ON THE CONVOLUTION INEQUALITY

LENA HEIDENREICH 19.05.2021

WHAT ARE THESE FUNCTIONS WE ARE LOOKING AT?

$$
f(x) \geq f * f
$$

There are examples in every dimension, f.e indicator function

Important, it needs to be defined on an intervall with lenght 2a

INTRODUCTION

$$
f(x) \geq f * f
$$

Element of $L^{\frac{p}{2-p}}\left(R^{d}\right)$ for all $\mathrm{p} \in[1 ; 2]$

LP-space

BUT: $p=1$ is special

BUT WHAT CHARACTERISTICS ARE INTERESTING?

- Theorem 1: Finding an upper bound for $p=1$, positivity, finding a general formula for f
- Theorem 2: Showing that f decays fairly slowly for all these functions with sharp upper bound
- Theorem 4: rapid decay $\int|x|^{p} f(x) d x<\infty$. for a set of these functions without sharp upper bound

INTRODUCTION

$$
f(x) \geq f * f
$$

Element of $L^{\frac{p}{2-p}}\left(R^{d}\right)$ for all $\mathrm{p} \in[1 ; 2]$

LP-space

BUT: $p=1$ is special

So, we only consider
$\mathrm{p}=1$
(Young's Inequality). Let $p, q, r \in[1, \infty]$ satisfy

$$
\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}
$$

If $f \in L^{p}$ and $g \in L^{q}$ then $|f| *|g|(x)<\infty$ for $m-$ a.e. x and

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q} .
$$

But why is $\mathrm{f} * \mathrm{f}$ an element of $L^{\frac{p}{2-p}}\left(R^{d}\right)$ for all $\mathrm{p} \in[1 ; 2]$?

$$
p=q \longmapsto \frac{1}{p}+\frac{1}{q}=\frac{2}{p}
$$

$$
\left(\frac{2}{p}-1\right)^{-1}=r=\left(\frac{p}{2-p}\right)
$$

Theorem 1. Let f be a neal valued fanction in $L^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
f(x)-f * f(x)=: u(x) \geqslant 0 \tag{5}
\end{equation*}
$$

for all x. Then $\int_{\mathbb{R}^{d}} f(x) d x \leqslant \frac{1}{2}$, and f is given by the convergent series

$$
\begin{equation*}
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(x^{n} u\right)(x) \tag{6}
\end{equation*}
$$

where the $c_{n} \geqslant 0$ are the Taylor coefficients in the expansion of $\sqrt{1-x}$

$$
\begin{equation*}
\sqrt{1-x}=1-\sum_{n=1}^{\infty} c_{n} x^{n}, \quad c_{n}=\frac{(2 n-3)!}{2^{n} n!} \cdots n^{-3 / 2} \tag{7}
\end{equation*}
$$

In particular, f is positive. Moneover, if $u \geqslant 0$ is any integrable function with $\int_{\mathbb{R}^{d}} u(x) \mathrm{d} x \leqslant \frac{1}{4}$, then the sum on the right in (6) defines an integroble functon f that satisfies (5).

FINDING AN UPPER BOUND FOR \quad " $f \geqslant f \star f$

By integration we find:

$$
\int_{R^{d}} f(x) \leq 1
$$

Goal: Finding a sharp upper bound!

But why is indeed 0,5 a sharp upper bound?

$$
\int_{R^{d}} f(x) \leq 0,5
$$

THEOREM 1

- Only consider real valued function in $L^{1}\left(R^{d}\right)$

$$
\rightarrow \int R^{d}|f| d x<\infty
$$

- Define $f(x)-f * f(x) \equiv u(x) \geq 0$

u is integrable!

"The convolution of f and g exists, if f and g are both Lebesgue integrable functions in $L^{1}\left(R^{d}\right)$, and in this case $f * g$ is also integrable" [1]

Also:

$$
\int_{\Omega}(\alpha f+\beta g) \mathrm{d} \mu=\alpha \cdot \int_{\Omega} f \mathrm{~d} \mu+\beta \cdot \int_{\Omega} g \mathrm{~d} \mu
$$

[1]Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Theorem^1.3

THEOREM 1: MAKE SOME HELPFUL DEFINITIONS

- Define: $a \equiv \int_{R^{d}} f(x) d x$ and $b \equiv \int_{R^{d}} u(x) d x$

$$
\text { Obviously, } b \equiv \int_{R^{d}} u(x) d x \geq 0
$$

- Fouriertransformation of $\mathrm{f} \tilde{f}$ for all $p \in[1 ; 2]$, so $f(x)-f * f(x) \equiv u(x)$ becomes

$$
\text { Definition: } \left.\mathrm{f}=\int_{I} d x e^{-2 i \pi k x} f(x) \quad \in \quad L^{\frac{p}{p-1}}\left(R^{d}\right)\right)
$$

- If $f=f * f$, then $\widetilde{f}=\tilde{f}^{2}$

Only consider equality!

$$
\int_{R^{d}} f(x) d x=1
$$

THEOREM 1

Change order of variables: $f=u+f * f$
By Fouriertransformation, it follows that

$$
\tilde{f}(k)=\tilde{f}^{2}(k)+\tilde{u}(k)
$$

How can we proceed from there? Take: $\mathrm{k}=0$ and use definitions we made
b is positive! complete the square

From there, it follows that $0 \leq b \leq \frac{1}{4}$

$$
\left(a-\frac{1}{2}\right)^{2}=\frac{1}{4}-b, \quad a^{2}-a+\frac{1}{4}=\frac{1}{4}-b
$$

-a is equal to one!

$1-1+0,25=0,25$

THEOREM 1: WHAT CAN WE TELL NOW ABOUT U?

Furthermore, it is true that since $u \geq 0$:

$$
|\widehat{u}(k)| \leqslant \widehat{u}(0) \leqslant \frac{1}{4}
$$

First inequality is strict for all $k \neq 0$, value signs can be removed for sign \neq

Hence for $k \neq 0, \sqrt{1-4 \widehat{u}(k)} \neq 0$.

Because, $\widehat{u}(k) \neq \frac{1}{4}$

$$
\begin{gathered}
4 \widehat{u}(k) \neq 1 \\
4 \widehat{u}(k)-1 \neq 0
\end{gathered}
$$

Square root does not change relation

THEOREM 1: WHAT DOES THAT SAY ABOUT F?

- Use Riemann-Lebesgue-Theorem:
- If f is L^{1} integrable on R^{d} the fouriertransform of f satisfies

$$
\hat{f}(z) \equiv \int_{\mathbb{R}^{d}} f(x) \exp (-i z \cdot x) d x \rightarrow 0 \text { as }|z| \rightarrow \infty .
$$

- It follows that,

$$
\widehat{f}(k)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \widehat{u}(k)}
$$

$$
\begin{gathered}
\left(\hat{f}(k)-\frac{1}{2}\right)^{2}=\frac{1}{4}-\hat{u}(k) \\
\hat{f}(k)-\frac{1}{2}=-\sqrt{\frac{1}{4}(1-\widehat{U}(k))} \\
\hat{f}_{2}-\frac{1}{2}=-\frac{1}{2} \sqrt{1-\hat{u}(k)}
\end{gathered}
$$

Intermediate value theorem, since the function is
$\widehat{f}(k)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \widehat{u}(k)}$

THEOREM 1: PR00F OF SHARP UPPER BOUND

- $\int_{R^{d}} f(x) \leq 0,5$

$$
\text { At } k=0, a=\frac{1}{2}-\sqrt{1-4 b}
$$

Since $u \geq 0$, we know that, the square root is positive, so the inequality is indeed satisfied.
$\int_{R^{d}} f(x) \leq 0,5$

Remember, how we defined a and b :

- $\quad a \equiv \int_{R^{d}} f(x) d x$ and $b \equiv \int_{R^{d}} u(x) d x$

Upper bound is sharp, because root can be zero (except for $\mathrm{k}=0$)!

$$
0 \leq b \leq \frac{1}{4}
$$

THEOREM 1: CONVERGENT SERIES

: f is given by the convergent series
$f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x)$
where the $c_{n} \geqslant 0$ are the Taylor coefficients in the expansion of $\sqrt{1-x}$

$$
\sqrt{1-x}=1-\sum_{n=1}^{\infty} c_{n} x^{n}, \quad c_{n}=\frac{(2 n-3)!!}{2^{n} n!} \sim n^{-3 / 2}
$$

THEOREM 1: TAKE A SERIES

- Take $c_{n}=\frac{(2 n-3)!!}{2^{n} n!}$;

$$
\sqrt{1-x}=1-\sum_{n=1}^{\infty} c_{n} x^{n}
$$

- How does that sum look like?

$$
1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\frac{5 x^{4}}{128}-\frac{7 x^{5}}{256}+O\left(x^{6}\right)
$$

- Apply stirling formula (be careful, no double faculty!)

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}, \quad n \rightarrow \infty . \quad \square \quad c_{n} \sim n^{-3 / 2}
$$

THEOREM 1: CONVERGENCE OF THE SERIES

- Now, we got $(1-x)^{\left(\frac{1}{2}\right)}=1-\sum_{n=1}^{\infty} w * n^{-\frac{3}{2}} \mathrm{x}^{\mathrm{n}}$
- Does this power series converge?

Yes, it converges absolutely and uniformly on the closed unit disc (convergence radius)

THEOREM 1: HOW DOES THAT SERIES HELP?

Now, we can try to express the fouriertransformation in terms of this series:

$$
\begin{aligned}
& \text { Remember: } \\
& \qquad \frac{1}{4} \geq|\hat{u}(k)| \\
& \text { Then, substitute } \\
& x=\left|u^{(}(k)\right|
\end{aligned}
$$

$$
|4 \widehat{u}(k)| \leqslant 1, \sqrt{1-4 \widehat{u}(k)}=1-\sum_{n=1}^{\infty} c_{n}(4 \widehat{u}(k))^{n}
$$

Element of

 convergence radius> Careful! Now, cn is in the sum again, therefore the equality is satisfied

THEOREM 1: HOW CAN WE APPLY THIS TO OUR FUNCTION

- Earlier we got the expression:

$$
\widehat{f}(k)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \widehat{u}(k)}
$$

- We simply put in our expression for u:

$$
\hat{f}(k)=\frac{1}{2}-\frac{1}{2} \cdot\left(1-\sum_{n=1}^{\infty} c_{n}(\widehat{u}(k))^{n}\right)=0,5 \sum_{n=1}^{\infty} c_{n}(\widehat{u}(k))^{n}
$$

THEOREM 1: FOURIERTRANSFORM BACKWARDS

- Now we can do a „backward fouriertransformation" to get an expression how a function f, we are looking for looks like!

In general, it is:

$$
f(x)=\int_{-\infty}^{\infty} \hat{f}(k) e^{2 \pi_{i} k x} d k
$$

$=0,5 \sum_{n=1}^{\infty} c_{n}(\widehat{u}(k))^{n}$

- Ultimately, we get

$$
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x)
$$

Constants, which are independant from k

Remember:
Define $f(x)-f * f(x) \equiv u(x) \geq 0$

THEOREM 1: CONVERGENCE OF F

Does

$$
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x) \quad \text { converge? }
$$

We know $\sum_{n=1}^{\infty} c_{n} . \quad$ converges and $\quad \int_{\mathbb{R}^{d}} 4^{n} \star^{n} u(x) \mathrm{d} x \leqslant 1$

Can be treated as a constant
Also $f(x)$ must converge, since there is no term left that can diverge!
F is defined in $L^{\wedge} 1\left(R^{\wedge} d\right)$

THEOREM 1: POSITIVITY OF F

From the definition of the root, it follows that

$$
\sum_{n=1}^{\infty} c_{n^{2}}
$$

Must be always positive as well!
$4^{\wedge} n$ is positive as well
$\mathrm{U}(\mathrm{x})$ is also positive

THEOREM 1: CONSEQUENCES OF $U \geq 0$

- If we consider $f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x) \quad$ to be true

We defined that $\quad \hat{f}(k)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \widehat{u}(k)} \quad$ is true as well
Only equivalences!

$$
\hat{f}(k)=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \widehat{u}(k)} \quad \text { is true as well }
$$

- But this is only true if:

$$
f(x)-f \star f(x)=: u(x) \geqslant 0
$$

f, as defined in the sum, must

$$
u(x) \geqslant 0
$$

$$
\widehat{u}(k) \leq \frac{1}{4}
$$

Theorem 1. Let f be a noal walued function in $L^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
f(x)-f * f(x)=: u(x) \geqslant 0 \tag{5}
\end{equation*}
$$

for all x. Then $\int_{\mathbb{R}^{d}} f(x) d x \leqslant \frac{1}{2}$, and f is given by the convergent series

$$
\begin{equation*}
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(x^{n} u\right)(x) \tag{6}
\end{equation*}
$$

where the $c_{n} \geqslant 0$ are the Taylor coefficients in the expansion of $\sqrt{1-x}$

$$
\begin{equation*}
\sqrt{1-x}=1-\sum_{n=1}^{\infty} c_{n} x^{n}, \quad c_{n}=\frac{(2 n-3)!!}{2^{n} n!} \approx n^{-3 / 2} \tag{7}
\end{equation*}
$$

In particular, f is positive. Moneover, if $u \geqslant 0$ is any integrable function with $\int_{\mathbb{R}^{d}} u(x) \mathrm{d} x \leqslant \frac{1}{4}$, then the sum on the right in (6) defines an integroble functon f that satisfies (5).

We made no

Theorem 2. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ satisfy (1) and $\int_{\mathbb{R}^{d}} f(x) d x=\frac{1}{2}$. Then $\int_{\mathbb{R}^{d}}|x| f(x) d x=\infty$.

THEOREM 2: A SPECIAL CASE

$\int_{R d} f(x)<0,5<\begin{aligned} & \text { Upper } \\ & \text { bound is } \\ & \text { sharp! }\end{aligned}$

$$
\begin{gathered}
\quad, a^{2}-a=-b \\
\mathrm{~b}=0,25=0,25-0,5 \\
=\int_{R^{d}} u(x)
\end{gathered}
$$

$$
\int_{\mathbb{R}^{d}} 4 u(x) d x=1-\int_{-p_{0} u(x)}
$$

THEOREM 2: FINDING AN INEQUALITY INTEGRAL

$$
|m| \int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x \geqslant \int_{\mathbb{R}^{d}} m \cdot x \star^{n} w(x) \mathrm{d} x=n|m|^{2}
$$

- How did we get there?

First moments add under convolution [3]

1. Suppose $|x||f(x)|$ is integrable
2. Trivial inequality

$$
m:=\int_{\mathbb{R}^{d}} x w(x) \mathrm{d} x
$$

3. Simplify equation

Why are we doing that?
We want to show that the first moment can be finite under special conditions

$$
|m| \int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x \geqslant \int_{\mathbb{R}^{d}} m \cdot x \star^{n} w(x) \mathrm{d} x=n|m|^{2}
$$

THEOREM 2: WHAT DOES THAT SAY ABOUT F?

$$
\int_{\mathbb{R}^{d}}|x| f(x) \mathrm{d} x \geqslant|m| \sum_{n=1}^{\infty} n c_{n}=\infty .
$$

- Remember, how m was defined

$$
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x)
$$

$$
m:=\int_{\mathbb{R}^{d}} x w(x) \mathrm{d} x
$$

$$
\mathrm{F}(\mathrm{x})=\sum_{n=0}^{\infty} c_{n} *^{n} w
$$

- $\quad c_{n}=\frac{(2 n-3)!!}{2^{n} n!} \sim n^{-3 / 2}$ is never zero

$$
\int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x=\int_{\mathbb{R}^{d}}\left|n^{1 / 2} x\right| \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x \geqslant n^{1 / 2} \int_{\mathbb{R}^{d}} \varphi(x) \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x .
$$

THEOREM 2: FIND ANOTHER INTEGRAL THAT WILL HELP US

1. Suppost $|x|^{2} w(x)$ is integrable, therefore we can find second moment
2. Let us define σ^{2} as the variance of w

$$
\sigma^{2}=\int_{\mathbb{R}^{d}}|x|^{2} w(x) \mathrm{d} x
$$

3. Define the function $\varphi(x)=\min \{1,|x|\}$.

$$
\int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x=\int_{\mathbb{R}^{d}}\left|n^{1 / 2} x\right| \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x \geqslant n^{1 / 2} \int_{\mathbb{R}^{d}} \varphi(x) \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x .
$$

THEOREM 2: FIND ANOTHER INTEGRAL THAT WILL HELP US

1. Just as earlier, let's consider: $\int_{R^{d}}|x| *^{n} w(x) d x$
2. Add $n^{0,5}$ in a way, that equality is not lost
3. Make it an inequality
4. For all n smaller 1 it is:

$$
1<n^{\frac{1}{2}}>n
$$

Therefore, $1<|x|<\left|x n^{\frac{1}{2}}\right|$

1. For all n larger 1 , true as well

Remember how we defined phi(x):

$$
\varphi(x)=\min \{1,|x|\}
$$

Remember:
-moments simply
add up under convolution
\square

THEOREM 2: WHAT DOES THAT TELL US ABOUT THE INTEGRAL?

- Use the central limit theorem to find a centered Gaussian probability define a new probability function $\lim _{n \rightarrow \infty} *^{n} w\left(n^{\frac{1}{2}} x\right) n^{\frac{d}{2}}=\gamma(x)$

$$
\int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x=\int_{\mathbb{R}^{d}}\left|n^{1 / 2} x\right| \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x \geqslant n^{1 / 2} \int_{\mathbb{R}^{d}} \varphi(x) \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x .
$$

- Phi (x) is bounded
and continuus

$\gamma(x)$

THEOREM 2: FIND AN UPPER VALUE FOR THE INTEGRAL

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} \varphi(x) \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x=\int_{\mathbb{W} d} \varphi(x) \gamma(x) \mathrm{d} x=: C>0
$$

- Substitute one probabilty function by the CLT with another
- Why is there such a C?
- $\operatorname{Phi}(x)$ is continuous and bounded (at max 1)

$$
\int_{-\infty}^{\infty} a e^{-(x-b)^{2} / 2 c^{2}} d x=\sqrt{2} a|c| \sqrt{\pi}
$$

Integral exists

THEOREM 2: THE FUNCTION DECAYS FAIRLY SLOWLY AT INFINITY

- To proof this, we have to show

$$
\int_{\mathbb{R}^{d}}|x| f(x) d x=\infty .
$$

- We have already proven:

$$
\int_{R^{d}} \varphi(x) \gamma(x) d x=C>0
$$

- Define C in a new way:

There is a $\delta>0$ so that for all sufficiently largern

$$
\int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x \geqslant \sqrt{n} \delta
$$

Remember the \sqrt{n} in front

$$
n^{1 / 2} \int_{\mathbb{R}^{d}} \varphi(x) \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x .
$$

THEOREM 2: SLOW DECAY:

$$
\int_{\mathbb{R}^{d}}|x| f(x) d x=\infty .
$$

- Problem: currently we have a definite value for a similar integral

$$
\int_{\mathbb{R}^{d}}|x| \star^{n} w(x) \mathrm{d} x \geqslant \sqrt{n} \delta
$$

- But now, let’s consider f

$$
\begin{aligned}
\int_{R^{d}} f(x)|x| d x= & \sum_{n=1}^{\infty} c_{n} \int_{R^{d}}|x| *^{n} w(x) d x=\infty \\
& n^{-\frac{3}{2} * n^{\frac{1}{2}}=\frac{1}{n}} \quad \square \text { DIVE }
\end{aligned}
$$

To remove the hypothesis that w has finite variance, note that if w is a probability density with zero mean and infinite variance, $\star^{n} w\left(n^{1 / 2} x\right) n^{d / 2}$ is "trying" to converge to a Gaussian of infinite variance. In particular, one would expect that for all $R>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{|x| \leqslant R} \star^{n} w\left(n^{1 / 2} x\right) n^{d / 2} \mathrm{~d} x=0, \tag{12}
\end{equation*}
$$

Theorem 4. If f satisfies (5), $\int_{\mathbb{R}^{d}} x u(x) \mathrm{d} x=0$ and $\int|x|^{2} u(x) \mathrm{d} x<\infty$, then, for all $0 \leqslant p<1$,

$$
\int|x|^{p} f(x) d x<\infty
$$

THEOREM 4: WHAT ARE THE NECESSARY REQUIREMENTS?

Theorem 4. If f satisfies (5), $\int_{\mathbb{R}^{d}} x u(x) \mathrm{d} x=0$ and $\int|x|^{2} u(x) \mathrm{d} x<\infty$, then, for all $0 \leqslant p<1$,

$$
\int|x|^{p} f(x) d x<\infty
$$

1. Satisfaction of (5) $f(x)-f \star f(x)=: u(x) \geqslant 0$
2. first moment of u is zero
3. Second moment is not infinite

THEOREM 4: FIND A NEW PROBABILITY FUNCTION

- Exclusion of trivial solution
- Define t: $t=4 \int_{R^{d}} u(x) d x \leq 1 \begin{aligned} & , a^{2}-a=-b, \\ & \mathrm{~b}=0,25=0,25-0,5 \\ & =\int_{R^{d}}^{\square} u(x)\end{aligned}$
- Then, since $\mathrm{t}>0$ we define $w=\frac{4 u}{t}$

W is a probabilty density

THEOREM 4: HOW DOES THAT CORRESPOND TO F?

- We get a new expression for $f(x)$: Use $w=4 u / t \square 4 u=t$ w

$$
f(x)=\sum_{n=1}^{\infty} c_{n} t^{n} \star^{n} w(x)
$$

Remember, how f was defined:

$$
f(x)=\frac{1}{2} \sum_{n=1}^{\infty} c_{n} 4^{n}\left(\star^{n} u\right)(x)
$$

THEOREM 4: CARACTERISTICS OF W

$W=4 u / t$

- Mean is zero
 first moment is zero
- Variance σ^{2} is finite

second moment is finte

Requirements of Theorem 4:

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} x u(x) \mathrm{d} x=0 \\
& \int|x|^{2} u(x) \mathrm{d} x<\infty,
\end{aligned}
$$

THEOREM 4: HOW DOES THAT HELP WITH F?

1. Consider the second moment of $w(x)$ convolution:

Second moments add under convolution

$$
\text { It is: } \int_{R}|x|^{2} w(x) d x=\sigma^{2} \quad \square \quad \int_{\mathbb{R}^{d}}|x|^{2} \star^{n} w(x) \mathrm{d} x=n \sigma^{2} \text {. }
$$

2. Use Hölder-inequality for all $0<p<2$

$$
\int_{\mathbb{R}^{d}}|x|^{p} \star^{n} w(x) \mathrm{d} x \leqslant\left(n \sigma^{2}\right)^{p / 2}
$$

Given a measure space and $p, q \in[0, \infty]$ with $\frac{1}{p}+1$, Then for all measureable real-oder complex valued functions f and g on the measure space

$$
H_{p}(f)=\left(\int_{X}|f|^{\mathrm{p}} \mathrm{~d} \mu\right)^{\frac{1}{p}}
$$

$$
H_{1}(f g) \leq H_{p}(f) \cdot H_{q}(g)
$$

THEOREM 4: WHAT CAN WE SAY NOW ABOUT F?

$$
\int_{\mathbb{R}^{d}}|x|^{p} f(x) \mathrm{d} x \leqslant\left(\sigma^{2}\right)^{p / 2} \sum_{n=1}^{\infty} n^{p / 2} c_{n}<\infty
$$

- Remember, how f was defined with respect to

$$
f(x)=\sum_{n=1}^{\infty} c_{n} t^{n} \star^{n} w(x)
$$

- We also know from the Hölderinequality:

$$
\int_{\mathbb{R}^{d}}|x|^{p} \star^{n} w(x) \mathrm{d} x \leqslant\left(n \sigma^{2}\right)^{p / 2}
$$

- Simply put into the equation what we had

$$
\int_{R^{d}}|x|^{p} f(x) d x=\int_{R^{d}} \sum_{n=1}^{\infty} c_{n} t^{n} *^{n} w(x) d x \leq\left(\sigma^{2}\right)^{p / 2} \sum_{n=1}^{\infty} n^{p / 2} c_{n}
$$

THEOREM 4: WHY ONLY FOR $\quad 0 \leqslant p<1$,

From Theorem 2 we remember: for $p=1$, this sum diverges

But for all smaller p, we can find a majorant sum

sum converges (is smaller than infinity)

$$
\int|x|^{p} f(x) d x<\infty .
$$

ILLUSTRATION OF (13)

INTERPRETATION OF THEOREM 2 AND 4

- Theorem 2 implies that wenn the integral is equal to $1 / 2 \mathrm{f}$ cannot decay faster than $\quad|x|^{-(d+1)}$
- However, integrable solutions f which fufill the convolution inequality and their integral is smaller than $1 / 2$ can decay quite rapidly, as we saw in illustration (13)
- Are well defined as an element of $L^{p /(2-p)}\left(\mathbb{R}^{d}\right)$ for all $1 \leqslant p \leqslant 2$.
- $\ln L^{1}\left(R^{d}\right)$
- All functions are non-negative
- The integral of f is smaller or equal to $1 / 2$
- $1 / 2$ is a sharp upper bound
- If equality is fulfilled, f decays fairly slowly
- For the inequality f can decay much more rapidly

SOURCES

- Funktionanalysis, Dirk Werner, 8.Auflage, Springer-Verlag 2018
- Mathematics for physicists, Atland, Van Delft, Camebridge University Press, 2019
- Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, ISBN 0-691-08078-X.
- Steven W. Smith, in Digital Signal Processing: A Practical Guide for Engineers and Scientists, 2003
- "The n-th centered moment of a multiple convolution and its applications to an intercloud gas model "Laury-Micoulaut, C. Astronomy and Astrophysics, vol. 51, no. 3, Sept. 1976, p. 343-346.
- E.A. Carlen, E. Gabetta and E. Regazzini, Probabilistic investigation on explosion of solutions of the Kacequation with infintte initial energy, J. Appl. Prob. 45 (2008), 95-106
- „Analysis" Lieb, Elliott H.Second edition, reprinted with corrections, Providence, Rhode Island, American Mathematical Society, 2010
- ON THE CONVOLUTION INEQUALITY $\mathrm{f}>\mathrm{f} \star \mathrm{f}$
- ERIC A. CARLEN, IAN JAUSLIN, ELLIOTT H. LIEB, AND MICHAEL P. LOSS

