Partial Differential Equations

Homework Sheet 13
(Discussed on 9.2.2022)

E13.1 (d'Alembert formula for wave equation in 1D)
Let $g \in C^{2}(\mathbb{R}), h \in C^{1}(\mathbb{R})$ and define

$$
u(x, t)=\frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(y) \mathrm{d} y, \quad \forall x \in \mathbb{R}, t>0 .
$$

Prove that $u \in C^{2}(\mathbb{R} \times(0, \infty))$ and

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\partial_{x}^{2} u=0, \quad \forall x \in \mathbb{R}, t>0, \\
\lim _{t \rightarrow 0^{+}} u(x, t)=g(x), \quad \lim _{t \rightarrow 0^{+}} \partial_{t} u(x, t)=h(x), \quad \forall x \in \mathbb{R} .
\end{array}\right.
$$

E13.2 (Poisson's formula for wave equation in 2D)
Let $g \in C^{3}\left(\mathbb{R}^{2}\right), h \in C^{2}\left(\mathbb{R}^{2}\right)$ and define

$$
u(x, t)=\frac{t}{2} \underset{B(x, t)}{f} \frac{g(y)+\nabla g(y) \cdot(y-x)+t h(y)}{\sqrt{t^{2}-|x-y|^{2}}} \mathrm{~d} y, \quad \forall x \in \mathbb{R}^{2}, t>0 .
$$

Prove that $u \in C^{2}\left(\mathbb{R}^{2} \times(0, \infty)\right)$ and

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{x} u=0, \quad \forall x \in \mathbb{R}^{2}, t>0 \\
\lim _{t \rightarrow 0^{+}} u(x, t)=g(x), \quad \lim _{t \rightarrow 0^{+}} \partial_{t} u(x, t)=h(x), \quad \forall x \in \mathbb{R}^{2}
\end{array}\right.
$$

E13.3 Let $g \in C_{c}^{3}\left(\mathbb{R}^{3}\right), h \in C_{c}^{2}\left(\mathbb{R}^{3}\right)$. Assume that $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ satisfies the wave equation

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{x} u=0, \quad \forall x \in \mathbb{R}^{3}, t>0, \\
u(x, 0)=g(x), \quad \partial_{t} u(x, 0)=h(x), \quad \forall x \in \mathbb{R}^{3} .
\end{array}\right.
$$

Prove that there exists a constant $C>0$ such that

$$
|u(x, t)| \leq \frac{C}{t}, \quad \forall x \in \mathbb{R}^{3}, t>0 .
$$

E13.4 Let $g \in L^{2}\left(\mathbb{R}^{d}\right) \cap L^{1}\left(\mathbb{R}^{d}\right)$. Let $u: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{C}$ be the solution of the Schrödinger equation with the initial data g, namely

$$
u(x, t)=\left(e^{i t \Delta} g\right)(x)=\frac{1}{(4 \pi i t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{\frac{i|x-y|}{4 t}} g(y) \mathrm{d} y .
$$

Prove that for all $2<p \leq \infty$ we have

$$
\lim _{t \rightarrow \infty}\|u(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{d}\right)}=0
$$

Partial Differential Equations

Homework Sheet 12
(Discussed on 2.2.2022)

E12.1 Let $\Omega \subset \mathbb{R}^{d}$ be open and $u \in C^{2}(\Omega)$. Assume that $x_{0} \in \Omega$ is a local maximizer of u, namely there exists some $r>0$ such that

$$
u\left(x_{0}\right) \geq u(x), \quad \forall x \in B_{r}\left(x_{0}\right) \subset \Omega .
$$

(a) Prove that the Hessian matrix $H=\left(D^{\alpha} u\left(x_{0}\right)\right)_{|\alpha|=2}$ is negative semi-definite, namely

$$
y \cdot H y \leq 0, \quad \forall y \in \mathbb{R}^{d} .
$$

(b) Prove that $\Delta u\left(x_{0}\right) \leq 0$.

Recall that we used (b) for the maximum principle by Hopf's method.

E12.2 We will prove the maximum principle for a general elliptic operator

$$
L u(x)=\sum_{i, j=1}^{d} a_{i j}(x) \partial_{x_{i}} \partial_{x_{j}} u(x)+\sum_{i=1}^{d} b_{i}(x) \partial_{x_{i}} u(x), \quad x=\left(x_{i}\right)_{i=1}^{d} .
$$

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Let $a_{i j}, b_{i} \in C(\bar{\Omega})$ such that for all $x \in \Omega$,

$$
A(x)=\left(a_{i j}(x)\right)_{i, j=1}^{d} \geq \mathbb{1} \quad \text { (as matrices). }
$$

Prove that if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfies $L u(x) \geq 0$ for all $x \in \Omega$, then

$$
\max _{x \in \bar{\Omega}} u(x)=\max _{x \in \partial \Omega} u(x) .
$$

Hint: By Hopf's method you should first consider the case $L u>0$.

E12.3 Consider the inhomogeneous heat equation

$$
\begin{cases}\left(\partial_{t}-\Delta_{x}\right) u(x, t)=f(x, t), & (x, t) \in \mathbb{R}^{d} \times(0, T), \\ u(x, 0)=g(x), & x \in \mathbb{R}^{d}\end{cases}
$$

with $f \in C_{1}^{2}\left(\mathbb{R}^{d} \times(0, T)\right)$ compactly supported, and $g \in C\left(\mathbb{R}^{d} \times[0, T]\right) \cap L^{\infty}\left(\mathbb{R}^{d} \times[0, T]\right)$. Assume that there exists a solution $u \in C_{1}^{2}\left(\mathbb{R}^{d} \times(0, T)\right) \cap C\left(\mathbb{R}^{d} \times[0, T]\right)$ satisfying

$$
u(x, t) \leq M e^{M|x|^{2}}, \quad(x, t) \in \mathbb{R}^{d} \times[0, T] .
$$

Prove that

$$
\max _{(x, t) \in \mathbb{R}^{d} \times[0, T]}|u(x, t)| \leq\|g\|_{L^{\infty}}+T\|f\|_{L^{\infty}} .
$$

Partial Differential Equations

Homework Sheet 11
(Discussed on 26.1.2022)

E11.1 Consider the fundamental solution of the heat equation with initial data $g \in L^{2}\left(\mathbb{R}^{d}\right)$:

$$
u(x, t)=\int_{\mathbb{R}^{d}} \Phi(x-y, t) g(y) \mathrm{d} y, \quad \Phi(x, t)=\frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{|x|^{2}}{4 t}}
$$

(a) Prove that $u \in C^{\infty}\left(\mathbb{R}^{d} \times(0, \infty)\right)$. Hint: In the lecture we already proved that for every $t>0, u(\cdot, t) \in C^{\infty}\left(\mathbb{R}^{d}\right)$ by Sobolev embedding theorem.
(b) Prove that

$$
\|u(\cdot, t)-g\|_{L^{2}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \quad \text { as } t \rightarrow 0^{+}
$$

and

$$
\|u(\cdot, t)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

(c) Prove that if we assume further $g \in H^{1}\left(\mathbb{R}^{d}\right)$, then

$$
\|u(\cdot, t)-g\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C \sqrt{t}, \quad \text { as } t \rightarrow 0^{+} .
$$

E11.2 Consider the heat equation in a bounded domain

$$
\left\{\begin{array}{l}
\partial_{t} u(x, t)=\Delta_{x} u(x, t), \quad \forall x \in \Omega, t>0 \\
u(x, t)=0, \quad \forall x \in \partial \Omega, t>0 \\
u(x, 0)=g(x), \quad \forall x \in \Omega
\end{array}\right.
$$

Let us focus on the simplest case $\Omega=(0,1)$. Prove that for every $g \in C_{c}^{1}(0,1)$, the function

$$
u(x, t)=\sum_{n=1}^{\infty} g_{n} e^{-t \pi^{2} n^{2}} \sin (n \pi x), \quad \text { where } g_{n}=2 \int_{0}^{1} g(y) \sin (n \pi y) \mathrm{d} y
$$

is a classical solution to the above heat equation.

E11.3 Let $g(t)=e^{-1 / t^{2}}$ and denote $g^{(n)}(t)$ the n-th derivative of g. Define

$$
u(x, t)=\sum_{n=0}^{n} \frac{g^{(n)}(t)}{(2 n)!} x^{2 n}, \quad \forall x \in \mathbb{R}, t>0
$$

Prove that u is a classical solution to the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} u(x, t)=\Delta_{x} u(x, t), \quad \forall x \in \mathbb{R}, t>0 \\
\lim _{t \rightarrow 0} u(x, t)=0, \quad \forall x \in \mathbb{R}
\end{array}\right.
$$

Partial Differential Equations

Homework Sheet 10
(Discussed on 19.1.2022)

Let us discuss the boundary problems in one-dimension. Here we always take $\Omega=(a, b) \subset$ \mathbb{R} be an open, bounded interval. For every $u \in H^{1}(\Omega)$, the values $u(a)$ and $u(b)$ are determined uniquely by trace theory, or by Sobolev's embedding theorem.

E10.1 (Sobolev inequalities) (a) Prove that $H^{1}(\mathbb{R}) \subset\left(C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})\right)$.
Hint: You can use the Fourier transform.
(b) Prove that $H^{1}(\Omega) \subset C(\bar{\Omega})$.

E10.2 (Poincare inequality) Prove that there exists a constant $C>0$ such that

$$
\|u\|_{L^{2}(\Omega)} \leq C\left\|u^{\prime}\right\|_{L^{2}(\Omega)}
$$

for all $u \in H^{1}(\Omega)$ such that $u(a)=0$.

E10.3. (Neumann boundary condition) Let $u \in H^{2}(\Omega)$ and $f \in L^{2}(\Omega)$. Prove that the following statements are equivalent:
(1) u solves the equation

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f \quad \text { in } D^{\prime}(\Omega), \\
u^{\prime}(a)=u^{\prime}(b)=0 .
\end{array}\right.
$$

(2) u solves the variational problem

$$
\int_{\Omega} u^{\prime} \varphi^{\prime}=\int_{\Omega} f \varphi, \quad \forall \varphi \in H^{1}(\Omega) .
$$

E10.4. (Robin boundary condition) Let $f \in L^{2}(\Omega)$.
(a) Prove that there exists a unique $u \in M:=\left\{\varphi \in H^{1}(\Omega), u(a)=0\right\}$ such that

$$
\int_{\Omega} u^{\prime} \varphi^{\prime}=\int_{\Omega} f \varphi, \quad \forall \varphi \in M
$$

(b) Prove that the above function u is the unique solution to the equation

$$
\begin{cases}-u^{\prime \prime}=f & \text { in } D^{\prime}(\Omega), \\ u(a)=0, & u^{\prime}(b)=0 .\end{cases}
$$

Partial Differential Equations

Homework Sheet 9
(Discussed on 12.1.2022)

We only consider real-valued functions.
E9.1. Let Ω be an open, bounded domain in $\mathbb{R}^{d}(d \geq 1)$ with C^{1}-boundary. Let $u \in H_{0}^{1}(\Omega)$ and $f \in L^{2}(\Omega)$. Prove that the following statements are equivalent:
(1) $-\Delta u=f$ in $\mathcal{D}^{\prime}(\Omega)$.
(2) For all $\varphi \in H_{0}^{1}(\Omega)$ we have

$$
\int_{\Omega} \nabla u(x) \cdot \nabla \varphi(x) \mathrm{d} x=\int_{\Omega} f(x) \varphi(x) \mathrm{d} x .
$$

(3) u is a minimizer for the variational problem

$$
E=\inf _{v \in H_{0}^{1}(\Omega)}\left(\frac{1}{2} \int_{\Omega}|\nabla v(x)|^{2} \mathrm{~d} x-\int_{\Omega} f(x) v(x) \mathrm{d} x\right) .
$$

Hint: You may adapt the proof of Dirichlet's principle to weak solutions.
E9.2. Recall that $Q=\left\{\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d-1} \times \mathbb{R}:\left|x^{\prime}\right|<1,\left|x_{d}\right|<1\right\}$ and

$$
Q_{+}=Q \cap\left\{x_{d}>0\right\}, \quad Q_{-}=Q \cap\left\{x_{d}<0\right\}, \quad Q_{0}=Q \cap\left\{x_{d}=0\right\} .
$$

For every function $u \in H^{1}\left(Q_{+}\right)$, define the extension $B u: Q \rightarrow \mathbb{R}$ as

$$
B u(x)=\left\{\begin{array}{l}
u(x), \quad \forall x \in Q_{+}, \\
u\left(x^{\prime},-x_{d}\right), \quad \forall x=\left(x^{\prime}, x_{d}\right) \in Q_{-} .
\end{array}\right.
$$

(a) Prove that for every $i \in\{1,2, \ldots, d-1\}$ we have

$$
\partial_{i} B u(x)=\left\{\begin{array}{l}
\left(\partial_{i} u\right)(x), \quad \forall x \in Q_{+}, \\
\left(\partial_{i} u\right)\left(x^{\prime},-x_{d}\right), \quad \forall x=\left(x^{\prime}, x_{d}\right) \in Q_{-} .
\end{array}\right.
$$

(From this and the computation of $\partial_{d}(B u)$ in the lecture we obtain $B u \in H^{1}(Q)$.)
(b) Find an example where $u \in H^{2}\left(Q_{+}\right)$but $B u \notin H^{2}(Q)$.

Partial Differential Equations

Homework Sheet 8
(Discussed on 14.12.2021)

E8.1. Let $u \in W_{\text {loc }}^{1,1}\left(\mathbb{R}^{d}\right)$. Let

$$
B=u^{-1}(\{0\})=\left\{x \in \mathbb{R}^{d}: u(x)=0\right\} .
$$

Prove that $\nabla u(x)=0$ for a.e. $x \in B$.
Remark: This result holds if \mathbb{R}^{d} is replaced by an open set Ω. Moreover, if u is real-valued, we may replace $u^{-1}(\{0\})$ by $u^{-1}(A)$ for any Borel set $A \subset \mathbb{R}$ of zero measure.

E8.2. Let Ω and U be two open, bounded subsets of $\mathbb{R}^{d}(d \geq 1)$ such that $U \cap \Omega$ is non-empty. Let $\chi \in C_{c}^{\infty}(U)$ and $u \in W_{0}^{1, p}(\Omega)$ for some $1 \leq p<\infty$. Prove that $\chi u \in W_{0}^{1, p}(U \cap \Omega)$. Recall the definition $W_{0}^{1, p}(\Omega)=\overline{C_{c}^{\infty}(\Omega)}{ }^{\|\cdot\|_{W^{1, p}(\Omega)}}$.

E8.3. Let Ω and U be two open, bounded subsets of $\mathbb{R}^{d}(d \geq 1)$ such that there is a C^{1}-diffeomorphism $h: \bar{U} \rightarrow \bar{\Omega}$. Prove that if $y \mapsto u(y) \in W_{0}^{1, p}(\Omega)$ for some $1 \leq p<\infty$, then $x \mapsto u(h(x)) \in W_{0}^{1, p}(U)$.

E8.4. (Partition of unity) Let Γ be a compact subset of $\mathbb{R}^{d}(d \geq 1)$ and let $\left\{U_{i}\right\}_{i=1}^{N}$ be open subsets of \mathbb{R}^{d} such that

$$
\Gamma \subset \bigcup_{i=1}^{N} U_{i} .
$$

Prove that there exist functions $\left\{\chi_{i}\right\}_{i=0}^{N} \subset C^{\infty}\left(\mathbb{R}^{d}\right)$ such that
(1) $\chi_{i} \geq 0$ for all i and $\sum_{i=0}^{N} \chi_{i}=1$;
(2) $\operatorname{supp} \chi_{i} \subset U_{i}$ for all $i=1,2, \ldots, N$;
(3) supp $\chi_{0} \subset \mathbb{R}^{d} \backslash \Gamma$.

Partial Differential Equations

Homework Sheet 7
(Discussed on 8.12.2021)

E7.1. Let Ω be an open, bounded domain in \mathbb{R}^{d} with C^{1}-boundary. Assume that for every $x \in \Omega$, there exists a solution $\phi_{x} \in C^{2}(\bar{\Omega})$ to

$$
\left\{\begin{array}{l}
\Delta_{y} \phi_{x}(y)=0, \quad \forall y \in \Omega, \\
\phi_{x}(y)=G(y-x), \quad \forall y \in \partial \Omega
\end{array}\right.
$$

where G is the fundamental solution of Laplace's equation in \mathbb{R}^{d}. Prove that

$$
\phi_{x}(y)=\phi_{y}(x), \quad \forall x, y \in \Omega .
$$

E7.2. Recall $\mathbb{R}_{+}^{d}=\left\{x=\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d-1} \times \mathbb{R}: x_{d}>0\right\}$ and Poisson's kernel

$$
K(x, y)=\frac{2}{d\left|B_{1} \| x-y\right|^{d}}, \quad \forall x \in \mathbb{R}_{+}^{d}, \quad \forall y \in \partial \mathbb{R}_{+}^{d} .
$$

Prove that for every $x \in \mathbb{R}_{+}^{d}$ we have

$$
\int_{\partial \mathbb{R}_{+}^{d}} K(x, y) \mathrm{d} y=1 .
$$

(You may try the case $d=2$ first.)
E7.3. Let $g \in C\left(\partial \mathbb{R}_{+}^{\boldsymbol{d}}\right) \cap L^{\infty}\left(\partial \mathbb{R}_{+}^{d}\right)$ satisfy $g(x)=|x|$ if $x \in \partial \mathbb{R}_{+}^{d} \cap B(0,1)$. Let

$$
u(x)=\int_{\partial \mathbb{R}_{+}^{d}} K(x, y) g(y) \mathrm{d} y, \quad \forall x \in \mathbb{R}_{+}^{d}
$$

with the above Poisson's kernel $K(x, y)$. Prove that $|\nabla u(x)|$ is unbounded in $\mathbb{R}_{+}^{d} \cap B(0, r)$ for every $r>0$. Here $B(0, r)$ is the open ball in \mathbb{R}^{d}.

Partial Differential Equations

Homework Sheet 6
(Discussed on 1.12.2021)

E6.1. Let $\chi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and $f \in W^{1, p}\left(\mathbb{R}^{d}\right)$. Prove that $\chi f \in W^{1, p}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{i}(\chi f)(x)=\left(\partial_{i} \chi\right)(x) f(x)+\chi(x) \partial_{i} f(x) \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)
$$

for all $i=1,2, \ldots, d$.
E6.2. Let $f \in L^{p}\left(\mathbb{R}^{2}\right)$ be compactly supported. Let $G(x)=-\frac{1}{2 \pi} \ln |x|$ be the fundamental solution of Laplace's equation. Prove that:
(a) If $p=1$, then $G * f \in L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{2}\right)$ for all $q<\infty$.
(b) If $p>2$, then $G * f \in C^{1, \alpha}\left(\mathbb{R}^{2}\right)$ for all $0<\alpha<1-2 / p$.

Hint: This low regularity result has been discussed in the lecture for $d \geq 3$. Here you need to adapt the proof to $d=2$.

E6.3. Let Ω be an open subset of \mathbb{R}^{d}. Let $f \in C_{\mathrm{loc}}^{0, \alpha}(\Omega)$ for some $0<\alpha<1$.
(a) Prove that for every open ball $B \subset \bar{B} \subset \Omega$, there exists a function $f_{B} \in C^{0, \alpha}\left(\mathbb{R}^{d}\right)$ such that f_{B} is compactly supported and $f_{B}(x)=f(x)$ for all $x \in B$.
(b) Prove that if $u \in \mathcal{D}^{\prime}(\Omega)$ satisfies

$$
-\Delta u=f \quad \text { in } \mathcal{D}^{\prime}(\Omega),
$$

then $u \in C_{\mathrm{loc}}^{2, \alpha}(\Omega)$.
Hint: For (b) you can use the result that $G * f_{B} \in C^{2, \alpha}\left(\mathbb{R}^{d}\right)$.
E6.4. Assume that $u, f \in L^{2}\left(\mathbb{R}^{d}\right)$ and

$$
-\Delta u=f \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right) .
$$

Prove that $u \in W^{2,2}\left(\mathbb{R}^{d}\right)$ and

$$
\|u\|_{W^{2,2}\left(\mathbb{R}^{d}\right)} \leq C\left(\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}\right) .
$$

Here the constant $C=C_{d}$ is independent of u and f.
Hint: You can use the Fourier transform.

Partial Differential Equations

Homework Sheet 5

(Discussed on 24.11.2021)

E5.1. Prove that if f is a harmonic function in \mathbb{R}^{d} and $g \in C_{c}\left(\mathbb{R}^{d}\right)$ is radial, then

$$
\int_{\mathbb{R}^{d}} f(x) g(x) \mathrm{d} x=f(0) \int_{\mathbb{R}^{d}} g(x) \mathrm{d} x
$$

E5.2. Let $1 \leq p<\infty$. Let $\Omega \subset \mathbb{R}^{d}$ be open. Consider the Sobolev space

$$
W^{1, p}(\Omega)=\left\{f \in L^{p}(\Omega): \partial_{x_{i}} f \in L^{p}(\Omega), \forall i=1,2, \ldots, d\right\}
$$

with the norm

$$
\|f\|_{W^{1, p}}=\|f\|_{L^{p}}+\sum_{i=1}^{d}\left\|\partial_{x_{i}} f\right\|_{L^{p}(\Omega)} .
$$

Prove that $W^{1, p}(\Omega)$ is a Banach space. Here $x=\left(x_{i}\right)_{i=1}^{d} \in \mathbb{R}^{d}$.
Hint: You can use the fact that $L^{p}(\Omega)$ is a Banach space.

E5.3. Let f be a real-valued function in $W^{1, p}\left(\mathbb{R}^{d}\right)$ for some $1 \leq p<\infty$. Prove that $|f| \in W^{1, p}\left(\mathbb{R}^{d}\right)$ and

$$
(\nabla|f|)(x)= \begin{cases}\nabla f(x), & \text { if } f(x)>0 \\ -\nabla f(x), & \text { if } f(x)<0 \\ 0, & \text { if } f(x)=0\end{cases}
$$

Hint: You can use the chain rule for $G_{\varepsilon}(f)$ with $G_{\varepsilon}(t)=\sqrt{\varepsilon^{2}+t^{2}}-\varepsilon \rightarrow|t|$ as $\varepsilon \rightarrow 0$.

E5.4. Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded. Let $f \in L^{1}(\Omega)$. Let G be the fundamental solution of Laplace equation in \mathbb{R}^{d}. Define

$$
u(x)=\int_{\Omega} G(x-y) f(y) \mathrm{d} y, \quad \forall x \in \mathbb{R}^{d}
$$

Prove that $u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ and $-\Delta u=f$ in $D^{\prime}(\Omega)$.
Hint: In the lecture we already discussed the case $\Omega=\mathbb{R}^{d}$. Here you need to consider a general bounded domain.

E5.5. Let $B=B(0,1 / 2) \subset \mathbb{R}^{3}$. Consider $u: B \rightarrow \mathbb{R}$ defined by

$$
u(x)=\ln (|\ln | x| |)
$$

Prove that the distributional derivative $f=-\Delta u$ is a function in $L^{3 / 2}(B)$.

Partial Differential Equations

Homework Sheet 4
(Discussed on 17.11.2021)

E4.1. Prove that if $T_{n} \rightarrow T$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, then $D^{\alpha} T_{n} \rightarrow D^{\alpha} T$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ for all $\alpha=\left(\alpha_{j}\right)_{j=1}^{d}$.
E4.2. Let δ_{x} be the Dirac delta function in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Prove that

$$
\left(D^{\alpha} \delta_{x}\right)(\varphi)=(-1)^{|\alpha|}\left(D^{\alpha} \varphi\right)(x), \quad \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), \quad \forall \alpha=\left(\alpha_{j}\right)_{j=1}^{d} .
$$

E4.3. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ satisfy $\int_{\mathbb{R}^{d}} f=1$. For every $\varepsilon>0$, denote $f_{\varepsilon}(x)=\varepsilon^{-d} f\left(\varepsilon^{-1} x\right)$. Prove that $f_{\varepsilon} \rightarrow \delta_{0}$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ when $\varepsilon \rightarrow 0$.

E4.4. Let $\left\{f_{n}\right\} \subset L^{1}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{supp} f_{n} \subset B(0,1)$ for all $n \geq 1$ and

$$
f_{n} \rightarrow f \quad \text { in } L^{1}\left(\mathbb{R}^{d}\right)
$$

as $n \rightarrow \infty$. Prove that for every $g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
f_{n} * g \rightarrow f * g \quad \text { in } \mathcal{D}\left(\mathbb{R}^{d}\right) .
$$

E4.5. Compute the distributional derivatives $f^{\prime}, f^{\prime \prime} \in \mathcal{D}^{\prime}(\mathbb{R})$ of the function

$$
f(x)=x|x-1|, \quad x \in \mathbb{R} .
$$

Partial Differential Equations

Homework Sheet 3
(Discussed on 10.11.2021)

E3.1. (Lebesgue Differentiation Theorem) Let $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$. Prove that for almost every $x \in \mathbb{R}^{d}$ we have

$$
\lim _{r \rightarrow 0} f_{B(x, r)}|f(x)-f(y)| \mathrm{d} y=0 .
$$

E3.2. Let $1 \leq p, q, r \leq 2$ satisfy

$$
\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r} .
$$

Recall that if $f \in L^{p}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right)$, then $f * g \in L^{r}\left(\mathbb{R}^{d}\right)$ by Young's inequality, and its Fourier transform is well-defined by the Hausdorff-Young inequality. Prove that

$$
\widehat{f * g}(k)=\widehat{f}(k) \widehat{g}(k) \quad \text { for a.e. } k \in \mathbb{R}^{d} \text {. }
$$

Hint: In the lecture we already discussed the case $f, g \in C_{c}\left(\mathbb{R}^{d}\right)$.
E3.3. Prove that if $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then for all $N \geq 1$ we have

$$
|\widehat{f}(k)| \leq \frac{C_{N}}{(1+|k|)^{N}}, \quad \forall k \in \mathbb{R}^{d}
$$

where the constant $C_{N}>0$ is independent of k.
E3.4. Prove that the Fourier transform of a Gaussian in \mathbb{R}^{d} is

$$
\mathcal{F}\left(e^{-\pi|x|^{2}}\right)=e^{-\pi|k|^{2}},
$$

and more generally

$$
\mathcal{F}\left(e^{-\pi \lambda^{2}|x|^{2}}\right)=\lambda^{-d} e^{-\pi|k|^{2} / \lambda^{2}}, \quad \forall \lambda>0 .
$$

Hint: For $d=1$, you can show that the function

$$
\int_{\mathbb{R}} e^{-\pi(x+i k)^{2}} \mathrm{~d} x
$$

is independent of $k \in \mathbb{R}$.

Partial Differential Equations

Homework Sheet 2
(Discussed on 03.11.2021)

E2.1. Let $u \in C^{2}\left(\mathbb{R}^{d}\right)$ and let $H(x)=\left(D^{\alpha} u(x)\right)_{|\alpha|=2}$ be the Hessian matrix of u, namely

$$
H_{i j}(x)=\partial_{x_{i}} \partial_{x_{j}} u(x), \quad \forall i, j \in\{1,2, \ldots, d\}, \quad \forall x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} .
$$

Assume that u is convex, namely

$$
u(t x+(1-t) y) \leq t u(x)+(1-t) u(y), \quad \forall t \in[0,1], \quad \forall x, y \in \mathbb{R}^{d} .
$$

(a) Prove that for every $x \in \mathbb{R}^{d}$, the Hessian matrix $H(x)$ is positive semidefinite.
(b) Prove that u is sub-harmonic in \mathbb{R}^{d}.

E2.2. (Newton's theorem) Let $d \geq 3$.
(a) Prove that for all $r>0$ and $x \in \mathbb{R}^{d}$, we have

$$
f_{\partial B(x, r)} \frac{\mathrm{d} S(y)}{|y|^{d-2}}=\frac{1}{\max (|x|, r)^{d-2}}
$$

where $\mathrm{d} S(y)$ is the surface measure on the sphere $\partial B(x, r) \subset \mathbb{R}^{d}$.
(b) Let $0 \leq f_{1}, f_{2} \in L^{1}\left(\mathbb{R}^{d}\right)$ be radial functions with $\int_{\mathbb{R}^{d}} f_{i}=M_{i}$. Prove that for all $z_{1}, z_{2} \in \mathbb{R}^{d}$ we have

$$
\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{f_{1}\left(x-z_{1}\right) f_{2}\left(y-z_{2}\right)}{|x-y|^{d-2}} \mathrm{~d} x \mathrm{dy} \leq \frac{M_{1} M_{2}}{\left|z_{1}-z_{2}\right|^{d-2}}
$$

Moreover, prove that we have the equality if f_{1}, f_{2} are compactly supported and $\left|z_{1}-z_{2}\right|$ is sufficiently large.

Hint: For (a) you may use the mean-value theorem (the function $1 /|x|^{d-2}$ is harmonic in Ω if $0 \notin \Omega$). For (b) you may use (a) and polar coordinates.

E2.3. Prove Young's inequality

$$
\|f * g\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{d}\right)}
$$

for all $d \geq 1$ and for all $1 \leq p, q, r \leq \infty$ satisfying

$$
\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r} .
$$

Partial Differential Equations

Homework Sheet 1
(Discussed on 27.10.2021)

E1.1. (Gauss-Green formula) Let $f=\left(f_{i}\right)_{i=1}^{d} \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$. Prove that for every open ball $B \subset \mathbb{R}^{d}$ we have

$$
\int_{\partial B} f(y) \cdot \vec{n}_{y} \mathrm{~d} S(y)=\int_{B} \operatorname{div}(f)(x) \mathrm{d} x .
$$

Here \vec{n} is the outward unit normal vector and $d S$ is the surface measure on the sphere.

E1.2. Assume that $u \in C\left(\mathbb{R}^{d}\right)$ and $\int_{B} u=0$ for every open ball $B \subset \mathbb{R}^{d}$. Prove that $u(x)=0$ for all $x \in \mathbb{R}^{d}$.

E1.3. Let $f \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ with $d \geq 2$. Let

$$
u(x)=(\Phi * f)(x)=\int_{\mathbb{R}^{d}} \Phi(x-y) f(y) \mathrm{d} y
$$

where Φ is the fundamental solution of Laplace equation in \mathbb{R}^{d}. Prove that $u \in C^{2}\left(\mathbb{R}^{d}\right)$ and $-\Delta u(x)=f(x)$ for all $x \in \mathbb{R}^{d}$. (The proof for $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$ was already discussed in the lecture. Here you need to verify the extension to $f \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$.)

E1.4. Let Ω be an open subset of \mathbb{R}^{d}. Let $u \in C^{2}(\Omega)$ and $\Delta u \geq 0$ (namely u is a subharmonic function).
(a) Prove that u satisfies the mean-value inequality

$$
f_{\partial B(x, r)} u(y) \mathrm{d} S(y) \geq f_{B(x, r)} u(y) \mathrm{d} y \geq u(x)
$$

for all $x \in B(x, r) \subset \Omega$.
(b) Assume further that Ω is connected and $u \in C(\bar{\Omega})$. Prove that u satisfies the strong maximum principle, namely either

- u is a constant in Ω, or
- $\sup _{y \in \partial \Omega} u(y)>u(x)$ for all $x \in \Omega$.

