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1 “Postulates” of QM. . . and of classical mechanics

1.1 An analogy

Quantum Classical

State Vector Ψ from H Prob. distr. ρ(x, p) on phase space

Property “Observable”, lin. op. A on H Function A(x, p) on phase space

Measur.val. a Eigenvalues of A Function values of A(x, p)

Probab. for a
∑
|a〉∈Ker(A−a) |〈a|Ψ〉|2

∫
Ker(A−a) dx dp ρ(x, p)

After result a Vector Φa ∈ Ker(A− a) Prob. distr. φa(x, p) on Ker(A− a)

Dynamics(I) d
dtΨ(t) = −iHΨ(t) d

dtρ = LHρ (Lie-derivative)

Dynamics(II) Ψ(t) = UtΨ(0), 〈Ψ(t)|Ψ(t)〉 ≡ 1 ρ(t) = Φt[ρ(0)],
∫
dxdp ρ(t) ≡ 1

(I) and (II) are equivalent alternatives

1.1.1 |a〉 ∈ Ker(A− a)

By that we denote, somewhat loosely, a set of orthonormal eigenvectors to a (possibly
degenerate) eigenvalue a:

A|a, i〉 = |a, i〉a, (1)

where i labels the degeneracy. We recover a spectral projector for the eigenvalue a
of A:

Pa =
∑
i

|a, i〉〈a, i| (2)

Projector implies Pa = P 2
a and we will see that is a property that we expect of any

operation that represents a “measurement”. The probability for finding a is therefor
the expectation value of

〈Ψ|Pa|Ψ〉 =
∑
i

〈Ψ|a, i〉〈a, i|Ψ〉 (3)

After a measurement with result a we know the system is in a state from the
subspace onto which Pa projects, namely

Φa = PaΨ. (4)

1.1.2 Lie-derivative and probability preserving flow

For the sake of making the analogy more striking, we have used the Lie-derivative,
which, however, for the present purpose can be re-expressed by the Poisson-bracket
of Hamiltonian mechanics:

LXH
ρ = {H, ρ} =

∑
i

∂H

∂qi

∂ρ

∂pi
− ∂H

∂pi

∂ρ

∂qi
(5)
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We see that, with the help of the Poisson-bracket, we can consider ordinary functions
on phase-space as “operators”, acting on other functions on phase-space. Intreaguing
also the analogy:

{qi, pj} = δij (6)

The Lie-derivative LX is a more general object that can be defined for any given
vector field X on a manifold. This is a subject of differential geometry. The differ-
ential equation defines a differential “flow” Φt that transports ρ across the manifold.
The specific form of the Poisson brackets ensures that the integral over ρ — total
probability — remains constant.

1.1.3 Classical uncertainty

The necessarily finite precision of measurement implies that ρ(x, p) always extends
over a finite domain. This implies an “uncertainty principle” also for classical me-
chanics. However, this is qualitatively different from quantum mechanics. For a more
detailed discussion, see Asher Peres: Quantum Theory — Concepts and Methods
(highly recommended!)

The differential geometric analogy to for quantum mechanics can be carried fur-
ther by actually introducing quantization. See, for example, lecture notes by Bates
and Weinstein
(http://math.berkeley.edu/ ˜ alanw/GofQ.pdf).

1.1.4 Differences between quantum and classical theory

Essential: two operators A,B do not commute in general, but A(x, p), B(x, p) do
Unessential: Ψ are complex valued from a Hilbert space, ρ are real-valued and
normalized.
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2 Do we really need quantum mechanics?

[see Asher Peres: Quantum Theory — Concepts and Methods]
There is a persistent uneasiness in our perception of quantum mechanics. It

appears to be at odds with very fundamental elements of our concept of the world.
This was brought to a point by the famous paper by Einstein, Podolsky, and Rosen,
Phys. Rev. 47, 777 (1934).

Based on very plausible elements of our world concept, Bell [J.S. Bell, Physics 1,
195 (1964)] has derived his famous inequalities that put limits on the correlations
of completely separated systems. The inequalities are at odds with quantum me-
chanics. The inequalities are also at odds with experiments — at least one of the
“plausible elements of our world concept” is wrong.

2.1 Strange observations

The strangeness of observations on small systems can be abstracted into the following
simple description.

Suppose there is a particle that occurs in two different colors, red and green (r/g)
and it can be hard or soft (h/s). We can distinguish these two properties by two
aparatuses, a “colorizer” Ĉ and a “statesplitter” S. On each aparatus sends particles
of a given property to one of its two exits, spatially separted. We have some source
for these particles, but do not know their status or color.

1. Ĉ0: We determine the color distribution by sending the particles through Ĉ and
we find a distribution, say, 50%:50%. We conclude that half of the particles are
red, half of them green.

2. We take the particles leaving one of the exits, say the r-exit, and send it through
another colorizer Ĉ1: now we find all that indeed all these particles leave through
the r-exit of Ĉ1: we have made a measurement, we know the particles “are”
red. Same works for g and, analogously, for h/s.

3. We take the 50% r-particles leaving Ĉ0 and send them through Ŝ and, say, we
find half of these, i.e. 25% of the original sample, to be h.

4. We tentatively conclude that our ensemble of particles is uniformily distributed
over the four possible states rh,rs,gh,gs and a sorting maching consisting of a
sequence ĈŜ should have at its 4 respective exits particles with fully determined
properties.

5. If we now check the colors, just to make sure, by sending each cohort through
Ĉ, we are dispointed: we find that the population splits again into two dif-
ferent colors, obtaining a total of 8 separate cohorts. Denote this sequence of
measurements as ĈŜĈ.

6. We have already seen that ĈĈŜ = ĈŜ separates into only 4 different cohorts,
i.e. ĈŜĈ 6= ĈĈŜ
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7. Similarly, one finds ŜĈŜ 6= ŜŜĈ

8. Considering that Ŝ and Ĉ measure all properties of the particles, it appears that
ŜĈ 6= ĈŜ for any of the particles.

The above, of course, is describes an experiment of the Stern-Gerlach kind, with Ĉ
and Ŝ being two spin-measurements at non-parallel axes.

We will see later that the non-commutativity (8) allows to (almost) “bootstrap”
all that you know as standard quantum mechanics. The fact that there are non-
commuting “properties” in quantum systems is the only fundamental distinction
from classical mechanics.

A possible explanations for the observation is that our aparatuses are no good, as
each changes the property that it does not measure. If this were true, we should try
to improve the aparatuses. If we start to think that this is fundamentally impossible,
as QM claims, we need to reconsider what is the reality of a property that cannot,
in principle, be observed independently. Occam’s razor (English, died in Munich,
14’th century!) would advice us to do away with this specific idea of independent
properties.

2.2 The EPR paradox

Quantum mechanics claims that a particle does not “have” simultaneously a mo-
mentum and a position, the complete information is in the wave function.

EPR construct a quantum mechanical state that supposedly shows that a sys-
tem must “have” position and momentum simultaneously, even if they may not be
accessible to direct measurement.

There are two essential ingredients for setting up this paradox:

(1) Locality : the idea that large spatial separation can ensure independence of two
systems.

(2) Realism: an operational concept of “physical reality” which should allow us to
talk about which properties a system “has”.

Although (2) appears much more fuzzy, it seems that physicists’ suspicion is also
directed against (1).

We take QM at face value in the sense that two subsystems are represented by
any state in the tensor product space of the two spaces characterizing each of the
subsystems:

Ψ(a,b) ∈ Ha ⊗Hb = L2(dxa dxb,R3 × R3) (7)

while
Ψ(a) ∈ Ha, and Ψ(b) ∈ Hb. (8)

Suppose at some instant in time, you have a system of two particles in a peculiar
wave packet state:

Ψ = d(x1 − x2 − L)d(p1 + p2) (9)
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where d is a function very well localized near 0 (approximating the δ function). You
might ask whether this is a state in the two particle Hilbert space.

It is: we can just change coordinates (x1, x2) → (x1 − x2, x1 + x2) and Fourier
transform with respect to x1 + x2 → p1 + p2 and then safely set up our wavepacket
as above. Sure, this is an “entangled” state Ψ(x1, x2), not just the product of two
single-particle states Ψ(x1, x2) 6= Ψ(a)(x1)Ψ

(b)(x2), this is essential for the argument.
This is a very formal argument with the purpose to show that the wave function

is a legitimate one within the formal framework of quantum mechanics. It describes
two particles about which we only know (1) they are separated by L and (2) they
move at equal momenta in opposite directions. The functions d can be as close to a
δ-function as we like, i.e. the error in each of these two pieces of informations can
be arbitrarily small. Quantum mechanics claims that this contains the complete
information about the system. We cannot determine the system better, because
through its wave-function we already know everything about it. EPR introduce the
idea of “physical reality” to reason that even if this may be all that is accessible to
us, there is more “reality” in such a system.

Element of physical reality: “If, without in any way disturbing a system, we
can predict with certainty . . . the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity” (Quote from
EPR).

A theory can only be legitimately called “complete”, if it includes all “elements
of physical reality”.

The position of particle 2 is an “element of physical reality”: we can determine it
by measuring the position of particle 1. As the particles are arbitrarily far separated,
by assumption (1) we do this measurement “without in any way disturbing” particle
2. By the same argument, we could just as well measure p1, and therefore also
momentum p2 is an element of physical reality. Therefore, EPR reason, quantum
mechanics is not “complete”: The word “physical reality” implies that somehow
particle 2 “has” a momentum p2 and position x2, which by quantum theory would
be a meaningless statement.

The construction of the EPR paradox was criticized by Bohr on the basis of the
notion of “elements of physical reality”, as there is no measurement that would
provide us with both, x1 and p1. This would deprive us of any predictions for
x2 and p2 simultaneously: so in which sense could both quantities independently
considered “real”? This may or may not be a justified argument. If it were justified,
the EPR paradox would be reduced to the problem of particle-wave dualism, which
I personally consider rather disquieting in the first place. I am inclined to this point
of view.

2.3 Bell’s inequalities

The assumption that somehow a particle does carry all properties that determine an
experimental outcome, has immediate consequences, even if we cannot find any way
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to reveal the hidden properties directly: the simple assumption that each particle
carries with it everything that determines a measurement, leads to a prediction
about the statistical correlations of measurements on independent particles: these
are Bell’s inequalities.

The fact that the particle in that sense “has” all properties that determine a
measurements means that these properties, in some sense, are real: these properties
are not generated by a given observation, they do not depend on our intentions,
or any other thing outside the particle. They will invariably cause a well-defined
response of the aparatus to the particle.

“Independent” is important here. In physics we believe that sufficient separation
in space ensures independence, so if we require the hidden properties to be local,
independence is ensured. As you know, Bell’s inequalities are violated in experiment.
The assumption that a particle has properties that determine its behavior fully, is
at variance with observation.

Note that, giving up locality is to open yet another Pandora’s box: we start
having a problems to split the universe into reasonably independent parts, or speak
of something like a “particle” (local by definition), or any useful form of causality.

Bell, instead of discussing the specific form of quantum theory, he set up his fa-
mous inequalities based on pretty much the two assumptions underlying the EPR
criticism of quantum theory. He then shows that for theories based on these assump-
tions some inequalities hold that are violated by quantum mechanics. It appears
that they also are violated by experiments.

Except for locality, which seems to be a rather clear cut concept, the essence of
Bell’s realism is that it is meaningful to speak of a system to “have” a set of prop-
erties irrespective of whether we can measure them simultaneously or not, similar
to Einstein’s “element of physical reality”.

Let us assume that we have two particles that are well separated such that ma-
nipulations (or measurement) on one particle cannot influence measurements on the
other (“locality”, requires space-like separation of the two measurement events in
the sense of special relativity). Let us further assume that each particle “has” an
internal state that completely determines the outcome of any measurement made
on that particle (“realism” or “determinism”). A “particle” here is local by defini-
tion (different from a “wave”, that is defined by its variation over space). It does
not matter whether we can in principle measure the complete information of that
internal state or not.

For an example we imagine the two particles to be photons originating from
a common source. We measure passage of the photo through a polarizer with two
possible outcomes: 1 for pass, -1 for do not pass. We do a series of measurements j =
1, 2, 3, . . ., on these photons. We assume in the jth measurment the particles have
the internal states λj and µj which uniquely determine the outcome of any possible
measurement. Each λj is a sufficiently large set of numbers to fully characterize the
internal state of the first particle, likewise µj for the second particle. The internal
states are also called “hidden variables”. As by assumption each particle has its
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own λj and µj we call them local hidden variables. In particular, the internal states
would determine which result, +1 or −1, we would find if we measure polarization
in arbitrary directions ~α, ~β or ~γ. Denote the outcome of measurements in the
corresponding directions on the first particle by the functions a(λj), b(λj), c(λj),
and for the second particle a(µj), b(µj), c(µj). With the restriction to values ±1
this looks like we are extracting a very small part of the internal information, but
maybe that is just what what typically happens in the lab.

Now assume that we generated the two particles in a correlated fashion, such that
we know that for any measurment c(λj) = c(µj). This can be achieved e.g. with
photons that for symmetry reasons must have parallel polarization.

For the first particle, we use two directions of the polarizer ~α and ~γ, for the second
particle we use ~β and ~γ. We call the measurement results a(λj), b(µj),c(λj) = c(µj)
for polarizer angles α, β, γ, respectively. The possible outcomes for all measurements
are ±1 in quantum mechanics; in our general model think of a digital switch that can
only show these to results. We could measure γ on either particle, and we know for
sure, because of symmetry, that the outcome would be the same for either particle.
(If you do not like this reasoning, there is a slightly more complex inequality by the
name CHSH that does not use this, but rather relies on 4 different measurement
angles.) The potential measurement results for each photon pair with internal states
λj and µj fulfill

1− b(µj)c(λj) = +a(λj)[b(µj)− c(µj)] or = −a(λj)[b(µj)− c(µj)] (10)

which can be easily verified by inserting the values ±1 for b and c.
Note that we cannot actually measure the b(µj) − c(µj) unless we assume that

we do not disturb µj by our measurement of b(µj). However, with a polarizer we do
disturb the measured system. This is sometimes called “counterfactual reasoning”.
It assumes that a property is somehow “there”, even if we cannot give a prescription
how to determine it. It reasons that if we were able to do that measurement, we
would get the inequality for each j. This is similar to the EPR concept of “physical
reality”: it imagines something could be done, even if nobody can tell us how.

Now we take the average value of these functions over many measurements j =
1, 2, 3, ..., i.e. sum up all potential results and divide by the number of measurements.
As the left hand side is ≥ 0, while the right hand side changes sign, we find

1− 〈bc〉 ≥ 〈a[b− c]〉 and [1− 〈bc〉] ≥ −〈a[b− c]〉 (11)

or
|〈ab〉 − 〈ac〉| ≤ 1− 〈bc〉. (12)

This is Bell’s inequality.
We cannot measure 〈ab−ac〉, but we may measure the “correlation functions”

〈ab〉 and 〈ac〉 separately. If the distribution of λj and µj is statistical, random, we
can split our measurement indices j = 1, 2, 3, . . . into three subsets J and K and
L, compute the average values for each subset 〈ab〉J , 〈ac〉K and 〈bc〉L and assume
〈ab〉J ∼ 〈ab〉 and likewise for 〈bc〉 and 〈ac〉. Randomness of the “internal states” λj
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and µj may be ensured by randomly selecting the subsets J , K and L. This hypoth-
esis may be experimentally corroborated by just extending the measurement series
to ever larger numbers. Bell’s inequality puts a rigorous bound on the correlation
functions of different correlation functions of the same observable.

In view of this statistical argument in is difficult to see what could be wrong
with counterfactual reasoning; but of course, we are here at the very limits of our
imagination and logics, far form the terrain that is secured by everyday experience.
Therefore we need to proof statements, not ask, why they should be wrong. Thus,
it remains a sore point in this whole chain of reasoning. It may limit the validity of
the arguments to models, where in principle we can measure b(µj)−c(µj). After all,
what is the point of talking of a property, if there is no effect which can be identify
as an unambiguous consequence of this property? In the end, connecting an effect
to a property is what we call a measurement. A property that does not lead to
any effect ever, isn’t a property. Permission for counterfactual reasoning after all is
somehow subsumed in the “reality” of the “hidden” variables.

2.4 The correlation of polarization measurements

The crucial tests of the assumptions of “physical reality” and locality of nature to
date were all performed with light, i.e. with photons. We therefore briefly discuss
the quantum mechanical polarization measurements of photons.

Polarization state of a photon: we can measure the polarization of a photon by
inserting a polarizer into its path of propagation, say, along direction z. Then the
photon can have polarization directions in the xy-plane. A polarizer lets the photon
pass, if the polarizer’s direction is parallel to the polarization direction of the photon,
it does not let it pass, if the polarization direction is perpendicular to the direction
of the polarizer. After the polarizer we know the polarization direction of the photon
to be the same a the polarizer’s: measuring a photon behind a polarizer means to
project the wave function on the polarization state in direction of the projector.

If |x〉 and |y〉 designate polarization states in the respective directions, a polar-
ization measurement with a polarizer in direction ~α = (cosα, sinα, 0) is represented
by the operator

Pα = (|x〉 cosα + |y〉 sinα)(cosα〈x|+ sinα〈y|) (13)

This is manifestly a projector with eigenvalues 0 and 1. For convenience, we will
work with the derived operators

σα = 2Pα − 1 = (|x〉〈x| − |y〉〈y|) cos 2α + (|x〉〈y|+ |y〉〈x|) sin 2α (14)

with eigenvalues ±1. This can also be written in matrix form

σα =

(
|x〉
|y〉

)
·
[(

1 0
0 −1

)
cos 2α +

(
0 1
1 0

)
sin 2α

](
〈x|
〈y|

)
(15)

With respect to the basis |x〉, |y〉 these operators are represented by the Pauli ma-
trices σα = cos 2ασz + sin 2ασx and we see that polarization measurement can be
mathematically mapped onto measurements of spin directions in the xz-plane.
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Problem 2.1: Verify the mathematical form of the observable for polarization mea-
surement used for discussing the violation of Bell’s inequalities:

Pα = (|x〉 cosα + |y〉 sinα)(cosα〈x|+ sinα〈y|) (16)

σα = 2Pα − 1 = (|x〉〈x| − |y〉〈y|) cos 2α + (|x〉〈y|+ |y〉〈x|) sin 2α (17)

and finally

σα =

(
|x〉
|y〉

)
·
[(

1 0
0 −1

)
cos 2α +

(
0 1
1 0

)
sin 2α

](
〈x|
〈y|

)
(18)

Problem 2.2: Show that the expectation value for a simultaneous measurement of
polarization for a state |e〉 := [|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉]/

√
2 is

〈e|σα ⊗ σβ|e〉 = cos 2(α− β). (19)

Assume you have a source of light that emits two photons at a time and that is
rotationally invariant. Such a source could be an atom in an excited s-state (L = 0)
that decays to its L = 0 ground state by emitting two photons. As the atomic initial
state is rotationally invariant, the total system after decay must also be rotationally
invariant. And as the final atomic state is L = 0 also the state of the photons must
be L = 0. This is a requirement of symmetry only.

Assume we measure only photons emitted in a well-defined direction (call it the
z-direction) from the atom at two far separated locations A and B. A complete basis
for the polarization states of the two photons is |x〉⊗|x〉, |x〉⊗|y〉, |y〉⊗|x〉, |y〉⊗|y〉.
As the total state is rotationally invariant, it is in particular invariant under rotations
around the z-axis, which leave only the “entangled” two-photon polarization states

|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉 and |x〉 ⊗ |y〉 − |y〉 ⊗ |x〉 (20)

where the latter has odd particle exchange symmetry. That means that in two
photons emitted from a rotationally invariant process have parallel polarizations. If
we measure the polarization of one we can infer the polarization of the other. This
discrete quantity now replaces what was momentum in the original formulation of
the EPR paradox.

2.5 Experimental test of Bell’s inequalities

It is easy to see that the expectation value of the photon-pair state for two polarizers
at the angles α and β

[〈x| ⊗ 〈x|+ 〈y| ⊗ 〈y|]σα ⊗ σβ[|x〉 ⊗ |x〉+ |y〉 ⊗ |y〉] = cos 2(α− β) (21)

Be that as it may, Bell’s inequality relates expectation values of measurements
to each other that can be computed by quantum mechanics. When we choose e.g.
angles α = 0◦, β = 30◦ and γ = 60◦ we violate Bell’s inequality

| cos(−60◦)− cos(−120◦)|+ cos(−60◦) = |1/2 + 1/2|+ 1/2 = 3/2 > 1 (22)
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This would be bad for quantum mechanics, if experiments had not found the same
kind of violation of Bell’s inequality. So, it is bad for our preferred, intuitive, and
only known way of thinking about reality.

2.6 CHSH inequality

The actual experiment [Aspect et al., Phys. Rev. Lett. 49, 1804 (1982)] uses four
different angles α, β, γ, δ and the inequality

|〈ab〉+ 〈bc〉+ 〈cd〉 − 〈da〉| ≤ 2 (23)

which was found to be violated by 5 standard deviations, but in perfect agreement
with the QM prediction.

The CHSH inequality is named after the authors Clauser, Horne, Shimony, Holt
(Phys. Rev. Lett. 1969). It uses 4 different measurment arrangements (angles)

(a+ c)b+ (a− c)d ≡ ±2 (24)

Here, the quantum prediction for angles differing pairwise α, β β, γ, and γ, δ by
22.5o is

| cos 45o + cos 45o + cos 45o − cos 135o| = 2
√

2. (25)

2.7 Experiment by Alain Aspect (1982)

The final breakthrough, as the experiment could be performed using non-blocking
polarizers, where the photon polarization would be determined without destroying
the photon. As an atomic photon source, Ca40 where a two-photon transition from
the 4s21S0 into the 4p21S0 atomic state was driven using two lasers with 406 and
581 nm wave length. The two states are both spin singlet and rotationally invariant
states. The spin singlet ensures the comples system is rotationally invariant and thus
the above reasoning for the symmetry of emitted photons applies. The fluorescence
de-excitation goes through emission of one photon at 551,3 nm into the 4s4p1P1 state
and then further into the initial state by emitting a 442,7 nm photon.

These optical photons can be efficientaly split into two polarization components
|x〉 and |y〉 using a polarizing beam splitter consiting of two prism stuck together
with a thin dielectric film between, causing reflection of the polarization component
parallel to the surface and transimission of the other.

The find the expectation value

S = 2.697± 0.015 (26)

compared to a QM value
S = 2.7± 0.05. (27)

Note that the theoretical value includes corrections for detection efficiency and a
small uncertainty due to the asymmtery of transimission and reflection in the polar-
itmeters. (The ideal theoretical value is 2

√
2 ≈ 2.82.) A flagrant violation of Bell’s

inequalities.
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2.8 “Unperformed experiments have no results”

It is esthetically unsatisfactory that we can measure only one pair of the observables
in the CHSH arrangement at a time. What if we imagine an outcome for the
unperformed measurements (even without doing them)?

Assume we have the two alternative polarimeter direcstion (a,c) on site one and
(b,d) on site two. Assume further (as in CHSH) that (a,b) as (b,c) as (c,d) all
differ by the same relative angle. With no direction in space distinguished, we must
imagine the same probability for disagreement between measurements of the three
pairs. For optimal angles π/8, probablity for disagreement is sin2(π/8) ≈ 1/7 for
each pairs. We can now fill in a table of ficticious measurements of c and d at will.
Our only constraint is that only 1/7 of the cases disagree between measurements of
(b,c), when you fill in c, and then (c,d), when you fill in d. Note that a measurement
series (b,c), if performed, would indeed approximate this percentage of disagreement,
the same holds for (c,d). This means, that in such a ficticious series of measurments,
there would be a fraction of 1-3/7 agreement between the values of (a,d). However, if
we actually measure (a,d) with its relative angle of 3π/8 (or calculate by QM), we find
agreement of only 1/7. Note that the only thing we have done wrong is to imagine
doing something that we actually do not know how to do. So, simply by imagining
measurements that actually cannot be performed, we we arrive at a conclusion
for measurements that can be performed (a,d) that are incorrect. Premisses like
“assume a quadratic cow”, if quadratic cows do not exist, can lead to incorrect
conclusions.

This reiterates the implication of Bell’s theorem in yet another form: the idea
that the photon “has” a property, even if not measured (and not measureable) is
incorrect (realism) unless, possibly, there is some influence from the other photon
(locality).

2.9 Conclusions

It appears that “local realism” is not a property of the world. The violation of Bell’s
inequalities has been confirmed many times since the first experiment, and with even
more striking error margins. There is a struggle to close the remaining “detection
efficiency” loophole and to get rid of the “fair sampling” assumption. Note that
these appear rather contrived objections to the reasoning. Yet, of course, they need
to be eliminated.

This is where we stand today. We do not know whether “realism”, the idea
that a system somehow “has” all properties that we can measure, and has them
simultaneously, or the concept that far separated systems are independent of each
other, or both are wrong. Certain explicit formulations of non-local theories have
been ruled out by an experiment 2007, but this is not a universal statement for all
non-local theories. Currently there seems to be popular inclination to think of the
world as being inherently non-local. Thinking of the possible implications of this for
our ability to understand and predict events makes me shudder. The alternative of
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it being not “real”, i.e. the properties of things not being only “their” properties but
rather a joint product of “us” and “them”, is not much of a consolation. I dare say
that all of mankind’s thinking is based on the concept of objects “out there” which
we can perceive and about which we can think, but which have their “nature” or
“reality” independently of us. Philosophers have always known that this may be an
untenable position because the idea is very difficult to make precise. However, they
have not offered useful alternatives. Now we have measurements that seem to tell
us that the idea is wrong. Quantum mechanics may be right. But who understands
it? So how shall we form a correct image of reality?
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