

Phan Thành Nam
Winter Semester 2023-2024

Fourier Analysis and Nonlinear PDE Final Exam

Family name:
First name: \qquad
You have 180 minutes to solve 5 problems. Electronic devices are not allowed.

Problem 1. (15 points) Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=e^{x}$ if $x<0, f(x)=1$ if $0 \leq x \leq 1$, and $f(x)=x^{2}$ if $x \geq 1$. Prove that $f \in \mathcal{D}^{\prime}(\mathbb{R})$ and compute the distributional derivative of f. Is f a tempered distribution?

Problem 2. (5+5+10 points) Define $f(x)=\left.x^{-1}|\ln | x\right|^{-\beta}$ for $x \in \mathbb{R} \backslash\{0\}$.
(a) Show that there exists $\beta>0$ such that $f \notin L_{\text {loc }}^{1}(\mathbb{R})$.
(b) Show that for every $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$
|\varphi(x)-\varphi(-x)| \leq \frac{2|x|}{1+|x|^{2}} C_{\varphi}, \quad \forall x \in \mathbb{R}, \quad C_{\varphi}=\sup _{y \in \mathbb{R}}\left(1+|y|^{2}\right)\left(|\varphi(y)|+\left|\varphi^{\prime}(y)\right|\right)
$$

(c) Let $\beta>0$ as in (a). Show that the mapping $T: \mathcal{S}(\mathbb{R}) \rightarrow \mathbb{C}$ defined by

$$
T(\varphi)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x| \geq \varepsilon} f(x) \varphi(x) \mathrm{d} x, \quad \forall \varphi \in \mathcal{S}(\mathbb{R})
$$

is a tempered distribution. (Hint: f is an odd function and (b) is helpful.)
Problem 3. (15 points) Let $d \geq 1$. Is there a function $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ such that $e^{t \Delta} u_{0} \rightarrow u_{0}$ in $L^{2}\left(\mathbb{R}^{d}\right)$ faster than $O(\sqrt{t})_{t \rightarrow 0}$, namely

$$
\lim _{t \rightarrow 0^{+}} t^{-1 / 2}\left\|e^{t \Delta} u_{0}-u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=0 ?
$$

You may either show an example or prove the nonexistence.
Problem 4. (10+15 points) Consider the nonlinear equation for $u(t, x), t \in \mathbb{R}, x \in \mathbb{R}^{d}$

$$
\mathbf{i} \partial_{t} u=-\Delta u+\left(1-e^{-|u|}\right) u, \quad u(0, x)=u_{0}(x)
$$

(a) Use Duhamel formula and a fixed point argument to show that for every initial data $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$, there exists a local solution $u \in L_{t}^{\infty} L_{x}^{2}$.
(b) Write the conservation law of mass (you do not need to prove it). Use this to prove the existence of a global solution in $L_{t}^{\infty} L_{x}^{2}$ for every $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$. Is this solution unique?

Problem 5. (10+15 points) Consider the nonlinear equation for $u(t, x), t \in \mathbb{R}_{+}, x \in \mathbb{R}^{3}$

$$
\partial_{t} u-\Delta u+\left(1-e^{-|u|}\right)(\sqrt{-\Delta} u)=0, \quad u(0, x)=u_{0}(x)
$$

(a) Show that $\left\|\left(1-e^{-|u|}\right)(\sqrt{-\Delta v})\right\|_{\dot{H}^{-1 / 2}} \lesssim\|u\|_{\dot{H}^{1}}\|v\|_{\dot{H}^{1}}$.
(b) Show that for every $u_{0} \in \dot{H}^{1 / 2}\left(\mathbb{R}^{3}\right)$, there exists a unique local solution $u \in L_{t}^{4} \dot{H}_{x}^{1}$.
(Hint: Problem E9.2 is helpful for a fixed point argument.)

