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Comment: We encourage you to read the article given as a reference at the end of
this exercices sheet, which presents experimental schemes for the realization of the toric
code model and for the detection and manipulation of anyons. Exercices 5 and 6 contain
some simple questions related to that article.

Problem 1 (Spectrum of the toric code model). Consider the toric code model.
Every eigenstate of the system must be also an eigenstate of every plaquette and vertex
operator, since all of them commute with the Hamiltonian. So we can identify each
eigenstate with a set of eigenvalues{

λ1, λ2, ..., λNp ; ξ1, ξ2, ..., ξNv

}
, λa, ξb ∈ {1,−1} (1)

being Np and Nv the number of plaquettes and vertices, respectively.

(a) Consider the system on a square planar lattice with the edges not identified. Is there
an eigenstate of the system for any configuration of λ′s and ξ′s? How many different
configurations are allowed? Compare the result with the dimension of the Hilbert
space of the system, what can you conclude?

(b) Answer the previous questions for the case in which the system is on a torus. Is
there any difference?

(c) Can you use the association between eigenstates and the set of values (1) to con-
struct the spectrum of the Hamiltonian? Which are the eigenenergies of the system?
Are the eigenstates degenerate?

Problem 2 (Vertex excitations in the toric code). Consider the toric code model
on the surface of a torus. We define the folowing string operators, along the strings C1
and C2 (see figure 1), as

Sx
C1 =

∏
j∈C1

σxj , Sx
C2 =

∏
j∈C2

σxj , (2)
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Figure 1: Strings C1 and C2 from vertex v1 to v2.

(a) Consider the resulting states of applying each of those string operators to a ground
state of the system. Are these new states eigenstates of the Hamiltonian? If so,
which are their energies? Are they the same state?

(b) If we consider each string operator Sx
C for all possible strings connecting two arbi-

trary vertices v1 and v2, do they generate the same state when applied to a ground
state of the system?

(c) Consider the eigensubspace of having two vertex excitations (i.e. e-type quasiparti-
cles) at some particular vertices v1 and v2. Which is the dimension of that subspace?
How can the different eigenstates in that subspace be generated from the ground
state?

Problem 3 (Plaquette excitations in the toric code). We consider now another
kind of string operators, along strings in the dual lattice (see figure 2),

Sz
C′
1

=
∏
j∈C′

1

σzj , Sz
C′
2

=
∏
j∈C′

2

σzj , (3)

(a) Consider the resulting states of applying each of those string operators to a ground
state of the system. Are these new states eigenstates of the Hamiltonian? If so,
which are their energies? Are they the same state?

(b) If we consider each string operator Sz
C′ for all possible strings in the dual lattice con-

necting two arbitrary plaquettes p1 and p2, do they generate the same state when
applied to a ground state of the system?
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Figure 2: Strings C′1 and C′2 in the dual lattice from plaquette p1 to p2.

(c) Consider the eigensubspace of having two plaquette excitations (i.e. m-type quasi-
particles) at some particular plaquettes p1 and p2. Which is the dimension of that
subspace? How can the different eigenstates in that subspace be generated from the
ground state?

Problem 4 (Quasiparticles and topology). The ground state of the toric code
model has a degeneracy that reflects the topology of the surface where the system is on.
When the system is on a torus there are four different ground states.

On the other hand, quasiparticles can be created on top of ground states, they can be
moved and also destroyed. What quasiparticles must be created and what must be done
before destroying them in order to go from one ground state to another?

Problem 5 (String operator). We have a set of spins in an optical lattice confined
to a plane so that they realize the toric code model. The whole system is in an optical
cavity whose mode can interact with a set of selected spins of the lattice.
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Figure 3: Classification



The Hamiltoian that drives this interaction is:

H = χa†a
∑
j∈C

σzj , (4)

being χ a certain parameter, a†(a) the creation(annihilation) operator of a photon in
the cavity mode and C a certain string in the lattice (for example, see figure 3). For a
number of photons in the optical cavity na, which is the time evolution operator at a
certain time t? Can you generate the following string operator

Sz
C =

∏
j∈C

σzj , (5)

just by letting the system evolve in time? For which time and which number of photons
in the cavity?

Problem 6 (Quantum memory). Suppose that we have a toric code model system
whose eigensubspace of ground states has dimension 2. We can define two orthogonal
ground states

∣∣0̃〉 and
∣∣1̃〉 which are locally indistinguishable but can be characterized

through the global string operator Z,

Z
∣∣0̃〉 =

∣∣0̃〉 (6)

Z
∣∣1̃〉 = −

∣∣1̃〉 . (7)

There is also another global string operator X that changes from one state to the other,
that is

X
∣∣0̃〉 =

∣∣1̃〉 (8)

X
∣∣1̃〉 =

∣∣0̃〉 . (9)

The elementary unit of information at the quantum level is a qubit, which is a two level
system (for example, a 1/2-spin particle) that can be in any superposition of both logical
states |0〉 and |1〉. If we store the information of a qubit in one single particle it can
be easily destroyed by the interaction with the enviroment. However, we can use the
subspace of ground states of the torus as an effective qubit, which is protected from local
perturbations. To do that, we consider a probe spin which is in a state |φ〉 = α |0〉+β |1〉
and the toric code system, which is our quantum memory, initialized in the ground state∣∣0̃〉. We want to transfer the information from the probe spin to the quantum memory,
that is performing the operation

|φ〉A ⊗
∣∣0̃〉

M

SWAPin−−−−−→ |0〉A ⊗ |φ〉M (10)

(a) Find a way of obtaining the operator SWAPin using controlled string operators of
the form

Λ[S] = |0〉A 〈0|A ⊗ I + |1〉A 〈1|A ⊗ S, (11)



being S any string operator, and combining them with local unitary operators on
the probe qubit.

(b) With the same ingredients, find also a way of obtaining the operator SWAPout,
defined as

|0〉A ⊗ |φ〉M
SWAPout−−−−−−→ |φ〉A ⊗

∣∣0̃〉
M

(12)

References: L. Jiang, G. K. Brennen, A. V. Gorshkov, K. Hammerer, M. Hafezi, E. Demler,
M. D. Lukin, and P. Zoller Anyonic interferometry and protected memories in atomic spin lattices.
Nature Physics 4, 482 - 488 (2008) (arXiv:quant-ph/0711.1365v1)

The solutions to these exercises will be discussed on Friday, 17th June, and Monday, 20th June.


