

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Phan Thành Nam

Winter Semester 2023-2024

Fourier Analysis and Nonlinear PDE Final Exam

You have 180 minutes to solve 5 problems. Electronic devices are not allowed.

Problem 1. (15 points) Define the function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = e^x$ if x < 0, f(x) = 1 if $0 \le x \le 1$, and $f(x) = x^2$ if $x \ge 1$. Prove that $f \in \mathcal{D}'(\mathbb{R})$ and compute the distributional derivative of f. Is f a tempered distribution?

Problem 2. (5+5+10 points) Define $f(x) = x^{-1} |\ln |x||^{-\beta}$ for $x \in \mathbb{R} \setminus \{0\}$.

- (a) Show that there exists $\beta > 0$ such that $f \notin L^1_{loc}(\mathbb{R})$.
- (b) Show that for every $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$|\varphi(x) - \varphi(-x)| \le \frac{2|x|}{1+|x|^2} C_{\varphi}, \quad \forall x \in \mathbb{R}, \quad C_{\varphi} = \sup_{y \in \mathbb{R}} (1+|y|^2) (|\varphi(y)| + |\varphi'(y)|).$$

(c) Let $\beta > 0$ as in (a). Show that the mapping $T : \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ defined by

$$T(\varphi) = \lim_{\varepsilon \to 0^+} \int_{|x| \ge \varepsilon} f(x)\varphi(x) \mathrm{d}x, \quad \forall \varphi \in \mathcal{S}(\mathbb{R})$$

is a tempered distribution. (Hint: f is an odd function and (b) is helpful.)

Problem 3. (15 points) Let $d \geq 1$. Is there a function $u_0 \in L^2(\mathbb{R}^d) \setminus \{0\}$ such that $e^{t\Delta}u_0 \to u_0$ in $L^2(\mathbb{R}^d)$ faster than $O(\sqrt{t})_{t\to 0}$, namely

$$\lim_{t \to 0^+} t^{-1/2} \| e^{t\Delta} u_0 - u_0 \|_{L^2(\mathbb{R}^d)} = 0?$$

You may either show an example or prove the nonexistence.

Problem 4. (10+15 points) Consider the nonlinear equation for $u(t, x), t \in \mathbb{R}, x \in \mathbb{R}^d$

$$\mathbf{i}\partial_t u = -\Delta u + (1 - e^{-|u|})u, \quad u(0, x) = u_0(x).$$

(a) Use Duhamel formula and a fixed point argument to show that for every initial data $u_0 \in L^2(\mathbb{R}^d)$, there exists a local solution $u \in L^{\infty}_t L^2_x$.

(b) Write the conservation law of mass (you do not need to prove it). Use this to prove the existence of a global solution in $L_t^{\infty} L_x^2$ for every $u_0 \in L^2(\mathbb{R}^d)$. Is this solution unique?

Problem 5. (10+15 points) Consider the nonlinear equation for $u(t, x), t \in \mathbb{R}_+, x \in \mathbb{R}^3$

$$\partial_t u - \Delta u + (1 - e^{-|u|})(\sqrt{-\Delta u}) = 0, \quad u(0, x) = u_0(x).$$

(a) Show that $\|(1-e^{-|u|})(\sqrt{-\Delta}v)\|_{\dot{H}^{-1/2}} \lesssim \|u\|_{\dot{H}^1} \|v\|_{\dot{H}^1}.$

(b) Show that for every $u_0 \in \dot{H}^{1/2}(\mathbb{R}^3)$, there exists a unique local solution $u \in L^4_t \dot{H}^1_x$. (Hint: Problem E9.2 is helpful for a fixed point argument.)