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Theorem 1.5 in [2]



Our system

(—A+4e +V(x))u(x) = V(x) + 2ep(u * u)(x) , (1.1)

e —

NI

/ (1= u())V(x) dx . (1.2)



The goal of today

Theorem 1.5 (decay of v at infinity) In all dimensions, provided V is
spherically symmetric with [ |x|*Vdx < oo in addition to satisfying the
hypotheses imposed in Theorem 1.3, all integrable solutions of (1.1)-(1.2)
with u(x) < 1 for all x satisfy

/|x]u(x)dx =00 and /x|ru(x)dx <oo forall0<r<1.

(1.25)
Thus, if u(x) ~ |x|~™ for some m, the only possibility is m = d + 1.
Under stronger assumptions on the potential, this is actually the case. For
d = 3, if V is non-negative, square-integrable, spherically symmetric (that
is, V(x) = V(|x|)), and, for |x| > R,

V(|x]) < Ae Bl (1.26)

for some A, B > 0 then there exists a > 0 such that

a

(1.27)

~ T A e
x| o0 [ x[*



Theorem 1.1(Positivity) Suppose that V is non-negative and integrable
and that v is an integrable solution of (1.1)-(1.2) such that u(x) < 1 for
all x. Then u(x) > 0 for all x, and all such solutions have fairly slow decay
at infinity in that they satisfy

/|x|u(x)dx =00 . (1.5)

Thus, any physical solutions of (1.1)-(1.2) must necessarily satisfy the
pair of inequalities
0<u(x)<1 forallx. (1.6)

Theorem 1.3 (existence and uniqueness) Let V € L}(RY) N LP(RY),
p > max{%, 1}, be non-negative. Then there is a constructively defined
continuous function p(e) on (0, c0) such that lime_o p(e) =0 and
lime— o0 p(€) = 00 and such that for any e > 0 and p = p(e), the
system (1.1) and (1.2) has a unique integrable solution u(x) satisfying
u(x) < 1. Moreover, if p # p(e), the system (1.1) and (1.2) has no
integrable solution u(x) satisfying (1.6).



Remark

» We do not assume here that the potential is radially symmetric.
However, the uniqueness statement implies that v is radially
symmetric whenever V is radially symmetric.

» The function p(e) is the density function, which specifies the density
as a function of the energy. Thus, our system together with (1.6)
constrains the parameters e and p to be related by a strict functional
relation p = p(e). In most of the early literature on the Bose gas, p is
taken as the independent parameter, as suggested by (??): One puts
N particles in a box of volume N/p, and seeks to find the ground
state energy per particle, e, as a function of p. Our theorem goes in
the other direction, with p specified as a function of e. We prove that
e — p(e) is continuous, and we conjecture that p(e) is a strictly
monotone increasing function. In that case, the functional relation
could be inverted, and we would have a well-defined function e(p).

» Since lime_0p(e) =0 and lime_o0 p(€) = 00, the continuity of
e — p(e) implies that for each p € (0, 00) there is at least one e such
that p(e) = p.



Proof of Theorem 1.5 |

> The first part of (1.25) has already been proved in Theorem 1.1
without the additional assumption on the potential.

» For the second part of (1.25), by the first remark after Theorem 1.3,
u is also radial, and hence V(1 — u) is non-negative and radial. It
then follows from the hypotheses on V that
g = 2peYye * Yae x [V(1 — u)] satisfies

/|xy2g(x)dx <oo and /Xg(x)dx ~0.

Then, as explained in Section 2, if f :=2epYsexu, f —fxf =g >0,
and then by [CJLL20, Theorem 4], the second part of (1.25) follows.



Proof of Theorem 1.5 |l

Note that if
«

u(lx|)

x| o0 [X|™

for some o > 0, then the only choice of m that is consistent with (1.25) is
m=d+1.

It can be seen by the following:

1 oo
/ x\’dXN/ Py <00 = r—m4d—-1< 1.
[x|>R ’X‘m R

Then, we have r < 1 only when m=d + 1.
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We now specialize to d = 3, with the additional assumption on V.
Fourier transform of u:

2 2
mm;(ﬁ+1¢62u)aw0

where S is defined by

(kD) 1= 22 [ (1~ a(x)V(1x) o

2e
We split R R
a(|k[) = Ua(lk[) + Ua(|k]) (5.5)
with 0eS(Ik
(1K) := —<2UKD

= pde + K2)



Proof of Theorem 1.5 |V

so that, taking the large |k| limit in (4.25),
Us(|K[) = O(|k|~°S*(K])) (5.7)

o) Z:[\Q is integrable.



Proof of Theorem 1.5 - Decay of U |

We first show that

(1<) = 75z [ €K ok

decays exponentially in |x|. We have

Un(lx]) = (A + )71 = u(lx))V(Ix]) = Y1+ (1 = u)V)(|x])

with ]
e*X
Yi(lx]) :=

 A4nm|x|

Therefore, by (1.26),

A —|x=y|-Bly| 1 —|x=yl
i< o [ S [
dr Jiysr X =yl 4 Jiyj<r Ix =yl

V(lyl) dy



Proof of Theorem 1.5 - Decay of U Il
so, denoting b := min(B, 1),

iy < A [EXE et
1(Ix]) < 477/ x — y| y+ 471' (Ix| — / (1)

and since

A e~ b(x=yl+Iy]) A e bllyl+ly+x])
A ey 5
4 [x =yl 4r lyl

A e—blx| A e—blyl

< - dy + — dy < C(b)e PMI(|x[? + |x| + 1)
an y<|x| ’y‘ 4m y>|x| ’y‘

we have

o (xI-R)

U(Ix]) < C(b)e M (Ix|? + x| +1) + (X —R) /V ly[) dy. (5.14)



Proof of Theorem 1.5 - Analyticity of U,

We now turn to

x 1 —lkx I’I]I{‘X‘R
talle) = g3 [ € Th(lk) d 4m2|x|2/ Zi() di.
(5.15)

We start by proving some analytic properties of Z/Alg, which, we recall
from (4.25) and (5.5), is

~ 2 2 e
Ua([K[) = ; (ﬁe +1- \/Gz + 1) — S(|k[) - ii’:ﬁ) :




Proof of Theorem 1.5 - 2-1

First of all, S is analytic in a strip about the real axis:

S(k) = 4n /000 sinc(sr)PV(F)(1 — u(r)) dr,  sinc(€) = sinéf)

0"S(k) = 4w /OOO d"sinc(rr)r™2V(r)(1 — u(r)) dr.

We will show that if Zm(x) < £ , then there exists C > 0 which only
depends on A and B such that

0"S (k)| < niC". (5.19)

Because the Taylor series of S at k converges, S is analytic in a strip. In
particular, if we define the strip

1
p=

Hr:={z: |Im(z)| <r ", Re(z) >0} and r> <§>_

with 0 < 7 < 1. Then S is analytic in H,.



Proof of Theorem 1.5 - 2-1-1 |

We first treat the case || < £. We have

o 2
sinc(&) = Z (=1)Pe
p

= (2p+1)!
S0 ,
nd N (npere
0"sinc(§) = Z p 1) )
p=[3]
Therefore -
i
"sinc(& Z < cosh([¢]).
Pf(ﬂ
Thus,

0"S(x)| < 4r /OOO cosh([1]F)r™2V(r)(1 — u(r)) dr



Proof of Theorem 1.5 - 2-1-1 ||
so, by (1.26),

[e) R
07S ()| < 44T / cosh([i]r)r™2e~B" dr-+ar / cosh([i]r)r™2V(r) dr
R 0

and

|0"S(K)| < 8A7T/ rrt2e=(B=Ixl)r dr+87re|’"“|RR”/r2V(r) dr
0

which, if |k| < g, implies that

o) o] 2n+6A
8A7T/O 2= (B=IkDr gr < 8A7r/0 rt2e7 3" dr = Bni;(n +2)!

and

87re|“|RR"+2/V(r) dr < 87re§RR”/r2V(r) dr.



Proof of Theorem 1.5 - 2-1-2 |

We now turn to |x| > £:

d"sinc(€) = Z <Z> OPsin(€) (n —51)_!5;11)”—13

p=0
o)
|8"sinc(¢)] < 2e™ é)z \§| (n=p+1),
p= 0
Therefore,
n - nl > m(r)r
’8 S(KJ)| < SWZ/W_P'HL/O' eI ( ) rp+1V(r)(1 — u(r)) dr
p=0
so, by (1.26),

]8”5(5)] o1+ oo



Proof of Theorem 1.5 - 2-1-2 ||

with
- n! % o4l —(B—Tm())r
01::8A7r5 / P \B—EmEI g
| —p+1
prs pls|"=PHL Jg
and
. n! R +1 Zm(k)r ()
2 =8r _/ rPTre YV(r) dr.
Furthermore,

n

p+1
= |
7= AT B T e

p=

so, as long as |k| > %B and Zm(k) < %B,



Proof of Theorem 1.5 - 2-1-2 [l|

In addition,

. n! - m(k R
02 < 87TZWRP 162 ( )R/O I’2V(I’) dr
p=0

SO

" pl2n—ptt

< -
oy < 81 Bl

R
Rp_leIm(“)R/ r?V(r) dr
p=0 0

< 2" nteRB /R r?V(r) dr
S Rt ™ ) '




Proof of Theorem 1.5 - 2-2

We have thus p/r\oved that S is analytic in H,, which implies that the
singularities of U in H; all come from the branch points of /F(|k|) with

F(K]) == (‘2 +1)2 — S(|k|). For x € R,

IS(k)l < 1
so, for Kk € R,
12
F > —.
(k) > o

Therefore, since F is analytic in a strip around the real axis, there exists an
open set containing the real axis in which F has one and only one root, at
0. Thus the only branch point of v/F on the real axis is 0. Thus, 2:1\2 is
analytic in H;.



Decay of U, |

We deform the integral to the path

{iny, 0 <y <|x|7"yU{in|x|"" +y, y > 0}

Y

inlx|™




Decay of U |l

and find -
/ o () dic = h + b (5.43)
0
with -
h:= —/ e*y|X|yﬁ2(iny) dy
0
and

[e.9]
b= e [ |y linlx 7 ) dy.
0



3-11

We first estimate /1. We expand S: For 5 > 0 ,since S is analytic and
symmetric, and |S(|k|)| <1

S(k) =1— Br?+ O(|x|*).

Therefore, y — ﬁg(iy) is C2 for y # 0, and

K> k2 2 2eS(|k|)
(%Hmeﬂ) 5(|k|)4e+k2)

Ko V“ 1R O — 2 (1 8K+ O(KY)
16e2 4e + k2

<k2 i1 \/g T 8K+ O(k[4) — g2 (1 - R+ O(kl“))>

+ k2
1 2
1—kyf 5+ 6—+O(k)>
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Thus,

(i 1 inyF )

u - - — . O
2(iny) 5 o Ve T B+ 0(y?)

Furthermore,
Ix|=7 1—
- / ) e_y|xly dy = —iz + %e—lxllﬂ
0 [ x|
- / T 2 gy = 2 LEXITTRAXT) g
0 [x|3 Ix|3
and

x|~
[T ey ay = o
0



3-1 1l

_ 1 2 —4
b= =g * i 2e 0+ O
1 —5

WMZm i\ H O (552)

SO



3-2

We now bound k. Recall that, for k € R, |S(x)|

1
|S(k 4 in|x|™T) 27\8”5 ®)|"xTT <
n=0

provided |x|” > 2C. Therefore, for large x, by (5.7),

[Ua( + im)| = O(x™*)

SO
1—7
b < Cle ¥

for some constant C’ > 0.

1

S— =5 S2
1-Clx|=7

< 1. Recalling (5.19),

(5.55)



3-3

Inserting (5.52) and (5.55) into (5.43) and (5.15), we find that

1 1
Us(Ix]) = W\/ e + B4 0(]x| )

which, using (2.10), concludes the proof of the theorem.

O
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Theorem 1.2 (Large |x| asymptotics of u) If
(1+ |x[*)v(x) € LY(R3) N L2(R3), then

V218 1

Pul) = 7 e InP

+ R(x)
where
5=p [ bPv(1 = w)ae < plvls,

and where |x[*R(x) is in L2(R3) N L°°(R3), uniformly in e on all compact
sets. Moreover, for every pg > 0, there is a constant C that only depends
on po such that for all x, for all p < po,

u(x) < min 1,1L .
pez|x|*



Proof of Theorem 1.2: Preparation |

Let

Then we have

£3
~_ 2 o o 2e
pu = (k°+1) (1 1 (ﬁ2+1)2) .

4

For small k, since x*v is integrable, S is c*

P e 2 2 4

Fg_1_

2e5 Bk + O(e“Kk")
and [ is defined in (29):

p ~
B=—L 025 < plvl.

(2.1)

(2.2)

(2.3)

(2.4)



Proof of Theorem 1.2: Preparation I

Therefore, defining

U = (k2 +1)72 (1 —4/1- (1-5r) ﬂ’#))

(K2 +1)2

Ul coincides with & asymptotically as x — 0 and we chose the prefactor
(k2 4+ 1)72 in such a way that U; is integrable. Define the remainder term

Op = pi—Ur = (2 +1) (1-VT-2G) (@ + 1) 2 (1- V1-20)

ﬁg 1— 2
=75, (= 5 br

(e 2T e 27)



Ur(x) == [ iz ™ Ch(k) |

We write
1-5:‘{2 K 1 |K/‘(2+ﬂ+ﬁ?2) /oo 1 —1/2
1— — \/2 2 — = t dt .
(1+~K%)2 1+~k? thtr ™ 1+ k2 0o 2+pB+t+k?
Therefore,
U=+ -2 +1)2 (1+(8+1) L /Oo 1 Y2
' T 1+k2) Jy 24+ B8+t+ K2 '

We take the inverse Fourier transform of Us, recalling the definition of
k (2.1)

3 —2\/elx|
Us(x) = %e—%ﬁlxl _ % (5()() 4 (B ‘;1)6 e ~ ) xfixf (2.10)

where ,

_ g ik(2vex) ||



Ui(x) = [ ise Ui (k) I

and

ez _ik2yax) [ dt 1 _ € /oo —V2+B+t(2Velx])  ~1/2
2(%) ﬂs/ ‘ o Vi2tBrttk  wix )y © ’

now, for all T > 0,

/ T e VITATHVEND) - 1/2 g

0
T 00

_ / o VIFBTERVED) p-1/2p | / o~ VZFBTEVE) 1-1/2 4y
0 T

T o0
< [ e VEeiavelx) e + [ e IR 12 gy
0 T

_o(1 — e VT)eVERRVE) | L —vT(avelx)
Velx|

< 2TV2e~VEBRVEND) | L —vT(2vEl), (2.13)
Velx|



Ui(x) = [ ise™ ™ Uy (k) 11

Where we have use that
1
exp(—x) =1—x+ §X2 + 0(x®)
for the last inequality.

Choosing T = 2+ 3, we see that for large (2/e|x|),
0 < f(x) < CeV2HA(Velx)) - Furthermore,

3 ) 2 3 _ -(2ve)lx|
fi(x) = i/dk erever LK e 1 g g=1 vepe

7 Kl (k2 +1)2 7 |x]? x|

11 —lyl?+2x-y

=y X2 xPlx -y




Ur(x) == [ iz ™ Oh(k) IV

twice and the fact that g(y) is even, integrates to zero, and
Jye(y) dy =0,

i) = % (- [ wrsty+ [ EHEEZ g a))

[x|* 73 x = yl?
(2.16)
We compute [gs |y|?g(y)dy = — e2’ and then using the symmetry of g
once more,
lim / be ) / v I*g(y ,
x| 00 JR3 |x — y!z 2e2
Therefore,

1 1
l (x) = — d l 4 = V2 + B
\X\inoo XI*a(x) 212, /e o |X\[>noo XFi() 212, /e +5



Ur(x) = [ gse Uy (k) V

We now turn to an upper bound of U;. First of all, if |x| < ﬁ then
by (32) and (2.16),
fi(x) >0

and if |x| > %, then

L& [ (hProxy)?
h(x) 2 ——7=3 velylgy.

We split the integral into two parts: |y — x| > |x| and |y — x| < |x|. We
have, (recalling |x| > ﬁ)

2 2
/ EEr 2 y) —evaimgy < e3¢
ly—x|>|x| Ix — yl|?



Ur(x) == [ pise (k) VI

for some constant C (we use a notation where the constant C may change
from one line to the next). Now,

2 2 2 2

— 2 . — e —\Ve|x 2 —Ve

/ Me VAl < ¢~ Ve |/ wdy < |xffe
ly—x|<|x| Ix =yl ly—x|<|x]| [x =yl

Therefore, for all x,
1
fl(X) = *W C(e_% + e2|x]4e_\/ax|).
X

Finally, by use (2.13),

(/8 + 1)e 672\/E|X|
s

x|

|x|* (5(X) + > x f1 % fo(x) > —Ce 2.

All in all, by (2.10), (since |x|*e3e2Vell < Ce~2)

x| Uy (x) < Ce™. (2.25)



A2U, is integrable and square-integrable.
We use the fact that

4
16e°A% = 9% + —03. (2.26)
K
We have, by the Leibniz rule,

870, = Z (’]) (a,";"(m2 F1)0L(1—/1—2G)— (K2 +1)20L(1 — V1 — 2@)) .

i=0

(2.27)
Furthermore,
M(L—V1-2G) = 00(1—-v1-2G) > = o ,PHE)’@ (228)
p=1 Il,"',’pE{l,"', }
h+-+lp=n

for some family of constants CI(1P~’~r-’)Ip which can easily be computed
explicitly, but this is not needed. Now, since S > 0, l%\g\ < 1,50 |G| < :
and (1 = % if and only if kK = 0. Therefore, U, is bounded when x is away

from 0, so it suffices to show that A? 02 is integrable and square
integrable at infinity and at 0.
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We first consider the behavior at infinity, and assume that & is sufficiently
large. The fact that 07~/(k? + 1)720.(1 — /1T — 2(;) is integrable and
square integrable at infinity follows immediately from (2.7). To prove the
corresponding claim for (1, we use the fact that |x|*v square integrable,
which implies that S is as well. Therefore, by (2.7) for 0 < n < 4, /{28,';@
is integrable at infinity, and, therefore, square-integrable at infinity.
Furthermore, by (2.7), (1 < % — ¢ for large k, and 0"(y is bounded, so

0" (k? 4+ 1)0L(1 — /T —2(1) is integrable and square integrable.



2-2 |

As k — 0 1

G =51 (5 +287) + O(x*)
and since 8 > 0,

1-2¢ > w2+ O(sY).

therefore, for p > 1

Of(1—\/1-2() = O(x'*)
and, since (; is C*, for 3 < n < 4,
9G = —(B+2)k+0(x%), *¢i=—(8+2)+0(x%), 9"¢;=O0(x*"").

Therefore, for 1 < i < 4, by (2.28)

Op(1—/1=201) = 0,(1 — /1 -2() = O(x*7)
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and

(1= V1=2G) = O(x'™), 9i(1— V1-2G) = O(x*™).

Thus, by (2.27), as k — 0,
417 —1 4 3+ 1

Thus, A20, is integrable and square integrable. And since the O(-) hold
uniformly in e on all compact sets, by (2.26),

3
8e2 4 A C
4 . 5
Ix|* Ua(x) < 16e2/ (6|k| + ’kalk> Ux(|k]) dk < NG

O



