Harmonic analysis and applications

Homework Sheet 11
(Discussed on 19.7.2023)

E11.1. (Rising sun lemma, a precursor of the Calderón-Zygmund decomposition). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Let

$$
S=\left\{x \in[a, b]: \sup _{y>x} f(y)>f(x)\right\} .
$$

(Note that $b \notin S$.) Prove that $E=S \cap(a, b)$ can be decomposed into disjoint open interval $\left\{\left(a_{k}, b_{k}\right)\right\}_{k}$ such that for all k :

- $f(x)<f\left(b_{k}\right)$ for all $x \in\left(a_{k}, b_{k}\right)$;
- If $a_{k} \neq a$, then $f\left(a_{k}\right)=f\left(b_{k}\right)$; otherwise, $a_{k}=a$ and $f(a)<f\left(b_{k}\right)$.

E11.2. (An alternative version of the Calderón-Zygmund decomposition). Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\alpha>0$. Prove that we can find disjoint cubes $\{Q\} \subset \mathbb{R}^{d}$ and a decomposition

$$
f=g+\sum_{Q} b_{Q}
$$

satisfying there properties:

- $|g(x)| \leq 2^{d} \alpha$, for all $x \in \mathbb{R}^{d}$;
- For every cube Q,

$$
\operatorname{supp} b_{Q} \subset Q, \quad \int_{Q} b_{Q}=0, \quad \frac{1}{|Q|} \int_{Q}\left|b_{Q}\right| \leq 2^{d+1} \alpha .
$$

- $\sum_{Q}|Q| \leq 2^{d} \alpha^{-1}\|f\|_{L^{1}}$.

E11.3. (Littlewood-Paley dyadic decomposition) Let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\psi(x)=1$ if $|x| \leq 1$ and $\psi(x)=0$ if $|x| \geq 2$. Define

$$
\varphi_{0}(x)=\psi(x), \quad \varphi_{n}(x)=\psi\left(2^{-n} x\right)-\psi\left(2^{-n+1} x\right) \quad \forall n=1,2, \ldots
$$

Let $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Define $\hat{f}_{n}=\varphi_{n}(k) \hat{f}(k)$.
(a) Prove that $\sum_{n=0}^{\infty} \varphi_{n}=1$. Deduce that $f=\sum_{n=0}^{\infty} f_{n}$.
(b) Prove that for all $n \geq 0, p \in[1, \infty]$, there exists $C>0$ independent of f such that

$$
\sup _{n}\left\|f_{n}\right\|_{L^{p}} \leq C\|f\|_{L^{p}} .
$$

(c) Prove that the operator $S: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ defined as follows is bounded:

$$
S(f)(x)=\left(\sum_{n=0}^{\infty}\left|f_{n}(x)\right|^{2}\right)^{1 / 2}
$$

Harmonic analysis and applications

Homework Sheet 10
(Discussed on 12.7.2023)

E10.1. (a) Let $t, \alpha \in(0, \infty)$. Prove the following decay of Bessel's function

$$
\left|\int_{0}^{2 \pi} e^{\mathrm{i} t \cos (x)} e^{-\mathrm{i} m x} \mathrm{~d} x\right| \leq C m t^{-1 / 2}
$$

for a constant $C>0$ independent of m and t. Here $\mathbf{i}^{2}=-1$.
(b) Let $\mathbb{1}_{B}$ is the indicator function of the unit ball in \mathbb{R}^{d}. Prove that

$$
\left|\hat{\mathbb{1}}_{B}(k)\right| \leq C_{d}|k|^{-\frac{d+1}{2}} .
$$

E10.2. Let $\alpha \in \mathbb{R}$ be an irrational number and $m \in \mathbb{Z} \backslash\{0\}$. Prove that the sequence $\{\alpha k-[\alpha k]\}_{k=1}^{\infty}$ is equidistributed on $[0,1)$.

E10.3. (a) Prove that

$$
e^{-2 t}=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-y-t^{2} / y} \frac{d y}{\sqrt{y}} .
$$

(b) Let $f(x)=e^{-2 \pi|x|}, x \in \mathbb{R}^{d}$. Prove that

$$
\hat{f}(k)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{\frac{d+1}{2}}} \frac{1}{\left(1+|k|^{2}\right)^{\frac{d+1}{2}}} .
$$

(c) Using Poisson's summation formula for $d=1$ to compute

$$
\sum_{k=1}^{\infty} \frac{1}{1+k^{2}}
$$

Harmonic analysis and applications

Homework Sheet 9
(Discussed on 7.7.2023)

E9.1. Consider Poisson equation $-\Delta u(x)=f(x)$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Prove that if $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$, then $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$.

Hint: In the lecture we discussed the case when f is compactly supported.
E9.2. Using the Fourier transform to prove Sobolev's embeding theorem $H^{k}\left(\mathbb{R}^{d}\right) \subset C\left(\mathbb{R}^{d}\right)$ if $k>d / 2$.

E9.3. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Consider the solution to the heat equation

$$
u(t, x)=\left(e^{t \Delta} f\right)(x)=\frac{1}{(4 \pi t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{|x-y|^{2}}{4 t}} f(y) \mathrm{d} y, \quad t>0 .
$$

(a) Prove that for every $t>0$, we have $u(t, \cdot) \in H^{k}\left(\mathbb{R}^{d}\right)$ for all $k \geq 1$.
(b) Prove that $\|u(t, \cdot)-f\|_{L^{2}} \rightarrow 0$ when $t \rightarrow 0$.
(c) Assume further that $f \in H^{1}\left(\mathbb{R}^{d}\right)$. Prove that $\|u(t, \cdot)-f\|_{L^{2}} \leq\|f\|_{H^{1}} \sqrt{t}$.

E9.4. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $e^{T|2 \pi k|^{2}} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)$.
(a) Prove that the function $u(t, x)$ defined by $\hat{u}(t, k)=e^{(T-t)|2 \pi k|^{2}} \hat{f}(k)$, is the solution to the backward heat equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)=\Delta_{x} u(t, x), \quad t \in(0, T), \quad x \in \mathbb{R}^{d}, \\
u(T, x)=f(x) .
\end{array}\right.
$$

(b) Given function $f_{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $\left\|f-f_{\varepsilon}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon$. Define $u_{\varepsilon}(t, x)$ by

$$
\hat{u}_{\varepsilon}(t, k)=e^{(T-t)|2 \pi k|^{2}} \hat{f}_{\varepsilon}(k) \mathbb{1}_{\left\{|k| \leq L_{\varepsilon}\right\}}, \quad L_{\varepsilon}=|\log \varepsilon|^{1 / 4} .
$$

Prove that

$$
\lim _{\varepsilon \rightarrow 0}\left\|u_{\varepsilon}(t, \cdot)-u(t, \cdot)\right\|_{L^{2}}=0, \quad \forall t \in[0, T] .
$$

Harmonic analysis and applications

Homework Sheet 8
(Discussed on 28.6.2023)

E8.1. Let $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ satisfies that \hat{f} is compactly supported. Prove that

$$
D^{\alpha} f \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

for every multi-index α.
E8.2. Let $N, d \geq 1$ and $\mathbf{i}^{2}=-1$
(a) Find the function $f_{N}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\hat{f}(k)=e^{-\pi|k|^{2}(1+\mathbf{i} N)} .
$$

(b) Prove that for all $p>2$ and $R>0$, we have

$$
\lim _{N \rightarrow \infty} \frac{\left\|f_{N}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}}{\left\|\hat{f}_{N}\right\|_{L^{1}(B(0, R))}}=0 .
$$

(c) Prove that for all $p>2$, there exists a function $f \in L^{p}\left(\mathbb{R}^{d}\right)$ such that $\hat{f} \notin L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$.

E8.3. Let $d \geq 1$. Recall that $\widehat{e^{-\pi|x|^{2}}}=e^{-\pi|k|^{2}}$.
(a) Prove that

$$
\widehat{e^{-\pi \lambda|x|^{2}}}=\lambda^{-d / 2} e^{-\pi \lambda^{-1}|k|^{2}}, \quad \forall \lambda>0 .
$$

(b) Let $0<\alpha<d$. Prove that

$$
\int_{0}^{\infty} e^{-\pi \lambda|x|^{2}} \lambda^{\alpha / 2-1} \mathrm{~d} \lambda=\frac{c_{\alpha}}{|x|^{\alpha}}, \quad \forall x \in \mathbb{R}^{d} \backslash\{0\} .
$$

where

$$
c_{\alpha}=\pi^{-\alpha / 2} \Gamma(\alpha / 2)=\pi^{-\alpha / 2} \int_{0}^{\infty} e^{-\lambda} \lambda^{\alpha / 2-1} \mathrm{~d} \lambda .
$$

(c) Prove that for all $0<\alpha<d$,

$$
c_{\alpha} \widehat{|x|^{-\alpha}}=c_{d-\alpha}|k|^{-(d-\alpha)} .
$$

Harmonic analysis and applications

Homework Sheet 7

(Discussed on 21.6.2023)

E7.1. Prove that $f(x)=e^{x}, x \in \mathbb{R}$, is not a tempered distribution.

E7.2. Recall that given a vector space V and a countable family of semi-norms $\left\{\rho_{k}\right\}_{k}$, ($V,\left\{\rho_{k}\right\}$) is called a Fréchet space if V is a complete metric space with respect to the metric

$$
d(x, y)=\sum_{k=1} 2^{-k} \frac{\rho_{k}(x-y)}{1+\rho_{k}(x-y)}
$$

(a) Verify that d defines a metric on V.
(b) Given any compact set $K \subset \mathbb{R}^{d}$, show that $\left(C_{0}^{\infty}(K),\left\{\rho_{\beta}\right\}\right)$ with $\rho_{\beta}(\phi)=\sup _{x \in K}\left|\partial^{\beta} \phi\right|$, $\beta \in \mathbb{N}_{0}^{d}$, is a Fréchet space.
(c) Prove that $\left(\mathcal{S}\left(\mathbb{R}^{d}\right),\left\{\rho_{\alpha, \beta}\right\}\right)$ with $\rho_{\alpha, \beta}(\phi)=\sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \phi\right|, \alpha, \beta \in \mathbb{N}_{0}^{d}$, is a Fréchet space.

E7.3. Recall that the set of finite measures lies in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, and that one such example is the Dirac delta function $\delta(\phi)=\phi(0)$.
(a) Let μ be a positive measure on \mathbb{R}^{d} satisfying

$$
\int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mu}{(1+|x|)^{k}}<\infty
$$

for some $k>0$. Show that $\mu: \phi \mapsto \int_{\mathbb{R}^{d}} \phi \mathrm{~d} \mu$ defines a tempered distribution.
(b) Show that the derivative of the Dirac delta distribution, $\delta^{\prime} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, doesn't come from a measure.

E7.4. Calculate the Fourier transform of the following functions in the sense of tempered distributions in \mathbb{R} :
(b) $f(x)=\mathbb{1}_{[a, b]}(x)$ for any $-\infty<a<b<\infty$,
(a) $f(x)=\frac{\sin x}{x}$,
(c) $f(x)=\operatorname{sech}(\pi x)$,
(d) $f(x)=1 /|x|^{r}$ with $r \in(0,1)$.

Harmonic analysis and applications

Homework Sheet 6

(Discussed on 7.6.2023)

E6.1. Consider the step function $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ given by

$$
f(x)=\sum_{i=1}^{N} \alpha_{i} \mathbb{1}_{A_{i}}(x)
$$

where $\alpha_{i} \geq 0$ and $A_{1} \supsetneq A_{2} \supsetneq \ldots \supsetneq A_{N}$. Denote $A_{0}=\mathbb{R}^{d}$ and $A_{N+1}=\emptyset$. Prove that

$$
f_{*}(t)=\sum_{j=1}^{N}\left(\sum_{i \leq j} \alpha_{i}\right) \mathbb{1}_{\left[\left|A_{j+1}\right|,\left|A_{j}\right|\right)}(t), \quad f_{* *}(t)=\sum_{i=1}^{N} \alpha_{i} \min \left(\left|A_{i}\right|, t\right) .
$$

E6.2. Let $1 \leq p, q<\infty$ and $d \geq 1$.
(a) Prove that for all $\lambda>0$,

$$
\left\|f_{\lambda}\right\|_{L^{p, q}}=\|f\|_{L^{p, q}}, \quad \text { where } f_{\lambda}(x)=\lambda^{d / p} f(\lambda x), x \in \mathbb{R}^{d} .
$$

(b) Assume further that $q<d$, and that we have the inequality

$$
\left\|f_{\lambda}\right\|_{L^{p, q}} \leq C\|f\|_{W^{1, q}}=C\left(\|\nabla f\|_{L^{q}}^{q}+\|f\|_{L^{q}}^{q}\right)^{1 / q}, \quad \forall f \in W^{1, q}\left(\mathbb{R}^{d}\right),
$$

for a constant $C=C(d, p, q)>0$ independent of f. Prove that $p \leq q^{*}=d q /(d-q)$ and

$$
\|f\|_{L^{q^{*}, q}} \leq C\|\nabla f\|_{L^{q}}, \quad \forall f \in W^{1, q}\left(\mathbb{R}^{d}\right),
$$

with the same constant C.

E6.3. Let $1 \leq p, q<\infty$ and $d \geq 1$. Let $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ and denote $c_{k}=2^{k / p} f^{*}\left(2^{k}\right)$, $k \in \mathbb{Z}$. Prove that

$$
C^{-1}\left\|\left\{c_{k}\right\}\right\|_{\ell q(\mathbb{Z})} \leq\|f\|_{L^{p, q}} \leq C\left\|\left\{c_{k}\right\}\right\|_{\ell q(\mathbb{Z})}
$$

for a constant $C=C(p, q, d)>0$ independent of f.
E6.4. (Keel-Tao's Atomic decomposition) Let $1 \leq p, q<\infty$ and $d \geq 1$. Prove that $f \in L^{p, q}\left(\mathbb{R}^{d}\right)$ if and only if it satisfies the pointwise inequality

$$
|f(x)| \leq \sum_{k \in \mathbb{Z}} 2^{-k / p} c_{k} \mathbb{1}_{A_{k}}(x)
$$

where $\left|A_{k}\right| \leq 2^{k}$ for all $k \in \mathbb{Z}$ and $\left\{c_{k}\right\}_{k} \in \ell^{q}(\mathbb{Z})$.
Hint: Consider $c_{k}=2^{k / p} f^{*}\left(2^{k}\right)$ and $A_{k}=\left\{x \in \mathbb{R}^{d}: f_{*}\left(2^{k+1}\right)<|f(x)| \leq f_{*}\left(2^{k}\right)\right\}$.

Harmonic analysis and applications

Homework Sheet 5
(Discussed on 31.5.2023)

E5.1. For $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, recall that $f_{*}:[0, \infty) \rightarrow[0, \infty]$ is the decreasing arrangement such that $|\{|f|>t\}|=\left|\left\{f_{*}>t\right\}\right|$ for all $t>0$. Prove the Hardy-Littlewood rearrangement inequality

$$
\left|\int_{\mathbb{R}^{d}} f(x) g(x) \mathrm{d} x\right| \leq \int_{0}^{\infty} f_{*}(t) g_{*}(t) \mathrm{d} t
$$

(Note: In the lecture we proved a similar statement for $f^{*}: \mathbb{R}^{d} \rightarrow[0, \infty)$.)

E5.2. Let $f, f_{n}: \mathbb{R}^{d} \rightarrow[0, \infty)$ be measurable such that when $n \rightarrow \infty$ we have $f_{n}(x) \uparrow f(x)$ for a.e. $x \in \mathbb{R}^{d}$.
(a) Prove that $\left(f_{n}\right)_{*}(t) \uparrow f_{*}(t)$ for all $t>0$.
(b) Prove that if $f \in L^{p, q}\left(\mathbb{R}^{d}\right)$ with $1 \leq p, q<\infty$, then $f_{n} \rightarrow f$ in $f \in L^{p, q}\left(\mathbb{R}^{d}\right)$.

E5.3. Let $1 \leq p_{0}<p<p_{1} \leq \infty$ and $0<q \leq \infty$. Prove that

$$
\left(L^{p_{0}, \infty} \cap L^{p_{1}, \infty}\right) \subset L^{p, q} .
$$

(Note: We proved this result before when $q=p$.)

E5.4. Let $1 \leq p<\infty$. Recall that we proved $L^{p, q} \subset L^{p, r}$ for all $q>r$. Now we prove that the inclusion is strict.
(a) Consider $f(x)=|x|^{-d / p}$. Prove that $f \in L^{p, \infty}\left(\mathbb{R}^{d}\right)$ but $f \notin L^{p, q}\left(\mathbb{R}^{d}\right)$ for any $q<\infty$.
(b) Let $q<\infty$. Consider

$$
g(x)=|x|^{-d / p}|\log | x| |^{-1 / q} \mathbb{1}_{B(0,1 / 2)}(x), \quad x \in \mathbb{R}^{d}
$$

Prove that $g \in L^{p, r}\left(\mathbb{R}^{d}\right)$ for all $r>q$, but $g \notin L^{p, q}\left(\mathbb{R}^{d}\right)$.

E5.5. Let $|\Omega|<\infty$ and $1 \leq p_{0}<p_{1} \leq \infty$ and $0<q_{0}, q_{1} \leq \infty$. Prove that

$$
L^{p_{1}, q_{1}}(\Omega) \subset L^{p_{0}, q_{0}}(\Omega) .
$$

Harmonic analysis and applications

Homework Sheet 4
(Discussed on 24.5.2023)

E4.1. Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ satisfy

$$
\sup _{y \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|K(x, y)|^{2} \mathrm{~d} x \leq 1, \quad \sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|K(x, y)| \mathrm{d} y \leq 1 .
$$

Let $1 \leq p \leq 2$ and $1 / p+1 / p^{\prime}=1$. Prove that $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$ defined by

$$
(T f)(x)=\int_{\mathbb{R}^{d}} K(x, y) f(y) \mathrm{d} y .
$$

is a linear bounded operator with operator norm $\|T\|_{L^{p} \rightarrow L^{p^{\prime}}} \leq 1$.
E4.2. Recall the Marcinkiewicz Interpolation Theorem: "If T is quasi-linear and $\|T\|_{L^{p} \rightarrow L_{\mathrm{w}}^{p}} \leq$ 1, $\|T\|_{L^{q} \rightarrow L_{\mathrm{w}}^{q}} \leq 1$, then $\|T\|_{L^{r} \rightarrow L^{r}} \leq C$ for all $1 \leq p<r<q \leq \infty$." In the lecture, we have proved this theorem for $q<\infty$. Now complete the proof for $q=\infty$.

E4.3. Let $d \geq 1,1<p<\infty$ and $1 / p+1 / p^{\prime}=1$. Prove that $f \in L^{p, \infty}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\|f\|=\sup \left\{\frac{1}{|E|^{1 / p^{\prime}}} \int_{E}|f|\left|E \subset \mathbb{R}^{d}, 0<|E|<\infty\right\}<\infty .\right.
$$

Moreover, prove that $\|f\|$ defines a norm which is equivalent to the quasi-norm $L^{p, \infty}$.
E4.4. Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ satisfy

$$
\sup _{y \in \mathbb{R}^{d}}\|K(\cdot, y)\|_{L^{2, \infty}} \leq 1
$$

Prove that $T: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{2, \infty}\left(\mathbb{R}^{d}\right)$ defined by

$$
(T f)(x)=\int_{\mathbb{R}^{d}} K(x, y) f(y) \mathrm{d} y .
$$

is a linear bounded operator.
E4.5. For every $N \geq 1$ define $F_{N}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F_{N}(x)=\frac{1}{N \ln N} \sum_{k=1}^{N}\left|x-k N^{-1}\right|^{-1}
$$

Prove that F_{N} does not converge to 0 in $L^{1, \infty}$ when $N \rightarrow \infty$.

Harmonic analysis and applications

Homework Sheet 3
(Discussed on 17.5.2023)

In the following, we always assume let (Ω, μ) be a sigma-finite measure space.
E3.1. Consider Young's inequality

$$
\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{p}}, \quad \forall f \in L^{p}, g \in L^{q}, \quad 1 \leq p, q, r \leq \infty, \quad \frac{1}{p}+\frac{1}{q}=1+\frac{1}{r} .
$$

Assume that we have proved Young's inequality for $p=1$ and $p=q^{\prime}$. Use the Riesz-Thorin interpolation inequality to conclude Young's inequality in the general case $1 \leq p \leq q^{\prime}$.

E3.2. Prove that for every $1 \leq p \leq \infty$ and $f \in L^{p}(\Omega)$, we have

$$
\|f\|_{L^{p}}=\sup \left\{\int_{\Omega}|f g| \mid g \text { a step function, }\|g\|_{L^{p^{\prime}}}=1\right\}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 .
$$

You can use the fact that step functions are dense in $L^{r}(\Omega)$ with $1 \leq r<\infty$.
E3.3. Let $1 \leq p, q \leq \infty$ and $f_{n}, f \in L_{\mathrm{w}}^{p}(\Omega)$.
(a) Prove that if $f_{n} \rightarrow f$ in L^{p}, then $f_{n} \rightarrow f$ in L_{w}^{p}.
(b) Prove that if $f_{n} \rightarrow f$ in L_{w}^{p}, then up to a subsequence, $f_{n} \rightarrow f$ pointwise.
(c) Prove that if $f_{n} \rightarrow f$ in L_{w}^{p}, and $\left\|f_{n}\right\|_{L^{q}} \leq 1$, then $f \in L^{q}$ and $\|f\|_{L^{q}} \leq 1$.

Recall that the weak- L^{p} norm is defined as

$$
\|f\|_{L_{\mathrm{w}}^{p}}=\sup _{\lambda>0} \lambda|\{x:|f(x)|>\lambda\}|^{1 / p} .
$$

E3.4. Let $1 \leq p<r<q \leq \infty$.
(a) Prove that $L_{\mathrm{w}}^{r} \subset L^{p}+L^{q}$.
(b) Prove that if $L^{r} \subset L_{\mathrm{w}}^{p} \cap L_{\mathrm{w}}^{q}$, and

$$
\|f\|_{L^{r}} \leq C\|f\|_{L_{\mathrm{w}}^{p}}^{\theta}\|f\|_{L_{\mathrm{w}}^{q}}^{1-\theta}
$$

for constants $\theta \in(0,1)$ and $C>0$ depending only on p, q, r (but independent of f).

Harmonic analysis and applications

Homework Sheet 2
(Discussed on 10.5.2023)

E2.1 (A Vitali type covering lemma leading to constant 2^{d} in L_{w}^{1} maximal inequality, formulated by Rupert Frank). Let X be a metric space and let $\left\{B_{i}\right\}_{i=I}$ be a finite collection of open balls in X. Prove that there exists a sub-collection $\left\{B_{i}\right\}_{i=I^{\prime}}$ of disjoint balls such that for every $\varepsilon>0$,

$$
\bigcup_{i \in I}\left(\varepsilon B_{i}\right) \subset \bigcup_{i \in I^{\prime}}\left((2+\varepsilon) B_{i}\right)
$$

where we denoted $\lambda B(x, r)=B(x, \lambda r)$.
E2.2 (Lebesgue differentiation theorem) In the lecture we already proved that for all $f \in L_{c}^{1}\left(\mathbb{R}^{d}\right)$,

$$
\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y=f(x), \quad \text { a.e. } x .
$$

Prove that this holds for all $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.
E2.3 Consider the function $f(x)=\mathbb{1}_{B(0,1)(x)}, x \in \mathbb{R}^{d}$.
(a) Prove that

$$
\frac{1}{(|x|+1)^{d}} \leq M f(x) \leq \frac{C_{d}}{(|x|+1)^{d}}, \quad \forall x \in \mathbb{R}^{d} .
$$

(b) Prove that

$$
M(M f)(x) \leq \frac{C_{d} \log (e+|x|)}{(1+|x|)^{d}}
$$

Argue directly that $M f$ and $M(M f)$ belong to $L^{p}\left(\mathbb{R}^{d}\right)$ for all $p>1$.
E2.4 (A generalization of maximal function) Let $h \in C_{c}\left(\mathbb{R}^{d}\right)$ be a non-negative radially symmetric descreasing function. Define $h_{r}(x)=r^{d} h(r x)$. Prove that for all $0 \leq f \in$ $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$

$$
\sup _{r>0}\left(f * h_{r}\right)(x) \leq\|h\|_{L^{1}} M f(x) .
$$

E2.5 (A generalization of Fefferman - de la Llave decomposition) Let $h \in C_{c}\left(\mathbb{R}^{d}\right)$ be a non-negative radial function. Prove that for every $0<\lambda<d$, there exist $s=s(d, \lambda) \in \mathbb{R}$ and $C=C(h, d, \lambda)>0$ such that for all $x, y \in \mathbb{R}^{d}$ and $x \neq y$ we have

$$
\frac{1}{|x-y|^{\lambda}}=C \int_{0}^{\infty} \int_{\mathbb{R}^{d}} h(t(z-x)) h(t(z-y)) r^{s} d z d r .
$$

Harmonic analysis and applications

Homework Sheet 1

(Discussed on 3.5.2023)

E1.1 (Counterexample for Fubini theorem when the σ-finiteness is missing). Let $\Omega_{1}=$ $\Omega_{2}=(0,1)$, let μ_{1} be the Lebesgue measure and let μ_{2} be the counting measure. Take $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ with

$$
f(x, y)=\mathbb{1}_{\{x=y\}}=\left\{\begin{array}{l}
1 \text { if } x=y \\
0 \text { otherwise }
\end{array}\right.
$$

Prove that

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) \mathrm{d} \mu_{2}(y)\right) \mathrm{d} \mu_{1}(x) \neq \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) \mathrm{d} \mu_{1}(x)\right) \mathrm{d} \mu_{2}(y) .
$$

E1.2 (The Brezis-Lieb lemma). Let $1<p<\infty$.
(a) Prove that for all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ depending only on ε and p such that

$$
\left||a|^{p}-|b|^{p}-|a-b|^{p}\right| \leq \varepsilon|a|^{p}+C_{\varepsilon}|b|^{p}, \quad \forall a, b \in \mathbb{C} .
$$

(b) Let (Ω, μ) be a measure space. Let $f_{n} \in L^{p}(\Omega)$ such that $\left\|f_{n}\right\|_{p} \leq C$ for all n. Prove that if $f_{n} \rightarrow f$ a.e. as $n \rightarrow \infty$ then

$$
\left.\int_{\Omega}| | f_{n}(x)\right|^{p}-|f(x)|^{p}-\left|f_{n}(x)-f(x)\right|^{p} \mid \mathrm{d} \mu(x) \rightarrow 0
$$

E1.3 (Dual version of Hölder's inequality) Let $1 \leq p, q \leq \infty, 1 / p+1 / q=1$, and $f \in L^{p}(\Omega)$. Prove that

$$
\|f\|_{p}=\sup _{g \in L^{q}(\Omega), g \neq 0} \frac{\left|\int_{\Omega} f g\right|}{\|g\|_{q}}=\sup _{\|g\|_{q}=1}\left|\int_{\Omega} f g\right|
$$

(You can use Hölder's inequality $\left|\int_{\Omega} f g\right| \leq\|f\|_{p}\|g\|_{q}$.)
E1.4 (Dual space of L^{1}). Recall the Riesz representation theorem: $\left(L^{p}(\Omega)\right)^{*}=L^{q}(\Omega)$ for all $1<p, q<\infty, 1 / p+1 / q=1$.
(a) Let (Ω, μ) be a measurable space such that $\mu(\Omega)<\infty$. Prove that for every $p>1$, $L^{p}(\Omega)$ is a dense subset of $L^{1}(\Omega)$.
(b) Use (a) and the Riesz representation theorem for $p>1$ to show that $\left(L^{1}(\Omega)\right)^{*}=$ $L^{\infty}(\Omega)$.
(c) Prove that if (Ω, μ) is σ-finite, then $\left(L^{1}(\Omega)\right)^{*}=L^{\infty}(\Omega)$.

