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Theorem

In this talk we are going to prove Theorem 1.3 of the paper
”
Analysis of a

simple equation for the ground state energy of the Bose gas“ by Carlen,
Jauslin, Lieb. It states:

Theorem

Let d ∈ N, p > max
{
d
2 , 1
}

and V ∈ L1(Rd) ∩ Lp(Rd) non-negative. Then
there is a continuous function ρ(e) on (0,∞) satisfying

lime→0 ρ(e) = 0,

lime→∞ ρ(e) =∞,

there exists a unique integrable function u(x) on Rd with
0 ≤ u(x) ≤ 1 for all x ∈ Rd , which solves the system of equations(

−4+ 4e + V(x)
)
u(x) = V(x) + 2eρ(e)(u ∗ u)(x)

e =
ρ(e)

2

∫ (
1− u(x)

)
V(x) dx.

(1)
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Overwiev

1 Rewrite equation (1) in a better suited form,

2 Define for fixed e sequences (ρn) and (un),

3 Prove some properties of (ρn) and (un),

4 Prove that the limits ρ and u of these sequences exist and solve the
system of equations (1),

5 Prove that ρ(e) is continuous and has the desired limit-properties.

6 (Prove uniqueness of ρ(e) and u)
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Rewriting equation (1)
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Concept: Green’s function

Let L be a linear differential operator. Then its Green function G (x , s) is
defined via

LG (x , s) = δ(x − s).

Claim:

Lu(x) = f (x)⇒
∫

G (x , s)f (s)ds is a solution to the DE.

Prove:

L

∫
G (x , s)f (x) ds =

∫
LG (x , s)f (x) ds =

∫
δ(x − s)f (s) ds = f (x).

Notation:

L−1 = G :=

∫
G (x , s)(·)ds
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Concept: Contraction semigroup

A strongly continuous semigroup on a Banach space X is a family of
bounded, linear operators (Ti )i∈R+ on X , such that

T (0) = IdX ,

∀t, s ≥ 0 : Tt+s = TtTs ,

∀x ∈ X : ||Ttx − x || → 0, as t → 0.

A strongly continuous semigroup is called a contraction semigroup, if for
all t ∈ R+, one has ||Tt || ≤ 1

A generator G of a strongly continuous semigroup (Tt) is defined by

Gx := lim
t→0
−1

t

(
Tt − IdX

)
x .

This operator must not be exist for all x ∈ X . The set of all x ∈ X , such
that G exists is called the domain D(G ) of G .
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Ressources

Ressources for the claims:

E.H. Lieb, M. Loss. Analysis. Second edition, Graduate studies in
mathematics, Americal Mathematical Society (2001).

M. Reed, B. Simon. Methods of Modern Mathematical Physics II: Fourier
Analysis, Self-Adjointness,. second edition, Academic Press, New York
(1975).
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Assumed results

Theorem:

−4+4e for e > 0 is a bijection between W 2,p and Lp with inverse
G := (−4+4e)−1 given by

Gu = Y4e ∗ u,

where Y4e is the Yukawa potential. The Yukawa potential is non-negative
and ∫

Y4e(x)dx =
1

4e
.
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Intermezzo: Sobolev-spaces

W 2,p(Rd) is the Sobolev-space of order 2 over Lp(Rd), that is the set of
all f ∈ Lp(Rd), such that for all α ∈ {1, ..., d} and
(β1, β2) ∈ {1, ..., d} × {1, ..., d}

∂f

∂α
∈ Lp(Rd) and

∂2f

∂β1∂β2
∈ Lp(Rd).

It is equipped with the Sobolev-norm, defined as

||f ||W 2,p =
∑
|α|≤2

||Dαf ||p

=||f ||p +
∑

α∈{1,...,d}

∣∣∣∣∣∣∣∣ ∂

∂xα
f

∣∣∣∣∣∣∣∣
p

+
∑

α∈{1,...,d}

∣∣∣∣∣∣∣∣ ∂2

∂xα∂xα
f

∣∣∣∣∣∣∣∣
p

+
∑

α,β∈{1,..,d}
α6=β

∣∣∣∣∣∣∣∣ ∂2

∂xα∂xβ
f

∣∣∣∣∣∣∣∣
p

.
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Gu = Y4e ∗ u,

where Y4e is the Yukawa potential. The Yukawa potential is non-negative
and ∫

Y4e(x)dx =
1

4e
.

Theorem:

(−4+4e) is the generator of a contraction semigroup with domain
D(−4+4e) = W 2,p(Rd). The contraction semigroup is positivity
preserving, that is

u ≥ 0⇒ e(4−4e)tu ≥ 0

for all t ≥ 0.
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Rewriting equation (1)

Alternative form 1

We start with:

big(−4+4e + V(x)
)
u(x) = V(x) + 2eρ(e)(u ∗ u)(x) (2)

Rearranging this gives(
−4+ 4e)u(x) = V(x)

(
1− u(x)

)
+ 2eρ(e)(u ∗ u)(x).

Acting with Ge = (−4+4e)−1 gives

u(x) = Y4e ∗
(
V(1− u)

)
(x) + 2eρ(e)(Y4e ∗ u ∗ u)(x).

Alternative form 2

Alternatively, acting with Ke = (−4+4e +V)−1 on (2) immediately gives

u(x) = KeV(x) + 2eρeKe(u ∗ u)(x).
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Theorem

For the following theorem, see Reed, Simon, page 244.

Theorem (1)

Let A be the generator of a contraction semigroup on a Banach space X .
Suppose that B is an accretive operator, with D(A) ⊂ D(B) and

||Bφ|| ≤ a||Aφ||+ b||φ||

for some b ∈ R+ and some a < 1
2 and all φ ∈ D(a). Then A + B (defined

on D(A + B) = D(A)) is a closed accretive operator, which generates a
contraction semigroup.
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Application of Theorem 1

(−4+4e) is the generator of a contraction semi-group, as
established before.

To prove V(x) to be accretive, we use the following theorem found in
(Reed,Simon, page 241):

Theorem (2)

An operator A is the generator of a contraction semigroup, if and only if it
is accretive and A + λId is surjective for all λ > 0.
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Application of Theorem 1

We define e−Vt : Lp(Rd)→ Lp(Rd) as

(
e−Vtu

)
(x) := e−V(x)tu(x) =

∑
n∈N0

(
− V(x)t

)n
n!

 u(x)

||Ttv | ≤ ||v ||, since

V(x) ≥ 0⇒ 0 ≤ e−V(x)t ≤ 1⇒ e−V(x)tv(x) ≤ v(x)⇒ ||e−Vtv || ≤ ||v ||,

T0 = IdX , since(
e−V·0v

)
(x) = e−V(x)·0v(x) = 1 · v(x),

TtTs = Tt+s , since(
e−V·te−V·sv

)
(x) = e−V(x)·te−V·sv(x)

= e−V(x)·(t+s)v(x) =
(
e−V(t+s)v

)
(x)
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Application of Theorem 1

limt→0 ||Ttv − v || = 0, since e−V(x)tv(x) converges for t → 0
pointwise towards v(x) and since e−V(x)tv(x) ≤ v(x), by dominated
convergence we have

lim
t→0
||Ttv − v || = || lim

t→0
Ttv − v || = 0

V = limt→0−1
t

(
Tt − IdX

)
v , since for all v ∈ Lp(Rd), such that

V · v ∈ Lp(Rd):

lim
t→0
−1

t

(
e−V(x)t − 1

)
v(x) =

(
lim
t→0
−1

t

(
e−V(x)t − 1

))
v(x)

= V(x)v(x).

Conclusion: V(x) is the generator of a contraction semigroup and therefore
accretive.
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Application of Theorem 1

D(−4+4e) ⊆ D(V)

D(V) = {u ∈ Lp(Rd)|V · u ∈ Lp(Rd)}, especially all bounded u.
Since all u ∈W 2,p(Rd) are bounded

D(−4+4e) = W 2,p(Rd) ⊂ D(−V).

Note: Boundedness follows from the Sobolev embedding

W k,p(Ω) ⊆ C (Ω)

for bounded Lipschitz-domains Ω and kp > n (which is satisfied by
assumption of p in the theorem) , together with the fact, that functions in
W 2,p(Rd) go to 0 at infinity. Boundedness also holds for W 2,1(Rd) as for
kp < n

W k,p(Ω) ⊂ Lq(Ω) with
1

q
=

1

p
− k

p
,

where we can use W 2,1(Ω) ⊂W 1,1(Ω), to make q =∞ (for this, we have

to assume d > 1), see [Sobolev Spaces and Elliptic Equations, Long Chen,

page 8].
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Application of Theorem 1

Last to check: Bound

For this let ε > 0 and M ⊆ Rd , such that

1MV(x) ≤ C and ||1McV||p ≤ ε.

With this, we can calculate for every f ∈W 2,p(Rd):

||Vf ||p ≤ ||1MVf ||p + ||1MCVf ||p ≤ C ||f ||p + ||1MCV||p||f ||∞
≤ C ||f ||p + ε||f ||∞.

Use Sobolev-inequality, for f ∈W 2,p:

||f ||∞ ≤ ||f ||W 2,p

to get:
||Vf ||p ≤ C ||f ||p + ε||f ||W 2,p .
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||f ||∞ ≤ ||f ||W 2,p

to get:
||Vf ||p ≤ C ||f ||p + ε||f ||W 2,p .

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 18 / 58



Application of Theorem 1

Claim: There is D > 0, such that ||f ||W 2,p ≤ D||(−4+4e)f ||p. With this,
we would get

||Vf ||p ≤ C ||f ||p + εD||(−4+4e)f ||p.

This would prove the bound.

Prove:

We first prove for f ∈ Lp(Rd)

||(−4+4e)−1f ||W 2,p ≤ C ||f ||p.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 19 / 58



Application of Theorem 1

Claim: There is D > 0, such that ||f ||W 2,p ≤ D||(−4+4e)f ||p. With this,
we would get

||Vf ||p ≤ C ||f ||p + εD||(−4+4e)f ||p.

This would prove the bound.
Prove:

We first prove for f ∈ Lp(Rd)

||(−4+4e)−1f ||W 2,p ≤ C ||f ||p.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 19 / 58



Application of Theorem 1

Remember, that

||(−4+4e)−1f ||W 2,p =
∑
|α|≤2

||Dα(−4+4e)−1f ||p =
∑
|α|≤2

||Dα(Y4e ∗f )||p.

Now we use Dα(g1 ∗ g2) = (Dαg1) ∗ g2, as well as Young’s inequality
||g1 ∗ g2||p ≤ ||g1||1||g2||p to get

||(−4+4e)−1f ||W 2,p =
∑
|α|≤2

||Dα(Y4e ∗ f )||p

=
∑
|α|≤2

||(DαY4e) ∗ f ||p

≤
∑
|α|≤2

||DαY4e ||1||f ||p

=

∑
|α|≤2

||DαY4e ||1

 ||f ||p
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Application of Theorem 1

So we have shown

||(−4+4e)−1f ||W 2,p ≤ C ||f ||p

for all f ∈ Lp(Rd).

This shows (−4+4e)−1 : Lp(Rd)→W 2,p(Rd) is a bounded operator.

Now we use that (−4+4e)−1 or equivalently (−4+4e) is a bijection,
that is for every f ∈ Lp(Rd), there is a f ′ ∈W 2,p such that
f = (−4+4e)f ′ and vice versa. Plugging this in, yields

||f ′||W 2,p ≤ C ||(−4+4e)f ′||p

for all f ′ ∈W 2,p(Rd), which was to show
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Result and Corollaries:

To summarize:

We have proven that H := (−4+4e + V) : W 2,p(Rd)→ Lp(Rd) is closed
and the generator of a contraction semigroup.

Corollaries:

Since H is closed and defined on all of W 2,p(Rd) it is bounded.

From theorem (2), we know that for every e, λ > 0 the operator

H + λId = −4+4e + λ+ V(x)

is surjective. Choosing for fixed e0 > 0 e = e0
2 and λ = 4e0

2 , we get
that for all e0 > 0

−4+4
e0

2
+ 4

e0

2
+ V(x) = −4+4e0 + V(x)

is surjective, hence H is surjective.
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Corollaries:

For injectiveness, we are going to construct the inverse. Let for
f ∈W 2,p(Rd), let g = Hf and f (t) = e−Ht f . Since H is the generator of
e−Ht on W 2,p(Rd), we get

∂t f (t) = −Hf (t).

Integrating from 0 to t, we get:

f (t)− f =

∫ t

0
∂t f (t) dt = −

∫ t

0
Hf (t) dt = −

∫ t

0
He−Ht f dt

= −
∫ t

0
e−HtHf dt = −

∫ t

0
e−Htg dt

.

For t →∞, we get f (t)→ 0. Therefore in the limit

f =

∫ ∞
0

e−Htg dt.

Having constructed the inverse, H is injective.
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Corollaries:

Finally, we are going to prove, that H is positivity preserving, that is

u ≥ 0⇒ Hu ≥ 0.

For this, use the Trotter product formula

eA+B = lim
n→∞

(
e

A
n e

B
n

)n
,

with A = (−4+4e) and B = V(x). Both are positivity preserving. Then
there product is positivity preserving for all n ∈ N. Then as the limit of
positivity preserving operators e(4−4e−V)t is positivity preserving. Then,
for every function u ≥ 0 in Lp(Rd), the integrand of

f =

∫ ∞
0

e−Htu dt

is non-negative for all t. Since the integral over non-negative functions is
positive, f is non-negative.
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Summary

We have three ways of writing equation (1):

1 (
−4+ 4e + V(x)

)
u(x) = V(x) + 2eρ(e)(u ∗ u)(x)

2

u(x) = Y4e ∗
(
V(1− u)

)
(x) + 2eρ(e)(Y4e ∗ u ∗ u)(x)

with Y4e ≥ 0 and
∫
Y4e = 1

4e

3

u(x) = KeV(x) + 2eρ(e)Ke(u ∗ u)(x)

with Ke being a bijection between Lp(Rd) and W 2,p(Rd) and
positivity preserving.

For convenience, we would like to call them base equation 1, 2, 3
respectively in that order.
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Defining (ρn) and (un)
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Defining (ρn) and (un)

Let e ∈ (0,∞) be fixed. Then define recursively:

u0(x) := 0

un(x) := KeV(x) + 2eρn−1(e)Ke(un−1 ∗ un−1)(x)

ρn(e) :=
2e∫ (

1− un(x)
)
V(x) dx
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Overview

We are going to prove by induction:

un ∈ L1(Rd),

un ∈ Lp(Rd),

un is continuous,

un vanishes at infinity

0 ≤ un ≤ 1,

ρn is well defined and positive.

Base case n=0:

u0 = 0 satisfies all the above properties. Furthermore

ρ0 =
2e∫
V(x) dx

=
2e

||V||1
> 0.
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Induction step

Induction step n ∈ N

We look at the defining equation

un(x) := KeV(x) + 2eρn−1(e)Ke(un−1 ∗ un−1)(x).

By assumption V, un−1 ∈ Lp(Rd), therefore un ∈W 2,p(Rd). It follows:

un ∈ Lp(Rd) �
un ∈ L1(Rd) �
(Since the prove of Ke : Lp(Rd)→W 2,p(Rd) only used boundedness
of W 2,p(Rd), which holds for W 2,1(Rd).)
un is continuous �
(Follows again, from the embedding W k,p(Ω) ⊆ C (Ω) for kp ≥ n.)
un vanishes at infinity �

Furthermore, since Ke preserves positivity

0 ≤ un �

We need to check:

u ≤ 1 and ρn > 0
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Intermezzo: Lemma

Lemma

For all n ∈ N, we have

un ≥ un−1

ρn ≥ ρn−1∫
un(x) dx ≤

∫
V(x)
(

1−u(x)
)

dx

2e ⇒ ρn||un||1 ≤ 1.

Prove (by induction):

For the base case n = 1, we have (using Ke preserves positivity)

u1(x) = KeV(x) ≥ 0 = u0(x).
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Intermezzo: Lemma

Prove (by induction):

For the base case n = 1, we have (using Ke preserves positivity and is
bijective)

u1(x) = KeV(x) > 0 = u0(x).

For n = 1 base equation 2 reads

u1(x) = Y4e ∗
(
V(1− u1)

)
(x),

which integrated gives∫
u1(x) dx =

1

4e

∫
V(x)

(
1− u1(x)

)
dx ≤ 1

2e

∫
V(x)

(
1− u1(x)

)
dx.

This shows

0 ≤ 1

2e

∫
V(x)

(
1− u1(x)

)
dx.
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Intermezzo: Lemma

Now it follows:

ρ1 =
2e∫

V(x)
(
1− u1(x)

)
dx
≥ 2e∫
V(x) dx

= ρ0

where the denominator is not zero, because either

u1 = 0 almost everywhere ⇒
∫
V(x)

(
1− u1(x)

)
dx =

∫
V(x) dx > 0∫

u1(x) dx > 0 ⇒
∫
V(x)

(
1− u1(x)

)
dx ≥

∫
u1(x) dx > 0 by the

bound on the slide before.
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Intermezzo: Lemma

Prove (by induction):
Now let n ≥ 2. Then by induction hypothesis

un = KeV + 2ρn−1(e)Ke(un−1 ∗ un−1)(x)

≥ KeV + 2ρn−2(e)Ke(un−2 ∗ un−2)(x) = un−1(x).

Integrating base equation 2, we get∫
un =

1

4e

∫
V(x)

(
1− un(x)

)
dx +

ρn−1(e)

2

(∫
un−1(x) dx

)2

≤ 1

4e

∫
V(x)

(
1− un(x)

)
dx +

1

2

(∫
un−1(x) dx

)
Rearranging gives:

1

2e

∫
V(x)

(
1− un(x)

)
dx ≥ 2

∫
un dx−

∫
un−1(x) dx ≥

∫
un dx
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Induction step

To prove un ≤ 1 assume the opposite and define

A := {x ∈ Rd |un(x) > 1}.

un bounded and continuous ⇒ un has a maximum x0.

A non-empty ⇒ x0 ∈ A.
Rearranging the defining equation for un, we get:

4un(x) = V
(
un(x)− 1

)
+ 4eun(x)− 2eρn−1

(
un−1 ∗ un−1

)
(x)

≥ V
(
un(x)− 1

)
+ 4eun(x)− 2eρn−1||un−1 ∗ un−1||∞

We use ||un−1 ∗ un−1||∞ ≤ ||un−1||1||un−1||∞ and use ||un−1||∞ ≤ 1:

4un(x) ≥ V
(
un(x)− 1

)
+ 4eun(x)− 2eρn−1||un−1||1.

Now we use ρn−1||un−1 ≤ 1:

4un(x) ≥ V
(
un(x)− 1

)
+ 4eun(x)− 2e.
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Induction step

4un(x) ≥ V
(
un(x)− 1

)
+ 4eun(x)− 2e.

Assume x ∈ A. Then un(x) > 1.

4un(x) ≥ V
(
un(x)− 1

)
+ 2e > 0.

But for local maxima 4un(x) ≤ 0. We have a contradiction.

⇒ A is empty ⇒ un ≤ 1 �
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Proving the limits of (ρn) and (un) solve (1)
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Existence

To prove:

(ρn) and (un) monotonic increasing

�

(ρn) and (un) are bounded

For (un) f (x) = 1 is an upper bound.

For (ρn) use ρn||un||1 ≤ 1 and ||un||1 ≥ ||u1||:

ρn ≤
1

||un||
≤ 1

||u1||
.

The limits

ρ := lim
n→∞

ρn and u(x) := lim
n→∞

un(x)

exist.
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Integrability

As |un| ≤ 1, we get∫
un(x) dx ≤ 1

2e

∫
V(x)

(
1− un(x)

)
dx ≤ 1

2e

∫
V(x) dx.

So (un) is

almost everywhere converging

integrable

has bounded 1-norm

By Fatou’s lemma: u ∈ L1(Rd).

Then by dominated convergence, as u is upper bound for all un:

lim
n→∞

∫
un(x) dx =

∫
u(x) dx ⇔ lim

n→∞
||u − un||1 = 0.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 39 / 58



Integrability

As |un| ≤ 1, we get∫
un(x) dx ≤ 1

2e

∫
V(x)

(
1− un(x)

)
dx ≤ 1

2e

∫
V(x) dx.

So (un) is

almost everywhere converging

integrable

has bounded 1-norm

By Fatou’s lemma: u ∈ L1(Rd).

Then by dominated convergence, as u is upper bound for all un:

lim
n→∞

∫
un(x) dx =

∫
u(x) dx ⇔ lim

n→∞
||u − un||1 = 0.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 39 / 58



Integrability

As |un| ≤ 1, we get∫
un(x) dx ≤ 1

2e

∫
V(x)

(
1− un(x)

)
dx ≤ 1

2e

∫
V(x) dx.

So (un) is

almost everywhere converging

integrable

has bounded 1-norm

By Fatou’s lemma: u ∈ L1(Rd).

Then by dominated convergence, as u is upper bound for all un:

lim
n→∞

∫
un(x) dx =

∫
u(x) dx ⇔ lim

n→∞
||u − un||1 = 0.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 39 / 58



Integrability

As |un| ≤ 1, we get∫
un(x) dx ≤ 1

2e

∫
V(x)

(
1− un(x)

)
dx ≤ 1

2e

∫
V(x) dx.

So (un) is

almost everywhere converging

integrable

has bounded 1-norm

By Fatou’s lemma: u ∈ L1(Rd).

Then by dominated convergence, as u is upper bound for all un:

lim
n→∞

∫
un(x) dx =

∫
u(x) dx ⇔ lim

n→∞
||u − un||1 = 0.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 39 / 58



Integrability

As 0 ≤ u(x) ≤ 1

||u||pp =

∫
up(x) dx ≤

∫
u(x) dx = ||u||1,

therefore u ∈ Lp(Rd).

As 1 ≥ u(x) ≥ un ≥ 0, we have u(x)− un(x) ≤ 1, therefore

||u − un||pp =

∫ ∣∣u(x)− un(x)
∣∣p dx ≤

∫ ∣∣u(x)− un(x)
∣∣ dx = ||u − un||1,

proving
lim
n→∞

||u − un||p = 0.
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Solution-property

With this:

||u ∗ u − un ∗ un||p = ||u ∗ u − u ∗ un + u ∗ un − un ∗ un||p
≤ ||u ∗ (u − un)||p + ||(u − un) ∗ un||p
≤ ||u||1||u − un||p + ||un||1||u − un||p

This shows

lim
n→∞

||u ∗ u − un ∗ un|| = 0 ⇔ lim
n→∞

un ∗ un = u ∗ u (in p-Norm).

Now taking the limit of the defining equation

lim
n→∞

un = lim
n→∞

(
KeV + 2eρn−1Ke(un−1 ∗ un−1)

)
we get

u = KeV + 2eρKe(u ∗ u).
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Solution-property

Left to check:

ρ(e) =
2e∫ (

1− u(x)
)
V(x) dx

.

For this, we take the limit and use dominated convergence

ρ = lim
n→∞

2e∫
V(1− un) dx

=
2e

limn→∞
∫
V(1− un) dx

=
2e∫

V(1− u) dx
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Proving ρ is continuous and has the limit properties
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Continuity of ρn(e) and un(x , e)

Claim:

ρ(e) and un(x , e) are continuous in e for all n ∈ N0.

Prove (by induction):

For n = 0: un(x , e) = 0 and ρ0(e) = 2e∫
V(x)dx

are continuous.

For n ∈ N we observe Ke is continuous in e, as

e 7→ −4+4e + V(x)
(·)−1

7→ Ke ,

such that e 7→ Ke f is continuous for f ∈ Lp(Rd).

It then follows, that un(x , e) is continuous in e as

un(x , e) = KeV(x) + 2eρn−1(e)
(
Keun−1 ∗ un−1

)
(x , e).

This implies (with dominated convergence)

ρn(e) =
2e∫

V(x)
(
1− un(x , e)

) dx

is continuous in e.
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Uniform convergence of ρn(e)

Claim:

ρ(e) converges uniformly toward ρ(e).

What to prove:

∀e ∈ (0,∞) :
∣∣ρ(e)− ρn(e)

∣∣ ≤ C

n

Modification 1

∀e ∈ (0,∞) :

∣∣∣∣ 1

ρ(e)
− 1

ρn(e)

∣∣∣∣ ≤ C

n

Modification 2

∀e ∈ (0,∞) :

∣∣∣∣an(e)− 1

ρn(e)

∣∣∣∣ ≤ C

n

for (an)→ 1
ρ monotonically increasing.
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Uniform convergence of ρn(e)

Modification 2

∀e ∈ (0,∞) :

∣∣∣∣an(e)− 1

ρn(e)

∣∣∣∣ ≤ C

n

for (an)→ 1
ρ monotonically increasing. This holds because of

∀e ∈ (0,∞) :

∣∣∣∣an(e)− 1

ρn(e)

∣∣∣∣ ≤ C

n
⇒ ∀e ∈ (0,∞) :

∣∣∣∣1ρ − 1

ρn(e)

∣∣∣∣ ≤ C

n

as an ≤ 1
ρ and 1

ρ ≥
1
ρn

.

Modification 3

∀e ∈ [e1, e2] :

∣∣∣∣an(e)− 1

ρn(e)

∣∣∣∣ ≤ C

n
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Uniform convergence of ρn(e)

Prove:

Define

an(e) =

∫
un(x , e) dx and

1

ρn
= bn =

1

2e

∫
V(x)

(
1−un(x , e)

)
dx.

(an) has the following properties:

an(e) =
∫
un(x , e) dx is continuous in e,∫

un(x , e) dx ≥
∫
un−1(x , e) dx⇒ an ≥ an−1∫

un(x , e) dx ≤
∫
u(x , e) dx ≤ 1

ρ ⇒ an ≤ 1
ρ∫

un(x , e) dx
n→∞→

∫
u(x , e) dx = 1

ρ ⇒ an
n→∞→ 1

ρ .

(Equality in 4 will be proven on the next slide!)
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Uniform convergence of ρn(e)

Claim:

If u, ρ are (integrable) solutions to equation (1), then∫
u(x , e) dx =

1

ρ

Prove:

We start with base equation 2:

u(x) = Y4e ∗
(
V(1− u)

)
(x) + 2eρ(e)(Y4e ∗ u ∗ u)(x)

and integrate∫
u(x) dx =

1

4e

∫
V(x)

(
1− u(x)

)
dx +

ρ

2

(∫
u(x) dx

)2

,

where we have used
∫
u ∗ udx =

(∫
udx
)2

.
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Uniform convergence of ρn(e)

Using

ρ =
2e∫ (

1− u(x)
)
V(x) dx

we get ∫
u(x) dx =

1

2ρ
+
ρ

2

(∫
u(x) dx

)2

.

Rearranging

ρ2

(∫
u(x) dx

)2

− 2ρ

∫
u(x) dx + 1 =

(
ρ

∫
u(x) dx− 1

)2

= 0.

This proves

ρ

∫
u(x) dx− 1 = 0⇒ 1

ρ
=

∫
u(x) dx.
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Uniform convergence of ρn(e)

(an) has the following properties:

an(e) =
∫
un(x , e) dx is continuous in e,∫

un(x , e) dx ≥
∫
un−1(x , e) dx⇒ an ≥ an−1∫

un(x , e) dx ≤
∫
u(x , e) dx ≤ 1

ρ ⇒ an ≤ 1
ρ∫

un(x , e) dx
n→∞→

∫
u(x , e) dx = 1

ρ ⇒ an
n→∞→ 1

ρ .

From the fact that bn = 1
ρn

, we immediately see that

bn is continuous in e,

bn is monotonic decreasing

bn converges towards 1
ρ from above.
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Uniform convergence of ρn(e)

For the bound, we start with the integrated version of base equation 2:∫
un(x) dx =

1

4e

∫
V(x)

(
1− un(x)

)
dx +

ρn−1

2

(∫
un−1(x) dx

)2

and replace an and bn:

2an(e) = bn(e) +
1

bn−1(e)
a2
n−1(e).
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Uniform convergence of ρn(e)

2an(e) = bn(e) +
1

bn−1(e)
a2
n−1(e).

Using this, we arrive at

1

bn(e)

(
an(e)− bn(e)

)2
=

a2
n(e)

bn(e)
− 2an(e) + bn(e) =

a2
n(e)

bn(e)
−

a2
n−1(e)

bn−1(e)
.

Summing over all n:∑
n∈N

1

bn(e)

(
an(e)− bn(e)

)2
=

1

ρ(e)
.

Using bn < b1: ∑
n∈N

1

b1(e)

(
an(e)− bn(e)

)2 ≤ 1

ρ(e)
.
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Uniform convergence of ρn(e)

∑
n∈N

1

b1(e)

(
an(e)− bn(e)

)2 ≤ 1

ρ(e)
.

Rearranging:

∑
n∈N

(
an(e)− bn(e)

)2 ≤ b1(e)

ρ(e)
=

∫
V(x)

(
1− u(x , e)

)
dx∫

KeV(x) dx
≤

∫
V(x) dx∫

KeV(x) dx
.

The right-hand side is a continuous function, so on every compact interval
[e1, e2] it takes on a maximum, we denote as C :

C ≥
∑
n∈N

(
an(e)− bn(e)

)2
.
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Uniform convergence of ρn(e)

C ≥
∑
n∈N

(
an(e)− bn(e)

)2

≥
∑
n≤N

(
an(e)− bn(e)

)2

≥ N
(
aN(e)− bN(e)

)2

We get:(
aN(e)− bN(e)

)2 ≤ C

N
⇒ 1

ρn
converges uniformly⇒ ρ is continuous
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Uniform convergence of ρn(e)

C ≥
∑
n∈N

(
an(e)− bn(e)

)2

≥
∑
n≤N

(
an(e)− bn(e)

)2

≥ N
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Limit behaviour of ρ(e)

e →∞:

ρ(e) =
2e∫

V(x)
(
1− u(x , e)

)
dx
≥ 2e∫
V(x)dx

e→∞→ ∞

e → 0:

ρ(e) =
1∫

u(x , e) dx

≤ 1∫
u1(x , e) dx

=
1∫

Y4e ∗
(
V(1− u1)

)
dx

=
4e∫ (

V(1− u1)
)

dx

e→0→ 0
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Uniqueness of ρ and u
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Uniqueness

Let ũ be another non-negative integrable solution to equation (1), with

ρ̃ =
2e∫ (

1− ũ(x)
)
V(x) dx

.

We first prove ũ ≥ un for all n ∈ N0 by induction:

n = 0: ũ ≥ 0 = u0

n ∈ N:

ρ̃ =
2e∫

V(x)
(
1− ũ(x)

)
dx
≥ 2e∫
V(x)

(
1− un−1(x)

)
dx

= ρn−1.

This implies
ρ̃(ũ ∗ ũ)(x) ≥ ρn−1(un−1 ∗ un−1)(x).

This implies

ũ(x)− un(x) = 2eKe

(
ρ̃(ũ ∗ ũ)− ρn−1(un−1 ∗ un−1)

)
(x) ≥ 0⇒ ũ ≥ un.

Markus Wiener (An effective theory for interacting Bose gases)Prove of the existence of a solution to a simplified differential equation for interacting bose gases.26.05.2021 57 / 58



Uniqueness
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Uniqueness

In the limit, we get

ũ ≥ u and ρ̃ ≥ ρ.

But we also get ∫
ũ(x) dx =

1

ρ̃
≤ 1

ρ
=

∫
u(x) dx.

Since ũ ≥ u but
∫
ũdx ≤

∫
udx, we must have

u(x) = ũ(x) for almost all x ∈ Rd).

But since u, ũ are continuous, we must have

u(x) = ũ(x) for all x ∈ Rd).
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