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Part I
Theorem 1.5 in [2]

1 Introduction

(—A+4de+ V(x))u(z) = V() + 2ep(u x u)(z) , (1.1)

e =

N

/(1 —u(2))V(z) dx . (1.2)

Theorem 1.1(Positivity) Suppose that V is non-negative and integrable and that u is an
integrable solution of (1.1)-(1.2) such that u(z) < 1 for all . Then u(x) > 0 for all z, and
all such solutions have fairly slow decay at infinity in that they satisfy

/.77|u(.7;)d:1: =00 . (1.5)
Thus, any physical solutions of (1.1)-(1.2) must necessarily satisfy the pair of inequalities
O0<u(z) <1 forall z. (1.6)

Theorem 1.3 (existence and uniqueness) Let V € L'(R?) N LP(R?), p > max{Z, 1}, be
non-negative. Then there is a constructively defined continuous function p(e) on (0, c0) such
that lim.,0 p(e) = 0 and lim., p(e) = 0o and such that for any e > 0 and p = p(e), the
system (1.1) and (1.2) has a unique integrable solution u(x) satisfying u(x) < 1. Moreover,
if p # p(e), the system (1.1) and (1.2) has no integrable solution u(z) satisfying (1.6).

Remark:

e We do not assume here that the potential is radially symmetric. However, the unique-
ness statement implies that u is radially symmetric whenever V is radially symmetric.



e The function p(e) is the density function, which specifies the density as a function of
the energy. Thus, our system together with (1.6) constrains the parameters e and p
to be related by a strict functional relation p = p(e). In most of the early literature
on the Bose gas, p is taken as the independent parameter, as suggested by (?7): One
puts N particles in a box of volume N/p, and seeks to find the ground state energy per
particle, e, as a function of p. Our theorem goes in the other direction, with p specified
as a function of e. We prove that e — p(e) is continuous, and we conjecture that p(e)
is a strictly monotone increasing function. In that case, the functional relation could
be inverted, and we would have a well-defined function e(p).

e Since lim, o p(e) = 0 and lim,_,, p(e) = 0o, the continuity of e — p(e) implies that
for each p € (0,00) there is at least one e such that p(e) = p.

Theorem 1.5 (decay of u at infinity) In all dimensions, provided V is spherically sym-
metric with [ |z|*Vdz < oo in addition to satisfying the hypotheses imposed in Theorem 1.3,
all integrable solutions of (1.1)-(1.2) with u(x) < 1 for all x satisfy

/]x\u(x)dx =00 and /]m\ru(a:)dx <oo forall0<r<1. (1.25)

Thus, if u(zx) ~ |z|™™ for some m, the only possibility is m = d + 1. Under stronger
assumptions on the potential, this is actually the case. For d = 3, if V is non-negative,
square-integrable, spherically symmetric (that is, V(z) = V(|z|)), and, for |z| > R,

V(|z]) < Ae~ Bl (1.26)

for some A, B > 0 then there exists a > 0 such that

@ (1.27)

~ .
|z| =00 |ZL'|4

5 Decay of u

In this section, we prove Theorem 1.5. Our proof assumes that V decays exponentially,
because we will use analyticity properties of the Fourier transform of the potential V. In
particular, the theorem holds if V has compact support. We expect the result to hold for
any potential that decays faster than |z|~*. Algebraic decay for u seems natural: by (1.1),
u * v must decay at infinity in the same way as u. This is the case if u decays algebraically,
but would not be so if, say, it decayed exponentially.

Take the Fourier transform to (1.1), then we have

(K + de)i(k) + (V = 0) (k) = V(k) + 2epi®(k).
If u(z) = exp(—|z|), the u(k) ~ (1 + k%)~ in 3D.

Proof of theorem 1.5: We begin by proving (1.25) in arbitrary dimension. Recall that the
first part has already been proved in Theorem 1.1 without the additional assumption on the
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potential. For the second part, recall that by the first remark after Theorem 1.3, u is also
radial, and hence V(1 — u) is non-negative and radial. It then follows from the hypotheses
on V that g := 2peYy x Yy * [V(1 — u)] satisfies

/|a:\2g(:1:)dx < oo and /xg(a:)da: =0. (5.1)

Then, as explained in Section 2, if f := 2epYy. *u, f — fx f = g > 0, and then by [CJLL20,
Theorem 4], the second part of (1.25) follows. Note that if
a

u(lzl) ~ —— (5.2)

for some a > 0, then the only choice of m that is consistent with (1.25) is m = d + 1.
It can be seen by the following:

1 (o9}
/ |x]r‘x|mdx ~ / P p <00 = r—m+d—1< —1.
|lz|>R R

Then, we have r < 1 only when m = d + 1.
We now specialize to d = 3, and impose the additional assumption on the potential.

Recall that the Fourier transform of u (4.22) satisfies (4.25):

a(k]) = % £+ - \/(Z—z + 1) _ S(Ik)) (5.3)

where S was defined in (4.24):

Sk = - [ (1 = u(la))V(le) do. (5.0
We split R R
a(|kl) = th(|k]) + Ua(|K]) (5.5)
with 2S5 [k
Un(|k]) = o+ 1) (5.6)

so that, taking the large |k| limit in (4.25),
Us([k[) = O(|k]~*S*(|K])) (5.7)
SO 222 is integrable.

1 - Decay of U;. We first show that

Up(|]) =




decays exponentially in |z|. We have
(5.9)

U (lz)) = (=A+1)7 (1 —u(lz))V(lz]) = Y1 * (1 = w)V)(|z])

with ol
efx
Y = 1
(ol) = (5.10)
Therefore, by (1.26),
A e~ |z—yl=Blyl| 1 e~ lz—yl
N e | Vishdy  (5.11)
4r ly|>R |z — yl 4m ly|<R [z — |
so, denoting b := min(B, 1),
A /e—b<|x—y|+|y> ~(jal-R)
x dy + /V Yy 5.12
il < o [ = g v (5.12)
and since
A [ e—blla—yl+lu) A [ e=bllyllyta)
A fet A pe)
Ar |z —y| Am ||
5 B (5.13)
A e—blzl A e~ byl p o) b ‘(‘ 24 el 4 1)
< — + — y < e (o)t + || +
4 y<|z| |y| am y>|z| |y|
we have el
(|]) < CO)eI(|2f* + [ +1) + /V lyl) d (5.14)
2 - Analyticity of U;. We now turn to
L[ ey ! = el 7
— 1RT — IMKR|T . ‘1
Us(|z]) o /e Us(|k)) dk ] 7277/0 el ks (k) dk (5.15)
We start by proving some analytic properties of Z:{\Q, which, we recall from (4.25) and (5.5),
is
~ 1 [ k2 2 2 2¢5(|k|)
kKh=—-|—+1- —4+1) — k) ————= | . 1
AR (46 n \/ (£+1) - s - 20 (5.16)

2-1 - First of all, S is analytic in a strip about the real axis
~sin(§) (5.17)

S(k) = 4r /0 " sine(kr)r V() (1 — ur)) dr,  sine(€) — :

0"S(k) = 4m /000 d"sinc(kr)r"P2V(r) (1 — u(r)) dr.
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We will show that if Zm(x) < £ (the factor 1 can be improved to any factor that is < 1, but

this does not matter here), then there exists C' > 0 which only depends on A and B Such
that
|0"S (k)| < nlC™. (5.19)

As a consequence, S is analytic in a strip around the real line of height g. Because the
Taylor series of S at xk converges. In particular, if we define the strip

H. = {z: [Im(2)| <, Re(z) > 0} (5.20)

- (g)* o)

2-1-1 - We now prove (5.19). We first treat the case |x| < Z. We have

with 0 < 7 < 1, and take

then S is analytic in H..

. o 1)pe2r
sinc(§) = Z @p+ 1] (5.22)
p=0
SO
& pé-?p n
: 2
"sine(g 2; 2p +1)(2p —n)! (5.23)
p= |—§
Therefore .
|€\2p "
"sinc(¢ Z < cosh([¢]). (5.24)
p= (%W
Thus,
|0"S (k)| < 47r/ cosh(|k|r)r" P2V (r)(1 — u(r)) dr (5.25)
0
so, by (1.26),
00 R
07 S(k)| < 4AT / cosh([|r)r™2e =5 dr + 4r / cosh([k|r)r™ 2 V() dr (5.26)
R 0
and -
10"S (k)] < 8A7T/ pt2e=(B-lshr dr+87re|“|RR"/ 2V(r) dr (5.27)
0
which, if [k] < £, implies that
[e%¢) o] 2n+6A
8A7r/ r+2em (Bl g < 8A7T/ P 2e7 T g = BnHW(n +2)! (5.28)
0 0
and
8W6“RR”+2/V(T) dr < 87regRR"/r2V(r) dr (5.29)
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which implies (5.19) in this case.

2-1-2 - We now turn to |x| > £:

- —p)l(=1)"P
J0"sinc(§) = Z (n) 0”7 sin(€) (n pn)iﬂ ) (5.30)
= \P §
SO .
|0"sinc(€)] < 2™ Z o |g| (n=p+1) (5.31)
Therefore,
s 87TZ e [ a6
so, by (1.26),
|0"S(Kk)| < o1+ 09 (5.33)
with
- n! o
o1 = 8A7TZ —/ Pl (B=Im)r gy, (5.34)
| n—p+1
o plr[" P+t Jg
and
- n! f p+1 _Im(k)r
09 = 877'2 W T (& V(T) dr. (535)
0 P 0
Furthermore,
= 8Amn! 5.36
=S4T S e (5.36)
so, as long as || > 3B and Im(x) < 3B,
26 A & 2" Aqr
01 < Sl Z p+1)="pog(n+2) (5.37)
In addition,
| R
8y T ! ImWR/ r?V(r) dr (5.38)
0

SO

nlon—ptl L TR 5'-2 . R2
szan e ) /0 rV(r) dr < RBan!e /0 r*V(r) dr  (5.39)

which implies (5.19) in this case.

__ 2-2- We have thus proved that S is analytic in H,, which implies that the singularities
of Uy in H, all come from the branch points of \/F(|k|) with F(|k|) := (Z—Z +1)% — S(|k]).
For k € R,

S(R) <1 (5.40)
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in|x|™* ->-

v

so, for k € R,
2
F(r) >

(5.41)

Therefore, since F' is analytic in a strip around the real axis, there exists an open set
containing the real axis in which F' has one and only one root, at 0. Thus the only branch

point of V/F on the real axis is 0. Thus, Z:I\Q is analytic in H..

3 - Decay of Uy. We deform the integral to the path

{iny, 0 <y <|z[7"} U{inlz|™" +y, y >0}

and find -
/ Ginm‘ﬂfd:{\g(l{) drk = ]1 + 12
0
with ol
I = — / e lylhy (iny) dy
0
and

[e.e]
I = el / eI (il | + y)Us(in|z| T +y) dy.
0

3-1 - We first estimate I;. We expand S:

S(k) =1 - Br*+ O(|s]*)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

with 8 > 0 (since S is analytic and symmetric, and |S(|k|)| < 1). Therefore, y ag(iy) is



C? for y # 0, and

1 [ k2 k? 2 2eS(|k)
2 k) p( 41 \/(4€+ ) - sten - 220
1 [ K2 \/ kL k2 2e
S AR =4 1—1+ Bk? k|4) — 1+ Bk? k
p<6+ 6z T 20 T + 8k + O(Jk|") — =5 (1+ 8 +0(||)))
1 [ k2 \/k2 2¢
p<46+1 5o+ Bk + O(kl") kg( B8 +0(||))>
1 1 1
= 21—/ = — = k?
p( \3g T8 —5+0( ))
Thus,
~ Ly J1 2
_ Lt _my 1 4
Us(iny) o Ve B+ 0(y") (5.47)
Furthermore,
e~ 1 14|z s
_ e Yely dy = — + el (5.48)
/0 || ||
1™ 2 I+ T@2+2T) s
_ e Vel gy = — =4 e 1! (5.49)
/0 |z |z[?
and e
[ e ay=0gal (5.50)
0

b ﬂ,/_ 4
I = R + prE + 54+ O(|z|™%) (5.51)
1 -5
‘/ ~ 52
4272‘3:’ E nly - p| i +6+O(ya:\ ). (5.52)

3-2 - We now bound I5. Recall that, for K € R, |S(x)| < 1. Recalling (5.19),

SO

oo

1 1
m|x|™7) — T —— <2 5.53

provided |z|” > 2C. Therefore, for large &, by (5.7),
Ua (ki + im)| = O(k™%) (5.54)

SO L
L <Cle el (5.55)



for some constant C’ > 0.

3-3 - Inserting (5.52) and (5.55) into (5.43) and (5.15), we find that

to(lal) = oo + B+ Ol ) (5.56)

which, using (2.10), concludes the proof of the theorem. O



Part 11
Theorem 1.2 in [4]

1 Introduction

Theorem 1.2 (Large |z| asymptotics of u) If (1 + |z|*)v(x) € L'(R?) N L?(R?), then

pu(x) = 2:;\_@5@% + R(z) (1.26)

where
6=p/m%mrﬂmm<pm%m, (1.27)

and where |z|*R(z) is in L?(R?) N L>(R?), uniformly in e on all compact sets. Moreover,
for every py > 0, there is a constant C' that only depends on py such that for all z, for all

P < po,
_ C
u(x) < min {1, —} . (1.28)

pez !

2 Pointwise bounds on u(x) — Proof of Theorem 1.2

Let "
in terms of which (??) becomes
g £5
pU:(/ﬁl ‘|‘1) 1-— l—m . (22)
For small , since z%v is integrable, S is C*
2—'0€§ =1 — Br* + O(e*k%) (2.3)
and 3 is defined in (1.27):
B =L 08 < plla”vl. (2.4)
Therefore, defining
5 - (1 —pBr?)
U1 = (/{24—1) 2 (1— ]_—W (25)

U, coincides with @ asymptotically as k — 0 and we chose the prefactor (k? 4+ 1)72 in such
a way that Uj is integrable. Define the remainder term

Up = pii— Uy = (k2 + 1) (1 - \/1—72@) — (k24 1)72 (1 - M) (2.6)
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with
et 1— ﬂ/ﬁ

G = 2+ 12 G 1= A+ 1)

(2.7)
The rest of the proof proceeds as follows: we show that the Fourier transform of (71 decays
like |#|~* by direct analysis, then we show that A2U, is integrable and square integrable,
which implies that it is subdominant as || — oc.

1 - We compute U (z) := [ (2‘1:)3 e=*2 (k). We write

1 — Br? 1 15](2 = 1
- 5“2 2+ B+ K2 = WM +ﬁ+&)/ 124t
0

(1+ K2) 1+ K2 24+ 0+ t+ kK2
(2.8)
Therefore,
U= W2+ 12— S22+ 1)2 (1 + (B + 1)#> /OO ! t=12dqt. (2.9)
T 1+k%2) )y 24+0+t+K?

We take the inverse Fourier transform of U, recalling the definition of  (2.1)

3
e2 1 1)e e—2Velzl
Ur(z) = Zem2vell _ <5(a:) L (Bd)ee ) % 1% o (2.10)
7T 0 T ||
where ,
fi(z) == E dis e-ikizven__IFL_ (2.11)
3 (k24 1)2
and
e o dt 1 e &
= [ gk ereven [ D _ / VIR elel) y-1/2 gy
J2() 7r3/ ‘ o Vi2+Btt+kr wlal )y © ’

(2.12)
now, for all T" > 0,

0o T [e%s)
/ o~ VIFBFIRVEll) -1/2 g _ / o~ VITFTCVE -1/2 gy / o~ VEFFFHRVER]) 172 g

T (0.)
< / e VeV (2 el )tV 2dt + / e VARGV U2 gy
0 T

= 9(1 — eVT)e~VERRRVEs) L —vTeyas)
Velz|
< OTV2e-VERBRVER) | 1 VTGV | (2.13)
Velz|
Where we have use that

exp(—z)=1—xz+ %:cz +O(2?)

for the last inequality.
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Choosing T = 2 + 3, we see that for large (2y/e|z|), 0 < fo(x) < Ce V2HARVeeD  Further-
more,

3

fw = G [aneev Lo K g gty = UV (o

= *k
e B (R +12  Bap o 2]
Using
1 1 —lyP*+2z -y
=—+ (2.15)
=y " P Pl — P

twice and the fact that g(y) is even, integrates to zero, and [yg(y) dy = 0,

filz) = e (— /RS ly*9(y)dy + /RS (gl + 22 y)Zg(y)dy) (2.16)

||t |z —yl?

We compute [gs [y]*g(y)dy = —2 7. and then using the symmetry of ¢ once more,

im [y = L /\y|g , (2.17)

|z|—00 JRp3 |ZL' — y|2

Therefore,

1 1
i . d 1 - _\/2+3. 2.1
\xﬂf‘ [+l 1(x) 212 /e o |x|1£>noo|x| ti(z) 212 /e +h (2.18)

We now turn to an upper bound of U;. First of all, if |z| < \/ig, then by (2.14) and (2.16),

fi(z) =0 (2.19)
and if |x| > 7=, then
Le? [ (WP+20-y)° o

We split the integral into two parts: |y — x| > |z| and |y — z| < |z|. We have, (recalling
2] > ),

. 2
/ (=ly[* + 22 - y) e~ @VAlldy < 3¢ (2.21)
ly—2/>]al

|z —y|?

for some constant C' (we use a notation where the constant C' may change from one line to
the next). Now,

—|yl2 =22 - y)? 2.9 2
/ (—lyl* + 902 Y) e—(2ﬁ)|ydy<6—\/€|m|/ (Jy|* + |$Uy|) dy < |zPeVeelC,
ly—z|<|z| [z — | ly—z|<|x| |z — | ( )
2.22
Therefore, for all x,
1 1
filz) = —WC’(B*5 + 2|z tem Vel (2.23)
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Finally, by use (2.13),

e g2Vl )
|4 (5(@ 4 Bt Dee = ) i x fo(z) > —Ce . (2.24)
m
All in all, by (2.10), (since |z|*e2e2Vell < Cem2)
|z|*U; (z) < Ce™ . (2.25)

2 - We now show that A2(/jg is integrable and square-integrable. We use the fact that
16e*A% = 0% + 83 (2.26)

One can derive this by using radial Laplacian.

2 0f

Al = r2 or (7" or

) + non-radial derivatives.

We have, by the Leibniz rule,

U, = i <7;> (agfi(ﬁz F 1O (1 = /T=2G) — 0" (k2 + 1) 20 (1 — @)) .

=0
(2.27)
Furthermore,

(1 —+/1-2() = Zap -Vi-2G) > e lpHa’ ¢ (2.28)
I, lpe{l, n}
Lit++lp=n

for some family of constants ¢ (p ™)

needed. Now, since S > 0, 1—6]5| <1oso |G <5 Land ¢ = £ if and only if k = 0. Therefore,

l72 is bounded when k is away from 0, so it suffices to show that A2(72 is integrable and
square integrable at infinity and at 0.

L which can easﬂy be computed explicitly, but this is not

2-1 - We first consider the behavior at infinity, and assume that « is sufficiently large.
The fact that 0" (k* + 1)720% (1 — /T — 2(3) is integrable and square integrable at infinity
follows immediately from (2.7). To prove the corresponding claim for (i, we use the fact that
|z|*v square integrable, which implies that S is as well. Therefore, by (2.7) for 0 < n < 4,
k20"(; is integrable at infinity, and, therefore, square-integrable at infinity. Furthermore,
by (2.7), ¢ < & — ¢ for large x, and §"(; is bounded, so 92~ (k* 4+ 1)9L(1 — /1 —2¢;) is
integrable and square integrable.

2-2- Ask—0 1
G = S (B2 + O(x) (2.29)
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and since 5 > 0,

1—2G > K>+ O(KY). (2.30)
therefore, for p > 1
9 (1= ~/1—=2¢) = O(r' ™) (2.31)
and, since (; is C*, for 3 < n < 4,
06 = —(B+2)k+O(K*), 0*¢G=—(8+2)+0(K*), 9"¢=0(""). (2.32)

Therefore, for 1 < i < 4, by (2.28)

Ox(1 = V1 =2G) = 0,(1 = /1= 2G) = O(x°™) (2.33)

and
D1 —+/1—=2G) =0k, 0.1 —+/1—2)=0(k""). (2.34)

Thus, by (2.27), as k — 0,
. 4 .
02Uy = O(k™1), E|8§’;UQ| =O(k™). (2.35)

Thus, A0, is integrable and square integrable. And since the O(+) hold uniformly in e on
all compact sets, by (2.26),

3

8e2 4 . C
4 4 3
This along with (2.18) and (2.25) implies (1.26) and (1.28). O
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