

An important example is the Lie algebra associated with an associative algebra
(with unit). If A is an algebra then the vector space A with the Lie multiplication

[x; y] := xy � yx(1)

is a Lie algebra denoted by AL. This construction of a Lie algebra de�nes a covariant
functor -L : K-Alg �! K-Lie. This functor leads to the following universal problem.

Let g be a Lie algebra. An algebra U(g) together with a Lie algebra homomor-
phism � : g �! U(g)L is called a (the) universal enveloping algebra of g, if for every
algebra A and for every Lie algebra homomorphism f : g �! AL there exists a unique
homomorphism of algebras g : U(g) �! A such that the following diagram commutes

g U(g)L-�

f
@
@
@
@@R
AL:
?

g

The universal enveloping algebra U(g) is (if it exists) unique up to isomorphism.
It is generated as an algebra by the image of g.

The universal enveloping algebra can be constructed as U(g) = T (g)=(x
 y� y

x�[x; y]) where T (g) = K�g�g
g : : : is the tensor algebra. The map � : g �! U(g)L

is injective.
The universal enveloping algebra U(g) is a Hopf algebra. The comultiplication is

given by the diagram

g U(g)-�

f

@
@
@
@@R

U(g) 
 U(g)
?

�
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with f(x) := x 
 1 + 1 
 x which de�nes a Lie algebra homomorphism f : g �!
(U(g)
 U(g))L. The counit is given by

g U(g)-�

f

@
@
@
@@R
K

?

"

with f(x) = 0 for all x 2 g. One shows easily by using the universal property, that
� is coassociative and has counit ". De�ne an algebra homomorphism S : U(g) �!
(U(g))op by

g U(g)-�

f

@
@
@
@@R
(U(g))op

?

S

with f(x) := �x which is a Lie algebra homomorphism f : g �! (U(g)op)L. Then
Proposition 1.3 shows that U(g) is a Hopf algebra.

(Observe, that the meaning of U in this example and the previous example (group
of units, universal enveloping algebra) is totally di�erent, in the �rst case U can be
applied to an algebra and gives a group, in the second case U can be applied to a Lie
algebra and gives an algebra.)

The preceding example of a Hopf algebra gives rise to the de�nition of particular
elements in arbitrary Hopf algebras, that share certain properties with elements of a
Lie algebra. We will use these elements later on in chapter 5.

De�nition 2.1.8. Let H be a Hopf algebra. An element x 2 H is called a
primitive element if

�(x) = x
 1 + 1 
 x:

Let g 2 H be a group-like element. An element x 2 H is called a skew primitive or

g-primitive element if

�(x) = x
 1 + g 
 x:

Problem 2.1.3. Show that the set of primitive elementsP (H) = fx 2 Hj�(x) =
x
 1 + 1 
 xg of a Hopf algebra H is a Lie subalgebra of HL.

Proposition 2.1.9. Let H be a Hopf algebra with antipode S. The following are

equivalent:

1. S2 =id.

2.
P

S(a(2))a(1) = �"(a) for all a 2 H.

3.
P

a(2)S(a(1)) = �"(a) for all a 2 H.
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Proof. Let S2 =id. ThenP
S(a(2))a(1) = S2(

P
S(a(2))a(1)) = S(

P
S(a(1))S

2(a(2)))
= S(
P

S(a(1))a(2)) = S(�"(a)) = �"(a)

by using Problem 2.1.1.
Conversely assume that 2. holds. Then

S � S2(a) =
P

S(a(1)S
2(a(2)) = S(

P
S(a(2))a(1)

= S(�"(a)) = �"(a):

Thus S2 and id are inverses of S in the convolution algebra Hom(H;H), hence S2 = id.
Analogously one shows that 1. and 3. are equivalent.

Corollary 2.1.10. If H is a commutative Hopf algebra or a cocommutative Hopf

algebra with antipode S, then S2 =id.

Remark 2.1.11. Kaplansky: Ten conjectures on Hopf algebras
In a set of lecture notes on bialgebras based on a course given at Chicago university

in 1973, made public in 1975, Kaplansky formulated a set of conjectures on Hopf
algebras that have been the aim of intensive research.

1. If C is a Hopf subalgebra of the Hopf algebra B then B is a free left C-module.
(Yes, if H is �nite dimensional [Nichols-Zoeller]; No for in�nite dimen-

sional Hopf algebras [Oberst- Schneider]; B : C is not necessarily faithfully at
[Schauenburg])

2. Call a coalgebra C admissible if it admits an algebra structure making it a Hopf
algebra. The conjecture states that C is admissible if and only if every �nite
subset of C lies in a �nite-dimensional admissible subcoalgebra.

(Remarks.
(a) Both implications seem hard.
(b) There is a corresponding conjecture where \Hopf algebra" is replaced by

\bialgebra".
(c) There is a dual conjecture for locally �nite algebras.)
(No results known.)

3. A Hopf algebra of characteristic 0 has no non-zero central nilpotent elements.
(First counter example given by [Schmidt-Samoa]. If H is unimodular and

not semisimple, e.g. a Drinfel'd double of a not semisimple �nite dimensional
Hopf algebra, then the integral � satis�es � 6= 0, �2 = "(�)� = 0 since D(H)
is not semisimple, and a� = "(a)� = �"(a) = �a since D(H) is unimodular
[Sommerh�auser].)

4. (Nichols). Let x be an element in a Hopf algebra H with antipode S. Assume
that for any a in H we have

X
bixS(ci) = "(a)x

where �a =
P

bi 
 ci. Conjecture: x is in the center of H.
(ax =

P
a(1)x"(a(2)) =

P
a(1)xS(a(2))a(3)) =

P
"(a(1))xa(2) = xa:)
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In the remaining six conjectures H is a �nite-dimensional Hopf algebra over
an algebraically closed �eld.

5. If H is semisimple on either side (i.e. either H or the dual H� is semisimple as
an algebra) the square of the antipode is the identity.

(Yes if char(K) = 0 [Larson-Radford], yes if char(K) is large [Sommerh�au-
ser])

6. The size of the matrices occurring in any full matrix constituent of H divides
the dimension of H.

(Yes is Hopf algebra is de�ned overZ[Larson]; in general not known; work
by [Montgomery-Witherspoon], [Zhu], [Gelaki])

7. If H is semisimple on both sides the characteristic does not divide the dimen-
sion.

(Larson-Radford)
8. If the dimension of H is prime then H is commutative and cocommutative.

(Yes in characteristic 0 [Zhu: 1994])
Remark. Kac, Larson, and Sweedler have partial results on 5 { 8.
(Was also proved by [Kac])
In the two �nal conjectures assume that the characteristic does not divide

the dimension of H.
9. The dimension of the radical is the same on both sides.

(Counterexample by [Nichols]; counterexample in Frobenius- Lusztig kernel
of Uq(sl(2)) [Schneider])

10. There are only a �nite number (up to isomorphism) of Hopf algebras of a given
dimension.

(Yes for semisimple, cosemisimple Hopf algebras: Stefan 1997)
(Counterexamples: [Andruskiewitsch, Schneider], [Beattie, others] 1997)


