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Theorem 1.5 in [2]
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Our system

(−∆ + 4e + V(x))u(x) = V(x) + 2eρ(u ∗ u)(x) , (1.1)

e =
ρ

2

∫
(1− u(x))V(x) dx . (1.2)
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The goal of today
Theorem 1.5 (decay of u at infinity) In all dimensions, provided V is
spherically symmetric with

∫
|x |2Vdx <∞ in addition to satisfying the

hypotheses imposed in Theorem 1.3, all integrable solutions of (1.1)-(1.2)
with u(x) 6 1 for all x satisfy∫

|x |u(x)dx =∞ and

∫
|x |ru(x)dx <∞ for all 0 < r < 1 .

(1.25)
Thus, if u(x) ∼ |x |−m for some m, the only possibility is m = d + 1.
Under stronger assumptions on the potential, this is actually the case. For
d = 3, if V is non-negative, square-integrable, spherically symmetric (that
is, V(x) = V(|x |)), and, for |x | > R,

V(|x |) 6 Ae−B|x | (1.26)

for some A,B > 0 then there exists α > 0 such that

u(x) ∼
|x |→∞

α

|x |4
. (1.27)
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Theorem 1.1(Positivity) Suppose that V is non-negative and integrable
and that u is an integrable solution of (1.1)-(1.2) such that u(x) 6 1 for
all x . Then u(x) > 0 for all x , and all such solutions have fairly slow decay
at infinity in that they satisfy∫

|x |u(x)dx =∞ . (1.5)

Thus, any physical solutions of (1.1)-(1.2) must necessarily satisfy the
pair of inequalities

0 6 u(x) 6 1 for all x . (1.6)

Theorem 1.3 (existence and uniqueness) Let V ∈ L1(Rd) ∩ Lp(Rd),
p > max{d2 , 1}, be non-negative. Then there is a constructively defined
continuous function ρ(e) on (0,∞) such that lime→0 ρ(e) = 0 and
lime→∞ ρ(e) =∞ and such that for any e > 0 and ρ = ρ(e), the
system (1.1) and (1.2) has a unique integrable solution u(x) satisfying
u(x) 6 1. Moreover, if ρ 6= ρ(e), the system (1.1) and (1.2) has no
integrable solution u(x) satisfying (1.6).
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Remark
I We do not assume here that the potential is radially symmetric.

However, the uniqueness statement implies that u is radially
symmetric whenever V is radially symmetric.

I The function ρ(e) is the density function, which specifies the density
as a function of the energy. Thus, our system together with (1.6)
constrains the parameters e and ρ to be related by a strict functional
relation ρ = ρ(e). In most of the early literature on the Bose gas, ρ is
taken as the independent parameter, as suggested by (??): One puts
N particles in a box of volume N/ρ, and seeks to find the ground
state energy per particle, e, as a function of ρ. Our theorem goes in
the other direction, with ρ specified as a function of e. We prove that
e 7→ ρ(e) is continuous, and we conjecture that ρ(e) is a strictly
monotone increasing function. In that case, the functional relation
could be inverted, and we would have a well-defined function e(ρ).

I Since lime→0 ρ(e) = 0 and lime→∞ ρ(e) =∞, the continuity of
e → ρ(e) implies that for each ρ ∈ (0,∞) there is at least one e such
that ρ(e) = ρ.
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Proof of Theorem 1.5 I

I The first part of (1.25) has already been proved in Theorem 1.1
without the additional assumption on the potential.

I For the second part of (1.25), by the first remark after Theorem 1.3,
u is also radial, and hence V(1− u) is non-negative and radial. It
then follows from the hypotheses on V that
g := 2ρeY4e ∗ Y4e ∗ [V(1− u)] satisfies∫

|x |2g(x)dx <∞ and

∫
xg(x)dx = 0 .

Then, as explained in Section 2, if f := 2eρY4e ∗ u, f − f ∗ f = g > 0,
and then by [CJLL20, Theorem 4], the second part of (1.25) follows.
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Proof of Theorem 1.5 II

Note that if

u(|x |) ∼
|x |→∞

α

|x |m

for some α > 0, then the only choice of m that is consistent with (1.25) is
m = d + 1.
It can be seen by the following:∫
|x |>R

|x |r 1

|x |m
dx ∼

∫ ∞
R

ρr−m+d−1dρ <∞ ⇐⇒ r −m + d − 1 < −1.

Then, we have r < 1 only when m = d + 1.
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Proof of Theorem 1.5 III

We now specialize to d = 3, with the additional assumption on V.
Fourier transform of u:

û(|k|) =
1

ρ

k2

4e
+ 1−

√(
k2

4e
+ 1

)2

− S(|k |)


where S is defined by

S(|k |) :=
ρ

2e

∫
e ikx(1− u(|x |))V(|x |) dx .

We split

û(|k|) = Û1(|k|) + Û2(|k|) (5.5)

with

Û1(|k|) :=
2eS(|k|)
ρ(4e + k2)
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Proof of Theorem 1.5 IV

so that, taking the large |k| limit in (4.25),

Û2(|k|) = O(|k|−6S2(|k |)) (5.7)

so Û2 is integrable.
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Proof of Theorem 1.5 - Decay of U1 I

We first show that

U1(|x |) :=
1

(2π)3

∫
e−ikx Û1(|k |) dk

decays exponentially in |x |. We have

U1(|x |) = (−∆ + 1)−1(1− u(|x |))V(|x |) = Y1 ∗ ((1− u)V)(|x |)

with

Y1(|x |) :=
e−|x |

4π|x |
.

Therefore, by (1.26),

U1(|x |) 6 A

4π

∫
|y |>R

e−|x−y |−B|y |

|x − y |
dy +

1

4π

∫
|y |<R

e−|x−y |

|x − y |
V(|y |) dy
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Proof of Theorem 1.5 - Decay of U1 II

so, denoting b := min(B, 1),

U1(|x |) 6 A

4π

∫
e−b(|x−y |+|y |)

|x − y |
dy +

e−(|x |−R)

4π(|x | − R)

∫
V(|y |) dy

and since

A

4π

∫
e−b(|x−y |+|y |)

|x − y |
dy=

A

4π

∫
e−b(|y |+|y+x |)

|y |
dy

≤ A

4π

∫
y≤|x |

e−b|x |

|y |
dy +

A

4π

∫
y>|x |

e−b|y |

|y |
dy ≤ C (b)e−b|x |(|x |2 + |x |+ 1)

we have

U1(|x |) 6 C (b)e−b|x |(|x |2 + |x |+ 1) +
e−(|x |−R)

4π(|x | − R)

∫
V(|y |) dy . (5.14)



13 / 41

Proof of Theorem 1.5 - Analyticity of U2

We now turn to

U2(|x |) :=
1

(2π)3

∫
e−ikx Û2(|k |) dk =

1

4iπ2|x |
∑
η=±

η

∫ ∞
0

e iηκ|x |κÛ2(κ) dκ.

(5.15)
We start by proving some analytic properties of Û2, which, we recall
from (4.25) and (5.5), is

Û2(|k |) =
1

ρ

k2

4e
+ 1−

√(
k2

4e
+ 1

)2

− S(|k |)− 2eS(|k|)
4e + k2

 .
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Proof of Theorem 1.5 - 2-1
First of all, S is analytic in a strip about the real axis:

S(κ) = 4π

∫ ∞
0

sinc(κr)r2V(r)(1− u(r)) dr , sinc(ξ) :=
sin(ξ)

ξ

so

∂nS(κ) = 4π

∫ ∞
0

∂nsinc(κr)rn+2V(r)(1− u(r)) dr .

We will show that if Im(κ) 6 B
2 , then there exists C > 0 which only

depends on A and B such that

|∂nS(κ)| 6 n!Cn. (5.19)

Because the Taylor series of S at κ converges, S is analytic in a strip. In
particular, if we define the strip

Hτ := {z : |Im(z)| 6 r−τ , Re(z) > 0} and r >

(
B

2

)− 1
τ

with 0 < τ < 1. Then S is analytic in Hτ .
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Proof of Theorem 1.5 - 2-1-1 I

We first treat the case |κ| 6 B
2 . We have

sinc(ξ) =
∞∑
p=0

(−1)pξ2p

(2p + 1)!

so

∂nsinc(ξ) =
∞∑

p=d n
2
e

(−1)pξ2p−n

(2p + 1)(2p − n)!
.

Therefore

|∂nsinc(ξ)| 6
∞∑

p=d n
2
e

|ξ|2p−n

(2p − n)!
6 cosh(|ξ|).

Thus,

|∂nS(κ)| 6 4π

∫ ∞
0

cosh(|κ|r)rn+2V(r)(1− u(r)) dr
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Proof of Theorem 1.5 - 2-1-1 II

so, by (1.26),

|∂nS(κ)| 6 4Aπ

∫ ∞
R

cosh(|κ|r)rn+2e−Br dr+4π

∫ R

0
cosh(|κ|r)rn+2V(r) dr

and

|∂nS(κ)| 6 8Aπ

∫ ∞
0

rn+2e−(B−|κ|)r dr + 8πe |κ|RRn

∫
r2V(r) dr

which, if |κ| 6 B
2 , implies that

8Aπ

∫ ∞
0

rn+2e−(B−|κ|)r dr 6 8Aπ

∫ ∞
0

rn+2e−
B
2
r dr =

2n+6Aπ

Bn+3
(n + 2)!

and

8πe |κ|RRn+2

∫
V(r) dr 6 8πe

B
2
RRn

∫
r2V(r) dr .
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Proof of Theorem 1.5 - 2-1-2 I

We now turn to |κ| > B
2 :

∂nsinc(ξ) =
n∑

p=0

(
n

p

)
∂p sin(ξ)

(n − p)!(−1)n−p

ξn−p+1

so

|∂nsinc(ξ)| 6 2eIm(ξ)
n∑

p=0

n!

p!
|ξ|−(n−p+1).

Therefore,

|∂nS(κ)| 6 8π
n∑

p=0

n!

p!|κ|n−p+1

∫ ∞
0

eIm(κ)r rp+1V(r)(1− u(r)) dr

so, by (1.26),

|∂nS(κ)| 6 σ1 + σ2
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Proof of Theorem 1.5 - 2-1-2 II

with

σ1 := 8Aπ
n∑

p=0

n!

p!|κ|n−p+1

∫ ∞
R

rp+1e−(B−Im(κ))r dr

and

σ2 := 8π
n∑

p=0

n!

p!|κ|n−p+1

∫ R

0
rp+1eIm(κ)rV(r) dr .

Furthermore,

σ1 = 8Aπn!
n∑

p=0

p + 1

(B − Im(κ))p+2|κ|n−p+1

so, as long as |κ| > 1
2B and Im(κ) 6 1

2B,

σ1 6
2n+6Aπ

Bn+3
n!

n∑
p=0

(p + 1) =
2n+5Aπ

Bn+3
(n + 2)!.
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Proof of Theorem 1.5 - 2-1-2 III

In addition,

σ2 6 8π
n∑

p=0

n!

p!|κ|n−p+1
Rp−1eIm(κ)R

∫ R

0
r2V(r) dr

so

σ2 6 8π
n∑

p=0

n!2n−p+1

p!Bn−p+1
Rp−1eIm(κ)R

∫ R

0
r2V(r) dr

6
2n+4π

RBn+1
n!eRB

∫ R

0
r2V(r) dr .
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Proof of Theorem 1.5 - 2-2

We have thus proved that S is analytic in Hτ , which implies that the
singularities of Û2 in Hτ all come from the branch points of

√
F (|k |) with

F (|k|) := ( k
2

4e + 1)2 − S(|k |). For κ ∈ R,

|S(κ)| 6 1

so, for κ ∈ R,

F (κ) >
κ2

2e
.

Therefore, since F is analytic in a strip around the real axis, there exists an
open set containing the real axis in which F has one and only one root, at
0. Thus the only branch point of

√
F on the real axis is 0. Thus, Û2 is

analytic in Hτ .
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Decay of U2 I

We deform the integral to the path

{iηy , 0 < y < |x |−τ} ∪ {iη|x |−τ + y , y > 0}
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Decay of U2 II

and find ∫ ∞
0

e iηκ|x |κÛ2(κ) dκ = I1 + I2 (5.43)

with

I1 := −
∫ |x |−τ
0

e−y |x |y Û2(iηy) dy

and

I2 := e−|x |
1−τ
∫ ∞
0

e iηy |x |(iη|x |−τ + y)Û2(iη|x |−τ + y) dy .
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3-1 I

We first estimate I1. We expand S : For β > 0 ,since S is analytic and
symmetric, and |S(|k |)| 6 1,

S(κ) = 1− βκ2 + O(|κ|4).

Therefore, y 7→ Û2(iy) is C2 for y 6= 0, and

Û2(|k|)

=
1

ρ

 k2

4e
+ 1−

√(
k2

4e
+ 1

)2

− S(|k|)− 2eS(|k|)
4e + k2


=

1

ρ

(
k2

4e
+ 1−

√
k4

16e2
+

k2

2e
+ 1− 1 + βk2 + O(|k|4)− 2e

4e + k2
(1 + βk2 + O(|k|4))

)

=
1

ρ

(
k2

4e
+ 1−

√
k2

2e
+ βk2 + O(|k|4)− 2e

4e + k2
(1− βk2 + O(|k|4))

)

=
1

ρ

(
1− k

√
1

2e
+ β − 1

2
+ O(k2)

)
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3-1 II

Thus,

Û2(iηy) =
1

2ρ
− iηy

ρ

√
1

2e
+ β + O(y2)

Furthermore,

−
∫ |x |−τ
0

e−y |x |y dy = − 1

|x |2
+

1 + |x |1−τ

|x |2
e−|x |

1−τ

−
∫ |x |−τ
0

e−y |x |y2 dy = − 2

|x |3
+

1 + |x |1−τ (2 + x1−τ )

|x |3
e−|x |

1−τ

and

−
∫ |x |−τ
0

e−y |x |y3 dy = O(|x |−4)
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3-1 III

I1 = − 1

2ρ|x |2
+

2iη

ρ|x |3

√
1

2e
+ β + O(|x |−4)

so
1

4iπ2|x |
∑
η=±

ηI1 =
1

π2ρ|x |4

√
1

2e
+ β + O(|x |−5). (5.52)
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3-2

We now bound I2. Recall that, for κ ∈ R, |S(κ)| 6 1. Recalling (5.19),

|S(κ+ iη|x |−τ )| 6
∞∑
n=0

1

n!
|∂nS(κ)|n|x |−nτ 6

1

1− C |x |−τ
6 2

provided |x |τ > 2C . Therefore, for large κ, by (5.7),

|Û2(κ+ iη)| = O(κ−4)

so
I2 6 C ′e−|x |

1−τ
(5.55)

for some constant C ′ > 0.
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3-3

Inserting (5.52) and (5.55) into (5.43) and (5.15), we find that

U2(|x |) =
1

π2ρ|x |4

√
1

2e
+ β + O(|x |−5)

which, using (2.10), concludes the proof of the theorem.
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Theorem 1.2 in [4]
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Theorem 1.2 (Large |x | asymptotics of u) If
(1 + |x |4)v(x) ∈ L1(R3) ∩ L2(R3), then

ρu(x) =

√
2 + β

2π2
√
e

1

|x |4
+ R(x)

where

β = ρ

∫
|x |2v(1− u)dx 6 ρ‖x2v‖1,

and where |x |4R(x) is in L2(R3) ∩ L∞(R3), uniformly in e on all compact
sets. Moreover, for every ρ0 > 0, there is a constant C that only depends
on ρ0 such that for all x , for all ρ < ρ0,

u(x) 6 min

{
1,

C

ρe
1
2 |x |4

}
.
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Proof of Theorem 1.2: Preparation I

Let

κ :=
|k |

2
√
e
. (2.1)

Then we have

ρû = (κ2 + 1)

1−

√
1−

ρ
2e Ŝ

(κ2 + 1)2

 . (2.2)

For small κ, since x4v is integrable, Ŝ is C4

ρ

2e
Ŝ = 1− βκ2 + O(e2κ4) (2.3)

and β is defined in (29):

β = − ρ

4e
∂2κŜ 6 ρ‖x2v‖1. (2.4)
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Proof of Theorem 1.2: Preparation II

Therefore, defining

Û1 := (κ2 + 1)−2

(
1−

√
1− (1− βκ2)

(κ2 + 1)2

)

Û1 coincides with û asymptotically as κ→ 0 and we chose the prefactor
(κ2 + 1)−2 in such a way that Û1 is integrable. Define the remainder term

Û2 := ρû − Û1 = (κ2 + 1)
(

1−
√

1− 2ζ1
)
− (κ2 + 1)−2

(
1−

√
1− 2ζ2

)
with

ζ1 :=
ρ
4e Ŝ

(κ2 + 1)2
, ζ2 :=

1− βκ2

2(κ2 + 1)2
. (2.7)
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) I

We write√
1− 1− βκ2

(1 + κ2)2
=

κ

1 + κ2

√
2 + β + κ2 =

1

π

|κ|(2 + β + κ2)

1 + κ2

∫ ∞
0

1

2 + β + t + κ2
t−1/2dt .

Therefore,

Û1 := (κ2 + 1)−2 − κ

π
(κ2 + 1)−2

(
1 + (β + 1)

1

1 + κ2

)∫ ∞
0

1

2 + β + t + κ2
t−1/2dt.

We take the inverse Fourier transform of Û1, recalling the definition of
κ (2.1)

U1(x) =
e

3
2

π
e−2
√
e|x | − 1

π

(
δ(x) +

(β + 1)e

π

e−2
√
e|x |

|x |

)
∗ f1 ∗ f2 (2.10)

where

f1(x) :=
e

3
2

π3

∫
dk e−ik(2

√
ex) |k |

(k2 + 1)2
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) II

and

f2(x) :=
e

3
2

π3

∫
dk e−ik(2

√
ex)

∫ ∞
0

dt√
t

1

2 + β + t + k2
=

e

π|x |

∫ ∞
0

e−
√
2+β+t(2

√
e|x|)t−1/2dt ,

now, for all T > 0,∫ ∞
0

e−
√
2+β+t(2

√
e|x |)t−1/2 dt

=

∫ T

0
e−
√
2+β+t(2

√
e|x |)t−1/2dt +

∫ ∞
T

e−
√
2+β+t(2

√
e|x |)t−1/2 dt

6
∫ T

0
e−
√
2+βe−

√
t(2
√
e|x |)t−1/2dt +

∫ ∞
T

e−
√
2+β+t(2

√
e|x |)t−1/2 dt

= 2(1− e−
√
T )e−

√
2+β(2

√
e|x |) +

1√
e|x |

e−
√
T (2
√
e|x |)

6 2T 1/2e−
√
2+β(2

√
e|x |) +

1√
e|x |

e−
√
T (2
√
e|x |). (2.13)
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) III

Where we have use that

exp(−x) = 1− x +
1

2
x2 + O(x3)

for the last inequality.
Choosing T = 2 + β, we see that for large (2

√
e|x |),

0 6 f2(x) 6 Ce−
√
2+β(2

√
e|x |). Furthermore,

f1(x) =
e

3
2

π3

∫
dk e−ik(2

√
ex) 1

|k|
k2

(k2 + 1)2
=

e
3
2

π3

1

|x |2 ∗ g , g(x) =
(1−

√
e|x |)e−(2

√
e)|x|

|x |

Using
1

|x − y |2
=

1

|x |2
+
−|y |2 + 2x · y
|x |2|x − y |2
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) IV

twice and the fact that g(y) is even, integrates to zero, and∫
yg(y) dy = 0,

f1(x) =
1

|x |4
e

3
2

π3

(
−
∫
R3

|y |2g(y)dy +

∫
R3

(−|y |2 + 2x · y)2

|x − y |2
g(y)dy

)
(2.16)

We compute
∫
R3 |y |2g(y)dy = − 3π

2e2
, and then using the symmetry of g

once more,

lim
|x |→∞

∫
R3

(x · y)2

|x − y |2
g(y)dy =

1

3

∫
R3

|y |2g(y)dy = − π

2e2
,

Therefore,

lim
|x |→∞

|x |4f1(x) = − 1

2π2
√
e

and lim
|x |→∞

|x |4U1(x) =
1

2π2
√
e

√
2 + β.

(2.18)
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) V

We now turn to an upper bound of U1. First of all, if |x | 6 1√
e

, then

by (32) and (2.16),

f1(x) > 0

and if |x | > 1√
e

, then

f1(x) > − 1

|x |4
e2

π3

∫
R3

(−|y |2 + 2x · y)2

|x − y |2
e−(2

√
e)|y |dy .

We split the integral into two parts: |y − x | > |x | and |y − x | < |x |. We
have, (recalling |x | > 1√

e
),

∫
|y−x |>|x |

(−|y |2 + 2x · y)2

|x − y |2
e−(2

√
e)|y |dy 6 e−

5
2C
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U1(x) :=
∫

dk
(2π)3e

−ikxÛ1(k) VI
for some constant C (we use a notation where the constant C may change
from one line to the next). Now,∫
|y−x|<|x|

(−|y |2 + 2x · y)2

|x − y |2 e−(2
√

e)|y|dy 6 e−
√
e|x|
∫
|y−x|<|x|

(|y |2 + 2|x ||y |)2

|x − y |2 dy 6 |x |5e−
√
e|x|C .

Therefore, for all x ,

f1(x) > − 1

|x |4
C (e−

1
2 + e2|x |4e−

√
e|x |).

Finally, by use (2.13),

|x |4
(
δ(x) +

(β + 1)e

π

e−2
√
e|x |

|x |

)
∗ f1 ∗ f2(x) > −Ce−

1
2 .

All in all, by (2.10), (since |x |4e
3
2 e−2

√
e|x | < Ce−

1
2 )

|x |4U1(x) 6 Ce−
1
2 . (2.25)
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∆2Û2 is integrable and square-integrable.
We use the fact that

16e2∆2 ≡ ∂4κ +
4

κ
∂3κ. (2.26)

We have, by the Leibniz rule,

∂n
κÛ2 =

n∑
i=0

(
n

i

)(
∂n−i
κ (κ2 + 1)∂ i

κ(1−
√

1− 2ζ1)− ∂n−i
κ (κ2 + 1)−2∂ i

κ(1−
√

1− 2ζ2)
)
.

(2.27)
Furthermore,

∂n
κ(1−

√
1− 2ζj) =

n∑
p=1

∂p
ζj
(1−

√
1− 2ζj)

∑
l1,··· ,lp∈{1,··· ,n}

l1+···+lp=n

c
(p,n)
l1,··· ,lp

n∏
i=1

∂ li
κζj (2.28)

for some family of constants c
(p,n)
l1,··· ,lp which can easily be computed

explicitly, but this is not needed. Now, since S > 0, ρ
1e |Ŝ | 6 1, so |ζ1| 6 1

2

and ζ1 = 1
2 if and only if κ = 0. Therefore, Û2 is bounded when κ is away

from 0, so it suffices to show that ∆2Û2 is integrable and square
integrable at infinity and at 0.
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2-1

We first consider the behavior at infinity, and assume that κ is sufficiently
large. The fact that ∂n−iκ (κ2 + 1)−2∂iκ(1−

√
1− 2ζ2) is integrable and

square integrable at infinity follows immediately from (2.7). To prove the
corresponding claim for ζ1, we use the fact that |x |4v square integrable,
which implies that Ŝ is as well. Therefore, by (2.7) for 0 6 n 6 4, κ2∂nκζ1
is integrable at infinity, and, therefore, square-integrable at infinity.
Furthermore, by (2.7), ζ1 <

1
2 − ε for large κ, and ∂nζ1 is bounded, so

∂n−iκ (κ2 + 1)∂ iκ(1−
√

1− 2ζ1) is integrable and square integrable.
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2-2 I

As κ→ 0

ζi =
1

2
(1− (β + 2)κ2) + O(κ4)

and since β > 0,

1− 2ζi > κ2 + O(κ4).

therefore, for p > 1

∂pζj (1−
√

1− 2ζj) = O(κ1−2p)

and, since ζi is C4, for 3 6 n 6 4,

∂ζi = −(β + 2)κ+O(κ3), ∂2ζi = −(β + 2) +O(κ2), ∂nζi = O(κ4−n).

Therefore, for 1 6 i 6 4, by (2.28)

∂iκ(1−
√

1− 2ζ1)− ∂ iκ(1−
√

1− 2ζ2) = O(κ3−i )
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2-2 II

and

∂ iκ(1−
√

1− 2ζ1) = O(κ1−i ), ∂iκ(1−
√

1− 2ζ2) = O(κ1−i ).

Thus, by (2.27), as κ→ 0,

|∂4κÛ2| = O(κ−1),
4

κ
|∂3κÛ2| = O(κ−1).

Thus, ∆2Û2 is integrable and square integrable. And since the O(·) hold
uniformly in e on all compact sets, by (2.26),

|x |4U2(x) 6
8e

3
2

16e2

∫ (
∂4|k| +

4

|k |
∂3|k|

)
Û2(|k|) dk 6

C√
e
.


