
LMU Munich Prof. Dr. B. Paredes, Prof. Dr. P. Pickl
Summer term 2016 L. Nickel, C. Velasco

Exercises on Mathematical Statistical Physics
Math Sheet 2

Problem 1 (Warm-up on probability theory). Let in the following (Ω,A,P)
be a probability space.

a) Let T : Ω → Ω be a map. Prove that the set T := {A ⊂ Ω|T−1(A) = A}
is a σ-algebra over Ω. (Remark: This result will be used in ergodic theory.)
Prove that {A ⊂ Ω|T (A) = A} is not in general a σ-algebra.

b) Let Θ ⊂ Ω. Construct a natural σ-algebra of Θ by using the structure
provided by A.

c) Let A ∈ A. Show that the conditional probability PA given as PA(B) :=
P(B∩A)
P(A)

defines a probability measure on (Ω,A).

Problem 2 (Gronwall’s lemma). Gronwall’s lemma is a very useful result
from analysis which we will use in several derivations of effective equations. Prove
the following versions:

a) Let f and c be real-valued functions defined on [0,∞) and let f be differen-
tiable on (0,∞). If f satisfies d

dt
f(t) ≤ c(t)f(t), then

f(t) ≤ exp

(∫ t

0

c(s)ds

)
f(0).

b) If f as above satisfies, with positive constants c1, c2 ∈ R, d
dt
f(t) ≤ c1f(t)+c2,

then
f(t) ≤ ec1tf(0) +

(
ec1t − 1

) c2
c1
.

Problem 3 (Liouville’s theorem). We are given a classical system of N par-
ticles with phase space coordinates (q, p) = (q1, ..., qN , p1, ..., pN) ∈ R6N , Hamilto-
nian function H(q, p) and equations of motion

q̇(t) = ∂pH(q(t), p(t)), ṗ(t) = −∂qH(q(t), p(t)),

with initial values (q(0), p(0)) = (q0, p0). This defines for t ∈ R the Hamiltonian
flow Φt : R6N → R6N , (q0, p0) 7→ (q(t), p(t)). The usual Lebesgue measure on phase



space is denoted by λ. Prove Liouville’s theorem:
The phase space volume is preserved under the Hamiltonian flow, i.e.

λ ◦ Φt = λ ∀t ∈ R.

Hint: Use a Jacobian. (But there are several ways to prove this). You might need
that matrices satisfy det(M) = etr ln(M) and might need to take the time derivative
of the Jacobian.

Problem 4 (Equilibrium configurations by combinatorics).

z

n1

n2

...

nk In this exercise, we derive the typical configuration of a huge
number N of particles that can be in different “states” j =
1, ..., k such that a particle in state j has energy ej. You might
for example think of N air molecules in our atmosphere and
the k boxes belonging to different heights above the ground, as
depicted on the left. The number of particles in box j is called
nj. We will see that the correct (i.e. typical) distribution of
the particles to the boxes can be calculated simply by using
combinatorics.

a) Derive the distribution for which the number of possibilities is maximal under
the constraints

k∑
j=1

ejnj = E,
k∑

j=1

nj = N.

You may use that N and the nj are very large, so Stirling’s formula lnN ! ≈
N lnN is applicable.

b) What does your formula imply for the concrete situation of the atmosphere,
where ej ∝ j?

Problem 5 (Large numbers). Assume we have 0.25·1023 particles and 2 boxes
(e.g. the right and the left half of a container of air) such that the probability for
each particle to be in the right or in the left box is (independently of each other),
1
2
. Give an upper bound for the probability that the fraction of particles that are

in the left box is ≥ 1+10−8

2
and that it is larger than 3

4
. Find a good bound that

shows that the probability in the latter case is at most 10−1000.
Would you buy an insurance against spontaneous suffocation?

The solutions to these exercises will be discussed on Friday, 29.04., and Monday, 02.05.


