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Part I

Theorem 1.5 in [2]

1 Introduction

(−∆ + 4e+ V(x))u(x) = V(x) + 2eρ(u ∗ u)(x) , (1.1)

e =
ρ

2

∫
(1− u(x))V(x) dx . (1.2)

Theorem 1.1(Positivity) Suppose that V is non-negative and integrable and that u is an
integrable solution of (1.1)-(1.2) such that u(x) 6 1 for all x. Then u(x) > 0 for all x, and
all such solutions have fairly slow decay at infinity in that they satisfy∫

|x|u(x)dx =∞ . (1.5)

Thus, any physical solutions of (1.1)-(1.2) must necessarily satisfy the pair of inequalities

0 6 u(x) 6 1 for all x . (1.6)

Theorem 1.3 (existence and uniqueness) Let V ∈ L1(Rd) ∩ Lp(Rd), p > max{d
2
, 1}, be

non-negative. Then there is a constructively defined continuous function ρ(e) on (0,∞) such
that lime→0 ρ(e) = 0 and lime→∞ ρ(e) = ∞ and such that for any e > 0 and ρ = ρ(e), the
system (1.1) and (1.2) has a unique integrable solution u(x) satisfying u(x) 6 1. Moreover,
if ρ 6= ρ(e), the system (1.1) and (1.2) has no integrable solution u(x) satisfying (1.6).

Remark:

• We do not assume here that the potential is radially symmetric. However, the unique-
ness statement implies that u is radially symmetric whenever V is radially symmetric.
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• The function ρ(e) is the density function, which specifies the density as a function of
the energy. Thus, our system together with (1.6) constrains the parameters e and ρ
to be related by a strict functional relation ρ = ρ(e). In most of the early literature
on the Bose gas, ρ is taken as the independent parameter, as suggested by (??): One
puts N particles in a box of volume N/ρ, and seeks to find the ground state energy per
particle, e, as a function of ρ. Our theorem goes in the other direction, with ρ specified
as a function of e. We prove that e 7→ ρ(e) is continuous, and we conjecture that ρ(e)
is a strictly monotone increasing function. In that case, the functional relation could
be inverted, and we would have a well-defined function e(ρ).

• Since lime→0 ρ(e) = 0 and lime→∞ ρ(e) = ∞, the continuity of e → ρ(e) implies that
for each ρ ∈ (0,∞) there is at least one e such that ρ(e) = ρ.

Theorem 1.5 (decay of u at infinity) In all dimensions, provided V is spherically sym-
metric with

∫
|x|2Vdx <∞ in addition to satisfying the hypotheses imposed in Theorem 1.3,

all integrable solutions of (1.1)-(1.2) with u(x) 6 1 for all x satisfy∫
|x|u(x)dx =∞ and

∫
|x|ru(x)dx <∞ for all 0 < r < 1 . (1.25)

Thus, if u(x) ∼ |x|−m for some m, the only possibility is m = d + 1. Under stronger
assumptions on the potential, this is actually the case. For d = 3, if V is non-negative,
square-integrable, spherically symmetric (that is, V(x) = V(|x|)), and, for |x| > R,

V(|x|) 6 Ae−B|x| (1.26)

for some A,B > 0 then there exists α > 0 such that

u(x) ∼
|x|→∞

α

|x|4
. (1.27)

5 Decay of u

In this section, we prove Theorem 1.5. Our proof assumes that V decays exponentially,
because we will use analyticity properties of the Fourier transform of the potential V . In
particular, the theorem holds if V has compact support. We expect the result to hold for
any potential that decays faster than |x|−4. Algebraic decay for u seems natural: by (1.1),
u ∗ u must decay at infinity in the same way as u. This is the case if u decays algebraically,
but would not be so if, say, it decayed exponentially.
Take the Fourier transform to (1.1), then we have

(k2 + 4e)û(k) + (V̂ ∗ û)(k) = V̂(k) + 2eρû2(k).

If u(x) = exp(−|x|), the û(k) ∼ (1 + k2)−2 in 3D.

Proof of theorem 1.5: We begin by proving (1.25) in arbitrary dimension. Recall that the
first part has already been proved in Theorem 1.1 without the additional assumption on the
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potential. For the second part, recall that by the first remark after Theorem 1.3, u is also
radial, and hence V(1 − u) is non-negative and radial. It then follows from the hypotheses
on V that g := 2ρeY4e ∗ Y4e ∗ [V(1− u)] satisfies∫

|x|2g(x)dx <∞ and

∫
xg(x)dx = 0 . (5.1)

Then, as explained in Section 2, if f := 2eρY4e ∗ u, f − f ∗ f = g > 0, and then by [CJLL20,
Theorem 4], the second part of (1.25) follows. Note that if

u(|x|) ∼
|x|→∞

α

|x|m
(5.2)

for some α > 0, then the only choice of m that is consistent with (1.25) is m = d+ 1.
It can be seen by the following:∫

|x|>R
|x|r 1

|x|m
dx ∼

∫ ∞
R

ρr−m+d−1dρ <∞ ⇐⇒ r −m+ d− 1 < −1.

Then, we have r < 1 only when m = d+ 1.

We now specialize to d = 3, and impose the additional assumption on the potential.

Recall that the Fourier transform of u (4.22) satisfies (4.25):

û(|k|) =
1

ρ

k2
4e

+ 1−

√(
k2

4e
+ 1

)2

− S(|k|)

 (5.3)

where S was defined in (4.24):

S(|k|) :=
ρ

2e

∫
eikx(1− u(|x|))V(|x|) dx. (5.4)

We split
û(|k|) = Û1(|k|) + Û2(|k|) (5.5)

with

Û1(|k|) :=
2eS(|k|)
ρ(4e+ k2)

(5.6)

so that, taking the large |k| limit in (4.25),

Û2(|k|) = O(|k|−6S2(|k|)) (5.7)

so Û2 is integrable.

1 - Decay of U1. We first show that

U1(|x|) :=
1

(2π)3

∫
e−ikxÛ1(|k|) dk (5.8)
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decays exponentially in |x|. We have

U1(|x|) = (−∆ + 1)−1(1− u(|x|))V(|x|) = Y1 ∗ ((1− u)V)(|x|) (5.9)

with

Y1(|x|) :=
e−|x|

4π|x|
. (5.10)

Therefore, by (1.26),

U1(|x|) 6
A

4π

∫
|y|>R

e−|x−y|−B|y|

|x− y|
dy +

1

4π

∫
|y|<R

e−|x−y|

|x− y|
V(|y|) dy (5.11)

so, denoting b := min(B, 1),

U1(|x|) 6
A

4π

∫
e−b(|x−y|+|y|)

|x− y|
dy +

e−(|x|−R)

4π(|x| −R)

∫
V(|y|) dy (5.12)

and since

A

4π

∫
e−b(|x−y|+|y|)

|x− y|
dy=

A

4π

∫
e−b(|y|+|y+x|)

|y|
dy

≤ A

4π

∫
y≤|x|

e−b|x|

|y|
dy +

A

4π

∫
y>|x|

e−b|y|

|y|
dy ≤ C(b)e−b|x|(|x|2 + |x|+ 1)

(5.13)

we have

U1(|x|) 6 C(b)e−b|x|(|x|2 + |x|+ 1) +
e−(|x|−R)

4π(|x| −R)

∫
V(|y|) dy. (5.14)

2 - Analyticity of U2. We now turn to

U2(|x|) :=
1

(2π)3

∫
e−ikxÛ2(|k|) dk =

1

4iπ2|x|
∑
η=±

η

∫ ∞
0

eiηκ|x|κÛ2(κ) dκ. (5.15)

We start by proving some analytic properties of Û2, which, we recall from (4.25) and (5.5),
is

Û2(|k|) =
1

ρ

k2
4e

+ 1−

√(
k2

4e
+ 1

)2

− S(|k|)− 2eS(|k|)
4e+ k2

 . (5.16)

2-1 - First of all, S is analytic in a strip about the real axis:

S(κ) = 4π

∫ ∞
0

sinc(κr)r2V(r)(1− u(r)) dr, sinc(ξ) :=
sin(ξ)

ξ
(5.17)

so

∂nS(κ) = 4π

∫ ∞
0

∂nsinc(κr)rn+2V(r)(1− u(r)) dr. (5.18)
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We will show that if Im(κ) 6 B
2

(the factor 1
2

can be improved to any factor that is < 1, but
this does not matter here), then there exists C > 0 which only depends on A and B such
that

|∂nS(κ)| 6 n!Cn. (5.19)

As a consequence, S is analytic in a strip around the real line of height B
2

. Because the
Taylor series of S at κ converges. In particular, if we define the strip

Hτ := {z : |Im(z)| 6 r−τ , Re(z) > 0} (5.20)

with 0 < τ < 1, and take

r >

(
B

2

)− 1
τ

(5.21)

then S is analytic in Hτ .

2-1-1 - We now prove (5.19). We first treat the case |κ| 6 B
2

. We have

sinc(ξ) =
∞∑
p=0

(−1)pξ2p

(2p+ 1)!
(5.22)

so

∂nsinc(ξ) =
∞∑

p=dn
2
e

(−1)pξ2p−n

(2p+ 1)(2p− n)!
. (5.23)

Therefore

|∂nsinc(ξ)| 6
∞∑

p=dn
2
e

|ξ|2p−n

(2p− n)!
6 cosh(|ξ|). (5.24)

Thus,

|∂nS(κ)| 6 4π

∫ ∞
0

cosh(|κ|r)rn+2V(r)(1− u(r)) dr (5.25)

so, by (1.26),

|∂nS(κ)| 6 4Aπ

∫ ∞
R

cosh(|κ|r)rn+2e−Br dr + 4π

∫ R

0

cosh(|κ|r)rn+2V(r) dr (5.26)

and

|∂nS(κ)| 6 8Aπ

∫ ∞
0

rn+2e−(B−|κ|)r dr + 8πe|κ|RRn

∫
r2V(r) dr (5.27)

which, if |κ| 6 B
2

, implies that

8Aπ

∫ ∞
0

rn+2e−(B−|κ|)r dr 6 8Aπ

∫ ∞
0

rn+2e−
B
2
r dr =

2n+6Aπ

Bn+3
(n+ 2)! (5.28)

and

8πe|κ|RRn+2

∫
V(r) dr 6 8πe

B
2
RRn

∫
r2V(r) dr (5.29)
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which implies (5.19) in this case.

2-1-2 - We now turn to |κ| > B
2

:

∂nsinc(ξ) =
n∑
p=0

(
n

p

)
∂p sin(ξ)

(n− p)!(−1)n−p

ξn−p+1
(5.30)

so

|∂nsinc(ξ)| 6 2eIm(ξ)

n∑
p=0

n!

p!
|ξ|−(n−p+1). (5.31)

Therefore,

|∂nS(κ)| 6 8π
n∑
p=0

n!

p!|κ|n−p+1

∫ ∞
0

eIm(κ)rrp+1V(r)(1− u(r)) dr (5.32)

so, by (1.26),
|∂nS(κ)| 6 σ1 + σ2 (5.33)

with

σ1 := 8Aπ
n∑
p=0

n!

p!|κ|n−p+1

∫ ∞
R

rp+1e−(B−Im(κ))r dr (5.34)

and

σ2 := 8π
n∑
p=0

n!

p!|κ|n−p+1

∫ R

0

rp+1eIm(κ)rV(r) dr. (5.35)

Furthermore,

σ1 = 8Aπn!
n∑
p=0

p+ 1

(B − Im(κ))p+2|κ|n−p+1
(5.36)

so, as long as |κ| > 1
2
B and Im(κ) 6 1

2
B,

σ1 6
2n+6Aπ

Bn+3
n!

n∑
p=0

(p+ 1) =
2n+5Aπ

Bn+3
(n+ 2)!. (5.37)

In addition,

σ2 6 8π
n∑
p=0

n!

p!|κ|n−p+1
Rp−1eIm(κ)R

∫ R

0

r2V(r) dr (5.38)

so

σ2 6 8π
n∑
p=0

n!2n−p+1

p!Bn−p+1
Rp−1eIm(κ)R

∫ R

0

r2V(r) dr 6
2n+4π

RBn+1
n!eRB

∫ R

0

r2V(r) dr (5.39)

which implies (5.19) in this case.

2-2 - We have thus proved that S is analytic inHτ , which implies that the singularities
of Û2 in Hτ all come from the branch points of

√
F (|k|) with F (|k|) := (k

2

4e
+ 1)2 − S(|k|).

For κ ∈ R,
|S(κ)| 6 1 (5.40)
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so, for κ ∈ R,

F (κ) >
κ2

2e
. (5.41)

Therefore, since F is analytic in a strip around the real axis, there exists an open set
containing the real axis in which F has one and only one root, at 0. Thus the only branch
point of

√
F on the real axis is 0. Thus, Û2 is analytic in Hτ .

3 - Decay of U2. We deform the integral to the path

{iηy, 0 < y < |x|−τ} ∪ {iη|x|−τ + y, y > 0} (5.42)

and find ∫ ∞
0

eiηκ|x|κÛ2(κ) dκ = I1 + I2 (5.43)

with

I1 := −
∫ |x|−τ
0

e−y|x|yÛ2(iηy) dy (5.44)

and

I2 := e−|x|
1−τ
∫ ∞
0

eiηy|x|(iη|x|−τ + y)Û2(iη|x|−τ + y) dy. (5.45)

3-1 - We first estimate I1. We expand S:

S(κ) = 1− βκ2 +O(|κ|4) (5.46)

with β > 0 (since S is analytic and symmetric, and |S(|k|)| 6 1). Therefore, y 7→ Û2(iy) is
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C2 for y 6= 0, and

Û2(|k|) =
1

ρ

k2
4e

+ 1−

√(
k2

4e
+ 1

)2

− S(|k|)− 2eS(|k|)
4e+ k2


=

1

ρ

(
k2

4e
+ 1−

√
k4

16e2
+
k2

2e
+ 1− 1 + βk2 +O(|k|4)− 2e

4e+ k2
(1 + βk2 +O(|k|4))

)

=
1

ρ

(
k2

4e
+ 1−

√
k2

2e
+ βk2 +O(|k|4)− 2e

4e+ k2
(1− βk2 +O(|k|4))

)

=
1

ρ

(
1− k

√
1

2e
+ β − 1

2
+O(k2)

)

Thus,

Û2(iηy) =
1

2ρ
− iηy

ρ

√
1

2e
+ β +O(y2) (5.47)

Furthermore,

−
∫ |x|−τ
0

e−y|x|y dy = − 1

|x|2
+

1 + |x|1−τ

|x|2
e−|x|

1−τ
(5.48)

−
∫ |x|−τ
0

e−y|x|y2 dy = − 2

|x|3
+

1 + |x|1−τ (2 + x1−τ )

|x|3
e−|x|

1−τ
(5.49)

and

−
∫ |x|−τ
0

e−y|x|y3 dy = O(|x|−4) (5.50)

I1 = − 1

2ρ|x|2
+

2iη

ρ|x|3

√
1

2e
+ β +O(|x|−4) (5.51)

so
1

4iπ2|x|
∑
η=±

ηI1 =
1

π2ρ|x|4

√
1

2e
+ β +O(|x|−5). (5.52)

3-2 - We now bound I2. Recall that, for κ ∈ R, |S(κ)| 6 1. Recalling (5.19),

|S(κ+ iη|x|−τ )| 6
∞∑
n=0

1

n!
|∂nS(κ)|n|x|−nτ 6 1

1− C|x|−τ
6 2 (5.53)

provided |x|τ > 2C. Therefore, for large κ, by (5.7),

|Û2(κ+ iη)| = O(κ−4) (5.54)

so
I2 6 C ′e−|x|

1−τ
(5.55)
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for some constant C ′ > 0.

3-3 - Inserting (5.52) and (5.55) into (5.43) and (5.15), we find that

U2(|x|) =
1

π2ρ|x|4

√
1

2e
+ β +O(|x|−5) (5.56)

which, using (2.10), concludes the proof of the theorem. �

9



Part II

Theorem 1.2 in [4]

1 Introduction

Theorem 1.2 (Large |x| asymptotics of u) If (1 + |x|4)v(x) ∈ L1(R3) ∩ L2(R3), then

ρu(x) =

√
2 + β

2π2
√
e

1

|x|4
+R(x) (1.26)

where

β = ρ

∫
|x|2v(1− u)dx 6 ρ‖x2v‖1, (1.27)

and where |x|4R(x) is in L2(R3) ∩ L∞(R3), uniformly in e on all compact sets. Moreover,
for every ρ0 > 0, there is a constant C that only depends on ρ0 such that for all x, for all
ρ < ρ0,

u(x) 6 min

{
1,

C

ρe
1
2 |x|4

}
. (1.28)

2 Pointwise bounds on u(x) – Proof of Theorem 1.2

Let

κ :=
|k|

2
√
e

(2.1)

in terms of which (??) becomes

ρû = (κ2 + 1)

1−

√
1−

ρ
2e
Ŝ

(κ2 + 1)2

 . (2.2)

For small κ, since x4v is integrable, Ŝ is C4

ρ

2e
Ŝ = 1− βκ2 +O(e2κ4) (2.3)

and β is defined in (1.27):

β = − ρ

4e
∂2κŜ 6 ρ‖x2v‖1. (2.4)

Therefore, defining

Û1 := (κ2 + 1)−2

(
1−

√
1− (1− βκ2)

(κ2 + 1)2

)
(2.5)

Û1 coincides with û asymptotically as κ → 0 and we chose the prefactor (κ2 + 1)−2 in such

a way that Û1 is integrable. Define the remainder term

Û2 := ρû− Û1 = (κ2 + 1)
(

1−
√

1− 2ζ1

)
− (κ2 + 1)−2

(
1−

√
1− 2ζ2

)
(2.6)
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with

ζ1 :=
ρ
4e
Ŝ

(κ2 + 1)2
, ζ2 :=

1− βκ2

2(κ2 + 1)2
. (2.7)

The rest of the proof proceeds as follows: we show that the Fourier transform of Û1 decays
like |x|−4 by direct analysis, then we show that ∆2Û2 is integrable and square integrable,
which implies that it is subdominant as |x| → ∞.

1 - We compute U1(x) :=
∫

dk
(2π)3

e−ikxÛ1(k). We write√
1− 1− βκ2

(1 + κ2)2
=

κ

1 + κ2

√
2 + β + κ2 =

1

π

|κ|(2 + β + κ2)

1 + κ2

∫ ∞
0

1

2 + β + t+ κ2
t−1/2dt .

(2.8)
Therefore,

Û1 := (κ2 + 1)−2 − κ

π
(κ2 + 1)−2

(
1 + (β + 1)

1

1 + κ2

)∫ ∞
0

1

2 + β + t+ κ2
t−1/2dt. (2.9)

We take the inverse Fourier transform of Û1, recalling the definition of κ (2.1)

U1(x) =
e

3
2

π
e−2
√
e|x| − 1

π

(
δ(x) +

(β + 1)e

π

e−2
√
e|x|

|x|

)
∗ f1 ∗ f2 (2.10)

where

f1(x) :=
e

3
2

π3

∫
dk e−ik(2

√
ex) |k|

(k2 + 1)2
(2.11)

and

f2(x) :=
e

3
2

π3

∫
dk e−ik(2

√
ex)

∫ ∞
0

dt√
t

1

2 + β + t+ k2
=

e

π|x|

∫ ∞
0

e−
√
2+β+t(2

√
e|x|)t−1/2dt ,

(2.12)
now, for all T > 0,∫ ∞
0

e−
√
2+β+t(2

√
e|x|)t−1/2 dt =

∫ T

0

e−
√
2+β+t(2

√
e|x|)t−1/2dt+

∫ ∞
T

e−
√
2+β+t(2

√
e|x|)t−1/2 dt

6
∫ T

0

e−
√
2+βe−

√
t(2
√
e|x|)t−1/2dt+

∫ ∞
T

e−
√
2+β+t(2

√
e|x|)t−1/2 dt

= 2(1− e−
√
T )e−

√
2+β(2

√
e|x|) +

1√
e|x|

e−
√
T (2
√
e|x|)

6 2T 1/2e−
√
2+β(2

√
e|x|) +

1√
e|x|

e−
√
T (2
√
e|x|) . (2.13)

Where we have use that

exp(−x) = 1− x+
1

2
x2 +O(x3)

for the last inequality.
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Choosing T = 2 + β, we see that for large (2
√
e|x|), 0 6 f2(x) 6 Ce−

√
2+β(2

√
e|x|). Further-

more,

f1(x) =
e

3
2

π3

∫
dk e−ik(2

√
ex) 1

|k|
k2

(k2 + 1)2
=
e

3
2

π3

1

|x|2
∗ g, g(x) =

(1−
√
e|x|)e−(2

√
e)|x|

|x|
(2.14)

Using
1

|x− y|2
=

1

|x|2
+
−|y|2 + 2x · y
|x|2|x− y|2

(2.15)

twice and the fact that g(y) is even, integrates to zero, and
∫
yg(y) dy = 0,

f1(x) =
1

|x|4
e

3
2

π3

(
−
∫
R3

|y|2g(y)dy +

∫
R3

(−|y|2 + 2x · y)2

|x− y|2
g(y)dy

)
(2.16)

We compute
∫
R3 |y|2g(y)dy = − 3π

2e2
, and then using the symmetry of g once more,

lim
|x|→∞

∫
R3

(x · y)2

|x− y|2
g(y)dy =

1

3

∫
R3

|y|2g(y)dy = − π

2e2
, (2.17)

Therefore,

lim
|x|→∞

|x|4f1(x) = − 1

2π2
√
e

and lim
|x|→∞

|x|4U1(x) =
1

2π2
√
e

√
2 + β . (2.18)

We now turn to an upper bound of U1. First of all, if |x| 6 1√
e
, then by (2.14) and (2.16),

f1(x) > 0 (2.19)

and if |x| > 1√
e
, then

f1(x) > − 1

|x|4
e2

π3

∫
R3

(−|y|2 + 2x · y)2

|x− y|2
e−(2

√
e)|y|dy. (2.20)

We split the integral into two parts: |y − x| > |x| and |y − x| < |x|. We have, (recalling
|x| > 1√

e
), ∫

|y−x|>|x|

(−|y|2 + 2x · y)2

|x− y|2
e−(2

√
e)|y|dy 6 e−

5
2C (2.21)

for some constant C (we use a notation where the constant C may change from one line to
the next). Now,∫
|y−x|<|x|

(−|y|2 + 2x · y)2

|x− y|2
e−(2

√
e)|y|dy 6 e−

√
e|x|
∫
|y−x|<|x|

(|y|2 + 2|x||y|)2

|x− y|2
dy 6 |x|5e−

√
e|x|C.

(2.22)
Therefore, for all x,

f1(x) > − 1

|x|4
C(e−

1
2 + e2|x|4e−

√
e|x|). (2.23)
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Finally, by use (2.13),

|x|4
(
δ(x) +

(β + 1)e

π

e−2
√
e|x|

|x|

)
∗ f1 ∗ f2(x) > −Ce−

1
2 . (2.24)

All in all, by (2.10), (since |x|4e 3
2 e−2

√
e|x| < Ce−

1
2 )

|x|4U1(x) 6 Ce−
1
2 . (2.25)

2 - We now show that ∆2Û2 is integrable and square-integrable. We use the fact that

16e2∆2 ≡ ∂4κ +
4

κ
∂3κ. (2.26)

One can derive this by using radial Laplacian.

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+ non-radial derivatives.

We have, by the Leibniz rule,

∂nκ Û2 =
n∑
i=0

(
n

i

)(
∂n−iκ (κ2 + 1)∂iκ(1−

√
1− 2ζ1)− ∂n−iκ (κ2 + 1)−2∂iκ(1−

√
1− 2ζ2)

)
.

(2.27)
Furthermore,

∂nκ (1−
√

1− 2ζj) =
n∑
p=1

∂pζj(1−
√

1− 2ζj)
∑

l1,··· ,lp∈{1,··· ,n}
l1+···+lp=n

c
(p,n)
l1,··· ,lp

n∏
i=1

∂liκ ζj (2.28)

for some family of constants c
(p,n)
l1,··· ,lp which can easily be computed explicitly, but this is not

needed. Now, since S > 0, ρ
1e
|Ŝ| 6 1, so |ζ1| 6 1

2
and ζ1 = 1

2
if and only if κ = 0. Therefore,

Û2 is bounded when κ is away from 0, so it suffices to show that ∆2Û2 is integrable and
square integrable at infinity and at 0.

2-1 - We first consider the behavior at infinity, and assume that κ is sufficiently large.
The fact that ∂n−iκ (κ2 + 1)−2∂iκ(1−

√
1− 2ζ2) is integrable and square integrable at infinity

follows immediately from (2.7). To prove the corresponding claim for ζ1, we use the fact that

|x|4v square integrable, which implies that Ŝ is as well. Therefore, by (2.7) for 0 6 n 6 4,
κ2∂nκζ1 is integrable at infinity, and, therefore, square-integrable at infinity. Furthermore,
by (2.7), ζ1 <

1
2
− ε for large κ, and ∂nζ1 is bounded, so ∂n−iκ (κ2 + 1)∂iκ(1 −

√
1− 2ζ1) is

integrable and square integrable.

2-2 - As κ→ 0

ζi =
1

2
(1− (β + 2)κ2) +O(κ4) (2.29)
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and since β > 0,
1− 2ζi > κ2 +O(κ4). (2.30)

therefore, for p > 1
∂pζj(1−

√
1− 2ζj) = O(κ1−2p) (2.31)

and, since ζi is C4, for 3 6 n 6 4,

∂ζi = −(β + 2)κ+O(κ3), ∂2ζi = −(β + 2) +O(κ2), ∂nζi = O(κ4−n). (2.32)

Therefore, for 1 6 i 6 4, by (2.28)

∂iκ(1−
√

1− 2ζ1)− ∂iκ(1−
√

1− 2ζ2) = O(κ3−i) (2.33)

and
∂iκ(1−

√
1− 2ζ1) = O(κ1−i), ∂iκ(1−

√
1− 2ζ2) = O(κ1−i). (2.34)

Thus, by (2.27), as κ→ 0,

|∂4κÛ2| = O(κ−1),
4

κ
|∂3κÛ2| = O(κ−1). (2.35)

Thus, ∆2Û2 is integrable and square integrable. And since the O(·) hold uniformly in e on
all compact sets, by (2.26),

|x|4U2(x) 6
8e

3
2

16e2

∫ (
∂4|k| +

4

|k|
∂3|k|

)
Û2(|k|) dk 6

C√
e
. (2.36)

This along with (2.18) and (2.25) implies (1.26) and (1.28). �
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