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Problem set for
Quantum Groups and Noncommutative Geometry

We have seen that in representation theory and in corepresentation theory of
quantum groups H such as KG, U(g), SL,(2), U,(sl(2)) the ordinary tensor
product (in K-Mod) of two (co-)reprensentations is in a canonical way again
a (co-)reprensentation. For two H-modules M and N describe the module
structure on M ® N if
(a) H=KG: g(lm®n)=...for g € G;
(b) H=U(g): gm®@n)=...for g € g;
(c) H = U, (sl(2)):
i) E(m®n) =...,
(il) Fim®n) = ...,
(iii) K(m®n) =...
for the elements E, F, K € U,(sl(2)).

Let G' be a monoid.

(a) The category of G-families of vector spaces M = [I,cq Vee has families
of vector spaces (V,|g € G) as objects and families of linear maps (f, : V,
— Wylg € G) as morphisms. The composition is (f,|g € G) o (hylg € G) =
(fyohylg € G). Show that M is a monoidal category with the tensor product

(Vg|g S G) X (Wg|g c G) = (@h,kea,hk:gvh X Wk|g € G).

Where do unit and associativity laws of G enter the proof?

(b) A vector space V together with a family of subspaces (V, C Vg € G)
is called G-graded, if V = @4e'V, holds. Let (V, (Vg € G)) and (W, (W,|g €
()) be G-graded vector spaces. A linear map f: V — W is called G-graded,
if f(V) C W, for all g € G. The G-graded vector spaces and G-graded linear
maps form the category M!S of G-graded vector spaces. Show that M is
a monoidal category with the tensor product V ® W, where the subspaces
(V@ W), are defined by

VoW = Y Vi®W.
h,k€G,hk=g



(c) Show that the monoidal category MY of G-families of vector spaces
is monoidally equivalent to the monoidal category M!Sl of G-graded vector
spaces.

(d) Show that the monoidal category Ml of G-graded vector spaces is
monoidally equivalent to the monoidal category of KG-comodules MX¢ . (Hint:
Use the following constructions. For a G-family (V,|g € G) construct a G-
graded vector space V := ®,cqV, (exterior direct sum) with the subspaces
V, := Im(V,) in the direct sum. Conversely if (V,(V,|g € G)) is a G-graded
vector space then (V,|g € G) is a G-family of vector spaces. For a G-graded
vector space (V, (V,|g € G)) construct the KG-comodule V' with the structure
map § : V — V®KG, §(v) := v ® g for all (homogeneous elements) v € V,
and for all g € G. Conversely let (V,0 : V — V ® KG) be a KG-comodule.
Then construct the vector space V with den graded (homogenous) components
Voi={veVi(v) =v®g}).

(39) Let (D,w) be a diagram in Vec. Let D be a monoidal category and w be a
monoidal functor. Then (D, w) is called a monoidal diagram.

Let (D,w) be a monoidal diagram Vec. Let A € Vec be an algebra. A

natural transformation ¢ : w — w ® B is called monoidal monoidal if the

diagrams
w(X) ®w(Y) 0@ eY) w(X)®w(Y)®B® B
p pRm
V(X ®Y) PXOY) W(X®Y)®B
and N
K = K®K
w(l) D) w()® B

commute.

We denote the set of monoidal natural transformations by Nat®(w,w ® B).
Show that Nat®(w,w ® B) is a functor in B.

(40) Show that the adjoint action H® H > h® a +— Y hyaS(hw)) € H makes H
an H-module algebra.
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