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Abstract. While it is well-known experimentally that a neutral atom can bind
at most one or two extra electrons, deriving this fact rigorously from first prin-
ciples of quantum mechanics remains a very challenging problem, often referred
to as the ionization conjecture. We will review some of Elliott H. Lieb’s fun-
damental contributions to this topic and discuss their impacts on several recent
developments.

1. The ionization problem

A great achievement of quantum mechanics, which goes back to its birthday, is
the satisfactory explanation of the stability of atoms. In this context, the fact that
the electrons do not fall into the nucleus of an atom can be derived mathemati-
cally from a variant of Heisenberg’s uncertainty principle (e.g. Hardy’s or Sobolev’s
inequality). On the other hand, the deeper question “How many electrons that a
nucleus can bind?” has not been answered completely. From experiments it is widely
believed that a neutral atom can bind at most one or two extra electrons, but prov-
ing this fact mathematically from the many-body Schrödinger equation remains a
very challenging problem.

In this article, we will limit the discussion to the Born–Oppenheimer approxima-
tion of non-relativistic atoms. To be precise, we consider a system of N quantum
electrons moving around a classical nucleus and interacting via Coulomb forces.
The statistical properties of electrons are encoded by a normalized wave function in
L2(R3N ) which satisfies the anti-symmetry

Ψ(x1, ..., xi, ..., xj , ..., xN ) = −Ψ(x1, ..., xj , ..., xi, ..., xN ), ∀i 6= j, (1)

where xi ∈ R3 stands for the position of the i-th electron (we ignore the spin of
electrons for simplicity). Usually |Ψ|2 is interpreted as the probability density of
N electrons. The condition (1) is called Pauli’s exclusion principle; in particular it
implies that Ψ(x1, ..., xi, ..., xj , ..., xN ) = 0 if xi = xj with i 6= j, namely two electrons
cannot occupy a common position. As we will see, Pauli’s exclusion principle plays
a crucial role in the ionization problem.

The Hamiltonian of the system is

HN =

N∑
i=1

(
−∆xi −

Z

|xi|

)
+

∑
1≤i<j≤N

1

|xi − xj |
. (2)

Here we use atomic units; in particular the electronic charge is −1 and the nuclear
charge is Z ∈ N. By Hardy’s inequality

−∆ ≥ 1

4|x|2
on L2(R3) (3)
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it is easy to see that HN is bounded from below with the core domain C∞c (R3N ),
and hence it can be extended to be a self-adjoint operator by Friedrichs’ method
with the form domain H1(R3N ). We will always restrict HN to the anti-symmetric
subspace induced by (1).

We are interested in the ground state problem

EN = inf σ(HN ) = inf
||Ψ||L2=1

〈Ψ, HNΨ〉. (4)

Obviously, both HN and EN depend on Z, but we ignore this dependence in the
notation. It is well-known that if a minimizer Ψ of (4) exists, then it is a solution
to the Schrödinger equation

HNΨ = ENΨ. (5)

Although EN is finite, the existence of minimizers of (4) does not necessarily hold.
Heuristically, there should a transition when N increases as follows:

• If N < Z + 1, then the outermost electron is attracted by the rest of the
system which is of the effective charge Z − (N − 1) > 0. The existence is
likely to hold in this case;
• If N > Z+1, then the outermost electron prefers to “escape to infinity” due

to the Coulomb repulsion. The nonexistence is in favor.

The first half of this prediction, namely the existence of all positive ions and neutral
atoms, was proved by Zhislin in 1960.

Theorem 1 ([59]). If N < Z + 1, then EN has a minimizer.

On the other hand, the second half of the above prediction, namely the nonex-
istence of highly negative ions, is much more difficult and often referred to as the
“ionization conjecture”, see [52, Problem 9] and [39, Chapter 12]. To be precise,
let us denote by Nc = Nc(Z) the largest number of electrons such that ENc has a
minimizer. Then we have the following conjecture.

Conjecture 2 ([52, 39]). Nc ≤ Z + C with a constant C > 0 (possibly C = 1).

Due to the celebrated Hunziker–van Winter–Zhislin (HVZ) theorem (see e.g. [57,
Theorem 11.2]), the essential spectrum ofHN is [EN−1,∞). Consequently, we always
have EN ≤ EN−1; moreover, if EN < EN−1, then HN has a bound state with
eigenvalue EN . In [59], Zhislin proved Theorem 1 by establishing the strict binding
inequality EN < EN−1 for all N < Z+ 1 by an induction argument (if EN−1 has an
eigenfunction ΨN−1, then the energy of the N -body state ΨN−1 ∧ ϕ is lower than
EN−1 for some function ϕ ∈ L2(R3) describing one electron at infinity). In contrast,
Conjecture 2 implies that there exists Nc ≤ Z + C such that

EN = ENc , ∀N ≥ Nc. (6)

It is believed that EN is not only strictly decreasing when N ≤ Nc, but also convex.

Conjecture 3 ([39]). The function EN is convex in N ∈ N.

A consequence of Conjecture 3 is that if the nucleus can bind N electrons (EN <
EN−1), then it can also bind N − 1 electrons (EN−1 < EN−2). This seemingly
obvious fact is still an open mathematical question!

In the next sections, we will review some rigorous results on the ionization prob-
lem, in the full many-body Schrödinger theory as well as in some simplified models.
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We will summarize the main ideas and mention several open problems, thus extend-
ing a cordial invitation to young researchers to enter the subject. See also [45] for a
shorter review on the same topic.

2. Non-asymptotic bounds

The fact that Nc = Nc(Z) < ∞ is already highly nontrivial. This was proved
in 1982 independently by Ruskai [47, 48] and Sigal [50, 51]. While the conjectured
bound Nc(Z) ≤ Z + O(1)Z→∞ remains open, there are non-asymptotic bounds on
Nc(Z) and the most important one was proved by Lieb in 1984.

Theorem 4 ([31, 32]). We have Nc(Z) < 2Z + 1 for all Z > 0.

This result holds even if Z is not an integer, and it can also be extended to
molecules. In particular, it settles the ionization conjecture for the hydrogen atom.
In spite of its importance, the proof of Theorem 4 is so short and elegant that, as
recommended in [31], it can be given in any elementary course of quantum mechanics.

Proof of Theorem 4. Assume that Schrödinger’s equation (5) has a solution Ψ. Then
multiplying the equation with |xN | we have

0 = 〈|xN |Ψ, (HN − EN )Ψ〉 = 〈|xN |Ψ, (HN−1 − EN )Ψ〉

+ <〈|xN |Ψ, (−∆xN )Ψ〉 − Z +
1

2

N−1∑
i=1

〈
Ψ,
|xN |+ |xi|
|xi − xN |

Ψ

〉
. (7)

Here we have used the symmetry of |Ψ|2 to symmetrize the interaction term. The
first two terms on the right hand side of (7) can be dropped for a lower bound thanks
to the obvious inequality HN−1 ≥ EN−1 ≥ EN for the first (N − 1) electrons and
the operator inequality

(−∆)|x|+ |x|(−∆) ≥ 0 on L2(R3) (8)

for the N -th electron. Combining with the triangle inequality |x|+ |y| ≥ |x− y| we
conclude from (7) that 0 > −Z + N−1

2 , namely N < 2Z + 1. Here we get the strict
inequality because the triangle inequality is strict almost everywhere. �

The one-body inequality (8) was proved directly in [31, 32] by integration by
parts. As explained in [43], this bound can be also deduced from Hardy’s inequality
(3) by applying the IMS formula

ϕ(x)2(−∆) + (−∆)ϕ(x)2

2
= ϕ(x)(−∆)ϕ(x)− |∇ϕ|2 (9)

to the case ϕ(x) = |x|1/2. In 2013, Chen and Siedentop [8] proved an interesting
generalization of (9): if min(a, b) ∈ [0, 2] and a+ b ≤ d, then

|∇x|a|x|b + |x|b|∇x|a ≥ 0 on L2(Rd).
The method of “multiplying the equation by |x|” is called the Benguria–Lieb

argument. It was used by Benguria on simplified models [3] and extended by Lieb to
the full many-body context. Nowadays, this is a standard argument in the analysis
of Coulomb systems. Let us discuss below two further results obtained by variants
of this argument.

In 2012, we derived a new bound which improves Theorem 4 for Z ≥ 6.

Theorem 5 ([43]). We have Nc(Z) < 1.22Z + 3Z1/3 for all Z ≥ 1.
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Ideas of the proof. Multiplying Schrödinger’s equation (5) with |xN |2 (instead of
|xN |) we have

0 = 〈|xN |2Ψ, (HN − EN )Ψ〉 = 〈|xN |2Ψ, (HN−1 − EN )Ψ〉

+ <〈|xN |2Ψ, (−∆xN )Ψ〉 − Z 〈Ψ, |xN |Ψ〉+
1

2

N−1∑
i=1

〈
Ψ,
|xN |2 + |xi|2

|xi − xN |
Ψ

〉
.

The first term on the right hand side can be dropped for a lower bound as before.
For the second term, by the IMS formula (9) and Hardy’s inequality (3) we have

|x|2(−∆) + (−∆)|x|2

2
= |x|(−∆)|x| − 1 ≥ 1

4
− 1 = −3

8
. (10)

The error in (10) is small in comparison with the third term thanks to the bound

Z 〈Ψ, |xN |Ψ〉 > 0.553N2/3

which is a consequence of the Lieb-Thirring inequality [40]. On the other hand, the
last term on the right hand side, up to a symmetrization, can be estimated by

β ≥ inf
{xi}Ni=1⊂R3

∑
1≤i<j≤N

|xi|2+|xj |2
|xi−xj |

N(N − 1)
N∑
i=1
|xi|
≥ β − 1.55N−2/3

where β is determined by a variational problem of infinitely many classical particles

β := inf
ρ probability
measure in R3


∫∫

R3×R3

x2+y2

2|x−y|dρ(x)dρ(y)∫
R3

|x|dρ(x)

 .

The key improvement comes from the fact that β ≥ 0.82 (instead of 1/2 by triangle

inequality). This eventually implies that N < 1.22Z+ 3Z1/3 (here β−1 ≈ 1.22). �

In 2013, Lenzmann and Lewin proved a stronger version of the nonexistence,
where the absence of not only ground states but also all eigenfunctions is concerned.

Theorem 6 ([26]). If N ≥ 4Z + 1, then HN has no eigenvalue.

Ideas of the proof. If Ψ is an eigenfunction of HN , then for every one-body self-
adjoint operator A on L2(R3) we have

0 = 〈Ψ, i[HN , AxN ]Ψ〉 =

〈
Ψ, i

−∆xN −
Z

|xN |
+

N∑
j=1

1

|xj − xN |
, AxN

Ψ

〉
(11)

with i2 = −1. In particular, choosing

A = i[∆, f(x)] = (i∇x) · ∇f(x) +∇f(x) · (i∇x)

we find that

0 = 〈Ψ, [∆xN , [∆xN , f(xN )]]Ψ〉+

〈
Ψ,∇f(xN ) ·

 ZxN
|xN |3

−
N−1∑
j=1

xN − xj
|xN − xj |3

Ψ

〉
.
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With the special choice f(x) = 1
3 |x|

3 we have ∇f(x) = |x|x, and hence

0 =
1

3

〈
Ψ, [∆xN , [∆xN , |xN |

3]]Ψ
〉

+ Z − 1

2

〈
Ψ,

N−1∑
j=1

(|xj |xj − |xN |xN ) · (xj − xN )

|xj − xN |3
Ψ

〉
where we used the symmetrization for the interaction term. The latter identity is
very similar to (7). Then the conclusion follows from two key ingredients: first

[∆, [∆, |x|3]] ≤ 0 on L2(R3)

which should be compared with (8), and second

inf
x6=y∈R3

(|x|x− |y|y) · (x− y)

|x− y|3
=

1

2

which should be compared with the triangle inequality. Thus 0 > Z + N−1
4 , namely

N < 4Z + 1.
Strictly speaking, some decay condition on Ψ is needed to ensure that all relevant

quantities are finite. However, this technical condition can be relaxed by choosing
fR(x) = R3g(|x|/R) with g(r) = r − arctan r and then sending R→∞. �

In the above proof, it is helpful to interpret (11) as a stationary condition for the
Schrödinger dynamics Ψ(t) = e−itHN Ψ:

0 =
d2

dt2
〈Ψ(t), f(xN )Ψ(t)〉 = 〈Ψ(t),−[HN , [HN , f(xN )]]Ψ(t)〉,

which explains the choice of A = i[∆, f(x)]. This time-dependent technique goes
back to the famous Morawetz–Lin–Strauss estimate for nonlinear Schrödinger equa-
tions (NLS). In the standard NLS, the choices f(x) = |x|, |x|2, |x|4 were used in
[42, 22, 58], respectively. The argument in [26] shows that the new choice f(x) = |x|3
corresponds to the time-dependent version of Lieb’s proof in [31, 32].

The above approach motivates a stronger version of Conjecture 2.

Conjecture 7. There exists a universal constant C > 0 such that if N > Z + C,
then HN has no eigenvalue.

3. Stability of bosonic atoms

We have mentioned in the introduction that the ionization problem is strongly
associated to Pauli’s exclusion principle. However, we have not seen this subtle fact
so far. The heuristic idea supporting for Conjecture 2 relies only on an electrostatic
argument which is purely classical. Hence, in principle it applies to not only anti-
symmetric wave functions Ψ ∈ L2(R3N ) but also totally symmetric ones, namely

Ψ(x1, ..., xi, ..., xj , ..., xN ) = Ψ(x1, ..., xj , ..., xi, ..., xN ), ∀i 6= j. (12)

The latter case corresponds to the so-called “bosonic atoms” where electrons are
treated as if they were bosonic particles.

Note that all of the HVZ theorem, Zhislin’s theorem (Theorem 1) and Lieb’s
theorem (Theorem 4) work equally well for bosonic atoms. In contrast, in 1983,
Benguria and Lieb proved a striking result that Conjecture 2 fails in the bosonic
case, thus firmly validating the importance of Pauli’s exclusion principle (1) in the
ionization problem.

Theorem 8 ([5]). If (1) is replaced by the bosonic symmetry (12), then

lim inf
Z→∞

Nc(Z)

Z
≥ tc > 1.
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As we will see below, the constant tc is taken from Hartree’s theory, which is
known numerically tc ≈ 1.21 [2]. In 1990, Solovej [54] proved the optimality of
Theorem 8 by providing a matching asymptotic upper bound, namely Nc/Z → tc.

In principle, it is also natural to consider the variational problem (4) without
any symmetry condition, but this results in the same problem with the bosonic
symmetry (12), see e.g. [39, Corollary 3.1].

Proof of Theorem 8. The main principle of the proof is that the many-body energy
EN in (4) with the symmetry condition (12) can be approximated by Hartree’s
theory where one restricts to the uncorrelated ansatz

Ψ(x1, ..., xN ) = (u⊗N )(x1, ..., xN ) = u(x1)...u(xN ) (13)

for a normalized function u ∈ L2(R3). This leads to Hartree’s energy

EH
N = inf

‖u‖L2=1
〈u⊗N , HNu

⊗N 〉

= inf
‖u‖L2=1

N

∫
R3

(
|∇u(x)|2 − Z|u(x)|2

|x|
+
N − 1

2
|u(x)|2

(
|u|2 ∗ 1

|x|

))
dx.

(14)

Note that by rescaling u(x) = t−1/2Z−3v(x/Z) with t = (N − 1)/Z we can write

EH
N =

NZ3

N − 1
e(t) (15)

where

e(t) = inf
‖v‖2

L2=t

∫
R3

(
|∇v(x)|2 − |v(x)|2

|x|
+

1

2
|v(x)|2

(
|v|2 ∗ 1

|x|

))
dx. (16)

The existence/nonexistence within Hartree’s theory is fairly easy to handle since
the functional on the right hand side of (16) is convex in |v|2. In particular, it is
well-known that e(t) has a minimizer if and only if t ≤ tc for a constant tc > 1;
moreover e(t) is negative and strictly decreasing when t ≤ tc while e(t) = e(tc) for
all t ≥ tc (see [4, Lemma 13] and [28, Theorem 7.16]).

The main difficulty here is to justify Hartree’s approximation. The upper bound
EN ≤ EH

N follows directly by the variational principle, but obtaining a good lower
bound is not obvious. This follows from the Hoffmann–Ostenhof inequality [23]

K =

〈
Ψ,

N∑
i=1

(−∆xi)Ψ

〉
≥
∫
R3

|∇√ρΨ|2

and the Lieb–Oxford inequality [33]〈
Ψ,

∑
1≤i<j≤N

1

|xi − xj |
Ψ

〉
≥ 1

2

∫
R3

ρΨ(x)ρΨ(y)

|x− y|
dx dy − 1.68

∫
R3

ρ
4/3
Ψ (17)

where ρΨ is the one-body density of the N -body wave function Ψ,

ρΨ(x) = N

∫
R3(N−1)

|Ψ(x, x2, ..., xN )|dx2...dxN . (18)

Note that ρ ≥ 0 and
∫
R3 ρ = N since Ψ is normalized. The error term in (17) can

be controlled further by Hölder’s and Sobolev’s inequalities∫
R3

ρ
4/3
Ψ ≤

(∫
R3

ρΨ

)5/6(∫
R3

ρ3
Ψ

)1/6

≤ CN5/6K1/2.
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By Hardy’s inequality (3) it is easy to show that EN ≥ −CNZ2. Consequently, for
a ground state Ψ of HN , the kinetic energy is controlled as K ≤ CNZ2. Moreover,
thanks to Lieb’s theorem (Theorem 4), the existence of minimizer implies that N ≤
2Z + 1. All this gives

EN ≥
∫
R3

(
|∇√ρΨ|2 −

ZρΨ(x)

|x|
+

1

2
ρΨ(x)

(
ρΨ ∗

1

|x|

))
dx− CN5/6(NZ2)1/2

≥ Z3
(
e(N/Z)− CZ−2/3

)
. (19)

In summary, if Nc ≤ tcZ + 1, then from (6), (15), and (19) we find that

Z3
(
e(Nc/Z)− CZ−2/3

)
≤ ENc = EtcZ+1 ≤ Z3e(tc),

and hence

lim sup
Z→∞

e(Nc/Z) ≤ e(tc).

Since e(t) is strictly decreasing when t ≤ tc, we obtain the desired result

lim inf
Z→∞

Nc/Z = tc.

�

In fact, the influence of Benguria and Lieb’s argument in [5] goes far beyond the
context of the ionization problem. It has inspired several works dealing with the
justification of Hartree’s theory from many-body bosonic systems, which is partic-
ularly relevant to the description of the Bose–Einstein condensation for interacting
Bose gases. We refer to [27] for further discussions.

Now let us focus on Hartree’s theory. Note that the bound tc < 2 follows easily
from the Benguria–Lieb argument as in Theorem 4. However, it is not easy to
improve. Very recently, Benguria and Tubino [7] successfully proved that tc < 1.5211
(thus approaching closer to the numerical value tc ≈ 1.21 [2]). Their proof strategy
is similar to that of Theorem 5, but they were able to replace the use of the Lieb–
Thirring inequality (which works only for fermions) by a clever application of the
virial theorem to control the kinetic energy.

Finally let us mention the following analogue of Conjecture 7 for Hartree’s equa-
tion, which is essentially taken from [26].

Conjecture 9. If Hartree’s equation

(−∆− |x|−1 + |u|2 ∗ |x|−1)u = λu

has a solution u ∈ H1(R3) with a constant λ ∈ R, then
∫
R3 |u|2 ≤ tc.

In [26], Lenzmann and Lewin proved a weaker bound with 4tc instead of tc,
using the same proof strategy of Theorem 6. In fact, they considered the following
dynamical version of Conjecture 9 and proved the bound 4tc in this stronger sense.

Conjecture 10. Consider the time-dependent Hartree’s equation

i∂tu = (−∆− |x|−1 + |u|2 ∗ |x|−1)u.

Then for every initial state u0 ∈ H1(R3), we have

lim sup
T→∞

1

T

∫ T

0

∫
|x|≤R

|u(x, t)|2 dx dt ≤ tc, ∀R > 0.
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The idea here is that even if we start from an initial state with arbitrarily large
mass, when the time becomes large, there is only at most tc mass staying in every
bounded domain. Conjecture 10 is closely related to the scattering theory of disper-
sive PDEs with long-range interaction potentials, which is a very interesting topic
in its own right.

4. Asymptotic neutrality

Now we come back to the ionization problem with Pauli’s exclusion principle (1).
A fundamental step towards the ionization conjecture is the following result of Lieb,
Sigal, Simon and Thirring in 1984.

Theorem 11 ([34, 35]). We have

lim
Z→∞

Nc(Z)

Z
= 1.

Ideas of the proof. The general strategy goes back to the geometric localization
method used in Sigal’s proof of Nc(Z) < ∞ in [50]. The idea is that by intro-
ducing a suitable partition of unity of (R3)N , the quantum problem can be reduced
to a classical problem. In [51], Sigal derived the asymptotic bound

lim sup
Z→∞

Nc(Z)

Z
≤ 2 (20)

using its classical analogue

max
1≤j≤N

 ∑
1≤i≤N,i6=j

1

|xi − xj |
− Z

|xj |

 ≥ 0 (21)

which follows easily from the triangle inequality. The key ingredient in [34] is the
following improvement of (21): for every ε > 0, N ≥ Nε, and {xi}Ni=1 ⊂ R3 we have

max
1≤j≤N

∑
i 6=j

1

|xi − xj |
− (1− ε)N

|xj |

 ≥ 0. (22)

By a contradiction argument, (22) can be deduced from its continuum analogue
which is a nice result in potential theory: for any probability measure µ 6= δ0(x) in
R3 and for any ε > 0, there exists a point x ∈ supp(µ)\{0} such that

f(x) =

∫
R3

1

|x− y|
dµ(y)− 1− ε

|x|
≥ 0. (23)

In the simple case, if supp(µ) is bounded and does not contain 0, then f is harmonic
outside supp(µ) and vanishing at infinity. Hence, if we assume further that f is
continuous, then f must be nonnegative somewhere in supp(µ) by the maximum
principle. For the general case see [34, 35] for details.

For every ε > 0, N ≥ Nε, and R > 0, the inequality (22) and its refinements
allow to construct a partition of unity {Ja}Na=0 of C∞ functions in (R3)N so that the
following hold.

(i) Ja ≥ 0 for all a and
∑N

a=0 J
2
a (X) = 1 for all X = {xb}Nb=1 ⊂ (R3)N .

(ii) Denoting |X|∞ = max1≤b≤N |xb| we have

L =
N∑
a=0

|∇R3NJa(X)|2 ≤ Cε
N1/2 log(N)2

R|X|∞
.
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(iii) J0 is totally symmetric in {xb}Nb=1 and

supp J0 ⊂
{
X = {xb}Nb=1 | |X|∞ ≤ R

}
.

(iv) If a 6= 0, then Ja is symmetric in {xb}b 6=a and

supp Ja ⊂

X = {xb}Nb=1 |
∑
b6=a

1

|xb − xa|
≥ (1− ε)N

|xa|

 .

Now let us conclude the proof of Theorem 11. Assume that

N ∈ [(1− 2ε)−1Z, 2Z + 1]

for some ε > 0 small (independent of Z). We choose

Z−1/2 log(Z)2 � R� Z−1/3.

By the IMS localization formula (c.f. (9)) we can decompose HN in (2) as

HN =
N∑
a=0

1

2
(J2
aHN +HNJ

2
a ) =

N∑
a=0

JaHNJa − L =
N∑
a=0

Ja(HN − L)Ja. (24)

When a = N , by (ii) we have

L ≤ Cε
Z1/2 log(Z)2

R|X|∞
� εN

|xN |
.

Moreover, by the property of the support of JN in (iv)

JN

N−1∑
i=1

1

|xi − xN |
JN ≥ Ja

(1− ε)N
|xN |

Ja.

By decomposing

HN − L = HN1 −∆xN −
Z

|xN |
+
N−1∑
i=1

1

|xi − xN |
− L,

then using HN1 ≥ EN−1 and −∆xN ≥ 0 we get

JN (HN − L)JN ≥ JN
(
EN−1 +

(1− 2ε)N − Z
|xN |

)
JN ≥ J2

NEN−1.

Similarly, Ja(HN − L)Ja ≥ J2
aEN−1 for all a 6= 0. For a = 0, we use (ii) again for L

and use the triangle inequality to control the interaction energy. This gives

J2
0

 ∑
1≤i<j≤N

1

|xi − xj |
− L

 ≥ J2
0

(
N(N − 1)

2|X|∞
− Cε

Z1/2 log(Z)2

R|X|∞

)
≥ J0

Z2

4R

where in the last inequality we also used the property of the support of J0 in (iii).
On the other hand, by summing the first N eigenvalues of the hydrogen atom, we
have

N∑
i=1

(
−∆xi −

Z

|xi|

)
≥ −CZ7/3.

Here Pauli’s exclusion principle is crucial. Thus

J0(HN − L)J0 ≥ J2
0

(
Z2

4R
− CZ7/3

)
≥ 0 ≥ J2

0EN−1.
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In summary, from (25) we deduce that

HN =

N∑
a=0

Ja(HN − L)Ja ≥
N∑
a=0

J2
aEN−1 = EN−1 ≥ EN . (25)

Therefore, if HNΨ = ENΨ for a ground state Ψ, then we must have

EN = 〈Ψ, HNΨ〉 = EN−1.

A careful reconsideration of the proof of the above estimates shows that this equality
cannot hold for any eigenfunction. Thus N ∈ [(1−2ε)−1Z, 2Z+1] fails, which implies
the desired result. �

The convergence result in Theorem 11 is not quantitative. In 1990, Fefferman and
Seco [14] and Seco, Sigal and Solovej [49] offered different proofs for the quantitative
bound

Nc(Z) ≤ Z +O(Z5/7)

which remains the best known asymptotic result. The proofs in [14, 49] use certain
information of the minimizing wave function obtained via a careful comparison with
the Thomas–Fermi (TF) theory which will be revisited below.

5. The TF theory

Since the many-body Schrödinger equation is too complicated, for practical com-
putations one often replaces the wave function Ψ by its one-body density ρΨ defined
in (18), resulting in density functional theories. A famous example is the TF the-
ory, in which the ground state energy EN in (4) is replaced by its semiclassical
approximation

ETF(N) = inf
ρ≥0,

∫
ρ=N

∫
R3

(
CTFρ5/3(x)− Z

|x|
ρ(x) +

1

2
ρ(x)

(
ρ ∗ 1

|x|

))
dx (26)

with a constant CTF > 0. Here N,Z > 0 are not necessarily integers.
The mathematical properties of the TF theory were studied in full detail by Lieb

and Simon in 1973 [36, 37]. In particular, concerning the ionization problem we have
the following theorem.

Theorem 12 ([37]). For all Z > 0, ETF(N) has a minimizer if and only if N ≤ Z.

Ideas of the proof. A very useful argument introduced in [37] is the relaxation method
which relates the variational problem (26) to the “unconstrained problem”

ETF
≤ (N) = inf

ρ≥0,
∫
ρ≤N

∫
R3

(
CTFρ5/3(x)− Z

|x|
ρ(x) +

1

2
ρ(x)

(
ρ ∗ 1

|x|

))
dx. (27)

The advantage of (27) is that the set of states is convex, and hence the existence of
minimizers of (27) follows easily by the direct method in the calculus of variations (in

particular, the set of states is stable under the weak convergence in L5/3). Moreover,
as explained in [37], by standard rearrangement inequalities it is easy to see that the
functional on the right hand side of (26) is strictly convex. This implies that the
unconstrained minimizer ρ of (27) is unique with

∫
R3 ρ ≤ N . Thus the existence of

a minimizer of the original problem (26) is equivalent to
∫
R3 ρ = N .

The existence part is rather standard: if
∫
R3 ρ < N ≤ Z, then we can put some

positive mass at infinity to lower the energy and obtain a contradiction.
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Let us focus on the nonexistence part which is more challenging. As proved in
[37], the unconstrained minimizer solves the TF equation

5

3
CTFρ(x)2/3 = [Φ(x)]+, Φ(x) = Z|x|−1 − ρ ∗ |x|−1 − µ

for some chemical potential µ ≥ 0. We prove that
∫
R3 ρ ≤ Z for all N > 0, which

implies the nonexistence when N > Z. Assume by contradiction that
∫
R3 ρ > Z.

Then the TF potential satisfies

|x|Φ(x) ≤ Z − |x|
(
ρ ∗ 1

|x|

)
→ Z −

∫
R3

ρ < 0

as |x| → ∞ (we used µ ≥ 0). Therefore, A = {x : Φ(x) < 0} is non empty. Moreover,
since Φ is continuous on R3\{0} and Φ(x)→∞ as |x| → 0, we find that A is open
and 0 6= A. To conclude, using ∆|x|−1 = 4πδ0(x) and the TF equation, we find that

∆Φ(x) = 4πρ(x) = 0 in A.

Thus Φ is harmonic in A, Φ < 0 in A and Φ = 0 on the boundary of A. All this
leads to a contradiction to the maximum principle. Thus

∫
R3 ρ ≤ Z. �

In fact, by a variant of the Benguria–Lieb argument, the nonexistence part can be
also proved differently, in which we only use harmonic analysis via Newton’s theorem.

Another proof of N ≤ Z [44]. Let ρ be the unconstrained minimizer. Integrating
the TF equation with |x|kρ(x), k ≥ 1, we get

0 ≤ 5

3
CTF

∫
R3

ρ(x)5/3|x|k dx =

∫
R3

(
Z|x|−1 − ρ ∗ |x|−1 − µ

)
ρ(x)|x|k dx.

The contribution associated with µ ≥ 0 can be ignored for an upper bound. Since
the TF functional is rotation invariant and ρ is unique, it must be radial. Hence, by
Newton’s theorem (see e.g. [39, Theorem 5.2]) we have

ρ ∗ |x|−1 =

∫
R3

ρ(y)

max(|x|, |y|)
dy.

Consequently,

Z

∫
R3

|x|k−1ρ(x) ≥
∫
R3

|x|kρ(x)(ρ ∗ |x|−1) dx =
1

2

∫∫
(|x|k + |y|k)ρ(x)ρ(y)

max(|x|, |y|)
dx dy.

Thanks to the AM-GM inequality,

|x|k + |y|k

max(|x|, |y|)
≥
(

1− 1

k

)(
|x|k−1 + |y|k−1

)
,

and hence

Z

∫
R3

|x|k−1ρ(x) dx ≥
(

1− 1

k

)(∫
|x|k−1ρ(x) dx

)(∫
ρ(y)dy

)
.

Thus Z ≥ (1− k−1)N . The conclusion follows by taking k →∞.
Strictly speaking, in the above proof we need

∫
R3 |x|k−1ρ(x) dx to be finite, which

is not true if k becomes large. However, this issue can be fixed by integrating the
TF equation in {|x| ≤ R} and then sending R→∞ at the end. �

It is unclear whether the above proof can be used to derive the asymptotic neu-
trality in Theorem 11.

To end this section, let us mention the following analogue of Conjecture 10 for
the Thomas–Fermi theory.
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Conjecture 13. Consider the time-dependent Thomas–Fermi theory{
∂tϕ = 1

2(∇ϕ)2 + c0ρ
2/3 − Z|x|−1 + ρ ∗ |x|−1,

∂tρ = ∇(ρ∇ϕ)

with a fixed constant c0 > 0. Then for all initial state (ϕ0, ρ0) satisfying 0 ≤ ρ0 ∈
L1(R3) ∩ L5/3(R3) and

√
ρ0|∇ϕ0| ∈ L2(R3), we have

lim sup
T→∞

1

T

∫ T

0

∫
|x|≤R

ρ(x, t) dx dt ≤ Z, ∀R > 0.

In 2018, Chen and Siedentop [9] proved the weaker bound 4Z instead of Z, using
a strategy similar to that of [26]. Their analysis also covers the Vlasov equation.

6. The Thomas–Fermi-von Weizsäcker (TFW) theory

In principle, the TF theory is purely semiclassical and it is only good to describe
the bulk of electrons at distance O(Z−1/3) to the nucleus. For physical and chemical
applications, it is important to capture additional contributions of the innermost
and outermost electrons, the ones at distances O(Z−1) and O(1) to the nucleus,
respectively. We refer to Lieb’s review [28] for a pedagogical introduction to several
refined versions of the TF theory.

In this section, we focus on the first refinement: the TFW theory where the
ground state energy is given by

ETFW(N) = inf
‖u‖2

L2=N

∫
R3

(
CTF|u|10/3 + CW|∇u|2 − Z|u|2

|x|
+

1

2
|u|2
(
|u|2 ∗ 1

|x|

))
dx.

(28)

Here |u|2 plays the role of the electron density and the von Weizsäcker correction
term CW|∇u|2, with a constant CW > 0, corresponds to the contribution of the in-
nermost electrons. In the context of the ionization conjecture, we have the following
theorem.

Theorem 14 ([3, 4, 6]). The variational problem ETFW(N) has a minimizer if and
only if N ≤ Nc(Z) for some critical value Z < Nc(Z) ≤ Z + C.

The general framework of the existence, uniqueness and properties of TFW min-
imizers was discussed in great detail by Benguria, Brezis and Lieb in 1981 [4]. Al-
though the functional on the right hand side of (28) is still convex in u, the TFW
theory is significantly more complicated than the TF theory. The analysis in [4] con-
tains several steps; with the starting point being the study of a “fully unconstrained
problem” (namely a version of (28) without any mass constraint of u), which is of
the same spirit of the above analysis of the Thomas–Fermi theory. The unique fully
unconstrained minimizer is a positive, radial solution to the TFW equation(

5

3
CTFu2/3 + CW(−∆)− Φ(x)

)
u(x) = 0, Φ(x) =

Z

|x|
− |u|2 ∗ 1

|x|
and moreover

∫
R3 |u|2 = Nc(Z).

The strict lower bound Nc(Z) > Z shows that the von Weizsäcker correction
really improves the binding ability of atoms. This remarkable result was proved
by Benguria in his 1979 PhD thesis under Lieb’s supervision [3]. The nonexistence
part, namely Nc(Z) ≤ Z + C was proved by Benguria and Lieb in 1984 [6]. Let us
quickly explain these proofs below.



THE IONIZATION PROBLEM IN QUANTUM MECHANICS 13

Proof of Nc(Z) > Z in TFW theory [3]. Assume that Nc(Z) =
∫
R3 |u|2 ≤ Z. By

Newton’s theorem, the TFW potential

Φ(x) =
Z

|x|
− |u|2 ∗ 1

|x|
=

Z

|x|
−
∫
R3

|u(y)|2

max(|x|, |y|)
dy

is nonnegative. Therefore, from the TFW equation we have

−∆u(x) + c1u
5/3(x) ≥ 0 for all x 6= 0

with a constant c1 ≥ 0. Consider the function ũ(x) = c2|x|−3/2 with c2 > 0 suffi-
ciently small such that

−∆ũ(x) + c1ũ
5/3(x) ≤ 0, ∀|x| ≥ 1,

ũ(x) ≤ u(x), ∀|x| = 1.

If the open set A = {|x| > 1, ũ(x) > u(x)} is non empty, then ũ− u is subharmonic
and positive in A, but vanishes on the boundary of A, which is a contradiction to
the maximum principle. Thus u(x) ≥ ũ(x) for all |x| ≥ 1, but this contradicts to
the fact that u ∈ L2(R3). Thus Nc(Z) > Z. �

Proof of Nc ≤ Z + C in TFW theory [6]. The main idea is that the function

p(x) = (4πCWu2(x) + Φ2(x))1/2

is subharmonic for |x| > 0 and p(x) → 0 as |x| → ∞. This implies that |x|p(x)
is convex and decreasing in |x|. On the other hand, when |x| → ∞, the TFW
minimizer u decays faster than any polynomial while the TFW potential satisfies
|x|Φ(x)→ −Q(Z) < 0 where Q(Z) = Nc(Z)− Z. Therefore, we conclude that

Q(Z) = lim
|y|→∞

|y|p(y) ≤ |x|p(x), ∀|x| > 0.

We can choose |x0| ∼ O(1) such that Φ(x0) < 0 (this follows from Q(Z) > 0) and
u(x0) ≤ C (this follows from the TFW equation). Thus Q(Z) ≤ C as desired. �

Further important results on the TFW theory were established later by Solovej
in his 1989 PhD thesis under Lieb’s supervision. In particular, Solovej introduced
the universality concept, namely some relevant quantities not only are bounded
uniformly but also have limits when Z →∞. In particular, he proved the following
theorem.

Theorem 15 ([53]). The TFW unconstrained minimizer uZ and the TFW potential
ΦZ(x) = Z|x|−1 − |uZ |2 ∗ |x|−1 have limits when Z →∞

lim
Z→∞

uZ(x) = u∞(x), lim
Z→∞

ΦZ(x) = Φ∞(x), ∀x 6= 0.

Consequently, the maximum ionization QZ = Nc(Z)− Z also has a limit

lim
Z→∞

QZ = Q∞ = − lim
|x|→∞

|x|Φ∞(x).

Recall that the TF theory describes the bulk of the electrons at distance O(Z−1/3)

to the nucleus, and hence the rescaled function Z−1uZ(Z−1/3x) has a limit when
Z →∞ which is given by the TF minimizer. However, the universality in Theorem
15 is much deeper since it describes the outermost electrons at distance O(1) to the
nucleus which are responsible for chemical binding. In the level of the many-body
Schrödinger theory, the convergence of the one-body density Z−2ρZ(Z−1/3x) was
already proved by Lieb and Simon [37], but the universality remains open.
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Conjecture 16 (Universality). In the many-body Schrödinger theory (4), the one-
body density ρZ of the ground state with N = Nc(Z) has a limit up to subsequences
Z = Zn →∞, namely

lim
Zn→∞

ρZn(x) = ρ∞(x), ∀x 6= 0.

Here different subsequences Zn → ∞ may lead to different limits, which cor-
responds to the existence of different groups in an “infinite periodic table”. In
principle, if Conjecture 16 holds true, then we should be able to extract the con-
vergence of the maximum ionization as well as the radius of atoms. Currently, the
boundedness of these quantities is unknown [52, 39]. We refer to a recent paper of
Solovej [56] for further discussions on the universality of large atoms and molecules.

7. The Hartree–Fock (HF) theory

In computational physics and chemistry, not only the electron density, but also the
electron orbitals are of the fundamental interest. One of the most popular methods
in this direction is the Hartree–Fock (HF) theory in which the many-body wave
functions are restricted to the Slater determinants

Ψ(x1, ..., xN ) = (u1 ∧ ... ∧ uN )(x1, ..., xN ) =
1√
N !

det[ui(xj)]1≤i,j≤N (29)

where {ui}Ni=1 is an orthonormal family in L2(R3). In principle, the Slater determi-
nants are very similar to the Hartree states in (13), except that the anti-symmetric
tensor has to be taken in (29) to ensure Pauli’s exclusion principle (1). The Hartree–
Fock energy is defined by

EHF(N) = inf
Ψ∈SDN

〈Ψ, HNΨ〉 (30)

where SDN is the set of N -body Slater determinants. Here N ∈ N and Z > 0 is not
necessarily an integer.

The analysis of the HF theory is an important subject of mathematical physics.
In the context of the ionization problem, the existence of HF miminizers for N ≤ Z
is much harder than that in the many-body Schrödinger theory since the set of states
is very nonlinear due to the orthogonality of the orbitals {ui}Ni=1. This issue was
settled in a seminal paper of Lieb and Simon in 1977.

Theorem 17 ([38]). For every N < Z + 1, the HF minimization problem (30) has
a minimizer. Moreover, the minimizing orbitals {ui}Ni=1 are the N lowest eigenfunc-
tions of the one-body operator

h = −∆− Z|x|−1 + UΨ(x)−KΨ

with the multiplication operator UΨ(x) =
∑N

i=1 |ui|2 ∗ |x|−1 and the Hilbert–Schmidt

operator KΨ with kernel KΨ(x, y) =
∑N

i=1 ui(x)ui(y)|x− y|−1. In fact, h has infin-
itely many negative eigenvalues; in particular hui = εiui with εi < 0 for all i.

Proof. The general strategy is to use the relaxation method in the same spirit of the
TF theory. In the HF case, the corresponding “unconstrained problem” is

inf
Ψ∈S̃DN

〈Ψ, HNΨ〉 (31)

where S̃DN contains all Ψ = u1 ∧ ... ∧ uN such that the N ×N matrix

M = (〈ui, uj〉)1≤i,j≤N
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satisfies 0 ≤ M ≤ 1. Note that M = 1 if Ψ is a Slater determinant. The extension
to 0 ≤ M ≤ 1 makes the set S̃DN stable under the weak convergence in L2(R3) of
the orbitals {ui}Ni=1, thus ensuring the existence of minimizers of (31) by the direct
method in the calculus of variations.

In order to go back to the original problem (30), three key ingredients are needed.
First, since the energy 〈Ψ, HNΨ〉 with Ψ = u1 ∧ ...∧ uN is invariant under changing
{ui}Ni=1 to {Aui}Ni=1 with any N × N unitary matrix A, we can assume that M is
diagonal, namely

〈ui, uj〉 = λiδij with 0 ≤ λi ≤ 1.

Second, note that for each i, the function u = ui is the minimizer of the functional

Ψ = u1 ∧ ... ∧ ui−1 ∧ u ∧ ui+1 ∧ ... ∧ uN 7→ 〈Ψ, HNΨ〉 = const + 〈u, hu〉

subject to the constraints

〈u, uj〉 = 0 for all j 6= i, ‖u‖L2 ≤ 1.

Therefore, ui must be a linear combination of the N smallest eigenfunctions of h.
Up to a further unitary transformation, we can assume that all ui are eigenfunctions
of h. Third, when N < Z + 1, h has infinitely many eigenvalues below its essential
spectrum [0,∞). This fact can be proved by the min-max principle, using radial
trial states with disjoint supports. Thus for all i, we have hui = εiui with εi < 0, and
hence the minimizing ui 7→ 〈ui, hiui〉 = εi‖ui‖2L2 under the constraint ‖ui‖L2 ≤ 1
must satisfy ‖ui‖L2 = 1. �

Note that a Slater determinant can be encoded fully in terms of its one-body
density matrix. Recall that for every N -body wave function Ψ, the one-body density
matrix γΨ is a trace class operator on L2(R3) with kernel

γΨ(x, y) = N

∫
R3(N−1)

∫
R3

Ψ(x, x2, ..., xN )Ψ(y, x2, ..., xN ) dx2...dxN . (32)

In particular, if Ψ is given in (29), then γΨ is the rank-N orthogonal projection

γΨ =
N∑
i=1

|ui〉〈ui|.

The one-body density ρΨ defined in (18) is given equivalently by ρΨ(x) = ργ(x) =
γ(x, x). Using these notations, the energy of a Slater determinant Ψ is given by

〈Ψ, HNΨ〉 = EHF(γΨ)

where

EHF(γ) = Tr((−∆− Z|x|−1)γ) +
1

2

∫∫
ργ(x)ργ(y)− |γ(x, y)|2

|x− y|
dx dy.

Consequently, the Hartree–Fock energy in (30) can be written equivalently as

EHF(N) = inf
0≤γ=γ2≤1

Trγ=N

EHF(γ). (33)

In this direction, the relaxation method suggests to relate (33) to the “unconstrained
problem”

EHF
≤ (N) = inf

0≤γ≤1
Trγ=N

EHF(γ). (34)
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Here we drop the projection condition γ = γ2 in (34) in order to make the set
of states convex. Thus in principle, the unconstrained energy EHF

≤ (N) is much

easier to compute than the original energy EHF(N). On the other hand, while
EHF(N) is an obvious upper bound to the full many-body EN in (4), it is unclear
if the unconstrained energy EHF

≤ (N) has this nice property or not. This conceptual
difficulty was removed completely in 1981 by Lieb.

Theorem 18 (Lieb’s variational principle [30]). Let 0 ≤ γ ≤ 1 and Trγ = N . Then
there exist an N -body Slater determinant Ψ and an N -body mixed state Γ such that
its one-body density matrix is Γ(1) = γ and

〈Ψ, HNΨ〉 ≤ Tr(HNΓ) ≤ EHF(γ).

Here Γ is an N -body mixed state if Γ =
∑

i λi|Ψi〉〈Ψi| with N -body orthonormal
functions {Ψi} and nonnegative numbers {λi} satisfying

∑
i λi = 1. In terms of the

one-body density matrices, we have Γ(1) =
∑

i λiγΨ where γΨ is defined in (32).
A direct consequence of Lieb’s theorem is that EHF

≤ (N) = EHF(N), which makes

the formulation (34) extremely helpful to compute an energy upper bound of EN by
the trial state argument.

As mentioned in [30], Theorem 18 holds for any two-body interaction which is
positive semidefinite. We refer to Bach’s paper [1] for a simplified proof of this
result. Theorem 18 is one of the main tools in Bach’s proof that the HF energy
agrees with the best known expansion of the quantum energy, namely

EN = c1Z
7/3 + c2Z

2 + c3Z
5/3 + o(Z5/3) = EHF

N + o(Z5/3), ∀N ∈ [Z,Nc(Z)]

where the first equality was established previously by Fefferman and Seco [13].
Using the concept of one-body density matrices, we can rewrite the proof of

Theorem 17 as follows.

A shorter proof of Theorem 17. Consider the variational problem

ẼHF
≤ (N) = inf

0≤γ≤1
Trγ≤N

EHF(γ). (35)

The existence of a minimizer γ of (35) can be proved by the direct method in the
calculus of variations (the set of states is stable under the weak-* convergence in
trace class). For every 0 ≤ γ̃ ≤ 1 with Trγ̃ ≤ N , the function t 7→ EHF((1− t)γ+ tγ̃)
with t ∈ [0, 1] attains its minimum at t = 0, and hence

0 ≤ d

dt
EHF((1− t)γ + tγ̃)|t=0 = Tr(h(γ̃ − γ))

where h = −∆− Z|x|−1 + ργ ∗ |x|−1 −Kγ with Kγ(x, y) = γ(x, y)/|x− y|.
If N < Z + 1, then h has infinitely many negative eigenvalues ε1 ≤ ε2 ≤ ... < 0

(this was already explained in the previous proof). Consequently, we can choose γ̃
to be the projection on the lowest N eigenfunctions of h, so that

Tr(hγ) ≤ Tr(hγ̃) =
N∑
i=1

εi.

Since 0 ≤ γ ≤ 1 and Trγ ≤ N , this implies that Trγ = N . Thus γ is also a minimizer
for EHF

≤ (N), and by Theorem 18 the existence of minimizers of EHF(N) follows. �

Now let us turn to the nonexistence in the HF theory. All non-asymptotic bounds
in Section 2 extend to the HF case without significant modifications; in particular



THE IONIZATION PROBLEM IN QUANTUM MECHANICS 17

Lieb’s Theorem 4 ensures that Nc(Z) < 2Z + 1. However, the conjecture bound
Nc(Z) ≤ Z + C had been open for a long time until solved by Solovej in 2003.

Theorem 19 ([55]). Nc(Z) ≤ Z + C in the Hartree–Fock theory.

The proof in [55] is based on a clever use of the Benguria–Lieb method, but only for
outermost electrons. More precisely, assuming that we have an efficient method to
separate m outermost electrons from the rest of the system, which is of the effective
charge Z ′ = Z− (N −m), then the Benguria–Lieb method gives m < 2Z ′+ 1. Since
Z ′ is smaller than Z, the loss of the factor 2 becomes less serious. Solovej’s idea is
to propose a rigorous bootstrap argument to bring Z ′ down to order 1 after finitely
many steps. On the technical level, the key tool in [55] is a rigorous comparison
between the HF potential

ΦHF
Z (x) =

Z

|x|
−
∫
|y|≤|x|

ρHF(y)

|x− y|
dy.

and the corresponding TF potential ΦTF
Z (x), namely

|ΦHF
Z (x)− ΦTF

Z (x)| ≤ C(1 + |x|−4+ε), ∀x 6= 0 (36)

for some universal constants C > 0, ε > 0. Note that ΦTF
Z (x) behaves as |x|−4 for

|x| � Z−1/3. The significance of (36) is that the TF theory captures correctly the
HF theory, at least in terms of the potentials, up to a length scale of order 1. This
is highly remarkable since due to its semiclassical nature the TF theory is supposed
to be good only for |x| ∼ Z−1/3. This property suggests that the universality in
Conjecture 16 should hold also in the HF theory, but a rigorous proof is still missing.

In Solovej’s strategy, the main conceptual difficulty is the splitting of “problem
from outside” from the “problem from inside”. In the HF theory, this can be done
using the unconstrained formulation (34) and Lieb’s Theorem 18. Unfortunately,
this technique is not available on the level of the many-body Schrödinger theory. It
seems that a completely new many-body localization technique which be needed to
solve the ionization conjecture.

8. Liquid drop model

In 1928, Gamow proposed a theory to describe a nucleus using only the number
of nucleons (protons and neutrons) and the electrostatic energy of protons. This
problem has gained renewed interest from many mathematicians [11]. To be precise,
the liquid drop model is associated to the minimization problem

EG(m) = inf
|Ω|=m

E(Ω) (37)

where

E(Ω) = Per(Ω) +D(Ω) = Per(Ω) +
1

2

∫
Ω

∫
Ω

1

|x− y|
dxdy.

Here Ω ⊂ R3 stands for the nucleus and Per(Ω) is the perimeter in the sense of De
Giorgi (which is the surface area of Ω when the boundary is smooth).

It is generally assumed in the physics literature that if a minimizer exists, then
it is a ball. Consequently, by comparing the energy of a ball of volume m with
the energy of a union of two balls of volume m/2, one expects the nonexistence of
minimizers if m > m∗ with

m∗ = 5
2− 22/3

22/3 − 1
≈ 3.518.



18 P. T. NAM

Conjecture 20 ([10]). EG(m) has a minimizer if and only if m ≤ m∗. Moreover,
if a minimizer exists, then it is a ball.

The question here is somewhat similar to that of the ionization conjecture of
atoms. As we will see, some ideas from the liquid drop model turn out to be helpful
for the ionization problem.

On the mathematical side, among all measurable sets of a given volume, although
a ball minimizes the perimeter (by the isoperimetric inequality [12]), it does max-
imize the Coulomb self-interaction energy (by the Riesz rearrangement inequality
[46]). Therefore, it is unclear why balls should be the minimizers. Consequently,
the argument predicting the threshold m∗ is questionable.

In 2014, Knüpfer and Muratov [25] proved that if m > 0 is sufficiently small, then
EG(m) has a unique minimizer which is a ball. The proof in [25] uses deep techniques
in geometric measure theory, including a quantitative isoperimetric inequality of
Fusco, Maggi, and Pratelli [15].

On the other hand, it is desirable to develop a non-perturbative approach to
handle larger masses. In 2015, Frank and Lieb proved the following result, which
serves as a basic tool to analyze the existence question for all m > 0.

Theorem 21 ([17]). If for a given m > 0, one has the strict binding inequality

EG(m) < EG(m−m′) + EG(m′), ∀0 < m′ < m, (38)

then EG(m) has a minimizer.

Theorem 21 can be interpreted in the same spirit of the strict binding inequality
E(N) < E(N − 1) in the context of the ionization problem. The proof in [17] is
based on the “method of the missing mass”, which goes back to Lieb’s 1983 work
on sharp Hardy–Littlewood–Sobolev and related inequalities [29].

Very recently, Frank and Nam [18] used Theorem 21 to establish the optimal
existence in Conjecture 20.

Theorem 22 ([18]). EG(m) has a minimizer for every 0 < m ≤ m∗.

Proof. Let us prove the strict binding inequality (38) for all 0 < m < m∗. Let
0 < m1 < m and s = m1/m ∈ (0, 1). As a first step, we observe that if |Ω| = m1,

then |s−1/3Ω| = m, and hence by the variational principle

EG(m) ≤ E(s−1/3Ω) = s−2/3PerΩ + s−5/3D(Ω) = s−5/3E(Ω)− s−5/3(1− s)Per Ω.

On the other hand, by the isoperimetric inequality

Per Ω ≥ m2/3
1 PerB1 = s2/3m2/3PerB1

where B1 is the ball of volume 1 in R3 . Inserting this in the above inequality,
optimizing over Ω, and rearranging terms we find that

E(m1) ≥ s5/3E(m) + s2/3(1− s)m2/3PerB1.

Similarly,

E(m−m1) ≥ (1− s)5/3E(m) + (1− s)2/3sm2/3PerB1.

Therefore,

E(m1) + E(m−m1)− E(m)

≥ (s5/3 + (1− s)5/3 − 1)E(m) +
(
s2/3(1− s) + (1− s)2/3s

)
m2/3Per B1.
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Using s5/3 + (1− s)5/3 − 1 < 0 and E(m) ≤ E(m1/3B1) we find that

E(m1) + E(m−m1)− E(m)

≥
(
s5/3 + (1− s)5/3 − 1

)(
D(B1)m− f(s)Per B1

)
m2/3

with

f(s) :=
s2/3 + (1− s)2/3 − 1

1− s5/3 − (1− s)5/3
.

Therefore, E(m1) + E(m−m1)− E(m) > 0 if

m <
Per B1

D(B1)
min
s∈[0,1]

f(s). (39)

A direct computation shows that the right hand side of (39) coincides with m∗.
Thus the existence of minimizers for every 0 < m < m∗ follows immediately from

Theorem 21. The existence can be extended to m = m∗ by a continuity argument
from [17, Theorem 3.4]. �

In [18], we also proved that if the nonexistence in Conjecture 20 holds, then the
above proof can be refined to show that the minimizer for m < m∗ is unique and it
is a ball. Thus only the (optimal) nonexistence part is missing.

There are some partial nonexistence results. Knüpfer and Muratov [25] proved
that EG(m) has no minimizer if m is sufficiently large. The same result was proved
by Lu and Otto [41] by a different method. This result is comparable to the bound
Nc(Z) < ∞ in the ionization problem. In 2016, Frank, Killip and Nam [16] proved
the nonexistence for all m > 8, which is somewhat comparable to Lieb’s bound
Nc(Z) < 2Z + 1 in the ionization problem.

Proof of nonexistence for m > 8 [16]. Assume that EG(m) has a minimizer Ω. We
split Ω into two parts, Ω = Ω+ ∪ Ω−, by a hyperplane H and then move Ω− to
infinity by translations. Since Ω is a minimizer, we obtain the binding inequality

Per(Ω) +

∫
Ω

∫
Ω

1

|x− y|
dxdy ≤ Per(Ω+) +

∫
Ω+

∫
Ω+

1

|x− y|
dxdy

+ Per(Ω−) +

∫
Ω−

∫
Ω−

1

|x− y|
dxdy

which is equivalent to

2H2(Ω ∩H) ≥
∫

Ω+

∫
Ω−

1

|x− y|
dxdy.

Here H2 is the two-dimensional Hausdorff measure. Next, we parameterize:

H = Hν,` = {x ∈ R3 : x · ν = `}

with ν ∈ S2, ` ∈ R. The above inequality becomes

2H2(Ω ∩Hν,`) ≥
∫

Ω

∫
Ω

χ(ν · x > ` > ν · y)

|x− y|
dxdy.

Integrating over ` ∈ R and using Fubini’s theorem we get

2|Ω| ≥
∫

Ω

∫
Ω

[ν · (x− y)]+
|x− y|

dxdy.
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Finally, averaging over ν ∈ S2 and using∫
[ν · z]+

dν

4π
=
|z|
2

∫ π/2

0
cos θ sin θdθ =

|z|
4

with z = x− y, we conclude that 2|Ω| ≥ 1
4 |Ω|

2, namely |Ω| ≤ 8. �

It is interesting that the above cutting argument can be used to replace the
Benguria–Lieb argument in the ionization problem in various situations. In 2018,
Frank, Nam and Van Den Bosch [20] used this technique to establish the ionization
conjecture in the Thomas–Fermi–Dirac-von Weisäcker theory. In this model, the
standard Benguria–Lieb method does not apply due to Dirac’s correction term to
the exchange energy, but a modification of the above cutting argument gives an
efficient control of number of particles “outside” in terms of particles “inside”, thus
enabling us to employ Solovej’s bootstrap argument as in the HF theory.

In [21], we extended the nonexistence Nc(Z) ≤ Z + C to the Müller density-
matrix-functional theory. In this model, the existence for N ≤ Z was proved by
Frank, Lieb, Seiringer and Siedentop in 2007 [19] using a relaxation method in the
spirit of TF and HF theories. In [24], Kehle established the nonexistence to a family
of density-matrix-functional theories that interpolates the HF and Müller theories.

Hopefully an exchange of ideas from the ionization problem to the liquid drop
model will lead to further results in the future.
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