Reading seminar summer 2021
 An effective theory for interacting Bose gases

Jinyeop Lee

Ludwig-Maximilians-Universität München
16, June, 2021

Theorem 1.5 in [2]

Our system

$$
\begin{equation*}
(-\Delta+4 e+\mathcal{V}(x)) u(x)=\mathcal{V}(x)+2 e \rho(u * u)(x), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
e=\frac{\rho}{2} \int(1-u(x)) \mathcal{V}(x) d x . \tag{1.2}
\end{equation*}
$$

The goal of today

Theorem 1.5 (decay of u at infinity) In all dimensions, provided \mathcal{V} is spherically symmetric with $\int|x|^{2} \mathcal{V} d x<\infty$ in addition to satisfying the hypotheses imposed in Theorem 1.3, all integrable solutions of (1.1)-(1.2) with $u(x) \leqslant 1$ for all x satisfy

$$
\begin{equation*}
\int|x| u(x) d x=\infty \quad \text { and } \quad \int|x|^{r} u(x) d x<\infty \quad \text { for all } 0<r<1 \tag{1.25}
\end{equation*}
$$

Thus, if $u(x) \sim|x|^{-m}$ for some m, the only possibility is $m=d+1$. Under stronger assumptions on the potential, this is actually the case. For $d=3$, if \mathcal{V} is non-negative, square-integrable, spherically symmetric (that is, $\mathcal{V}(x)=\mathcal{V}(|x|))$, and, for $|x|>R$,

$$
\begin{equation*}
\mathcal{V}(|x|) \leqslant A e^{-B|x|} \tag{1.26}
\end{equation*}
$$

for some $A, B>0$ then there exists $\alpha>0$ such that

$$
\begin{equation*}
u(x) \underset{|x| \rightarrow \infty}{\sim} \frac{\alpha}{|x|^{4}} \tag{1.27}
\end{equation*}
$$

Theorem 1.1(Positivity) Suppose that \mathcal{V} is non-negative and integrable and that u is an integrable solution of (1.1)-(1.2) such that $u(x) \leqslant 1$ for all x. Then $u(x) \geqslant 0$ for all x, and all such solutions have fairly slow decay at infinity in that they satisfy

$$
\begin{equation*}
\int|x| u(x) d x=\infty \tag{1.5}
\end{equation*}
$$

Thus, any physical solutions of (1.1)-(1.2) must necessarily satisfy the pair of inequalities

$$
\begin{equation*}
0 \leqslant u(x) \leqslant 1 \quad \text { for all } x \tag{1.6}
\end{equation*}
$$

Theorem 1.3 (existence and uniqueness) Let $\mathcal{V} \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d}\right)$, $p>\max \left\{\frac{d}{2}, 1\right\}$, be non-negative. Then there is a constructively defined continuous function $\rho(e)$ on $(0, \infty)$ such that $\lim _{e \rightarrow 0} \rho(e)=0$ and $\lim _{e \rightarrow \infty} \rho(e)=\infty$ and such that for any $e \geqslant 0$ and $\rho=\rho(e)$, the system (1.1) and (1.2) has a unique integrable solution $u(x)$ satisfying $u(x) \leqslant 1$. Moreover, if $\rho \neq \rho(e)$, the system (1.1) and (1.2) has no integrable solution $u(x)$ satisfying (1.6).

Remark

- We do not assume here that the potential is radially symmetric. However, the uniqueness statement implies that u is radially symmetric whenever \mathcal{V} is radially symmetric.
- The function $\rho(e)$ is the density function, which specifies the density as a function of the energy. Thus, our system together with (1.6) constrains the parameters e and ρ to be related by a strict functional relation $\rho=\rho(e)$. In most of the early literature on the Bose gas, ρ is taken as the independent parameter, as suggested by (??): One puts N particles in a box of volume N / ρ, and seeks to find the ground state energy per particle, e, as a function of ρ. Our theorem goes in the other direction, with ρ specified as a function of e. We prove that $e \mapsto \rho(e)$ is continuous, and we conjecture that $\rho(e)$ is a strictly monotone increasing function. In that case, the functional relation could be inverted, and we would have a well-defined function $e(\rho)$.
- Since $\lim _{e \rightarrow 0} \rho(e)=0$ and $\lim _{e \rightarrow \infty} \rho(e)=\infty$, the continuity of $e \rightarrow \rho(e)$ implies that for each $\rho \in(0, \infty)$ there is at least one e such that $\rho(e)=\rho$.

Proof of Theorem 1.5 I

- The first part of (1.25) has already been proved in Theorem 1.1 without the additional assumption on the potential.
- For the second part of (1.25), by the first remark after Theorem 1.3, u is also radial, and hence $\mathcal{V}(1-u)$ is non-negative and radial. It then follows from the hypotheses on \mathcal{V} that $g:=2 \rho e Y_{4 e} * Y_{4 e} *[\mathcal{V}(1-u)]$ satisfies

$$
\int|x|^{2} g(x) d x<\infty \quad \text { and } \quad \int x g(x) d x=0
$$

Then, as explained in Section 2, if $f:=2 e \rho Y_{4 e} * u, f-f * f=g \geqslant 0$, and then by [CJLL20, Theorem 4], the second part of (1.25) follows.

Proof of Theorem 1.5 II

Note that if

$$
u(|x|) \underset{|x| \rightarrow \infty}{\sim} \frac{\alpha}{|x|^{m}}
$$

for some $\alpha>0$, then the only choice of m that is consistent with (1.25) is $m=d+1$.
It can be seen by the following:

$$
\int_{|x|>R}|x|^{r} \frac{1}{|x|^{m}} \mathrm{~d} x \sim \int_{R}^{\infty} \rho^{r-m+d-1} \mathrm{~d} \rho<\infty \Longleftrightarrow r-m+d-1<-1
$$

Then, we have $r<1$ only when $m=d+1$.

Proof of Theorem 1.5 III

We now specialize to $d=3$, with the additional assumption on \mathcal{V}. Fourier transform of u :

$$
\hat{u}(|k|)=\frac{1}{\rho}\left(\frac{k^{2}}{4 e}+1-\sqrt{\left(\frac{k^{2}}{4 e}+1\right)^{2}-S(|k|)}\right)
$$

where S is defined by

$$
S(|k|):=\frac{\rho}{2 e} \int e^{i k x}(1-u(|x|)) \mathcal{V}(|x|) d x
$$

We split

$$
\begin{equation*}
\hat{u}(|k|)=\widehat{\mathcal{U}}_{1}(|k|)+\widehat{\mathcal{U}}_{2}(|k|) \tag{5.5}
\end{equation*}
$$

with

$$
\widehat{\mathcal{U}}_{1}(|k|):=\frac{2 e S(|k|)}{\rho\left(4 e+k^{2}\right)}
$$

Proof of Theorem 1.5 IV

so that, taking the large $|k|$ limit in (4.25),

$$
\begin{equation*}
\widehat{\mathcal{U}}_{2}(|k|)=O\left(|k|^{-6} S^{2}(|k|)\right) \tag{5.7}
\end{equation*}
$$

so $\widehat{\mathcal{U}}_{2}$ is integrable.

Proof of Theorem 1.5 - Decay of \mathcal{U}_{1} I

We first show that

$$
\mathcal{U}_{1}(|x|):=\frac{1}{(2 \pi)^{3}} \int e^{-i k x} \widehat{\mathcal{U}}_{1}(|k|) d k
$$

decays exponentially in $|x|$. We have

$$
\mathcal{U}_{1}(|x|)=(-\Delta+1)^{-1}(1-u(|x|)) \mathcal{V}(|x|)=Y_{1} *((1-u) \mathcal{V})(|x|)
$$

with

$$
Y_{1}(|x|):=\frac{e^{-|x|}}{4 \pi|x|}
$$

Therefore, by (1.26),

$$
\mathcal{U}_{1}(|x|) \leqslant \frac{A}{4 \pi} \int_{|y|>R} \frac{e^{-|x-y|-B|y|}}{|x-y|} d y+\frac{1}{4 \pi} \int_{|y|<R} \frac{e^{-|x-y|}}{|x-y|} \mathcal{V}(|y|) d y
$$

Proof of Theorem 1.5 - Decay of \mathcal{U}_{1} II

so, denoting $b:=\min (B, 1)$,

$$
\mathcal{U}_{1}(|x|) \leqslant \frac{A}{4 \pi} \int \frac{e^{-b(|x-y|+|y|)}}{|x-y|} d y+\frac{e^{-(|x|-R)}}{4 \pi(|x|-R)} \int \mathcal{V}(|y|) d y
$$

and since

$$
\begin{aligned}
& \frac{A}{4 \pi} \int \frac{e^{-b(|x-y|+|y|)}}{|x-y|} d y=\frac{A}{4 \pi} \int \frac{e^{-b(|y|+|y+x|)}}{|y|} d y \\
& \leq \frac{A}{4 \pi} \int_{y \leq|x|} \frac{e^{-b|x|}}{|y|} d y+\frac{A}{4 \pi} \int_{y>|x|} \frac{e^{-b|y|}}{|y|} d y \leq C(b) e^{-b|x|}\left(|x|^{2}+|x|+1\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
\mathcal{U}_{1}(|x|) \leqslant C(b) e^{-b|x|}\left(|x|^{2}+|x|+1\right)+\frac{e^{-(|x|-R)}}{4 \pi(|x|-R)} \int \mathcal{V}(|y|) d y \tag{5.14}
\end{equation*}
$$

Proof of Theorem 1.5 - Analyticity of \mathcal{U}_{2}

We now turn to
$\mathcal{U}_{2}(|x|):=\frac{1}{(2 \pi)^{3}} \int e^{-i k x} \widehat{\mathcal{U}}_{2}(|k|) d k=\frac{1}{4 i \pi^{2}|x|} \sum_{\eta= \pm} \eta \int_{0}^{\infty} e^{i \eta \kappa|x|} \kappa \widehat{\mathcal{U}}_{2}(\kappa) d \kappa$.
We start by proving some analytic properties of $\widehat{\mathcal{U}}_{2}$, which, we recall from (4.25) and (5.5), is

$$
\widehat{\mathcal{U}}_{2}(|k|)=\frac{1}{\rho}\left(\frac{k^{2}}{4 e}+1-\sqrt{\left(\frac{k^{2}}{4 e}+1\right)^{2}-S(|k|)}-\frac{2 e S(|k|)}{4 e+k^{2}}\right) .
$$

Proof of Theorem 1.5-2-1

First of all, S is analytic in a strip about the real axis:

$$
S(\kappa)=4 \pi \int_{0}^{\infty} \operatorname{sinc}(\kappa r) r^{2} \mathcal{V}(r)(1-u(r)) d r, \quad \operatorname{sinc}(\xi):=\frac{\sin (\xi)}{\xi}
$$

so

$$
\partial^{n} S(\kappa)=4 \pi \int_{0}^{\infty} \partial^{n} \operatorname{sinc}(\kappa r) r^{n+2} \mathcal{V}(r)(1-u(r)) d r
$$

We will show that if $\operatorname{Im}(\kappa) \leqslant \frac{B}{2}$, then there exists $C>0$ which only depends on A and B such that

$$
\begin{equation*}
\left|\partial^{n} S(\kappa)\right| \leqslant n!C^{n} \tag{5.19}
\end{equation*}
$$

Because the Taylor series of S at κ converges, S is analytic in a strip. In particular, if we define the strip

$$
H_{\tau}:=\left\{z:|\mathcal{I} m(z)| \leqslant r^{-\tau}, \mathcal{R e}(z)>0\right\} \quad \text { and } \quad r>\left(\frac{B}{2}\right)^{-\frac{1}{\tau}}
$$

with $0<\tau<1$. Then S is analytic in H_{τ}.

Proof of Theorem 1.5-2-1-1 I

We first treat the case $|\kappa| \leqslant \frac{B}{2}$. We have

$$
\operatorname{sinc}(\xi)=\sum_{p=0}^{\infty} \frac{(-1)^{p} \xi^{2 p}}{(2 p+1)!}
$$

so

$$
\partial^{n} \operatorname{sinc}(\xi)=\sum_{p=\left\lceil\frac{n}{2}\right\rceil}^{\infty} \frac{(-1)^{p} \xi^{2 p-n}}{(2 p+1)(2 p-n)!}
$$

Therefore

$$
\left|\partial^{n} \operatorname{sinc}(\xi)\right| \leqslant \sum_{p=\left\lceil\frac{n}{2}\right\rceil}^{\infty} \frac{|\xi|^{2 p-n}}{(2 p-n)!} \leqslant \cosh (|\xi|)
$$

Thus,

$$
\left|\partial^{n} S(\kappa)\right| \leqslant 4 \pi \int_{0}^{\infty} \cosh (|\kappa| r) r^{n+2} \mathcal{V}(r)(1-u(r)) d r
$$

Proof of Theorem 1.5-2-1-1 II

so, by (1.26),
$\left|\partial^{n} S(\kappa)\right| \leqslant 4 A \pi \int_{R}^{\infty} \cosh (|\kappa| r) r^{n+2} e^{-B r} d r+4 \pi \int_{0}^{R} \cosh (|\kappa| r) r^{n+2} \mathcal{V}(r) d r$
and

$$
\left|\partial^{n} S(\kappa)\right| \leqslant 8 A \pi \int_{0}^{\infty} r^{n+2} e^{-(B-|\kappa|) r} d r+8 \pi e^{|\kappa| R} R^{n} \int r^{2} \mathcal{V}(r) d r
$$

which, if $|\kappa| \leqslant \frac{B}{2}$, implies that

$$
8 A \pi \int_{0}^{\infty} r^{n+2} e^{-(B-|\kappa|) r} d r \leqslant 8 A \pi \int_{0}^{\infty} r^{n+2} e^{-\frac{B}{2} r} d r=\frac{2^{n+6} A \pi}{B^{n+3}}(n+2)!
$$

and

$$
8 \pi e^{|\kappa| R} R^{n+2} \int \mathcal{V}(r) d r \leqslant 8 \pi e^{\frac{B}{2} R} R^{n} \int r^{2} \mathcal{V}(r) d r
$$

Proof of Theorem 1.5-2-1-2 I

We now turn to $|\kappa| \geqslant \frac{B}{2}$:

$$
\partial^{n} \operatorname{sinc}(\xi)=\sum_{p=0}^{n}\binom{n}{p} \partial^{p} \sin (\xi) \frac{(n-p)!(-1)^{n-p}}{\xi^{n-p+1}}
$$

so

$$
\left|\partial^{n} \operatorname{sinc}(\xi)\right| \leqslant 2 e^{\mathcal{I} m(\xi)} \sum_{p=0}^{n} \frac{n!}{p!}|\xi|^{-(n-p+1)}
$$

Therefore,

$$
\left|\partial^{n} S(\kappa)\right| \leqslant 8 \pi \sum_{p=0}^{n} \frac{n!}{p!|\kappa|^{n-p+1}} \int_{0}^{\infty} e^{\mathcal{I} m(\kappa) r} r^{p+1} \mathcal{V}(r)(1-u(r)) d r
$$

so, by (1.26),

$$
\left|\partial^{n} S(\kappa)\right| \leqslant \sigma_{1}+\sigma_{2}
$$

Proof of Theorem 1.5-2-1-2 II

with

$$
\sigma_{1}:=8 A \pi \sum_{p=0}^{n} \frac{n!}{p!|\kappa|^{n-p+1}} \int_{R}^{\infty} r^{p+1} e^{-(B-\operatorname{Im}(\kappa)) r} d r
$$

and

$$
\sigma_{2}:=8 \pi \sum_{p=0}^{n} \frac{n!}{p!|\kappa|^{n-p+1}} \int_{0}^{R} r^{p+1} e^{\mathcal{I} m(\kappa) r} \mathcal{V}(r) d r
$$

Furthermore,

$$
\sigma_{1}=8 A \pi n!\sum_{p=0}^{n} \frac{p+1}{(B-\mathcal{I} m(\kappa))^{p+2}|\kappa|^{n-p+1}}
$$

so, as long as $|\kappa| \geqslant \frac{1}{2} B$ and $\operatorname{Im}(\kappa) \leqslant \frac{1}{2} B$,

$$
\sigma_{1} \leqslant \frac{2^{n+6} A \pi}{B^{n+3}} n!\sum_{p=0}^{n}(p+1)=\frac{2^{n+5} A \pi}{B^{n+3}}(n+2)!
$$

Proof of Theorem 1.5-2-1-2 III

In addition,

$$
\sigma_{2} \leqslant 8 \pi \sum_{p=0}^{n} \frac{n!}{p!|\kappa|^{n-p+1}} R^{p-1} e^{\mathcal{I} m(\kappa) R} \int_{0}^{R} r^{2} \mathcal{V}(r) d r
$$

so

$$
\begin{aligned}
\sigma_{2} & \leqslant 8 \pi \sum_{p=0}^{n} \frac{n!2^{n-p+1}}{p!B^{n-p+1}} R^{p-1} e^{\mathcal{I} m(\kappa) R} \int_{0}^{R} r^{2} \mathcal{V}(r) d r \\
& \leqslant \frac{2^{n+4} \pi}{R B^{n+1}} n!e^{R B} \int_{0}^{R} r^{2} \mathcal{V}(r) d r .
\end{aligned}
$$

Proof of Theorem 1.5-2-2

We have thus proved that S is analytic in H_{τ}, which implies that the singularities of $\widehat{\mathcal{U}}_{2}$ in H_{τ} all come from the branch points of $\sqrt{F(|k|)}$ with $F(|k|):=\left(\frac{k^{2}}{4 e}+1\right)^{2}-S(|k|)$. For $\kappa \in \mathbb{R}$,

$$
|S(\kappa)| \leqslant 1
$$

so, for $\kappa \in \mathbb{R}$,

$$
F(\kappa) \geqslant \frac{\kappa^{2}}{2 e}
$$

Therefore, since F is analytic in a strip around the real axis, there exists an open set containing the real axis in which F has one and only one root, at 0 . Thus the only branch point of \sqrt{F} on the real axis is 0 . Thus, $\widehat{\mathcal{U}}_{2}$ is analytic in H_{τ}.

Decay of \mathcal{U}_{2} I

We deform the integral to the path

$$
\left\{i \eta y, 0<y<|x|^{-\tau}\right\} \cup\left\{i \eta|x|^{-\tau}+y, y>0\right\}
$$

Decay of \mathcal{U}_{2} II

and find

$$
\begin{equation*}
\int_{0}^{\infty} e^{i \eta \kappa|x|} \kappa \widehat{\mathcal{U}}_{2}(\kappa) d \kappa=I_{1}+I_{2} \tag{5.43}
\end{equation*}
$$

with

$$
I_{1}:=-\int_{0}^{|x|^{-\tau}} e^{-y|x|} y \widehat{\mathcal{U}}_{2}(i \eta y) d y
$$

and

$$
I_{2}:=e^{-|x|^{1-\tau}} \int_{0}^{\infty} e^{i \eta y|x|}\left(i \eta|x|^{-\tau}+y\right) \widehat{\mathcal{U}}_{2}\left(i \eta|x|^{-\tau}+y\right) d y
$$

3-1 I

We first estimate I_{1}. We expand S : For $\beta>0$,since S is analytic and symmetric, and $|S(|k|)| \leqslant 1$,

$$
S(\kappa)=1-\beta \kappa^{2}+O\left(|\kappa|^{4}\right) .
$$

Therefore, $y \mapsto \widehat{\mathcal{U}}_{2}$ (iy) is \mathcal{C}^{2} for $y \neq 0$, and
$\widehat{\mathcal{U}}_{2}(|k|)$

$$
=\frac{1}{\rho}\left(\frac{k^{2}}{4 e}+1-\sqrt{\left(\frac{k^{2}}{4 e}+1\right)^{2}-S(|k|)}-\frac{2 e S(|k|)}{4 e+k^{2}}\right)
$$

$=\frac{1}{\rho}\left(\frac{k^{2}}{4 e}+1-\sqrt{\frac{k^{4}}{16 e^{2}}+\frac{k^{2}}{2 e}+1-1+\beta k^{2}+O\left(|k|^{4}\right)}-\frac{2 e}{4 e+k^{2}}\left(1+\beta k^{2}+O\left(|k|^{4}\right)\right)\right)$
$=\frac{1}{\rho}\left(\frac{k^{2}}{4 e}+1-\sqrt{\frac{k^{2}}{2 e}+\beta k^{2}+O\left(|k|^{4}\right)}-\frac{2 e}{4 e+k^{2}}\left(1-\beta k^{2}+O\left(|k|^{4}\right)\right)\right)$
$=\frac{1}{\rho}\left(1-k \sqrt{\frac{1}{2 e}+\beta}-\frac{1}{2}+O\left(k^{2}\right)\right)$

3-1 II

Thus,

$$
\widehat{\mathcal{U}}_{2}(i \eta y)=\frac{1}{2 \rho}-\frac{i \eta y}{\rho} \sqrt{\frac{1}{2 e}+\beta}+O\left(y^{2}\right)
$$

Furthermore,

$$
\begin{gathered}
-\int_{0}^{|x|^{-\tau}} e^{-y|x|} y d y=-\frac{1}{|x|^{2}}+\frac{1+|x|^{1-\tau}}{|x|^{2}} e^{-|x|^{1-\tau}} \\
-\int_{0}^{|x|^{-\tau}} e^{-y|x|} y^{2} d y=-\frac{2}{|x|^{3}}+\frac{1+|x|^{1-\tau}\left(2+x^{1-\tau}\right)}{|x|^{3}} e^{-|x|^{1-\tau}}
\end{gathered}
$$

and

$$
-\int_{0}^{|x|^{-\tau}} e^{-y|x|} y^{3} d y=O\left(|x|^{-4}\right)
$$

3-1 III

$$
I_{1}=-\frac{1}{2 \rho|x|^{2}}+\frac{2 i \eta}{\rho|x|^{3}} \sqrt{\frac{1}{2 e}+\beta}+O\left(|x|^{-4}\right)
$$

SO

$$
\begin{equation*}
\frac{1}{4 i \pi^{2}|x|} \sum_{\eta= \pm} \eta l_{1}=\frac{1}{\pi^{2} \rho|x|^{4}} \sqrt{\frac{1}{2 e}+\beta}+O\left(|x|^{-5}\right) \tag{5.52}
\end{equation*}
$$

3-2

We now bound I_{2}. Recall that, for $\kappa \in \mathbb{R},|S(\kappa)| \leqslant 1$. Recalling (5.19),

$$
\left|S\left(\kappa+i \eta|x|^{-\tau}\right)\right| \leqslant \sum_{n=0}^{\infty} \frac{1}{n!}\left|\partial^{n} S(\kappa)\right|^{n}|x|^{-n \tau} \leqslant \frac{1}{1-C|x|^{-\tau}} \leqslant 2
$$

provided $|x|^{\tau}>2 C$. Therefore, for large κ, by (5.7),

$$
\left|\widehat{\mathcal{U}}_{2}(\kappa+i \eta)\right|=O\left(\kappa^{-4}\right)
$$

so

$$
\begin{equation*}
I_{2} \leqslant C^{\prime} e^{-|x|^{1-\tau}} \tag{5.55}
\end{equation*}
$$

for some constant $C^{\prime}>0$.

Inserting (5.52) and (5.55) into (5.43) and (5.15), we find that

$$
\mathcal{U}_{2}(|x|)=\frac{1}{\pi^{2} \rho|x|^{4}} \sqrt{\frac{1}{2 e}+\beta}+O\left(|x|^{-5}\right)
$$

which, using (2.10), concludes the proof of the theorem.

Theorem 1.2 in [4]

Theorem 1.2 (Large $|x|$ asymptotics of u) If
$\left(1+|x|^{4}\right) v(x) \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$, then

$$
\rho u(x)=\frac{\sqrt{2+\beta}}{2 \pi^{2} \sqrt{e}} \frac{1}{|x|^{4}}+R(x)
$$

where

$$
\beta=\rho \int|x|^{2} v(1-u) d x \leqslant \rho\left\|x^{2} v\right\|_{1}
$$

and where $|x|^{4} R(x)$ is in $L^{2}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right)$, uniformly in e on all compact sets. Moreover, for every $\rho_{0}>0$, there is a constant C that only depends on ρ_{0} such that for all x, for all $\rho<\rho_{0}$,

$$
u(x) \leqslant \min \left\{1, \frac{C}{\rho e^{\frac{1}{2}}|x|^{4}}\right\}
$$

Proof of Theorem 1.2: Preparation I

Let

$$
\begin{equation*}
\kappa:=\frac{|k|}{2 \sqrt{e}} . \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\rho \widehat{u}=\left(\kappa^{2}+1\right)\left(1-\sqrt{1-\frac{\frac{\rho}{2 e} \widehat{S}}{\left(\kappa^{2}+1\right)^{2}}}\right) . \tag{2.2}
\end{equation*}
$$

For small κ, since $x^{4} v$ is integrable, \widehat{S} is \mathcal{C}^{4}

$$
\begin{equation*}
\frac{\rho}{2 e} \widehat{S}=1-\beta \kappa^{2}+O\left(e^{2} \kappa^{4}\right) \tag{2.3}
\end{equation*}
$$

and β is defined in (29):

$$
\begin{equation*}
\beta=-\frac{\rho}{4 e} \partial_{\kappa}^{2} \widehat{S} \leqslant \rho\left\|x^{2} v\right\|_{1} . \tag{2.4}
\end{equation*}
$$

Proof of Theorem 1.2: Preparation II

Therefore, defining

$$
\widehat{U}_{1}:=\left(\kappa^{2}+1\right)^{-2}\left(1-\sqrt{1-\frac{\left(1-\beta \kappa^{2}\right)}{\left(\kappa^{2}+1\right)^{2}}}\right)
$$

\widehat{U}_{1} coincides with \widehat{u} asymptotically as $\kappa \rightarrow 0$ and we chose the prefactor $\left(\kappa^{2}+1\right)^{-2}$ in such a way that \widehat{U}_{1} is integrable. Define the remainder term
$\widehat{U}_{2}:=\rho \widehat{u}-\widehat{U}_{1}=\left(\kappa^{2}+1\right)\left(1-\sqrt{1-2 \zeta_{1}}\right)-\left(\kappa^{2}+1\right)^{-2}\left(1-\sqrt{1-2 \zeta_{2}}\right)$
with

$$
\begin{equation*}
\zeta_{1}:=\frac{\frac{\rho}{4 e} \widehat{S}}{\left(\kappa^{2}+1\right)^{2}}, \quad \zeta_{2}:=\frac{1-\beta \kappa^{2}}{2\left(\kappa^{2}+1\right)^{2}} \tag{2.7}
\end{equation*}
$$

$$
U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) I
$$

We write
$\sqrt{1-\frac{1-\beta \kappa^{2}}{\left(1+\kappa^{2}\right)^{2}}}=\frac{\kappa}{1+\kappa^{2}} \sqrt{2+\beta+\kappa^{2}}=\frac{1}{\pi} \frac{|\kappa|\left(2+\beta+\kappa^{2}\right)}{1+\kappa^{2}} \int_{0}^{\infty} \frac{1}{2+\beta+t+\kappa^{2}} t^{-1 / 2} d t$.
Therefore,

$$
\widehat{U}_{1}:=\left(\kappa^{2}+1\right)^{-2}-\frac{\kappa}{\pi}\left(\kappa^{2}+1\right)^{-2}\left(1+(\beta+1) \frac{1}{1+\kappa^{2}}\right) \int_{0}^{\infty} \frac{1}{2+\beta+t+\kappa^{2}} t^{-1 / 2} d t .
$$

We take the inverse Fourier transform of \widehat{U}_{1}, recalling the definition of κ (2.1)

$$
\begin{equation*}
U_{1}(x)=\frac{e^{\frac{3}{2}}}{\pi} e^{-2 \sqrt{e}|x|}-\frac{1}{\pi}\left(\delta(x)+\frac{(\beta+1) e}{\pi} \frac{e^{-2 \sqrt{e}|x|}}{|x|}\right) * f_{1} * f_{2} \tag{2.10}
\end{equation*}
$$

where

$$
f_{1}(x):=\frac{e^{\frac{3}{2}}}{\pi^{3}} \int d k e^{-i k(2 \sqrt{e} x)} \frac{|k|}{\left(k^{2}+1\right)^{2}}
$$

$U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) \|$
and
$f_{2}(x):=\frac{e^{\frac{3}{2}}}{\pi^{3}} \int d k e^{-i k(2 \sqrt{e} x)} \int_{0}^{\infty} \frac{d t}{\sqrt{t}} \frac{1}{2+\beta+t+k^{2}}=\frac{e}{\pi|x|} \int_{0}^{\infty} e^{-\sqrt{2+\beta+t}(2 \sqrt{e}|x|)} t^{-1 / 2} d t$,
now, for all $T>0$,

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\sqrt{2+\beta+t}(2 \sqrt{e}|x|)} t^{-1 / 2} d t \\
& =\int_{0}^{T} e^{-\sqrt{2+\beta+t}(2 \sqrt{e}|x|)} t^{-1 / 2} d t+\int_{T}^{\infty} e^{-\sqrt{2+\beta+t}(2 \sqrt{e}|x|)} t^{-1 / 2} d t \\
& \leqslant \int_{0}^{T} e^{-\sqrt{2+\beta}} e^{-\sqrt{t}}(2 \sqrt{e}|x|) t^{-1 / 2} d t+\int_{T}^{\infty} e^{-\sqrt{2+\beta+t}(2 \sqrt{e}|x|)} t^{-1 / 2} d t \\
& =2\left(1-e^{-\sqrt{T}}\right) e^{-\sqrt{2+\beta}(2 \sqrt{e}|x|)}+\frac{1}{\sqrt{e}|x|} e^{-\sqrt{T}(2 \sqrt{e}|x|)} \\
& \leqslant 2 T^{1 / 2} e^{-\sqrt{2+\beta}(2 \sqrt{e}|x|)}+\frac{1}{\sqrt{e}|x|} e^{-\sqrt{T}(2 \sqrt{e}|x|)} \tag{2.13}
\end{align*}
$$

$$
U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) I I I
$$

Where we have use that

$$
\exp (-x)=1-x+\frac{1}{2} x^{2}+O\left(x^{3}\right)
$$

for the last inequality.
Choosing $T=2+\beta$, we see that for large $(2 \sqrt{e}|x|)$,
$0 \leqslant f_{2}(x) \leqslant C e^{-\sqrt{2+\beta}(2 \sqrt{e}|x|)}$. Furthermore,
$f_{1}(x)=\frac{e^{\frac{3}{2}}}{\pi^{3}} \int d k e^{-i k(2 \sqrt{e} x)} \frac{1}{|k|} \frac{k^{2}}{\left(k^{2}+1\right)^{2}}=\frac{e^{\frac{3}{2}}}{\pi^{3}} \frac{1}{|x|^{2}} * g, \quad g(x)=\frac{(1-\sqrt{e}|x|) e^{-(2 \sqrt{e})|x|}}{|x|}$
Using

$$
\frac{1}{|x-y|^{2}}=\frac{1}{|x|^{2}}+\frac{-|y|^{2}+2 x \cdot y}{|x|^{2}|x-y|^{2}}
$$

$$
U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) \mathrm{IV}
$$

twice and the fact that $g(y)$ is even, integrates to zero, and $\int y g(y) d y=0$,

$$
\begin{equation*}
f_{1}(x)=\frac{1}{|x|^{4}} \frac{e^{\frac{3}{2}}}{\pi^{3}}\left(-\int_{\mathbb{R}^{3}}|y|^{2} g(y) \mathrm{d} y+\int_{\mathbb{R}^{3}} \frac{\left(-|y|^{2}+2 x \cdot y\right)^{2}}{|x-y|^{2}} g(y) \mathrm{d} y\right) \tag{2.16}
\end{equation*}
$$

We compute $\int_{\mathbb{R}^{3}}|y|^{2} g(y) \mathrm{d} y=-\frac{3 \pi}{2 e^{2}}$, and then using the symmetry of g once more,

$$
\lim _{|x| \rightarrow \infty} \int_{\mathbb{R}^{3}} \frac{(x \cdot y)^{2}}{|x-y|^{2}} g(y) \mathrm{d} y=\frac{1}{3} \int_{\mathbb{R}^{3}}|y|^{2} g(y) \mathrm{d} y=-\frac{\pi}{2 e^{2}}
$$

Therefore,
$\lim _{|x| \rightarrow \infty}|x|^{4} f_{1}(x)=-\frac{1}{2 \pi^{2} \sqrt{e}} \quad$ and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|x|^{4} U_{1}(x)=\frac{1}{2 \pi^{2} \sqrt{e}} \sqrt{2+\beta} \tag{2.18}
\end{equation*}
$$

$$
U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) \vee
$$

We now turn to an upper bound of U_{1}. First of all, if $|x| \leqslant \frac{1}{\sqrt{e}}$, then by (32) and (2.16),

$$
f_{1}(x) \geqslant 0
$$

and if $|x|>\frac{1}{\sqrt{e}}$, then

$$
f_{1}(x) \geqslant-\frac{1}{|x|^{4}} \frac{e^{2}}{\pi^{3}} \int_{\mathbb{R}^{3}} \frac{\left(-|y|^{2}+2 x \cdot y\right)^{2}}{|x-y|^{2}} e^{-(2 \sqrt{e})|y|} \mathrm{d} y .
$$

We split the integral into two parts: $|y-x|>|x|$ and $|y-x|<|x|$. We have, (recalling $|x|>\frac{1}{\sqrt{e}}$),

$$
\int_{|y-x|>|x|} \frac{\left(-|y|^{2}+2 x \cdot y\right)^{2}}{|x-y|^{2}} e^{-(2 \sqrt{e})|y|} \mathrm{d} y \leqslant e^{-\frac{5}{2}} C
$$

$U_{1}(x):=\int \frac{d k}{(2 \pi)^{3}} e^{-i k x} \widehat{U}_{1}(k) \mathrm{VI}$
for some constant C (we use a notation where the constant C may change from one line to the next). Now,
$\int_{|y-x|<|x|} \frac{\left(-|y|^{2}+2 x \cdot y\right)^{2}}{|x-y|^{2}} e^{-(2 \sqrt{e})|y|} \mathrm{d} y \leqslant e^{-\sqrt{e}|x|} \int_{|y-x|<|x|} \frac{\left(|y|^{2}+2|x||y|\right)^{2}}{|x-y|^{2}} \mathrm{~d} y \leqslant|x|^{5} e^{-\sqrt{e}}$
Therefore, for all x,

$$
f_{1}(x) \geqslant-\frac{1}{|x|^{4}} C\left(e^{-\frac{1}{2}}+e^{2}|x|^{4} e^{-\sqrt{e}|x|}\right)
$$

Finally, by use (2.13),

$$
|x|^{4}\left(\delta(x)+\frac{(\beta+1) e}{\pi} \frac{e^{-2 \sqrt{e}|x|}}{|x|}\right) * f_{1} * f_{2}(x) \geqslant-C e^{-\frac{1}{2}}
$$

All in all, by (2.10), (since $|x|^{4} e^{\frac{3}{2}} e^{-2 \sqrt{e}|x|}<C e^{-\frac{1}{2}}$)

$$
\begin{equation*}
|x|^{4} U_{1}(x) \leqslant C e^{-\frac{1}{2}} \tag{2.25}
\end{equation*}
$$

$\Delta^{2} \widehat{U}_{2}$ is integrable and square-integrable.

We use the fact that

$$
\begin{equation*}
16 e^{2} \Delta^{2} \equiv \partial_{\kappa}^{4}+\frac{4}{\kappa} \partial_{\kappa}^{3} . \tag{2.26}
\end{equation*}
$$

We have, by the Leibniz rule,
$\partial_{\kappa}^{n} \widehat{U}_{2}=\sum_{i=0}^{n}\binom{n}{i}\left(\partial_{\kappa}^{n-i}\left(\kappa^{2}+1\right) \partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{1}}\right)-\partial_{\kappa}^{n-i}\left(\kappa^{2}+1\right)^{-2} \partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{2}}\right)\right)$.
Furthermore,

$$
\partial_{\kappa}^{n}\left(1-\sqrt{1-2 \zeta_{j}}\right)=\sum_{p=1}^{n} \partial_{\zeta_{j}}^{p}\left(1-\sqrt{1-2 \zeta_{j}}\right) \sum_{\substack{l_{1}, \ldots, l_{p} \in\{1, \ldots, n\} \\ l_{1}+\ldots+l_{p}=n}} c_{l_{1}, \ldots, l_{p}}^{(p, n)} \prod_{i=1}^{n} \partial_{k}^{i_{k}} \zeta_{j}
$$

for some family of constants $c_{l_{1}, \cdots, I_{p}}^{(p, n)}$ which can easily be computed explicitly, but this is not needed. Now, since $S \geqslant 0, \frac{\rho}{1 e}|\widehat{S}| \leqslant 1$, so $\left|\zeta_{1}\right| \leqslant \frac{1}{2}$ and $\zeta_{1}=\frac{1}{2}$ if and only if $\kappa=0$. Therefore, \widehat{U}_{2} is bounded when κ is away from 0 , so it suffices to show that $\Delta^{2} \widehat{U}_{2}$ is integrable and square integrable at infinity and at 0.

2-1

We first consider the behavior at infinity, and assume that κ is sufficiently large. The fact that $\partial_{\kappa}^{n-i}\left(\kappa^{2}+1\right)^{-2} \partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{2}}\right)$ is integrable and square integrable at infinity follows immediately from (2.7). To prove the corresponding claim for ζ_{1}, we use the fact that $|x|^{4} v$ square integrable, which implies that \widehat{S} is as well. Therefore, by (2.7) for $0 \leqslant n \leqslant 4, \kappa^{2} \partial_{\kappa}^{n} \zeta_{1}$ is integrable at infinity, and, therefore, square-integrable at infinity. Furthermore, by (2.7), $\zeta_{1}<\frac{1}{2}-\varepsilon$ for large κ, and $\partial^{n} \zeta_{1}$ is bounded, so $\partial_{\kappa}^{n-i}\left(\kappa^{2}+1\right) \partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{1}}\right)$ is integrable and square integrable.
$2-2$ I

As $\kappa \rightarrow 0$

$$
\zeta_{i}=\frac{1}{2}\left(1-(\beta+2) \kappa^{2}\right)+O\left(\kappa^{4}\right)
$$

and since $\beta \geqslant 0$,

$$
1-2 \zeta_{i} \geqslant \kappa^{2}+O\left(\kappa^{4}\right)
$$

therefore, for $p \geqslant 1$

$$
\partial_{\zeta_{j}}^{p}\left(1-\sqrt{1-2 \zeta_{j}}\right)=O\left(\kappa^{1-2 p}\right)
$$

and, since ζ_{i} is \mathcal{C}^{4}, for $3 \leqslant n \leqslant 4$,
$\partial \zeta_{i}=-(\beta+2) \kappa+O\left(\kappa^{3}\right), \quad \partial^{2} \zeta_{i}=-(\beta+2)+O\left(\kappa^{2}\right), \quad \partial^{n} \zeta_{i}=O\left(\kappa^{4-n}\right)$.
Therefore, for $1 \leqslant i \leqslant 4$, by (2.28)

$$
\partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{1}}\right)-\partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{2}}\right)=O\left(\kappa^{3-i}\right)
$$

2-2 II

and

$$
\partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{1}}\right)=O\left(\kappa^{1-i}\right), \quad \partial_{\kappa}^{i}\left(1-\sqrt{1-2 \zeta_{2}}\right)=O\left(\kappa^{1-i}\right)
$$

Thus, by (2.27), as $\kappa \rightarrow 0$,

$$
\left|\partial_{\kappa}^{4} \widehat{U}_{2}\right|=O\left(\kappa^{-1}\right), \quad \frac{4}{\kappa}\left|\partial_{\kappa}^{3} \widehat{U}_{2}\right|=O\left(\kappa^{-1}\right)
$$

Thus, $\Delta^{2} \widehat{U}_{2}$ is integrable and square integrable. And since the $O(\cdot)$ hold uniformly in e on all compact sets, by (2.26),

$$
|x|^{4} U_{2}(x) \leqslant \frac{8 e^{\frac{3}{2}}}{16 e^{2}} \int\left(\partial_{|k|}^{4}+\frac{4}{|k|} \partial_{|k|}^{3}\right) \hat{U}_{2}(|k|) d k \leqslant \frac{C}{\sqrt{e}} .
$$

