
CHAPTER 1

Commutative and Noncommutative Algebraic Geometry

Introduction

Throughout we will �x a base �eld K. The reader may consider it as real numbers
or complex numbers or any other of his most favorite �elds.

A fundamental and powerful tool for geometry is to associate with each space
X the algebra of functions O(X) from X to the base �eld (of coe�cients). The
dream of geometry is that this construction is bijective, i.e. that two di�erent spaces
are mapped to two di�erent function algebras and that each algebra is the function
algebra of some space.

Actually the spaces and the algebras will form a category. There are admissible
maps. For algebras it is quite clear what these maps will be. For spaces this is
less obvious, partly due to the fact that we did not say clearly what spaces exactly
are. Then the dream of geometry would be that these two categories, the category of
(certain) spaces and the category of (certain) algebras, are dual to each other.

Algebraic geometry, noncommutative geometry, and theoretical physics have as a
basis this fundamental idea, the duality of two categories, the category of spaces (state
spaces in physics) and the category of function algebras (algebras of observables) in
physics. We will present this duality in the 1. chapter. Certainly the type of spaces
as well as the type of algebras will have to be speci�ed.

Theoretical physics uses the categories of locally compact Hausdor� spaces and
of commutative C�-algebras. A famous theorem of Gelfand-Naimark says that these
categories are duals of each other.

(A�ne) algebraic geometry uses a duality between the categories of a�ne algebraic
schemes and of (reduced) �nitely generated commutative algebras.

To get the whole framework of algebraic geometry one needs to go to more gen-
eral spaces by patching a�ne spaces together. On the algebra side this amounts to
considering sheaves of commutative algebras. We shall not pursue this more general
approach to algebraic geometry, since generalizations to noncommutative geometry
are still in the state of development and incomplete.

Noncommutative geometry uses either (imaginary) noncommutative spaces and
not necessarily commutative algebras or (imaginary) noncommutative spaces and not
necessarily commutative C�-algebras.

We will take an approach to the duality between geometry and algebra that heavily
uses functorial tools, especially representable functors. The a�ne (algebraic) spaces
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2 1. COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAIC GEOMETRY

we use will be given in the form of sets of common zeros of certain polynomials, where
the zeros can be taken in arbitrary (commutative) K-algebras B. So an a�ne space
will consist of many di�erent sets of zeros, depending on the choice of the coe�cient
algebra B.

We �rst give a short introduction to commutative algebraic geometry in this setup
and develop a duality between the category of a�ne (algebraic) spaces and the cate-
gory of (�nitely generated) commutative algebras.

Then we will transfer it to the noncommutative situation. The functorial approach
to algebraic geometry is not too often used but it lends itself particularly well to the
study of the noncommutative situation. Even in that situation one obtains space-like
objects.

The chapter will close with a �rst step to construct automorphism \groups" of
noncommutative spaces. Since the construction of inverses presents special problems
we will only construct endomorphism \monoids" in this chapter and postpone the
study of invertible endomorphisms or automorphisms to the next chapter.

At the end of the chapter you should

� know how to construct an a�ne scheme from a commutative algebra,
� know how to construct the function algebra of an a�ne scheme,
� know what a noncommutative space is and know examples of such,
� understand and be able to construct endomorphism quantum monoids of cer-
tain noncommutative spaces,

� understand, why endomorphism quantum monoids are not made out of endo-
morphisms of a noncommutative space.
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1. The Principles of Commutative Algebraic Geometry

We will begin with simplest form of (commutative) geometric spaces and see a
duality between these very simple \spaces" and certain commutative algebras. This
example will show how the concept of a function algebra can be used to ful�ll the
dream of geometry in this situation. It will also show the functorial methods that
will be applied throughout this text. It is a particularly simple example of a duality
as mentioned in the introduction. This example will not be used later on, so we will
only sketch the proofs for some of the statements.

Example 1.1.1. Consider a set of points without any additional geometric struc-
ture. So the geometric space is just a set. We introduce the notion of its algebra of
functions.

Let X be a set. Then KX := Map(X;K) is a K-algebra with componentwise
addition and multiplication: (f + g)(x) := f(x) + g(x) and (fg)(x) := f(x)g(x). We
study this fact in more detail.

The set KX considered as a vector space with the addition (f+g)(x) := f(x)+g(x)
and the scalar multiplication (�f)(x) := �f(x) de�nes a representable contravariant
functor

K
- : Set �! Vec:

This functor is a representable functor represented by K. In fact Kh : KY �! K
X is

a linear map for every map h : X �! Y since Kh(�f + �g)(x) = (�f + �g)(h(x)) =
�f(h(x))+�g(h(x)) = (�fh+�gh)(x) = (�Kh (f)+�Kh (g))(x) hence Kh(�f+�g) =
�Kh(f) + �Kh(g).

Consider the homomorphism � : KX 
KY �! KX�Y , de�ned by � (f 
 g)(x; y) :=
f(x)g(y). In order to obtain a unique homomorphism � de�ned on the tensor product
we have to show that � 0 : KX � K

Y �! K
X�Y is a bilinear map : � 0(f + f 0; g)(x; y) =

(f+f 0)(x)g(y) = (f(x)+f 0(x))g(y) = f(x)g(y)+f 0(x)g(y) = (� 0(f; g)+� 0(f 0; g))(x; y)
gives the additivity in the left hand argument. The additivity in the right hand
argument and the bilinearity is checked similarly. One can check that � is always
injective. If X or Y are �nite then � is bijective.

As a special example we obtain a multiplicationr : KX 
KX
�
�! KX�X K

�

�! KX

where � : X �! X �X in Set is the diagonal map �(x) := (x; x). Furthermore we

get a unit � : Kf�g K
�

�! KX where � : X �! f�g is the unique map into the one element
set. One veri�es easily that (KX ; �;r) is a K-algebra. Two properties are essential
here, the associativity and the unit of K and the fact that (X;�; �) is a \comonoid"
in the category Set:

X �X X �X �X-
��1

X X �X-�

?

�

?

1��
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X X �X-�

?
� 1X

PPPPPPPPPPq ?
1��

X �X f�g �X �= X �= X � f�g:-
��1

Since K- is a functor these two diagrams carry over to the category Vec and produce
the required diagrams for a K-algebra.

For a map f : X �! Y we obtain a homomorphism of algebras Kf : KY �! KX

because the diagrams

KY 
 KY KY �Y-�

KX 
 KX KX�X-�

KY
-K�

KX
-K

�?

Kf
Kf

?

K
f�f

?

K
f

and
Kf�g �= K

�

A
A
A
AAU

�

�
�
�
���

K
Y

K
X-K

f

commute.
Thus

K
- : Set �! K-cAlg

is a contravariant functor.
By the de�nition of the set-theoretic (cartesian) product we know that KX =Q

X K. This identity does not only hold on the set level, it holds also for the algebra
structures on KX resp.

Q
X
K.

We now construct an inverse functor

Spec : K-cAlg �! Set:

For each point x 2 X there is a maximal ideal mx of
Q

X
K de�ned by mx := ff 2

Map(X;K)jf (x) = 0g. If X is a �nite set then these are exactly all maximal ideals
of
Q

X
K. To show this we observe the following. The surjective homomorphism px :Q

X K �! K has kernel mx hence mx is a maximal ideal. If m �
Q

X K is a maximal
ideal and a = (�1; : : : ; �n) 2 m then for any �i 6= 0 we get (0; : : : ; 0; 1i; 0; : : : ; 0) =
(0; : : : ; 0; ��1i ; 0; : : : ; 0)(�1; : : : ; �n) 2 m hence the i-th factor 0 � : : :� K � : : :� 0
of
Q

X
K is in m. So the elements a 2 m must have at least one common component

�j = 0 since m 6= K. But more than one such a component is impossible since we
would get zero divisors in the residue class algebra. Thus m = mx where x 2 X is
the j-th elements of the set.
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One can easily show more namely that the ideals mx are precisely all prime ideals
of Map(X;K).

With each commutative algebra A we can associate the set Spec(A) of all prime
ideals of A. That de�nes a functor Spec: K-Alg �! Set. Applied to algebras of the
form KX =

Q
X
K with a �nite set X this functor recovers X as X �= Spec(KX ).

Thus the dream of geometry is satis�ed in this particular example.

The above example shows that we may hope to gain some information on the
space (set) X by knowing its algebra of functions KX and applying the functor Spec
to it. For �nite sets and certain algebras the functors K- and Spec actually de�ne a
category duality. We are going to expand this duality to larger categories.

We shall carry some geometric structure into the sets X and will study the con-
nection between these geometric spaces and their algebras of functions. For this
purpose we will describe sets of points by their coordinates. Examples are the circle
or the parabola. More generally the geometric spaces we are going to consider are
so called a�ne schemes described by polynomial equations. We will see that such
geometric spaces are completely described by their algebras of functions. Here the
Yoneda Lemma will play a central rôle.

We will, however, take a di�erent approach to functions algebras and geometric
spaces, than one does in algebraic geometry. We use the functorial approach, which
lends itself to an easier access to the principles of noncommutative geometry. We
will de�ne geometric spaces as certain functors from the category of commutative
algebras to the category of sets. These sets will have a strong geometrical meaning.
The functors will associate with each algebra A the set of points of a \geometric
variety", where the points have coordinates in the algebra A.

De�nition 1.1.2. The functor A = A 1 : K-cAlg �! Set (the underlying functor)
that associates with each commutativeK-algebra A its space (set) of points (elements)
A is called the a�ne line.

Lemma 1.1.3. The functor \a�ne line" is a representable functor.

Proof. By Lemma 2.3.5 the representing object is K[x]. Observe that it is unique
up to isomorphism.

De�nition 1.1.4. The functor A 2 : K-cAlg �! Set that associates with each
commutative algebra A the space (set) of points (elements) of the plane A2 is called
the a�ne plane.

Lemma 1.1.5. The functor \a�ne plane" is a representable functor.

Proof. Similar to Lemma 2.3.9 the representing object is K[x1; x2]. This algebra
is unique up to isomorphism.

Let p1(x1; : : : ; xn); : : : ; pm(x1; : : : ; xn) 2 K[x1; : : : ; xn] be a family of polynomials.
We want to consider the (geometric) variety of zeros of these polynomials. Observe
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that K may not contain su�ciently many zeros for these polynomials. Thus we are go-
ing to admit zeros in extension �elds of K or more generally in arbitrary commutative
K-algebras.

In the following rather simple buildup of commutative algebraic geometry, the
reader should carefully verify in which statements and proofs the commutativity is
really needed. Most of the following will be verbally generalized to not necessarily
commutative algebras.

De�nition 1.1.6. Given a set of polynomials fp1; : : : ; pmg � K[x1; : : : ; xn]. The
functor X that associates with each commutative algebra A the set X (A) of zeros of
the polynomials (pi) in An is called an a�ne algebraic variety or an a�ne scheme
(in A n ) with de�ning polynomials p1; : : : ; pm. The elements in X (A) are called the
A-points of X .

Theorem 1.1.7. The a�ne scheme X in A n with de�ning polynomials p1; : : : ; pm
is a representable functor with representing algebra

O(X ) := K[x1; : : : ; xn]=(p1; : : : ; pm);

called the a�ne algebra of the functor X .

Proof. First we show that the a�ne scheme X : K-cAlg �! Set with the
de�ning polynomials p1; : : : ; pm is a functor. Let f : A �! B be a homomorphism of
commutative algebras. The induced map fn : An �! Bn de�ned by application of f
on the components restricts to X (A) � An as X (f) : X (A) �! X (B). This map is
well-de�ned for let (a1; : : : ; an) 2 X (A) be a zero for all polynomials p1; : : : ; pm then
pi(f(a1); : : : ; f(an)) = f(pi(a1; : : : ; an)) = f(0) = 0 for all i hence fn(a1; : : : ; an) =
(f(a1); : : : ; f(an)) 2 Bn is a zero for all polynomials. Thus X (f) : X (A) �! X (B) is
well-de�ned. Functoriality of X is clear now.

Now we show that X is representable by O(X ) = K[x1; : : : ; xn]=(p1; : : : ; pm). Ob-
serve that (p1; : : : ; pm) denotes the (two-sided) ideal in K[x1; : : : ; xn] generated by the
polynomials p1; : : : ; pm. We know that each n-tupel (a1; : : : ; an) 2 An uniquely deter-
mines an algebra homomorphism f : K[x1; : : : ; xn] �! A by f(x1) = a1; : : : ; f(xn) =
an. (The polynomial ring K[x1; : : : ; xn] in K-cAlg is free over the set fx1; : : : ; xng,
or K[x1; : : : ; xn] together with the embedding � : fx1; : : : ; xng �! K[x1; : : : ; xn] is a
couniversal solution of the problem given by the underlying functor A : K-cAlg �!
Set and the set fx1; : : : ; xng 2 Set.) This homomorphism of algebras maps polyno-
mials p(x1; : : : ; xn) into f(p) = p(a1; : : : ; an). Hence (a1; : : : ; an) is a common zero
of the polynomials p1; : : : ; pm if and only if f(pi) = pi(a1; : : : ; an) = 0, i.e. p1; : : : ; pm
are in the kernel of f . This happens if and only if f vanishes on the ideal (p1; : : : ; pm)
or in other word can be factorized through the residue class map

� : K[x1; : : : ; xn] �! K[x1; : : : ; xn]=(p1; : : : ; pm)

This induces a bijection

MorK-cAlg(K[x1; : : : ; xn]=(p1; : : : ; pm); A) 3 f 7! (f(x1); : : : ; f(xn)) 2 X (A):
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Now it is easy to see that this bijection is a natural isomorphism (in A).

If no polynomials are given for the above construction, then the functor under this
construction is the a�ne space A n of dimension n. By giving polynomials the functor
X becomes a subfunctor of A n , because it de�nes subsets X (A) � A n(A) = An. Both
functors are representable functors. The embedding is induced by the homomorphism
of algebras � : K[x1; : : : ; xn] �! K[x1; : : : ; xn]=(p1; : : : ; pm).

Problem 1.1.1. 1. Determine the a�ne algebra of the functor \unit circle"
S1 in A 2 .

2. Determine the a�ne algebra of the functor \unit sphere" Sn�1 in A n .
3. Let X denote the plane curve y = x2. Then X is isomorphic to the a�ne line.
4. Let Y denote the plane curve xy = 1. Then Y is not isomorphic to the a�ne

line. (Hint: An isomorphism K[x; x�1] �! K[y] sends x to a polynomial p(y)
which must be invertible. Consider the highest coe�cient of p(y) and show
that p(y) 2 K. But that means that the map cannot be bijective.)

5. Let K = C be the �eld of complex numbers. Show that the unit functor
U : K-cAlg �! Set in Lemma 2.3.7 is naturally isomorphic to the unit circle
functor S1. (Hint: There is an algebra isomorphism between the representing
algebras K[e; e�1] and K[c; s]=(c2 + s2 � 1).)

6. � Let K be an algebraically closed �eld. Let p be an irreducible square polyno-
mial in K[x; y]. Let Z be the conic section de�ned by p with the a�ne algebra
K[x; y]=(p). Show that Z is naturally isomorphic either to X or to Y from
parts 3. resp. 4.

Remark 1.1.8. A�ne algebras of a�ne schemes are �nitely generated commu-
tative algebras and any such algebra is an a�ne algebra of some a�ne scheme, since
A �= K[x1; : : : ; xn]=(p1; : : : ; pm) (Hilbert basis theorem).

The polynomials p1; : : : ; pm are not uniquely determined by the a�ne algebra of
an a�ne scheme. Not even the ideal generated by the polynomials in the polynomial
ring K[x1; : : : ; xn] is uniquely determined. Also the number of variables x1; : : : ; xn is
not uniquely determined.

The K-points (�1; : : : ; �n) 2 X (K) of an a�ne scheme X (with coe�cients in the
base �eld K) are called rational points. They do not su�ce to completely describe
the a�ne scheme.

Let for example K = R the set of rational numbers. If X and Y are a�ne
schemes with a�ne algebras O(X ) := K[x; y]=(x2+y2+1) and O(Y) := K[x]=(x2+1)
then both schemes have no rational points. The scheme Y, however, has exactly
two complex points (with coe�cients in the �eld C of complex numbers) and the
scheme X has in�nitely many complex points, hence X (C ) 6�= Y(C ). This does not
result from the embeddings into di�erent spaces A 2 resp. A 1. In fact we also have
O(Y) = K[x]=(x2+1) �= K[x; y]=(x2+1; y), so Y can be considered as an a�ne scheme
in A 2 .
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Since each a�ne scheme X is isomorphic to the functor MorK-cAlg(O(X ); -) we
will henceforth identify these two functors, thus removing annoying isomorphisms.

De�nition 1.1.9. Let K -A� denote the category of all commutative �nitely
generated (or a�ne cf. 1.1.8) K-algebras. An a�ne algebraic variety is a representable
functor K -A� (A; -) : K -A� �! Set. The a�ne algebraic varieties together with the
natural transformations form the category of a�ne algebraic varieties Var(K) over
K. The functor that associates with each a�ne algebra A its a�ne algebraic variety
represented by A is denoted by Spec : K -A� �! Var(K), Spec(A) = K- -A�(A; -).

By the Yoneda Lemma the functor

Spec : K -A� �! Var(K)

is an antiequivalence (or duality) of categories with inverse functor

O : Var(K) �! K -A� :

An a�ne algebraic variety is completely described by its a�ne algebra O(X ). Thus
the dream of geometry is realized.

Arbitrary (not necessarily �nitely generated) commutative algebras also de�ne
representable functors (de�ned on the category of all commutative algebras). Thus we
also have \in�nite dimensional" varieties which we will call geometric spaces or a�ne
varieties. We denote their category by Geom(K) and get a commutative diagram

K-cAlg Geom(K)-
�=o

K -A� Var(K)-Spec

? ?

We call the representable functors X : K-cAlg �! Set geometric spaces or a�ne
varieties, and the representable functors X : K -A� �! Set a�ne schemes or a�ne
algebraic varieties. This is another realization of the dream of geometry.

The geometric spaces can be viewed as sets of zeros in arbitrary commutative
K-algebras B of arbitrarily many polynomials with arbitrarily many variables. The
function algebra of X will be called the a�ne algebra of X in both cases.

Example 1.1.10. A somewhat less trivial example is the state space of a circular
pendulum (of length 1). The location is in L = f(a; b) 2 A2ja2 + b2 = 1g, the
momentum is inM = fp 2 Ag which is a straight line. So the whole geometric space
for the pendulum is (L�M)(A) = f(a; b; p)ja; b; p 2 A; a2 + b2 = 1g. This geometric
space is represented by K[x; y; z]=(x2 + y2 � 1) since

(L�M)(A) = f(a; b; p)ja; b; p 2 A; a2+b2 = 1g �= K-cAlg(K[x; y; z]=(x2+y2�1); A):

The two antiequivalences of categories above give rise to the question for the func-
tion algebra. If a representable functor X = K-cAlg(A; -) is viewed as geometric sets
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of zeros of certain polynomials, i.e. as spaces with coordinates in arbitrary commuta-
tive algebras B, (plus functorial behavior), then it is not clear why the representing
algebra A should be anything like an algebra of functions on these geometric sets. It
is not even clear where these functions should assume their values. Only if we can
show that A can be viewed as a reasonable algebra of functions, we should talk about
a realization of the dream of geometry. But this will be done in the following theo-
rem. We will consider functions as maps (coordinate functions) from the geometric
set X (B) to the set of coordinates B, maps that are natural in B. Such coordinate
functions are just natural transformations from X to the underlying functor A .

Theorem 1.1.11. Let X be a geometric space with the a�ne algebra A = O(X ).
Then A �= Nat(X ; A ) as K-algebras, where A : K-cAlg �! Set is the underlying func-
tor or a�ne line. The isomorphism A �= Nat(X ; A ) induces a natural transformation
A�X (B) �! B (natural in B).

Proof. First we de�ne an isomorphism between the sets A and Nat(X ; A ).
Because of X = MorK-cAlg(A; -) =: K-cAlg(A; -) and A = MorK-cAlg(K[x]; -) =:
K-cAlg(K[x]; -) the Yoneda Lemma gives us

Nat(X ; A ) = Nat(K-cAlg(A; -);K-cAlg(K[x]; -)) �= K-cAlg(K[x]; A) = A (A) �= A

on the set level. Let � : A �! Nat(X ; A ) denote the given isomorphism. � is
de�ned by �(a)(B)(p)(x) := p(a). By the Yoneda Lemma its inverse is given by
��1(� := �((A)(1)(x).

Nat(X ; A ) carries an algebra structure given by the algebra structure of the coef-
�cients. For a coe�cient algebra B, a B-point p : A �! B in X (B) = K-Alg(A;B),
and �; � 2 Nat(X ; A ) we have �(B)(p) 2 A (B) = B. Hence (� + �)(B)(p) :=
(�(B) + �(B))(p) = �(B)(p) + �(B)(p) and (� � �)(B)(p) := (�(B) � �(B))(p) =
�(B)(p) � �(B)(p) make Nat(X ; A ) an algebra.

Let a be an arbitrary element in A. By the isomorphism given above this ele-
ment induces an algebra homomorphism ga : K[x] �! A mapping x onto a. This
algebra homomorphism induces the natural transformation �(a) : X �! A . On

the B-level it is just the composition with ga, i.e. �(a)(B)(p) = (K[x]
ga
�! A

p
�!

B). Since such a homomorphism is completely described by the image of x we
get �(a)(B)(p)(x) = p(a). To compare the algebra structures of A and Nat(X ; A )
let a; a0 2 A. We have �(a)(B)(p)(x) = p(a) and �(a0)(B)(p)(x) = p(a0), hence
�(a + a0)(B)(p)(x) = p(a + a0) = p(a) + p(a0) = �(a)(B)(p)(x) + �(a0)(B)(p)(x) =
(�(a)(B)(p)+�(a0)(B)(p))(x) = (�(a)(B)+�(a0)(B))(p)(x) = (�(a)+�(a0))(B)(p)(x).
Analogously we get �(aa0)(B)(p)(x) = p(aa0) = p(a)p(a0) = (�(a) � �(a0))(B)(p)(x),
and thus �(a + a0) = �(a) + �(a0) and �(aa0) = �(a) � �(a0). Hence addition and
multiplication in Nat(X ; A ) are de�ned by the addition and the multiplication of the
values p(a) + p(a0) resp. p(a)p(a0).

We describe the action  (B) : A � X (B) �! B of A on X (B). Let p : A �! B
be a B-point in K-cAlg(A;B) = X (B). For each a 2 A the image �(a) : X �! A
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is a natural transformation hence we have maps  (B) : A � X (B) �! B such that
 (B)(a; p) = p(a). Finally each homomorphism of algebras f : B �! B0 induces a
commutative diagram

A�X (B0) B0-
 (B0)

A�X (B) B- (B)

?

A�X (f)

?

f

Thus  (B) : A�X (B) �! B is a natural transformation.

Remark 1.1.12. Observe that the isomorphism A �= Nat(X ; A ) induces a natu-
ral transformation A�X (B) �! B (natural in B). In particular the a�ne algebra A
can be viewed as the set of functions from the set of B-points X (B) into the \base"
ring B (functions which are natural in B). In this sense the algebra A may be consid-
ered as function algebra of the geometric space X . Thus we will call A the function
algebra of X .

One can show that the algebra A is universal with respect to the property, that
for each commutative algebra D and each natural transformation � : D � X (-) �! -
there is a unique homomorphism of algebras f : D �! A, such that the triangle

A�X (B) B-
 (B)

�(B)

@
@
@
@@R

D �X (B)

?

f�1X (B)

commutes. We will show this result later on for noncommutative algebras. The
universal property implies that the function algebra A of an geometric space X is
unique up to isomorphism.

Let X be an geometric space with function algebra A = O(X ). If p : A �! K

is a rational point of X , i.e. a homomorphism of algebras, then Im(p) = K hence
Ker(p) is a maximal ideal of A of codimension 1. Conversely let m be a maximal
ideal of A of codimension 1 then this de�nes a rational point p : A �! A=m �= K. If
K is algebraicly closed and m an arbitrary maximal ideal of A, then A=m is a �nitely
generated K-algebra and a �eld extension of K, hence it coincides with K. Thus the
codimension of m is 1. The set of maximal ideals of A is called the maximal spectrum
Specm(A). This is the approach of algebraic geometry to recover the geometric space
of (rational) points from the function algebra A. We will not follow this approach
since it does not easily extend to noncommutative geometry.

Problem 1.1.2. Let X be an a�ne scheme with a�ne algebra

A = K[x1; : : : ; xn]=(p1; : : : ; pm):
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De�ne \coordinate functions" qi : X (B) �! B which describe the coordinates of
B-points and identify these coordinate functions with elements of A.

Now we will study morphisms between geometric spaces.

Theorem 1.1.13. Let X � A r and Y � A s be a�ne algebraic varieties and let
� : X �! Y be a natural transformation. Then there are polynomials

p1(x1; : : : ; xr); : : : ; ps(x1; : : : ; xr) 2 K[x1; : : : ; xr];

such that
�(A)(a1; : : : ; ar) = (p1(a1; : : : ; ar); : : : ; ps(a1; : : : ; ar));

for all A 2 K -A� and all (a1; : : : ; ar) 2 X (A), i.e. the morphisms between a�ne
algebraic varieties are of polynomial type.

Proof. Let O(X ) = K[x1; : : : ; xr]=I and O(Y) = K[y1; : : : ; ys]=J . For A 2
K-Alg and (a1; : : : ; ar) 2 X (A) let f : K[x1; : : : ; xr]=I �! A with f(xi) = ai be
the homomorphism obtained from X (A) �= K-Alg(K[x1; : : : ; xr]=I;A). The natural
transformation � is given by composition with a homomorphism g : K[y1; : : : ; ys]=J �!
K[x1; : : : ; xr]=I hence we get

�(A) : K-cAlg(K[x1; : : : ; xr]=I;A) 3 f 7! fg 2 K-cAlg(K[y1 ; : : : ; ys]=J;A):

Since g is described by g(yi) = pi(x1; : : : ; xr) 2 K[x1; : : : ; xr] we get

�(A)(a1; : : : ; as) = (fg(y1); : : : ; fg(ys))
= (f(p1(x1; : : : ; xr)); : : : ; f(ps(x1; : : : ; xr)))
= (p1(a1; : : : ; ar); : : : ; ps(a1; : : : ; ar)):

An analogous statement holds for geometric spaces.

Example 1.1.14. The isomorphism between the a�ne line (1.1.2) and the para-
bola is given by the isomorphism f : K[x; y]=(y � x2) �! K[z], f(x) = z, f(y) = z2

that has the inverse function f�1(z) = x. On the a�ne schemes A , the a�ne line,
and P, the parabola, the induced map is f : A (A) 3 a 7! (a; a2) 2 P(A) resp.
f�1 : P(A) 3 (a; b) 7! a 2 A (A).


