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Problem 1 (Two Particle Problem). We consider two electrons in two dimensions
in the presence of a perpendicular uniform magnetic field interacting via a potential
V (~r1 − ~r2). The two-body Hamiltonian is:

H = ~ωc(a†1a1 + a†2a2) + V (~r1 − ~r2),

where ai are the individual ladder operators we defined in class and ~ri are the particle
coordinates. Let us define ladder operators aR(a†R) and ar(a

†
r) for the center of mass

and the relative particle, respectively, in the form

aR =
a1 + a2√

2
(1)

ar =
a1 − a2√

2
. (2)

(a) Show that the center of mass operators commute with the relative particle ones.

Show that H = ~ωc(a†RaR + a†rar) + V (~r1 − ~r2).

(b) Let us define center orbit ladder operators bR, br for the center of mass and the
relative coordinate, related to the individual ladder operators bi in the same way
as for aR, ar above. Consider the symmetric gauge. Show that br only involves the
relative coordinate z = z1− z2 and that its spatial form is identical to the one of the
one-particle operator bi with the replacements zi → z and `→ `r =

√
2`. Similarly,

show that bR only involves the center of mass coordinate Z = (z1 + z2)/2, and that
the effective magnetic length is `R = `/

√
2.

(c) Write down the expression for the two-body eigenstates of Hamiltonian H in the
lowest Landau level. What are the corresponding eigenvalues Ek? If the number
of fluxes piercing the sample is Nφ, what is the degeneracy gk of each eigenvalue?
Check that the total number of two-particle states within the lowest Landau level
coincides with

∑
k gk.

(d) Express the exact lowest Landau level two-body eigenstate

ψ(z1, z2) = (z1 − z2)3e−
|z1|

2+|z2|
2

4

in terms of the basis of all possible two-body Slater determinants.



Problem2 (Laughlin states). Let us consider the Laughlin state at filling factor
ν = 1/m:

Ψ = α
N∏
i<j

(zi − zj)me−
∑N

i |zi|2/4,

where α is the corresponding normalization factor, z = (x+ iy)/` and N is the number
of particles.

(a) Estimate the number of different Slater determinants that participate in the state
Ψ. How does this number behave as the number of particles increases?

(b) Consider the problem of encoding the many-body state Ψ in a classical computer.
How do memory resources needed increase with the number of particles?

(c) Consider the problem of calculating the normalization factor α. Estimate the com-
plexity of this calculation as a function of the number of particles.

Problem 3 (Bosonic Laughlin states). Let us consider the bosonic Laughlin state

Ψ = α
N∏
i<j

(zi − zj)2e−
∑N

i |zi|2/2,

with z = (x + iy)/`. Show that the state Ψ is an exact eigenstate of the many-body
Hamiltonian:

H =
∑
i

p2i
2m

+
1

2
mω2r2i − Ω~ri × ~pi + g

∑
i<j

δ(~ri − ~rj),

with `2 = ~/mω. What is the corresponding eigenvalue?

The solutions to these exercises will be discussed on Friday, 15th July, and Monday, 18th July.


