
CHAPTER 2

Hopf Algebras, Algebraic, Formal, and Quantum Groups

Introduction

In the �rst chapter we have encountered quantum monoids and studied their
role as monoids operating on quantum spaces. The \elements" of quantum monoids
operating on quantum spaces should be understood as endomorphisms of the quantum
spaces. In the construction of the multiplication for universal quantum monoids of
quantum spaces we have seen that this multiplication is essentially the \composition"
of endomorphisms.

We are, however, primarily interested in automorphisms and we know that auto-
morphisms should form a group under composition. This chapter is devoted to �nding
group structures on quantum monoids, i.e. to de�ne and study quantum groups.

This is easy in the commutative situation, i.e. if the representing algebra of
a quantum monoid is commutative. Then we can de�ne a morphism that sends
elements of the quantum group to their inverses. This will lead us to the notion of
a�ne algebraic groups.

In the noncommutative situation, however, it will turn out that such an inversion
morphism (of quantum spaces) does not exist. It will have to be replaced by a more
complicated construction. Thus quantum groups will not be groups in the sense of
category theory. Still we will be able to perform one of the most important and most
basic constructions in group theory, the formation of the group of invertible elements
of a monoid. In the case of a quantum monoid acting universally on a quantum
space this will lead to the good de�nition of a quantum automorphism group of the
quantum space.

In order to have the appropriate tools for introducing quantum groups we �rst
introduce Hopf algebras which will be the representing algebras of quantum groups.
Furthermore we need the notion of a monoid and of a group in a category. We will see,
however, that quantum groups are in general not groups in the category of quantum
spaces.

We �rst study the simple cases of a�ne algebraic groups and of formal groups.
They will have Hopf algebras as representing objects and will indeed be groups in
reasonable categories. Then we come to quantum groups, and construct quantum
automorphism groups of quantum spaces.

At the end of the chapter you should

� know what a Hopf algebra is,
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� know what a group in a category is,
� know the de�nition and examples of a�ne algebraic groups and formal groups,
� know the de�nition and examples of quantum groups and be able to construct
quantum automorphism groups for small quantum spaces,

� understand why a Hopf algebra is a reasonable representing algebra for a quan-
tum group.
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1. Hopf Algebras

The di�erence between a monoid and a group lies in the existence of an additional
map S : G 3 g 7! g�1 2 G for a group G that allows forming inverses. This map
satis�es the equation S(g)g = 1 or in a diagrammatic form

G f1g-" G-1

?
�

G �G G�G-S�id

6
mult

We want to carry this property over to a de�nition of quantum groups. We know
already that quantum monoids G are represented by bialgebras H. So an \inverse
map" should be a morphism S : G �! G with a certain property, if G is to become
a quantum group, or an algebra homomorphism S : H �! H for the representing
bialgebra H of G. We need a slightly more general de�nition of Hopf algebras. They
will then be the representing algebras for quantum groups.

De�nition 2.1.1. A left Hopf algebra H is a bialgebra H together with a left
antipode S : H �! H, i.e. a linear map S such that the following diagram commutes:

H K-"
H-�

?
�

H 
H H 
H-S
id

6
r

Symmetrically we de�ne a right Hopf algebra H. A Hopf algebra is a left and right
Hopf algebra. The map S is called a (left, right, two-sided) antipode.

Using the Sweedler notation (A.6.3) the commutative diagram above can also be
expressed by the equation X

S(a(1))a(2) = �"(a)

for all a 2 H. Observe that we do not require that S : H �! H is an algebra
homomorphism.

Problem 2.1.1. 1. Let H be a bialgebra and S 2 Hom(H;H). Then S is an
antipode for H (and H is a Hopf algebra) i� S is a two sided inverse for id in the
algebra (Hom(H;H); �; �") (see A.6.4). In particular S is uniquely determined.

2. Let H be a Hopf algebra. Then S is an antihomomorphism of algebras and
coalgebras i.e. S \inverts the order of the multiplication and the comultiplication".

3. Let H and K be Hopf algebras and let f : H �! K be a homomorphism of
bialgebras. Then fSH = SKf , i.e. f is compatible with the antipode.

De�nition 2.1.2. Because of Problem 2.1.1 3. every homomorphism of bialge-
bras between Hopf algebras is compatible with the antipodes. So we de�ne a homo-
morphism of Hopf algebras to be a homomorphism of bialgebras. The category of
Hopf algebras will be denoted by K-Hopf.
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Proposition 2.1.3. Let H be a bialgebra with an algebra generating set X. Let
S : H �! Hop be an algebra homomorphism such that

P
S(x(1))x(2) = �"(x) for all

x 2 X. Then S is a left antipode of H.

Proof. Assume a; b 2 H such that
P
S(a(1))a(2) = �"(a) and

P
S(b(1))b(2) =

�"(b). ThenP
S((ab)(1))(ab)(2) =

P
S(a(1)b(1))a(2)b(2) =

P
S(b(1))S(a(1))a(2)b(2)

=
P
S(b(1))�"(a)b(2) = �"(a)�"(b) = �"(ab):

Since every element of H is a �nite sum of �nite products of elements in X, for which
the equality holds, this equality extends to all of H by induction.

Example 2.1.4. 1. Let V be a vector space and T (V ) the tensor algebra over V .
We have seen in Problem A.5.6 that T (V ) is a bialgebra and that V generates T (V )
as an algebra. De�ne S : V �! T (V )op by S(v) := �v for all v 2 V . By the universal
property of the tensor algebra this map extends to an algebra homomorphism S :
T (V ) �! T (V )op. Since �(v) = v
1+1
v we have

P
S(v(1))v(2) = r(S
1)�(v) =

�v + v = 0 = �"(v) for all v 2 V , hence T (V ) is a Hopf algebra by the preceding
proposition.

2. Let V be a vector space and S(V ) the symmetric algebra over V (that is
commutative). We have seen in Problem A.5.7 that S(V ) is a bialgebra and that V
generates S(V ) as an algebra. De�ne S : V �! S(V ) by S(v) := �v for all v 2 V . S
extends to an algebra homomorphism S : S(V ) �! S(V ). Since �(v) = v
 1 + 1
 v
we have

P
S(v(1))v(2) = r(S 
 1)�(v) = �v + v = 0 = �"(v) for all v 2 V , hence

S(V ) is a Hopf algebra by the preceding proposition.

Example 2.1.5. (Group Algebras) For each algebra A we can form the group
of units U(A) := fa 2 Aj9a�1 2 Ag with the multiplication of A as composition of
the group. Then U is a covariant functor U : K-Alg �! Gr. This functor leads to
the following universal problem.

Let G be a group. An algebra KG together with a group homomorphism � : G �!
U(KG) is called a (the) group algebra of G, if for every algebra A and for every group
homomorphism f : G �! U(A) there exists a unique homomorphism of algebras
g : KG �! A such that the following diagram commutes

G U(KG)-�

f
@
@
@
@@R
U(A):
?

g

The group algebra KG is (if it exists) unique up to isomorphism. It is generated
as an algebra by the image of G. The map � : G �! U(KG) � KG is injective and
the image of G in KG is a basis.
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The group algebra can be constructed as the free vector space KG with basis G
and the algebra structure of KG is given by KG 
 KG 3 g 
 h 7! gh 2 KG and the
unit � : K 3 � 7! �e 2 KG.

The group algebra KG is a Hopf algebra. The comultiplication is given by the
diagram

G KG-�

f

@
@
@
@@R
KG 
 KG

?

�

with f(g) := g 
 g which de�nes a group homomorphism f : G �! U(KG 
 KG).
The counit is given by

G KG-�

f

@
@
@
@@R
K

?

"

where f(g) = 1 for all g 2 G. One shows easily by using the universal property, that
� is coassociative and has counit ". De�ne an algebra homomorphism S : KG �!
(KG)op by

G KG-�

f

@
@
@
@@R
(KG)op

?

S

with f(g) := g�1 which is a group homomorphism f : G �! U((KG)op). Then
Proposition 1.3 shows that KG is a Hopf algebra.

The preceding example of a Hopf algebra gives rise to the de�nition of particular
elements in arbitrary Hopf algebras, that share certain properties with elements of a
group. We will use and study these elements later on in chapter 5.

De�nition 2.1.6. Let H be a Hopf algebra. An element g 2 H; g 6= 0 is called a
group-like element if

�(g) = g 
 g:

Observe that "(g) = 1 for each group-like element g in a Hopf algebra H. In fact
we have g = r("
 1)�(g) = "(g)g 6= 0 hence "(g) = 1. If the base ring is not a �eld
then one adds this property to the de�nition of a group-like element.

Problem 2.1.2. 1. Let K be a �eld. Show that an element x 2 KG satis�es
�(x) = x
 x and "(x) = 1 if and only if x = g 2 G.

2. Show that the group-like elements of a Hopf algebra form a group under
multiplication of the Hopf algebra.
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Example 2.1.7. (Universal Enveloping Algebras) A Lie algebra consists of
a vector space g together with a (linear) multiplication g 
 g 3 x 
 y 7! [x; y] 2 g

such that the following laws hold:

[x; x] = 0;
[x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0 (Jacobi identity).

A homomorphism of Lie algebras f : g �! h is a linear map f such that f([x; y]) =
[f(x); f(y)]. Thus Lie algebras form a category K-Lie.

An important example is the Lie algebra associated with an associative algebra
(with unit). If A is an algebra then the vector space A with the Lie multiplication

[x; y] := xy � yx(1)

is a Lie algebra denoted by AL. This construction of a Lie algebra de�nes a covariant
functor -L : K-Alg �! K-Lie. This functor leads to the following universal problem.

Let g be a Lie algebra. An algebra U(g) together with a Lie algebra homomor-
phism � : g �! U(g)L is called a (the) universal enveloping algebra of g, if for every
algebra A and for every Lie algebra homomorphism f : g �! AL there exists a unique
homomorphism of algebras g : U(g) �! A such that the following diagram commutes

g U(g)L-�

f
@
@
@
@@R
AL:
?

g

The universal enveloping algebra U(g) is (if it exists) unique up to isomorphism.
It is generated as an algebra by the image of g.

The universal enveloping algebra can be constructed as U(g) = T (g)=(x
 y� y

x�[x; y]) where T (g) = K�g�g
g : : : is the tensor algebra. The map � : g �! U(g)L

is injective.
The universal enveloping algebra U(g) is a Hopf algebra. The comultiplication is

given by the diagram

g U(g)-�

f

@
@
@
@@R

U(g) 
 U(g)
?

�
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with f(x) := x 
 1 + 1 
 x which de�nes a Lie algebra homomorphism f : g �!
(U(g)
 U(g))L. The counit is given by

g U(g)-�

f

@
@
@
@@R
K

?

"

with f(x) = 0 for all x 2 g. One shows easily by using the universal property, that
� is coassociative and has counit ". De�ne an algebra homomorphism S : U(g) �!
(U(g))op by

g U(g)-�

f

@
@
@
@@R
(U(g))op

?

S

with f(x) := �x which is a Lie algebra homomorphism f : g �! (U(g)op)L. Then
Proposition 1.3 shows that U(g) is a Hopf algebra.

(Observe, that the meaning of U in this example and the previous example (group
of units, universal enveloping algebra) is totally di�erent, in the �rst case U can be
applied to an algebra and gives a group, in the second case U can be applied to a Lie
algebra and gives an algebra.)

The preceding example of a Hopf algebra gives rise to the de�nition of particular
elements in arbitrary Hopf algebras, that share certain properties with elements of a
Lie algebra. We will use these elements later on in chapter 5.

De�nition 2.1.8. Let H be a Hopf algebra. An element x 2 H is called a
primitive element if

�(x) = x
 1 + 1 
 x:

Let g 2 H be a group-like element. An element x 2 H is called a skew primitive or
g-primitive element if

�(x) = x
 1 + g 
 x:

Problem 2.1.3. Show that the set of primitive elementsP (H) = fx 2 Hj�(x) =
x
 1 + 1 
 xg of a Hopf algebra H is a Lie subalgebra of HL.

Proposition 2.1.9. Let H be a Hopf algebra with antipode S. The following are
equivalent:

1. S2 =id.
2.
P
S(a(2))a(1) = �"(a) for all a 2 H.

3.
P
a(2)S(a(1)) = �"(a) for all a 2 H.
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Proof. Let S2 =id. ThenP
S(a(2))a(1) = S2(

P
S(a(2))a(1)) = S(

P
S(a(1))S

2(a(2)))
= S(

P
S(a(1))a(2)) = S(�"(a)) = �"(a)

by using Problem 2.1.1.
Conversely assume that 2. holds. Then

S � S2(a) =
P
S(a(1)S

2(a(2)) = S(
P
S(a(2))a(1)

= S(�"(a)) = �"(a):

Thus S2 and id are inverses of S in the convolution algebra Hom(H;H), hence S2 = id.
Analogously one shows that 1. and 3. are equivalent.

Corollary 2.1.10. If H is a commutative Hopf algebra or a cocommutative Hopf
algebra with antipode S, then S2 =id.

Remark 2.1.11. Kaplansky: Ten conjectures on Hopf algebras
In a set of lecture notes on bialgebras based on a course given at Chicago university

in 1973, made public in 1975, Kaplansky formulated a set of conjectures on Hopf
algebras that have been the aim of intensive research.

1. If C is a Hopf subalgebra of the Hopf algebra B then B is a free left C-module.
(Yes, if H is �nite dimensional [Nichols-Zoeller]; No for in�nite dimen-

sional Hopf algebras [Oberst- Schneider]; B : C is not necessarily faithfully at
[Schauenburg])

2. Call a coalgebra C admissible if it admits an algebra structure making it a Hopf
algebra. The conjecture states that C is admissible if and only if every �nite
subset of C lies in a �nite-dimensional admissible subcoalgebra.

(Remarks.
(a) Both implications seem hard.
(b) There is a corresponding conjecture where \Hopf algebra" is replaced by

\bialgebra".
(c) There is a dual conjecture for locally �nite algebras.)
(No results known.)

3. A Hopf algebra of characteristic 0 has no non-zero central nilpotent elements.
(First counter example given by [Schmidt-Samoa]. If H is unimodular and

not semisimple, e.g. a Drinfel'd double of a not semisimple �nite dimensional
Hopf algebra, then the integral � satis�es � 6= 0, �2 = "(�)� = 0 since D(H)
is not semisimple, and a� = "(a)� = �"(a) = �a since D(H) is unimodular
[Sommerh�auser].)

4. (Nichols). Let x be an element in a Hopf algebra H with antipode S. Assume
that for any a in H we haveX

bixS(ci) = "(a)x

where �a =
P
bi 
 ci. Conjecture: x is in the center of H.

(ax =
P
a(1)x"(a(2)) =

P
a(1)xS(a(2))a(3)) =

P
"(a(1))xa(2) = xa:)
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In the remaining six conjectures H is a �nite-dimensional Hopf algebra over
an algebraically closed �eld.

5. If H is semisimple on either side (i.e. either H or the dual H� is semisimple as
an algebra) the square of the antipode is the identity.

(Yes if char(K) = 0 [Larson-Radford], yes if char(K) is large [Sommerh�au-
ser])

6. The size of the matrices occurring in any full matrix constituent of H divides
the dimension of H.

(Yes is Hopf algebra is de�ned overZ[Larson]; in general not known; work
by [Montgomery-Witherspoon], [Zhu], [Gelaki])

7. If H is semisimple on both sides the characteristic does not divide the dimen-
sion.

(Larson-Radford)
8. If the dimension of H is prime then H is commutative and cocommutative.

(Yes in characteristic 0 [Zhu: 1994])
Remark. Kac, Larson, and Sweedler have partial results on 5 { 8.
(Was also proved by [Kac])
In the two �nal conjectures assume that the characteristic does not divide

the dimension of H.
9. The dimension of the radical is the same on both sides.

(Counterexample by [Nichols]; counterexample in Frobenius- Lusztig kernel
of Uq(sl(2)) [Schneider])

10. There are only a �nite number (up to isomorphism) of Hopf algebras of a given
dimension.

(Yes for semisimple, cosemisimple Hopf algebras: Stefan 1997)
(Counterexamples: [Andruskiewitsch, Schneider], [Beattie, others] 1997)



40 2. HOPF ALGEBRAS, ALGEBRAIC, FORMAL, AND QUANTUM GROUPS

2. Monoids and Groups in a Category

Before we use Hopf algebras to describe quantum groups and some of the better
known groups, such as a�ne algebraic groups and formal groups, we introduce the
concept of a general group (and of a monoid) in an arbitrary category. Usually this
concept is de�ned with respect to a categorical product in the given category. But
in some categories there are in general no products. Still, one can de�ne the concept
of a group in a very simple fashion. We will start with that de�nition and then show
that it coincides with the usual notion of a group in a category in case that category
has �nite products.

De�nition 2.2.1. Let C be an arbitrary category. Let G 2 C be an object. We
use the notation G(X) := MorC(X;G) for all X 2 C, G(f) := MorC(f;G) for all
morphisms f : X �! Y in C, and f(X) := MorC(X; f) for all morphisms f : G �! G0.

G together with a natural transformation m : G(-) � G(-) �! G(-) is called a
group (monoid) in the category C, if the sets G(X) together with the multiplication
m(X) : G(X) �G(X) �! G(X) are groups (monoids) for all X 2 C.

Let (G;m) and (G0;m0) be groups in C. A morphism f : G �! G0 in C is called a
homomorphism of groups in C, if the diagrams

G(X) �G(X) G(X)-m(X)

G0(X)�G0(X) G0(X)-m0(X)
?

f(X)�f(X)

?

f(X)

commute for all X 2 C.
Let (G;m) and (G0;m0) be monoids in C. A morphism f : G �! G0 in C is called

a homomorphism of monoids in C, if the diagrams

G(X) �G(X) G(X)-m(X)

G0(X)�G0(X) G0(X)-m0(X)?

f(X)�f(X)

?

f(X)

and
f�g

u

�
�
�
���

u0

A
A
A
AAU

G(X) G0(X)-f(X)

commute for all X 2 C.

Problem 2.2.4. 1) If a set Z together with a multiplicationm : Z �Z �! Z is a
monoid, then the unit element e 2 Z is uniquely determined. If it is a group then also
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the inverse i : Z �! Z is uniquely determined. Unit element and inverses of groups
are preserved by maps that are compatible with the multiplication.

2) Find an example of monoids Y and Z and a map f : Y �! Z with f(y1y2) =
f(y1)f(y2) for all y1; y2 2 Y , but f(eY ) 6= eZ.

3) If (G;m) is a group in C and iX : G(X) �! G(X) is the inverse, then i is a
natural transformation. The Yoneda Lemma provides a morphism S : G �! G such
that iX = MorC(X;S) = S(X) for all X 2 C.

Proposition 2.2.2. Let C be a category with �nite (categorical) products. An
object G in C carries the structure m : G(-) � G(-) �! G(-) of a group in C if and
only if there are morphisms m : G �G �! G, u : E �! G, and S : G �! G such that
the diagrams

G �G�G G �G-m�1

G�G G-m
?

1�m

?

m

E �G �= G �= G� E G �G-1�u

G �G G-m
?

u�1

?

m1

Q
Q
Q
Q
Q
QQs

G E- G-u

G �G G �G-1�S

S�1

?

�

6
m

commute where � is the morphism de�ned in A.2. The multiplications are related by
mX = MorC(X;m) = m(X).

An analogous statement holds for monoids.

Proof. The Yoneda Lemma de�nes a bijection between the set of morphisms
f : X �! Y and the set of natural transformations f(-) : X(-) �! Y (-) by f(Z) =
MorC(Z; f). In particular we have mX = MorC(X;m) = m(X). The diagram

G(-)�G(-)�G(-) G(-)�G(-)-m-�1

G(-)�G(-) G(-)-m-?

1�m-

?

m-

commutes if and only if MorC(-;m(m� 1)) = MorC(-;m)(MorC(-;m)� 1) = m-(m-�
1) = m-(1 �m-) = MorC(-;m)(1 �MorC(-;m)) = MorC(-;m(1 � m)) if and only if
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m(m� 1) = m(1�m) if and only if the diagram

G �G �G G �G-m�1

G�G G-m
?

1�m

?

m

commutes. In a similar way one shows the equivalence of the other diagram(s).

Problem 2.2.5. Let C be a category with �nite products. Show that a morphism
f : G �! G0 in C is a homomorphism of groups if and only if

G �G G-m

G0 �G0 G0-m0
?

f�f

?

f

commutes.

De�nition 2.2.3. A cogroup (comonoid) G in C is a group (monoid) in Cop, i.e.
an object G 2 Ob C = Ob Cop together with a natural transformation m(X) : G(X)�
G(X) �! G(X) whereG(X) = MorCop(X;G) = MorC(G;X), such that (G(X);m(X))
is a group (monoid) for each X 2 C.

Remark 2.2.4. Let C be a category with �nite (categorical) coproducts. An
object G in C carries the structure m : G(-)�G(-) �! G(-) of a cogroup in C if and
only if there are morphisms � : G �! G q G, " : G �! I, and S : G �! G such that
the diagrams

Gq G G qG qG-�q1

G G qG-�

?

1q�

?

�

G qG I qG �= G �= Gq I-"q1

G G qG-�

?

1q"

?

� 1

Q
Q
Q
Q
Q
QQs

G I- G-"

Gq G Gq G-1qS
Sq1

?

�

6
r

commute where r is dual to the morphism � de�ned in A.2. The multiplications are
related by �X = MorC(�;X) = �(X).

Let C be a category with �nite coproducts and let G and G0 be cogroups in C.
Then a homomorphism of groups f : G0 �! G is a morphism f : G �! G0 in C such
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that the diagram
G G �G-�

G0 G0 �G0-�0
?

f�f

?

f

commutes. An analogous result holds for comonoids.

Remark 2.2.5. Obviously similar observations and statements can be made for
other algebraic structures in a category C. So one can introduce vector spaces and
covector spaces, monoids and comonoids, rings and corings in a category C. The
structures can be described by morphisms in C if C is a category with �nite (co-)
products.

Problem 2.2.6. Determine the structure of a covector space on a vector space
V from the fact that Hom(V;W ) is a vector space for all vector spaces W .

Proposition 2.2.6. Let G 2 C be a group with multiplication a � b, unit e, and
inverse a�1 in G(X). Then the morphisms m : G � G �! G, u : E �! G, and
S : G �! G are given by

m = p1 � p2; u = eE; S = id�1G :

Proof. By the Yoneda Lemma A.9.1 these morphisms can be constructed from
the natural transformation as follows. Under MorC(G�G;G�G) = G�G(G�G) �=

G(G�G)�G(G�G)
�
�! G(G�G) = MorC(G�G;G) the identity idG�G = (p1; p2)

is mapped to m = p1 � p2. Under MorC(E;E) = E(E) �! G(E) = MorC(E;G)
the identity of E is mapped to the neutral element u = eE. Under MorC(G;G) =
G(G) �! G(G) = MorC(G;G) the identity is mapped to its �-inverse S = id�1G .

Corollary 2.2.7. Let G 2 C be a cogroup with multiplication a � b, unit e, and
inverse a�1 in G(X). Then the morphisms � : G �! G q G, " : G �! I, and
S : G �! G are given by

� = �1 � �2; " = eI; S = id�1G :
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3. A�ne Algebraic Groups

We apply the preceding considerations to the categories K-cAlg and K-cCoalg.
Consider K-cAlg, the category of commutative K-algebras. Let A;B 2 K-cAlg.

Then A 
 B is again a commutative K-algebra with componentwise multiplication.
In fact this holds also for non-commutative K-algebras (A.5.3), but in K-cAlg we
have

Proposition 2.3.1. The tensor product in K-cAlg is the (categorical) coproduct.

Proof. Let f 2 K-cAlg(A;Z); g 2 K-cAlg(B;Z). The map [f; g] : A
B �! Z
de�ned by [f; g](a
 b) := f(a)g(b) is the unique algebra homomorphism such that
[f; g](a
 1) = f(a) and [f; g](1
 b) = g(b) or such that the diagram

A A
B-�A B��B

f
@
@
@@R

g
�

�
��	

Z
?

[f;g]

commutes, where �A(a) = a
 1 and �B(b) = 1 
 b are algebra homomorphisms.

So the category K-cAlg has �nite coproducts and also an initial object K.
A more general property of the tensor product of arbitrary algebras was already

considered in 1.2.13.
Observe that the following diagram commutes

A A
A-�1 A��2

1A
@
@
@@R

1A
�

�
��	

A
?

r

where r is the multiplication of the algebra and by the diagram the codiagonal of
the coproduct.

De�nition 2.3.2. An a�ne algebraic group is a group in the category of com-
mutative geometric spaces.

By the duality between the categories of commutative geometric spaces and com-
mutative algebras, an a�ne algebraic group is represented by a cogroup in the cate-
gory of K-cAlg of commutative algebras.

For an arbitrary a�ne algebraic group H we get by Corollary 2.2.7

� = �1 � �2 2 K-cAlg(H;H 
H);

" = e 2 K-cAlg(H;K); and S = (id)�1 2 K-cAlg(H;H):

These maps and Corollary 2.2.7 lead to

Proposition 2.3.3. Let H 2 K-cAlg. H is a representing object for a functor
K-cAlg �!Gr if and only if H is a Hopf algebra.
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Proof. Both statements are equivalent to the existence of morphisms in K-cAlg

� : H �! H 
H " : H �! K S : H �! H

such that the following diagrams commute

H H 
H-�

?
�(coassociativity)

?
�
1

H 
H H 
H 
H-1
�

H H 
H-�

H 
H K 
H �= H �= H 
 K-"
1

(counit)

?
�

?
1
"1

PPPPPPPPPPq

(coinverse)

H K-�
H-�

?
�

H 
H H 
H-S
id

id
S

6
r

This Proposition says two things. First of all each commutative Hopf algebra H
de�nes a functor K-cAlg(H; -) : K-cAlg �! Set that factors through the category
of groups or simply a functor K-cAlg(H; -) : K-cAlg �! Gr. Secondly each repre-
sentable functor K-cAlg(H; -) : K-cAlg �! Set that factors through the category of
groups is represented by a commutative Hopf algebra.

Corollary 2.3.4. An algebra H 2 K-cAlg represents an a�ne algebraic group if
and only if H is a commutative Hopf algebra.

The category of commutative Hopf algebras is dual to the category of a�ne alge-
braic groups.

In the following lemmas we consider functors represented by commutative alge-
bras. They de�ne functors on the category K-cAlg as well as more generally on
K-Alg. We �rst study the functors and the representing algebras. Then we use them
to construct commutative Hopf algebras.

Lemma 2.3.5. The functor G a : K-Alg �! Ab de�ned by G a(A) := A+, the
underlying additive group of the algebra A, is a representable functor represented by
the algebra K[x] the polynomial ring in one variable x.

Proof. G a is an underlying functor that forgets the multiplicative structure of
the algebra and only preserves the additive group of the algebra. We have to determine
natural isomorphisms (natural in A) G a(A) �= K-Alg(K[x]; A). Each element a 2 A+

is mapped to the homomorphism of algebras a� : K[x] 3 p(x) 7! p(a) 2 A. This is a
homomorphism of algebras since a�(p(x) + q(x)) = p(a) + q(a) = a�(p(x)) + a�(q(x))
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and a�(p(x)q(x)) = p(a)q(a) = a�(p(x))a�(q(x)). Another reason to see this is that
K[x] is the free (commutative) K-algebra over fxg i.e. since each map fxg �! A
can be uniquely extended to a homomorphism of algebras K[x] �! A. The map
A 3 a 7! a� 2 K-Alg(K[x]; A) is bijective with the inverse map K-Alg(K[x]; A) 3
f 7! f(x) 2 A. Finally this map is natural in A since

B K-Alg(K[x]; B)-
-�

A K-Alg(K[x]; A)--�

?

g

?

K-Alg(K[x];g)

commutes for all g 2 K-Alg(A;B).

Remark 2.3.6. Since A+ has the structure of an additive group the sets of ho-
momorphisms of algebras K-Alg(K[x]; A) are also additive groups.

Lemma 2.3.7. The functor Gm = U : K-Alg �! Gr de�ned by Gm (A) := U(A),
the underlying multiplicative group of units of the algebra A, is a representable functor
represented by the algebra K[x; x�1] = K[x; y]=(xy�1) the ring of Laurent polynomials
in one variable x.

Proof. We have to determine natural isomorphisms (natural in A) Gm(A) �=
K-Alg(K[x; x�1]; A). Each element a 2 Gm(A) is mapped to the homomorphism of
algebras a� := (K[x; x�1] 3 x 7! a 2 A). This de�nes a unique homomorphism of
algebras since each homomorphism of algebras f from K[x; x�1] = K[x; y]=(xy � 1)
to A is completely determined by the images of x and of y but in addition the images
have to satisfy f(x)f(y) = 1, i.e. f(x) must be invertible and f(y) must be the inverse
to f(x). This mapping is bijective. Furthermore it is natural in A since

B K-Alg(K[x; x�1]; B)-
-�

A K-Alg(K[x; x�1]; A)--�

?

g

?

K-Alg(K[x;x�1];g)

for all g 2 K-Alg(A;B) commute.

Remark 2.3.8. Since U(A) has the structure of a (multiplicative) group the sets
K-Alg(K[x; x�1]; A) are also groups.

Lemma 2.3.9. The functor M n : K-Alg �! K-Alg with M n(A) the algebra of
n� n-matrices with entries in A is representable by the algebra Khx11; x12; : : : ; xnni,
the non commutative polynomialring in the variables xij.

Proof. The polynomial ring Khxij i is free over the set fxijg in the category of
(non commutative) algebras, i.e. for each algebra and for each map f : fxijg �! A
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there exists a unique homomorphism of algebras g : Khx11; x12; : : : ; xnni �! A such
that the diagram

fxijg Khxij i-�

f

@
@
@
@@R

A
?

g

commutes. So each matrix in Mn(A) de�nes a unique a homomorphism of algebras
Khx11; x12; : : : ; xnni �! A and conversely.

Example 2.3.10. 1. The a�ne algebraic group called additive group

G a : K-cAlg �! Ab

with G a(A) := A+ from Lemma 2.3.5 is represented by the Hopf algebra K[x]. We
determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is � = �1 � �2 2 K-cAlg(K[x];K [x] 

K[x]) �= G a(K[x] 
 K[x]). Hence

�(x) = �1(x) + �2(x) = x
 1 + 1
 x:

The counit is " = eK = 0 2 K-cAlg(K[x];K ) �= G a(K) hence

"(x) = 0:

The antipode is S = id�1
K[x] 2 K-cAlg(K[x];K [x])

�= G a(K[x]) hence

S(x) = �x:

2. The a�ne algebraic group called multiplicative group

Gm : K-cAlg �! Ab

with Gm(A) := A� = U(A) from Lemma 2.3.7 is represented by the Hopf algebra
K[x; x�1] = K[x; y]=(xy � 1). We determine comultiplication, counit, and antipode.

By Corollary 2.2.7 the comultiplication is

� = �1 � �2 2 K-cAlg(K[x; x
�1];K[x; x�1]
 K[x; x�1]) �= Gm(K[x; x

�1]
 K[x; x�1]):

Hence
�(x) = �1(x) � �2(x) = x
 x:

The counit is " = eK = 1 2 K-cAlg(K[x; x�1];K) �= Gm(K) hence

"(x) = 1:

The antipode is S = id�1
K[x;x�1] 2 K-cAlg(K[x; x�1];K[x; x�1]) �= G a(K[x; x�1])

hence
S(x) = x�1:

3. The a�ne algebraic group called additive matrix group

M
+
n : K-cAlg �! Ab;
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with M +
n (A) the additive group of n�n-matrices with coe�cients in A is represented

by the commutative algebra M+
n = K[xij j1 � i; j � n] (Lemma 2.3.9). This algebra

must be a Hopf algebra.
The comultiplication is � = �1 � �2 2 K-cAlg(M+

n ;M
+
n 
M

+
n )
�= M +

n (M
+
n 
M

+
n ).

Hence

�(xij) = �1(xij) + �2(xij) = xij 
 1 + 1 
 xij:

The counit is " = eK = (0) 2 K-cAlg(M+
n ;K)

�= M +
n (K) hence

"(xij) = 0:

The antipode is S = id�1
M+
n
2 K-cAlg(M+

n ;M
+
n )
�= M +

n (M
+
n ) hence

S(xij) = �xij:

4. The matrix algebra M n(A) also has a noncommutative multiplication, the ma-
trix multiplication, de�ning a monoid structure M �

n (A). Thus K[xij ] carries another
coalgebra structure which de�nes a bialgebra M�

n = K[xij ]. Obviously there is no
antipode.

The comultiplication is � = �1 � �2 2 K-cAlg(M�
n ;M

�
n 
M

�
n )
�= M �

n (M
�
n 
M

�
n ).

Hence �((xij)) = �1((xij)) � �2((xij)) = (xij)
 (xij) or

�(xik) =
X
j

xij 
 xjk:

The counit is " = eK = E 2 K-cAlg(M�
n ;K)

�= M
�
n (K) hence

"(xij) = �ij:

5. Let K be a �eld of characteristic p. The algebra H = K[x]=(xp) carries the
structure of a Hopf algebra with �(x) = x 
 1 + 1 
 x, "(x) = 0, and S(x) = �x.
To show that � is well de�ned we have to show �(x)p = 0. But this is obvious by
the rules for computing p-th powers in characteristic p. We have (x
 1 + 1 
 x)p =
xp 
 1 + 1
 xp = 0.

Thus the algebra H represents an a�ne algebraic group:

�p(A) := K-cAlg(H;A) �= fa 2 Ajap = 0g:

The group multiplication is the addition of p-nilpotent elements. So we have the
group of p-nilpotent elements.

6. The algebra H = K[x]=(xn � 1) is a Hopf algebra with the comultiplication
�(x) = x 
 x, the counit "(x) = 1, and the antipode S(x) = xn�1. These maps are
well de�ned since we have for example �(x)n = (x
 x)n = xn
 xn = 1
 1. Observe
that this Hopf algebra is isomorphic to the group algebra KCn of the cyclic group Cn

of order n.
Thus the algebra H represents an a�ne algebraic group:

�n(A) := K-cAlg(H;A) �= fa 2 Ajan = 1g;
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that is the group of n-th roots of unity. The group multiplication is the ordinary
multiplication of roots of unity.

7. The linear groups or matrix groups GL(n)(A), SL(n)(A) and other such groups
are further examples of a�ne algebraic groups. We will discuss them in the section
on quantum groups.

Problem 2.3.7. 1. The construction of the general linear group

GL(n)(A) = f(aij) 2 M n(A)j(aij) invertibleg

de�nes an a�ne algebraic group. Describe the representing Hopf algebra.
2. The special linear group SL(n)(A) is an a�ne algebraic group. What is the

representing Hopf algebra?
3. The real unit circle S1(R) carry the structure of a group by the addition of

angles. Is it possible to make S1 with the a�ne algebra K[c; s]=(s2 + c2 � 1) into an
a�ne algebraic group? (Hint: How can you add two points (x1; y1) and (x2; y2) on
the unit circle, such that you get the addition of the associated angles?)
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4. Formal Groups

Consider now K-cCoalg the category of cocommutativeK-coalgebras. Let C;D 2
K-cCoalg. Then C 
D is again a cocommutative K-coalgebra by Problem A.11.4.
In fact this holds also for non-commutative K-algebras, but in K-cCoalg we have

Proposition 2.4.1. The tensor product in K-cCoalg is the (categorical) product.

Proof. Let f 2 K-cCoalg(Z;C); g 2 K-cCoalg(Z;D). The map (f; g) : Z �!
C 
 D de�ned by (f; g)(z) :=

P
f(z(1)) 
 g(z(2)) is the unique homomorphism of

coalgebras such that (1 
 "D)(f; g)(z) = f(z) and ("C 
 1)(f; g)(z) = g(z) or such
that the diagram

C C 
D�pC D-pD

f
�

�
��	

g
@
@
@@R

Z

?(f;g)

commutes, where pC(c
 d) = (1
 ")(c
 d) = c"(d) and pD(c
 d) = ("
 1)(c
 d) =
"(c)d are homomorphisms of coalgebras.

So the category K-cCoalg has �nite products and also a �nal object K.

De�nition 2.4.2. A formal group is a group in the category of K-cCoalg of
cocommutative coalgebras.

A formal group G de�nes a contravariant representable functor from K-cCoalg
to Gr, the category of groups.

Proposition 2.4.3. Let H 2 K-cCoalg. H a represents a formal group if and
only if there are given morphisms in K-cCoalg

r : H 
H �! H; u : K �! H; S : H �! H

such that the following diagrams commute

H 
H H-r
?
r(associativity)

?
r
1

H 
H 
H H 
H-1
r

H 
H H-r

K 
H �= H �= H 
 K H 
H-u
1

(unit)

?
r

?
1
u 1

PPPPPPPPPPq

(inverse)

H K-"
H-�

?
�

H 
H H 
H-S
id

id
S

6
r
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Proof. For an arbitrary formal group H we get r = p1 � p2 2 K-cCoalg(H 

H;H), u = e 2 K-cCoalg(K;H), and S = (id)�1 2 K-cCoalg(H;H). These maps,
the Yoneda Lemma and Remark 2.2.6 lead to the proof of the proposition.

Remark 2.4.4. In particular the representing object (H;r; u;�; "; S) of a formal
group G is a cocommutative Hopf algebra and every such Hopf algebra represents a
formal group. Hence the category of formal groups is equivalent to the category of
cocommutative Hopf algebras.

Corollary 2.4.5. A coalgebra H 2 K-cCoalg represents a formal group if and
only if H is a cocommutative Hopf algebra.

The category of cocommutative Hopf algebras is equivalent to the category of formal
groups.

Corollary 2.4.6. The following categories are equivalent:

1. The category of commutative, cocommutative Hopf algebras.
2. The category of commutative formal groups.
3. The dual of the category of commutative a�ne algebraic groups.

Example 2.4.7. 1. Group algebras KG are formal groups.
2. Universal enveloping algebras U(g) of Lie algebras g are formal groups.
3. The tensor algebra T (V ) and the symmetric algebra S(V ) are formal groups.
4. Let C be a cocommutative coalgebra and G be a group. Then the group
KG(C) = K-cCoalg(C;KG) is isomorphic to the set of families (h�gjg 2 G) of
decompositions of the unit of C� into a sum of orthogonal idempotents h�g 2 C

�

that are locally �nite.
To see this embed K-cCoalg(C;KG) � Hom(C;KG) and embedthe set

Hom(C;KG) into the set (C�)G of G-families of elements in the algebra C� by
h 7! (h�g) with h(c) =

P
g2G h

�
g(c)g. The linear map h is a homomorphism of

coalgebras i� (h 
 h)� = �h and "h = " i�
P
h(c(1))
 h(c(2)) =

P
h(c)(1) 


h(c)(2) and "(h(c)) = "(c) for all c 2 C i�
P
h�g(c(1))g
h

�
l (c(2))l =

P
h�g(c)g
g

and
P
h�g(c) = "(c) i�

P
h�g(c(1))h

�
l (c(2)) = �glh

�
g(c) and

P
h�g = " i� h�g � h

�
l =

�glh
�
g and

P
h�g = 1C� . Furthermore the families must be locally �nite, i.e. for

each c 2 C only �nitely many of them give non-zero values.
5. Let C be a cocommutative coalgebra and K[x] be the Hopf algebra with �(x) =
x 
 1 + 1 
 x (the symmetric algebra of the one dimensional vector space
Kx). We embed as before K-cCoalg(C;K[x]) � Hom(C;K[x]) = (C�)fN0g,
the set of locally �nite N0-families in C� by h(c) =

P1
i=0 h

�
i (c)x

i. The map
h is a homomorphism of coalgebras i� �(h(c)) =

P
h�i (c)(x 
 1 + 1 
 x)i =P

h�i (c)
�
i

l

�
xl
xi�l = (h
h)�(c) =

P
h�i (c(1))h

�
j (c(2))x

i
xj and "(
P
h�i (c)x

i) =

"(c) i� h�i � h
�
j =

�
i+j
i

�
h�i+j and h

�
0 = " = 1C� .

Now let K be a �eld of characteristic zero. Let pi := h�i =i!. Then the con-
ditions simplify to pipj = pi+j and p0 = 1: Hence the series for h is completely
determined by the term p := p1 since pn = pn1 . Since the series must be locally
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�nite we get that for each c 2 C there must be an n 2 N0 such that pm(c) = 0
for all m � n. Hence the element p is topologically nilpotent and

K-cCoalg(C;K[x]) �= radt(C
�)

the radial of topologically nilpotent elements of C�.
It is easy to see that radt(C�) is a group under addition and that this group

structure coincides with the one on K-cCoalg(C;K[x]).

Remark 2.4.8. Let H be a �nite dimensional Hopf algebra. Then by A.6.6 and
A.6.8 we get that H� is an algebra and a coalgebra. The commutative diagrams
de�ning the bialgebra property and the antipode can be transferred easily, so H� is
again a Hopf algebra. Hence the functor -� : vec �! vec from �nite dimensional
vector spaces to itself induces a duality -� : K-hopfalg �! K-hopfalg from the
category of �nite dimensional Hopf algebras to itself.

An a�ne algebraic group is called �nite if the representing Hopf algebra is �nite
dimensional. A formal group is called �nite if the representing Hopf algebra is �nite
dimensional.

Thus the category of �nite a�ne algebraic groups is equivalent to the category of
�nite formal groups.

The category of �nite commutative a�ne algebraic groups is self dual. The cat-
egory of �nite commutative a�ne algebraic groups is equivalent (and dual) to the
category of �nite commutative formal groups.
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5. Quantum Groups

De�nition 2.5.1. (Drinfel'd) A quantum group is a noncommutative noncocom-
mutative Hopf algebra.

Remark 2.5.2. We shall consider all Hopf algebras as quantum groups. Ob-
serve, however, that the commutative Hopf algebras may be considered as a�ne
algebraic groups and that the cocommutative Hopf algebras may be considered as
formal groups. Their property as a quantum space or as a quantum monoid will play
some role. But often the (possibly nonexisting) dual Hopf algebra will have the geo-
metrical meaning. The following examplesSLq(2) and GLq(2) will have a geometrical
meaning.

Example 2.5.3. The smallest proper quantum group, i.e. the smallest noncom-
mutative noncocommutative Hopf algebra, is the 4-dimensional algebra

H4 := Khg; xi=(g2 � 1; x2; xg + gx)

which was �rst described by M. Sweedler. The coalgebra structure is given by

�(g) = g 
 g; �(x) = x
 1 + g 
 x;
"(g) = 1; "(x) = 0;

S(g) = g�1(= g); S(x) = �gx:

Since it is �nite dimensional its linear dual H�
4 is also a noncommutative noncocom-

mutative Hopf algebra. It is isomorphic as a Hopf algebra to H4. In fact H4 is up to
isomorphism the only noncommutative noncocommutative Hopf algebra of dimension
4.

Example 2.5.4. The a�ne algebraic group SL(n) : K-cAlg �! Gr de�ned by
SL(n)(A), the group of n � n-matrices with coe�cients in the commutative algebra
A and with determinant 1, is represented by the algebra O(SL(n)) = SL(n) =
K[xij ]=(det(xij)� 1) i.e.

SL(n)(A) �= K-cAlg(K[xij ]=(det(xij)� 1); A):

SinceSL(n)(A) has a group structure by the multiplication of matrices, the represent-
ing commutative algebra has a Hopf algebra structure with the diagonal � = �1 � �2
hence

�(xik) =
X

xij 
 xjk;

the counit "(xij) = �ij and the antipode S(xij) = adj(X)ij where adj(X) is the adjoint
matrix of X = (xij). We leave the veri�cation of these facts to the reader.

We consider SL(n) �Mn = A n
2

as a subspace of the n2-dimensional a�ne space.

Example 2.5.5. Let Mq(2) = K

��
a b
c d

��
=I as in 1.3.6 with I the ideal gen-

erated by

ab� q�1ba; ac� q�1ca; bd� q�1db; cd � q�1dc; (ad� q�1bc)� (da� qcb); bc� cb:
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We �rst de�ne the quantum determinant detq = ad � q�1bc = da � qcb in Mq(2).
It is a central element. To show this, it su�ces to show that detq commutes with the
generators a; b; c; d:

(ad� q�1bc)a = a(da� qbc); (ad� q�1bc)b = b(ad� q�1bc);
(ad� q�1bc)c = c(ad� q�1bc); (da� qbc)d = d(ad� q�1bc):

We can form the quantum determinant of an arbitrary quantum matrix in A by

detq

�
a0 b0

c0 d0

�
:= a0d0 � q�1b0c0 = d0a0 � qc0b0 = '(detq)

if ' :Mq(2) �! A is the algebra homomorphism associated with the quantum matrix�
a0 b0

c0 d0

�
.

Given two commuting quantum 2�2-matrices

�
a0 b0

c0 d0

�
;

�
a00 b00

c00 d00

�
. The quantum

determinant preserves the product, since

detq(

�
a0 b0

c0 d0

��
a00 b00

c00 d00

�
) = detq

�
a0a00 + b0c00 a0b00 + b0d00

c0a00 + d0c00 c0b00 + d0d00

�

= (a0a00 + b0c00)(c0b00 + d0d00)� q�1(a0b00 + b0d00)(c0a00 + d0c00)
= a0c0a00b00 + b0c0c00b00 + a0d0a00d00 + b0d0c00d00

�q�1(a0c0b00a00 + b0c0d00a00 + a0d0b00c00 + b0d0d00c00)
= b0c0c00b00 + a0d0a00d00 � q�1b0c0d00a00 � q�1a0d0b00c00

= b0c0c00b00 + a0d0a00d00 � q�1b0c0d00a00 � q�1a0d0b00c00

�q�1b0c0(a00d00 � d00a00 � q�1b00c00 + qc00b00)
= a0d0a00d00 � q�1a0d0b00c00 � q�1b0c0(a00d00 � q�1b00c00)
= (a0d0 � q�1b0c0)(a00d00 � q�1b00c00)

= detq

�
a0 b0

c0 d0

�
detq

�
a00 b00

c00 d00

�
:

(2)

In particular we have �(detq) = detq 
detq and "(detq) = 1. The quantum determi-
nant is a group like element (see 2.1.6).

Now we de�ne an algebra

SLq(2) :=Mq(2)=(detq � 1):

The algebra SLq(2) represents the functor

SLq(2)(A) = f

�
a0 b0

c0 d0

�
2 Mq(2)(A)jdetq

�
a0 b0

c0 d0

�
= 1g:

There is a surjective homomorphism of algebras Mq(2) �! SLq(2) and SLq(2) is a
subfunctor of Mq(2).

Let X;Y be commuting quantum matrices satisfying detq(X) = 1 = detq(Y ).
Since detq(X) detq(Y ) = detq(XY ) for commuting quantum matrices we get
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detq(XY ) = 1, hence SLq(2) is a quantum submonoid of Mq(2) and SLq(2) is a
bialgebra with diagonal

�

�
a b
c d

�
=

�
a b
c d

�



�
a b
c d

�
;

and

"

�
a b
c d

�
=

�
1 0
0 1

�
:

To show that SLq(2) has an antipode we �rst de�ne a homomorphism of algebras
T :Mq(2) �!Mq(2)op by

T

�
a b
c d

�
:=

�
d �qb

�q�1c a

�
:

We check that T : K

��
a b
c d

��
�!Mq(2)op vanishes on the ideal I.

T (ab� q�1ba) = T (b)T (a)� q�1T (a)T (b) = �qbd+ q�1qdb = 0:

We leave the check of the other de�ning relations to the reader. Furthermore T
restricts to a homomorphism of algebras S : SLq(2) �! SLq(2)

op since T (detq) =
T (ad � q�1bc) = T (d)T (a) � q�1T (c)T (b) = ad � q�1(�q�1c)(�qb) = detq hence
T (detq�1) = detq�1 = 0 in SLq(2).

One veri�es easily that S satis�es
P
S(x(1))x(2) = "(x) for all given generators

of SLq(2), hence S is a left antipode by 2.1.3. Symmetrically S is a right antipode.
Thus the bialgebra SLq(2) is a Hopf algebra or a quantum group.

Example 2.5.6. The a�ne algebraic group GL(n) : K-cAlg �! Gr de�ned by
GL(n)(A), the group of invertible n�n-matrices with coe�cients in the commutative
algebra A, is represented by the algebra O(GL(n)) = GL(n) = K[xij ; t]=(det(xij)t�1)
i.e.

GL(n)(A) �= K-cAlg(K[xij ; t]=(det(xij)t� 1); A)):

Since GL(n)(A) has a group structure by the multiplication of matrices, the represent-
ing commutative algebra has a Hopf algebra structure with the diagonal � = �1 � �2
hence

�(xik) =
X

xij 
 xjk;

the counit "(xij) = �ij and the antipode S(xij) = t � adj(X)ij where adj(X) is the
adjoint matrix of X = (xij). We leave the veri�cation of these facts from linear
algebra to the reader. The diagonal applied to t gives

�(t) = t
 t:

Hence t(= det(X)�1) is a grouplike element inGL(n). This reects the rule det(AB) =
det(A) det(B) hence det(AB)�1 = det(A)�1 det(B)�1.
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Example 2.5.7. Let Mq(2) be as in the example 2.5.5. We de�ne

GLq(2) :=Mq(2)[t]=J

with J generated by the elements t � (ad� q�1bc)� 1: The algebra GLq(2) represents
the functor

GLq(2)(A) = f

�
a0 b0

c0 d0

�
2 Mq(2)(A)jdetq

�
a0 b0

c0 d0

�
invertible in Ag:

In fact there is a canonical homomorphism of algebras Mq(2) �! GLq(2). A ho-
momorphism of algebras ' : Mq(2) �! A has a unique continuation to GLq(2) i�

detq('

�
a b
c d

�
) is invertible:

Mq(2) Mq(2)[t]- Gq(2)-

A

@
@
@
@@R ?

�
�

�
��	

with t 7! detq

�
a0 b0

c0 d0

��1
: Thus GLq(2)(A) is a subset of Mq(2)(A). Observe that

Mq(2) �! GLq(2) is not surjective.
Since the quantum determinant preserves products and the product of invertible

elements is again invertible we get GLq(2) is a quantum submonoid of Mq(2), hence

� : GLq(2) �! GLq(2)
GLq(2) with �

�
a b
c d

�
=

�
a b
c d

�



�
a b
c d

�
and �(t) = t
t.

We construct the antipode for GLq(2). We de�ne T :Mq(2)[t] �!Mq(2)[t]op by

T

�
a b
c d

�
:= t

�
d �qb

�q�1c a

�
and T (t) := detq

�
a b
c d

�
= ad� q�1bc:

As in 2.5.5 T de�nes a homomorphism of algebras. We obtain an induced homo-
morphism of algebras S : GLq(2) �! GLq(2)

op or a GLq(2)
op-point in GLq(2) since

S(t(ad� q�1bc)� 1) = (S(d)S(a)� q�1S(c)S(b))S(t)�S(1) = (t2ad� q�1t2cb)(ad�
q�1bc)� 1 = t2(ad� q�1bc)2 � 1 = 0.

Since S satis�es
P
S(x(1))x(2) = "(x) for all given generators, S is a left antipode

by 2.1.3. Symmetrically S is a right antipode. Thus the bialgebra GLq(2) is a Hopf
algebra or a quantum group.

Example 2.5.8. Let sl(2) be the 3-dimensional vector space generated by the
matrices

X =

�
0 1
0 0

�
; Y =

�
0 0
1 0

�
; H =

�
1 0
0 �1

�
:

Then sl(2) is a subspace of the algebraM(2) of 2�2-matrices over K. We easily verify
[X;Y ] = XY �Y X = H, [H;X] = HX�XH = 2X, and [H;Y ] = HY �Y H = �2Y ,



5. QUANTUM GROUPS 57

so that sl(2) becomes a Lie subalgebra ofM(2)L, which is the Lie algebra of matrices
of trace zero. The universal enveloping algebra U(sl(2)) is a Hopf algebra generated
as an algebra by the elements X;Y;H with the relations

[X;Y ] = H; [H;X] = 2X; [H;Y ] = �2Y:

As a consequence of the Poincar�e-Birkho�-Witt Theorem (that we don't prove)
the Hopf algebra U(sl(2)) has the basis fX iY jHkji; j; k 2 Ng. Furthermore one can
prove that all �nite dimensional U(sl(2))-modules are semisimple.

Example 2.5.9. We de�ne the so-called q-deformed version Uq(sl(2)) of U(sl(2))
for any q 2 K, q 6= 1;�1 and q invertible. Let Uq(sl(2)) be the algebra generated by
the elements E;F;K;K 0 with the relations

KK 0 = K 0K = 1;
KEK 0 = q2E; KFK 0 = q�2F;

EF � FE =
K �K 0

q � q�1
:

Since K 0 is the inverse of K in Uq(sl(2)) we write K�1 = K 0. The representation
theory of this algebra is fundamentally di�erent depending on whether q is a root of
unity or not.

We show that Uq(sl(2)) is a Hopf algebra or quantum group. We de�ne

�(E) = 1
 E + E 
K; �(F ) = K�1 
 F + F 
 1;
�(K) = K 
K;

"(E) = "(F ) = 0; "(K) = 1;
S(E) = �EK�1; S(F ) = �KF; S(K) = K�1:

.
First we show that � can be expanded in a unique way to an algebra homomor-

phism � : Uq(sl(2)) �! Uq(sl(2)) 
 Uq(sl(2)). Write Uq(sl(2)) as the residue class
algebra KhE;F;K;K�1i=I where I is generated by

KK�1 � 1; K�1K � 1;
KEK�1 � q2E; KFK�1 � q�2F;

EF � FE �
K �K�1

q � q�1
:

Since K�1 must be mapped to the inverse of �(K) we must have �(K�1) = K�1 

K�1. Now � can be expanded in a unique way to the free algebra � : KhE;F;K;K�1i
�! Uq(sl(2)) 
 Uq(sl(2)). We have �(KK�1) = �(K)�(K�1) = 1 and similarly
�(K�1K) = 1. Furthermore we have �(KEK�1) = �(K)�(E)�(K�1) = (K 
K)
(1
E+E
K)(K�1
K�1) = KK�1
KEK�1+KEK�1
K2K�1 = q2(1
E+
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E 
K) = q2�(E) = �(q2E) and similarly �(KFK�1) = �(q�2F ). Finally we have

�(EF � FE) = (1 
E + E 
K)(K 0 
 F + F 
 1)
�(K 0 
 F + F 
 1)(1 
 E + E 
K)

= K 0 
 EF + F 
 E + EK 0 
KF + EF 
K
�K 0 
 FE �K 0E 
 FK � F 
 E � FE 
K

= K 0 
 (EF � FE) + (EF � FE)
K

=
K 0 
 (K �K 0) + (K �K 0)
K

q � q�1

= �

�
K �K 0

q � q�1

�

hence � vanishes on I and can be factorized through a unique algebra homomorphism

� : Uq(sl(2)) �! Uq(sl(2))
 Uq(sl(2)):

In a similar way, actually much simpler, one gets an algebra homomorphism

" : Uq(sl(2)) �! K:

To check that � is coassociative it su�ces to check this for the generators of the
algebra. We have (� 
 1)�(E) = (�
 1)(1 
 E + E 
K) = 1 
 1 
 E + 1 
 E 

K + E 
 K 
 K = (1 
 �)(1 
 E + E 
 K) = (1 
 �)�(E). Similarly we get
(�
 1)�(F ) = (1
�)�(F ). For K the claim is obvious. The counit axiom is easily
checked on the generators.

Now we show that S is an antipode for Uq(sl(2)). First de�ne S : KhE;F;K;K�1i
�! Uq(sl(2))op by the de�nition of S on the generators. We have

S(KK�1) = 1 = S(K�1K);
S(KEK�1) = �KEK�1K�1 = �q2EK�1 = S(q2E);
S(KFK�1) = �KKFK�1 = �q�2KF = S(q�2F );

S(EF � FE) = KFEK�1 � EK�1KF = KFK�1KEK � EF

=
K�1 �K

q � q�1
= S

�
K �K�1

q � q�1

�
:

So S de�nes a homomorphism of algebras S : Uq(sl(2)) �! Uq(sl(2)). Since S satis�esP
S(x(1))x(2) = "(x) for all given generators, S is a left antipode by 2.1.3. Symmet-

rically S is a right antipode. Thus the bialgebra Uq(sl(2)) is a Hopf algebra or a
quantum group.

This quantum group is of central interest in theoretical physics. Its representation
theory is well understood. If q is not a root of unity then the �nite dimensional
Uq(sl(2))-modules are semisimple. Many more properties can be found in [Kassel:
Quantum Groups].
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6. Quantum Automorphism Groups

Lemma 2.6.1. The category K-Alg of K-algebras has arbitrary coproducts.

Proof. This is a well known fact from universal algebra. In fact all equationally
de�ned algebraic categories are complete and cocomplete. We indicate the construc-
tion of the coproduct of a family (Aiji 2 I) of K-algebras.

De�ne
`

i2I Ai := T (
L

i2I Ai)=L where T denotes the tensor algebra and where
L is the two sided ideal in T (

L
i2I Ai) generated by the set

J := f�jk(xkyk)� �(jk(xk))�(jk(yk)); 1T (LAi) � �jk(1Ak )jxk; yk 2 Ak; k 2 Ig:

Then one checks easily for a family of algebra homomorphisms (fk : Ak �! Bjk 2 I)
that the following diagram gives the required universal property

Ak

L
Ai

-jk T (
L
Ai)-� T (

L
Ai)=L-�

B

fk

PPPPPPPPPPPPPPPPPPq

f

HHHHHHHHHHHHj

f 0

@
@
@
@
@
@R ?

�f

Corollary 2.6.2. The category of bialgebras has �nite coproducts.

Proof. The coproduct
`
Bi of bialgebras (Biji 2 I) in K-Alg is an algebra. For

the diagonal and the counit we obtain the following commutative diagrams

Bk 
Bk

`
Bi 


`
Bi

-
jk
jk

Bk

`
Bi

-jk

?

�k

?

91�

Bk

`
Bi

-jk

"k

@
@
@
@@R
K

?

91"

since in both cases
`
Bi is a coproduct in K-Alg. Then it is easy to show that

these homomorphisms de�ne a bialgebra structure on
`
Bi and that

`
Bi satis�es

the universal property for bialgebras.

Theorem 2.6.3. Let B be a bialgebra. Then there exists a Hopf algebra H(B)
and a homomorphism of bialgebras � : B �! H(B) such that for every Hopf alge-
bra H and for every homomorphism of bialgebras f : B �! H there is a unique
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homomorphism of Hopf algebras g : H(B) �! H such that the diagram

B H(B)-�

f
@
@
@
@@R
H
?

g

commutes.

Proof. De�ne a sequence of bialgebras (Biji 2 N) by

B0 := B;
Bi+1 := Bopcop

i ; i 2 N:

Let B0 be the coproduct of the family (Biji 2 N) with injections �i : Bi �! B 0.
Because B0 is a coproduct of bialgebras there is a unique homomorphism of bialgebras
S0 : B0 �! B0opcop such that the diagrams

Bopcop
i+1 B0opcop-

�i+1

Bi B0-�i

?

id

?

S0

commute.
Now let I be the two sided ideal in B0 generated by

f(S 0 � 1� u")(xi); (1 � S
0 � u")(xi)jxi 2 �i(Bi); i 2 Ng:

I is a coideal, i.e. "B0(I) = 0 and �B0(I) � I 
B0 +B0 
 I.
Since "B0 and �B0 are homomorphisms of algebras it su�ces to check this for

the generating elements of I. Let x 2 Bi be given. Then we have "((1 � S0)�i(x)) =
"(r(1
S0)��i(x)) = rK("
"S 0)(�i
�i)�i(x) = ("�i
"�i)�i(x) = "i(x) = "(u"�i(x)).
Symmetrically we have "((S0 � 1)�i(x)) = "(u"�i(x)). Furthermore we have

�((1 � S0)�i(x))
= �r(1
 S0)��i(x)
= (r
r)(1
 � 
 1)(�
�)(1
 S0)(�i 
 �i)�i(x)
= (r
r)(1
 � 
 1)(�
 � (S0 
 S0)�)(�i 
 �i)�i(x)
=
P
(r
r)(1
 � 
 1)(�i(x(1))
 �i(x(2))
 S0�i(x(4))
 S0�i(x(3)))

=
P
�i(x(1))S

0�i(x(4))
 �i(x(2))S
0�i(x(3))

=
P
�i(x(1))S

0�i(x(3))
 (1 � S0)�i(x(2)):
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Hence we have

�((1 � S 0�u")�i(x))
=
P
�i(x(1))S

0�i(x(3))
 (1 � S0)�i(x(2))��u"�i(x)
=
P
�i(x(1))S

0�i(x(3))
 ((1 � S0)� u")�i(x(2))
+
P
�i(x(1))S

0�i(x(3))
 u"�i(x(2))��u"�i(x)
=
P
�i(x(1))S0�i(x(3))
 (1 � S0 � u")�i(x(2))
+
P
�i(x(1))S

0�i(x(2))
 1B0 � u"�i(x)
 1B0

=
P
�i(x(1))S

0�i(x(3))
 (1 � S0 � u")�i(x(2))
+(1 � S0 � u")�i(x)
 1B0

2 B0 
 I + I 
B 0:

Thus I is a coideal and a biideal of B0.
Now let H(B) := B0=I and let � : B0 �! H(B) be the residue class homomor-

phism. We show that H(B) is a bialgebra and � is a homomorphism of bialgebras.
H(B) is an algebra and � is a homomorphism of algebras since I is a two sided ideal.
Since I � Ker(") there is a unique factorization

B0 B0=I-�

"0
@
@
@
@@R
K

?

"

where " : B0=I �! K is a homomorphism of algebras. Since �(I) � B0
 I+ I
B0 �
Ker(� 
 � : B0 
B0 �! B0=I 
 B0=I) and thus I � Ker(�(� 
 �)) we have a unique
factorization

B0 
B0 B0=I 
B0=I-
�
�

B0 B0=I-�

?

�B0

?

�

by an algebra homomorphism � : B0=I �! B0=I 
B0=I. Now it is easy to verify that
B0=I becomes a bialgebra and � a bialgebra homomorphism.

We show that the map �S0 : B0 �! B0=I can be factorized through B 0=I in the
commutative diagram

B0 B0=I-�

�S0
@
@
@
@@R
B0=I
?

S
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This holds if I � Ker(�S0). Since Ker(�) = I it su�ces to show S0(I) � I. We have

S0((S 0 � 1)�i(x)) =

= r� (S02�i 
 S0�i)�i(x)
= r� (S0 
 1)(�i+1 
 �i+1)�i(x)
= r(1
 S0)(�i+1 
 �i+1)��i(x)
= r(1
 S0)(�i+1 
 �i+1)�i+1(x)
= (1 � S0)�i+1(x)

and

S 0(u"�i(x)) = S0(1)"i(x) = S0(1)"i+1(x) = S0(u"�i+1(x))

hence we get

S0((S0 � 1 � u")�i(x)) = (1 � S0 � u")�i+1(x) 2 I:

This shows S0(I) � I. So there is a unique homomorphism of bialgebras S : H(B) �!
H(B)opcop such that the diagram

B 0opcop H(B)opcop-
�

B0 H(B)-�

?

S0

?

S

commutes.
Now we show that H(B) is a Hopf algebra with antipode S. By Proposition 2.1.3

it su�ces to test on generators of H(B) hence on images ��i(x) of elements x 2 Bi.
We have

(1 � S)��i(x) = r(� 
 S�)��i(x) = r(� 
 �)(1 
 S0)��i(x) =
= �(1 � S0)�i(x) = �u"�i(x) = u"��i(x):

By Proposition 2.1.3 S is an antipode for H(B).
We prove now that H(B) together with � := ��0 : B �! H(B) is a free Hopf

algebra over B. Let H be a Hopf algebra and let f : B �! H be a homomorphism of
bialgebras. We will show that there is a unique homomorphism �f : H(B) �! H such
that

B H(B)-�

f

@
@
@
@@R
H
?

�f

commutes.
We de�ne a family of homomorphisms of bialgebras fi : Bi �! H by

f0 := f;
fi+1 := SHfi; i 2 N:
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We have in particular fi = SiHf for all i 2 N. Thus there is a unique homomorphism
of bialgebras f 0 : B0 =

`
Bi �! H such that f 0�i = fi for all i 2 N.

We show that f 0(I) = 0. Let x 2 Bi. Then

f 0((1 � S0)�i(x))= f 0(r(1
 S0)(�i 
 �i)�i(x))
=
P
f 0�i(x(1))f

0S0�i(x(2))
=
P
f 0�i(x(1))f

0�i+1(x(2))
=
P
fi(x(1))fi+1(x(2))

=
P
fi(x(1))Sfi(x(2))

= (1 � S)fi(x) = u"fi(x) = u"i(x)
= f 0(u"�i(x)):

This together with the symmetric statement gives f 0(I) = 0. Hence there is a unique
factorization through a homomorphism of algebras �f : H(B) �! H such that f 0 = �f�.

The homomorphism �f : H(B) �! H is a homomorphism of bialgebras since the
diagram

B 0=I-
�

-f 0

-
�f

-
f 0
f 0

B0=I 
B0=I-�
� -�f
 �f

H

H 
H
?
�H?

�0

B0

B 0 
B0
?

�

commutes with the possible exception of the right hand square � �f and ( �f
 �f)�0. But
� is surjective so also the last square commutes. Similarly we get "H �f = "H(B). Thus
�f is a homomorphism of bialgebras and hence a homomorphism of Hopf algebras.

Remark 2.6.4. In chapter 1 we have constructed universal bialgebrasM(A) with
coaction � : A �! M(A) 
 A for certain algebras A (see 1.3.12). This induces a
homomorphism of algebras

�0 : A �! H(M(A))
A

such that A is a comodule-algebra over the Hopf algebra H(M(A)). If H is a Hopf
algebra and A is an H-comodule algebra by @ : A �! H 
A then there is a unique
homomorphism of bialgebras f :M(A) �! H such that

A M(A)
A-�

@

@
@
@
@@R
H 
A
?

f
1
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commutes. Since the f :M(A) �! H factorizes uniquely through �f : H(M(A)) �! H
we get a commutative diagram

A H(M(A))
A-�0

@

@
@
@
@@R
H 
A
?

�f
1

with a unique homomorphism of Hopf algebras �f : H(M(A)) �! H.
This proof depends only on the existence of a universal algebra M(A) for the

algebra A. Hence we have

Corollary 2.6.5. Let X be a quantum space with universal quantum space (and
quantum monoid)M(X ). Then there is a unique (up to isomorphism) quantum group
H(M(X )) acting universally on X .

This quantum group H(M(X )) can be considered as the \quantum subgroup of
invertible elements" of M(X ) or the quantum group of \quantum automorphisms"
of X .
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7. Duality of Hopf Algebras

In 2.4.8 we have seen that the dual Hopf algebra H� of a �nite dimensional Hopf
algebra H satis�es certain relations w.r.t. the evaluation map. The multiplication
of H� is derived from the comultiplication of H and the comultiplication of H� is
derived from the multiplication of H.

This kind of duality is restricted to the �nite-dimensional situation. Nevertheless
one wants to have a process that is close to the �nite-dimensional situation. This
short section is devoted to several approaches of duality for Hopf algebras.

First we use the relations of the �nite-dimensional situation to give a general
de�nition.

De�nition 2.7.1. Let H and L be Hopf algebras. Let

ev : L
H 3 a
 h 7! ha; hi 2 K

be a bilinear form satisfying

ha
 b;
X

h(1) 
 h(2)i = hab; hi; h1; hi = "(h)(3)

h
X

a(1) 
 a(2); h
 ji = ha; hji; ha; 1i = "(a)(4)

ha; S(h)i = hS(a); hi(5)

Such a map is called a weak duality of Hopf algebras. The bilinear form is called left
(right) nondegenerate if ha;Hi = 0 implies a = 0 (hL; hi = 0 implies h = 0). A
duality of Hopf algebras is a weak duality that is left and right nondegenerate.

Remark 2.7.2. If H is a �nite dimensional Hopf algebra then the usual evalua-
tion ev : H� 
H �! K de�nes a duality of Hopf algebras.

Remark 2.7.3. Assume that ev : L
H �! K de�nes a weak duality. By A.4.15
we have isomorphisms Hom(L 
 H;K) �=
Hom(L;Hom(H;K)) and Hom(L 
 H;K) �= Hom(H;Hom(L;K)). Denote the ho-
momorphisms associated with ev : L 
 K �! K by ' : L �! Hom(H;K) resp.
 : H �! Hom(L;K). They satisfy '(a)(h) = ev(a
 h) =  (h)(a).

ev : L 
 K �! K is left nondegenerate i� ' : L �! Hom(H;K) is injective.
ev : L 
K �! K is right nondegenerate i�  : H �! Hom(L;K) is injective.

Lemma 2.7.4. 1. The bilinear form ev : L
H �! K satis�es (3) if and only if
' : L �! Hom(H;K) is a homomorphism of algebras.

2. The bilinear form ev : L 
 H �! K satis�es (4) if and only if  : H �!
Hom(L;K) is a homomorphism of algebras.

Proof. ev : L
H �! K satis�es the right equation of (3) i� '(ab)(h) = hab; hi =
ha
 b;

P
h(1)
h(2)i =

P
ha; h(1)ihb; h(2)i =

P
'(a)(h(1))'(b)(h(2)) = ('(a) �'(b))(h)

by the de�nition of the algebra structure on Hom(H;K).
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ev : L
H �! K satis�es the left equation of (3) i� '(1)(h) = h1; hi = "(h).
The second part of the Lemma follows by symmetry.

Example 2.7.5. There is a weak duality between the quantum groups SLq(2)
and Uq(sl(2)). (Kassel: Chapter VII.4).

Proposition 2.7.6. Let ev : L
H �! K be a weak duality of Hopf algebras. Let
I := Ker(' : L �! Hom(H;K)) and J := Ker( : H �! Hom(L;K)). Let L := L=I
and H := H=J . Then L and H are Hopf algebras and the induced bilinear form
ev : L 
H �! K is a duality.

Proof. First observe that I and J are two sided ideals hence L and H are
algebras. Then ev : L 
 H �! K can be factored through ev : L 
H �! K and the
equations (3) and (4) are still satis�ed for the residue classes.

The ideals I and J are biideals. In fact, let x 2 I then h�(x); a
 bi = hx; abi = 0
hence �(x) 2 Ker(' 
 ' : L 
 L �! Hom(H 
 H;K) = I 
 L + L 
 I (the last
equality is an easy exercise in linear algebra) and "(x) = hx; 1i = 0. Hence as in the
proof of Theorem 2.6.3 we get that L = L=I and H = H=J are bialgebras. Since
hS(x); ai = hx; S(a)i = 0 we have an induced homomorphism S : L �! L. The
identities satis�ed in L hold also for the residue classes in L so that L and similarly
H become Hopf algebras. Finally we have by de�nition of I that hx; ai = hx; ai = 0
for all a 2 H i� a 2 I or a = 0. Thus the bilinear form ev : L 
 H �! K de�nes a
duality.

Problem 2.7.8. (in Linear Algebra)

1. For U � V de�ne U? := ff 2 V �jf(U) = 0g. For Z � V � de�ne Z? := fv 2
V jZ(v) = 0g. Show that the following hold:
(a) U � V =) U = U??;
(b) Z � V � and dimZ <1 =) Z = Z??;
(c) fU � V jdimV=U < 1g �= fZ � V �jdimZ < 1g under the maps

U 7! U? and Z 7! Z?.
2. Let V =

L1
i=1 Kxi be an in�nite-dimensional vector space. Find an element

g 2 (V 
 V )� that is not in V � 
 V � (� (V 
 V )�).

De�nition 2.7.7. Let A be an algebra. We de�ne Ao := ff 2 A�j9 ideal AIA �
A : dim(A=I) <1 and f(I) = 0g.

Lemma 2.7.8. Let A be an algebra and f 2 A�. The following are equivalent:

1. f 2 Ao;
2. there exists IA � A such that dimA=I <1 and f(I) = 0;
3. A � f � AHomK(:AA; :K) is �nite dimensional;
4. A � f �A is �nite dimensional;
5. r�(f) 2 A� 
A�.

Proof. 1. =) 2. and 4. =) 3. are trivial.
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2. =) 3. Let IA � A with f(I) = 0 and dimA=I <1. Write A� 
A �! K as
hg; ai. Then haf; ii = hf; iai = 0 hence Af � I? and dimAf <1.

3. =) 2. Let dimAf <1. Then IA := (Af)? is an ideal of �nite codimension
in A and f(I) = 0 holds.

2. =) 1. Let IA � A with dimA=IA < 1 and f(I) = 0 be given. Then
right multiplication induces ' : A �! HomK(A=I:;A=I:) and dimEndK(A=I) < 1.
Thus J = Ker(') � A is a two sided ideal of �nite codimension and J � I (since
'(j)(�1) = 0 = �1 � j = �j implies j 2 I). Furthermore we have f(J) � f(I) = 0.

1. =) 4. hafb; ii = hf; biai = 0 implies A � f �A � AI
?
A hence dimAfA <1.

3. =) 5. We observe that r�(f) = fr 2 (A 
 A)�. We want to show that
r�(f) 2 A� 
A�. Let g1; : : : ; gn be a basis of Af . Then there exist h1; : : : ; hn 2 A�

such that bf =
P
hi(b)gi. Let a; b 2 A. Then hr�(f); a 
 bi = hf; abi = hbf; ai =P

hi(b)gi(a) = h
P
gi 
 hi; a
 bi so that r�(f) =

P
gi 
 hi 2 A� 
A�.

5. =) 3. Let r�(f) =
P
gi 
 hi 2 A� 
A�. Then bf =

P
hi(b)gi for all b 2 A

as before. Thus Af is generated by the g1; : : : ; gn.

Proposition 2.7.9. Let (A;m; u) be an algebra. Then we have m�(Ao) � Ao
Ao.
Furthermore (Ao;�; ") is a coalgebra with � = m� and " = u�.

Proof. Let f 2 Ao and let g1; : : : ; gn be a basis for Af . Then we have m�(f) =P
gi
hi for suitable hi 2 A� as in the proof of the previous proposition. Since gi 2 Af

we get Agi � Af and dim(Agi) <1 and hence gi 2 Ao. Choose a1; : : : ; an 2 A such
that gi(aj) = �ij. Then (faj)(a) = f(aja) = hm�(f); aj 
 ai =

P
gi(aj)hi(a) = hj(a)

implies faj = hj 2 fA. Observe that dim(fA) < 1 hence dim(hjA) < 1, so that
hj 2 Ao. This proves m�(f) 2 Ao 
Ao.

One checks easily that counit law and coassociativity hold.

Theorem 2.7.10. (The Sweedler dual:) Let (B;m; u;�; ") be a bialgebra.
Then (Bo;��; "�;m�; u�) again is a bialgebra. If B = H is a Hopf algebra with
antipode S, then S� is an antipode for Bo = Ho.

Proof. We know that (B�;��; "�) is an algebra and that (Bo;m�; u�) is a coal-
gebra. We show now that Bo � B� is a subalgebra. Let f; g 2 Bo with dim(Bf) <
1 and dim(Bg) < 1. Let a 2 B. Then we have (a(fg))(b) = (fg)(ba) =P
f(b(1)a(1))g(b(2)a(2)) =

P
(a(1)f)(b(1))(a(2)g)(b(2)) =

P
((a(1)f)(a(2)g))(b) hence

a(fg) =
P
(a(1)f)(a(2)g) 2 (Bf)(Bg). Since dim(Bf)(Bg) < 1 we have

dim(B(fg)) < 1 so that fg 2 Bo. Furthermore we have " 2 Bo, since Ker(")
has codimension 1. Thus Bo � B� is a subalgebra. It is now easy to see that Bo is a
bialgebra.

Now let S be the antipode of H. We show S�(Ho) � Ho. Let a 2 H, f 2 Ho.
Then haS�(f); bi = hS�(f); bai = hf; S(ba)i = hf; S(a)S(b)i = hfS(a); S(b)i =
hS�(fS(a)); bi. This implies aS�(f) = S�(fS(a)) and HS�(f) = S�(fS(H)) �
S�(fH). Since f 2 Ho we get dim(fH) < 1 so that dim(S�(fH)) < 1 and
dim(HS�(f)) <1. This shows S�(f) 2 Ho. The rest of the proof is now trivial.
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De�nition 2.7.11. Let G = K-cAlg(H; -) be an a�ne group and R 2 K-cAlg.
We de�ne G
KR := Gj

R-cAlg to be the restriction to commutativeR-algebras. The

functor G 
K R is represented by H 
R 2 R-cAlg:

Gj
R-cAlg(A) = K-cAlg(H;A) �= R-cAlg(H 
R;A):

Theorem 2.7.12. (The Cartier dual:) Let H be a �nite dimensional commu-
tative cocommutative Hopf algebra. Let G = K-cAlg(H; -) be the associated a�ne
group and let D(G) := K-cAlg(H�; -) be the dual group. Then we have

D(G) = Gr(G;Gm)

where Gr(G;Gm)(R) = Gr(G 
K R;Gm 
K R) is the set of group (-functor) homo-
morphisms and Gm is the multiplicative group.

Proof. We have Gr(G;Gm)(R) = Gr(G
KR;GM
KR) �= R-Hopf-Alg(K[t; t�1]

R;H
R) �= R-Hopf-Alg(R[t; t�1];H
R) �= fx 2 U(H
R)j�(x) = x
x; "(x) = 1g,
since �(x) = x
 x and "(x) = 1 imply xS(x) = "(x) = 1.

Consider x 2 HomR((H 
 R)�; R) = HomR(H� 
 R;R). Then �(x) = x 
 x i�
x(v�w�) = hx; v�w�i = h�(x); v� 
 w�i = x(v�)x(w�) and "(x) = 1 i� hx; "i = 1.
Hence x 2 R-cAlg((H 
R)�; R) �= K-cAlg(H�; R) = D(G)(R).


