Partial Differential Equations II

Homework Sheet 10
(Discussed on 18.7.2022)

E10.1 Let $\varphi \in H^{1}\left(\mathbb{R}^{d}\right)$ and $J_{n}=\mathbb{1}(-\Delta \leq n)$. Prove that $J_{n} \varphi \rightarrow \varphi$ strongly in $L^{p}\left(\mathbb{R}^{d}\right)$ for all $2<p<2^{*}$. Here $2^{*}=2 d /(d-2)$ if $d \geq 3$ and $2^{*}=\infty$ if $d \leq 2$.

E10.2 Let $F(t)=e^{i t \Delta}$ on $L^{2}\left(\mathbb{R}^{d}\right)$. By a modification of the analysis of $\Phi_{f}(t)=\int_{0}^{t} F(t-$ $s) f(s) \mathrm{d} s$ from the lecture, we can also show that if (q, r) is admissible and $q>2$, then

$$
\left\|\int_{\mathbb{R}} F(\cdot-s) f(s) \mathrm{d} s\right\|_{L_{t}^{q} L_{x}^{r}} \leq C\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}}
$$

(a) Use this bound to show that

$$
\left\|\int_{\mathbb{R}} F(t) f(t) \mathrm{d} t\right\|_{L_{x}^{2}} \leq C\|f\|_{L_{t}^{q^{\prime}} L_{x}^{r^{\prime}}}
$$

(b) Deduce the first Strichartz estimate

$$
\|F(t) \varphi\|_{L_{t}^{q} L_{x}^{r}} \leq C\|\varphi\|_{L_{x}^{2}}
$$

Hint: You can mimic the duality used in Step 2 and Step 3 of the analysis of $\Phi_{f}(t)$.
E10.3 Let $\varphi \in H^{1}\left(\mathbb{R}^{d}\right)$ and $u(t)=e^{i t \Delta} \varphi$.
(a) Prove that

$$
\|u(t)-u(s)\|_{L_{x}^{2}} \leq C|t-s|^{1 / 2}, \quad \forall t, s \in \mathbb{R}
$$

(b) Let (q, r) be admissible with $2<r<2^{*}$. Prove that

$$
\|u(t)-u(s)\|_{L_{x}^{r}} \leq C|t-s|^{1 / 2-1 / q}, \quad \forall t, s \in \mathbb{R}
$$

(c) Deduce from (b) and the Strichartz estimate (in E10.1 (b)) that $\|u(t)\|_{L_{x}^{r}} \rightarrow 0$ as $|t| \rightarrow \infty$. Can you prove this convergence directly without using the Strichartz estimate?

Partial Differential Equations II

Homework Sheet 9
(Discussed on 11.7.2022)

E9.1 Let $u \in H^{1}\left(\mathbb{R}^{3}\right)$ be a radial, positive solution to the equation

$$
-\Delta u(x)+u(x)=u^{3}(x), \quad x \in \mathbb{R}^{3} .
$$

(a) Prove that u is continuous.
(b) Prove that u decays faster than any polynomial, namely for every $n \in \mathbb{N}$, there exists a constant $C_{n}>0$ such that

$$
u(x) \leq \frac{C_{n}}{(1+|x|)^{n}}, \quad \forall x \in \mathbb{R}^{3}
$$

Hint: $G(x)=e^{-|x|} /(4 \pi|x|)$ is the 3D Yukawa potential, namely $\hat{G}(k)=\left(1+|2 \pi k|^{2}\right)^{-1}$.

E9.2 Let $d \geq 1,2<p<\infty$ and $f(u)=|u|^{p-2} u$.
(a) For every $n \in \mathbb{N}$, define the operator $J_{n}=\mathbb{1}(-\Delta \leq n)$ on $L^{2}\left(\mathbb{R}^{d}\right)$. Prove that there exists a constant $C=C_{d, p, n}>0$ such that

$$
\left\|f\left(J_{n} u\right)-f\left(J_{n} v\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C\|u-v\|_{L^{2}\left(\mathbb{R}^{d}\right)}\left(\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|v\|_{L^{2}\left(\mathbb{R}^{d}\right)}\right)^{p-1}
$$

for all $u, v \in L^{2}\left(\mathbb{R}^{d}\right)$.
(b) Assume further that $2(p-1)<2^{*}$, with $2^{*}=2 d /(d-2)$ if $d \geq 3$ and $2^{*}=-\infty$ if $d=1,2$. Prove that there exist constants $C=C_{d, p}>0$ and $\alpha \in(0,1)$ such that

$$
\|f(u)-f(v)\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C\|u-v\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\alpha}\left(\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}+\|v\|_{H^{1}\left(\mathbb{R}^{d}\right)}\right)^{p-\alpha}
$$

for all $u, v \in H^{1}\left(\mathbb{R}^{d}\right)$.
Hint: Sobolev's embedding theorem and the bound in E5.2 are helpful.

E9.3 (Grönwall's lemma) Let $0<\alpha<1$ and $T>0$. Prove or disprove the following: If $f, g:[0, T] \rightarrow[0, \infty)$ are continuous and satisfy

$$
f(t) \leq \int_{0}^{t} g(s) f^{\alpha}(s) \mathrm{d} s, \quad \forall t \in[0, T]
$$

then $f(t)=0$ for all $t \in[0, T]$.

Partial Differential Equations II

Homework Sheet 8
(Discussed on 4.7.2022)
We consider a generalization of the method of moving planes to nonlinear PDE.
Let $0 \leq u \in H^{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$ be a weak solution of the equation

$$
-\Delta u(x)+\mu^{2} u(x)=f(u(x)), \quad x \in \mathbb{R}^{d} .
$$

Here $\mu>0$ is a constant and $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies that $f \in C^{1}$ and

$$
0<f^{\prime}(b) \leq C b^{\alpha}, \quad \forall b>0
$$

with some constants $C>0$ and $0<\alpha<2^{*}-2$.
Recall that $2^{*}=2 d /(d-2)$ if $d \geq 3$ and $2^{*}=-\infty$ if $d=1,2$.
E8.1 Let G be the Yukawa potential, namely

$$
\hat{G}(k)=\left(|2 \pi k|^{2}+\mu^{2}\right)^{-1} .
$$

Prove that we can write

$$
G(x)=\int_{0}^{\infty} \frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{|x|^{2}}{4 t}-\mu^{2} t} \mathrm{~d} t .
$$

Deduce that G is radially symmetric decreasing and $G \in L^{p}\left(\mathbb{R}^{d}\right)$ for $1 \leq p<2^{*} / 2$.
E8.2 For every $a \in \mathbb{R}$, denote

$$
x_{a}=\left(2 a-x_{1}, x_{2}, \ldots, x_{d}\right), \quad u_{a}(x)=u\left(x_{a}\right), \quad \forall x=\left(x_{1}, \ldots, x_{d}\right),
$$

namely x_{a} is the reflection of x via the hyperplane $\left\{x_{1}=a\right\}$. Prove that

$$
u(x)-u_{a}(x)=\int_{\left\{y_{1}>a\right\}}\left(G(x-y)-G\left(x_{a}-y\right)\right)\left(f(u(y))-f\left(u_{a}(y)\right)\right) \mathrm{d} y .
$$

E8.3 Prove that if a is sufficiently negative, then $u(x) \geq u_{a}(x), \quad \forall x \in\left\{x_{1} \geq a\right\}$.
E8.4 Prove that the set $A=\left\{a \in \mathbb{R}: u(x) \geq u_{a}(x), \forall x \in\left\{x_{1} \geq a\right\}\right\}$ has a maximal value a_{0}. Deduce that

$$
u(x)=u_{a_{0}}(x), \quad \forall x \in \mathbb{R}^{d} .
$$

E8.5 Conclude that u is radial up to translation, namely there exists $x_{0} \in \mathbb{R}^{d}$ and U : $[0, \infty) \rightarrow[0, \infty)$ such that

$$
u(x)=U\left(\left|x-x_{0}\right|\right), \quad \forall x \in \mathbb{R}^{d} .
$$

Partial Differential Equations II

Homework Sheet 7

(Discussed on 27.6.2022)

E7.1 Let $F \subset \mathbb{R}^{d}, d \geq 1$, be a compact set such that its Lebesgue measure satisfies

$$
|F|>\left|F \cap F^{*}\right| .
$$

(a) Let $f=\mathbb{1}_{F^{*}}-\mathbb{1}_{F \cap F^{*}}, g=\mathbb{1}_{F}-\mathbb{1}_{F \cap F^{*}}$. Prove that there exists $x_{0} \in \mathbb{R}^{d} \backslash\{0\}$ s.t.

$$
\int_{\mathbb{R}^{d}} f\left(x_{0}-y\right) g(-y) \mathrm{d} y>0 .
$$

(b) Let $e=x_{0} /\left\|x_{0}\right\|$ with x_{0} being given in (a). Prove that

$$
\left|F^{* e} \cap F^{*}\right|>\left|F \cap F^{*}\right| .
$$

Here F^{*} is the radially symmetric decreasing rearrangement of F, and $F^{* e}$ is the Steiner symmetrization of F with respect to the direction e.

E7.2 Let A and B be nonempty open bounded sets in $\mathbb{R}^{d}, d \geq 1$. We denote

$$
A+B:=\{x+y \mid x \in A, y \in B\} .
$$

(a) Prove that $A+B=\left\{x \in \mathbb{R}^{d}:\left(\mathbb{1}_{A} * \mathbb{1}_{B}\right)(x)>0\right\}$.
(b) Prove that $A^{*}+B^{*} \subset(A+B)^{*}$.
(c) Use Riesz' rearrangement inequality to prove the Brunn-Minkowski inequality

$$
|A+B|^{1 / d} \geq|A|^{1 / d}+|B|^{1 / d} .
$$

E7.3 Let $A \subset \mathbb{R}^{d}$ be an open bounded set with C^{1} boundary. Use the Brunn-Minkowski inequality to prove the isoperimetric inequality

$$
|\partial A| \geq\left|\partial\left(A^{*}\right)\right| .
$$

Hint: The surface area of A can be computed as

$$
|\partial A|=\lim _{r \rightarrow 0^{+}} \frac{|A+r B|-|A|}{r} \quad \text { with } B \text { the unit ball in } \mathbb{R}^{d} \text {. }
$$

E7.4 Use the Hardy-Littlewood-Sobolev inequality to prove Sobolev's inequality:

$$
\|u\|_{L^{2^{*}}} \leq C\|\nabla u\|_{L^{2}}, \quad \forall u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

Here $d \geq 3$ and $2^{*}=2 d /(d-2)$.

Partial Differential Equations II

Homework Sheet 6
(Discussed on 13.6.2022)

E6.1 Let $d \geq 3$ and $p=2^{*}=2 d /(d-2)$.
(a) Prove that if $0 \leq u \in \dot{H}^{1}\left(\mathbb{R}^{d}\right)$ be an optimizer of the Sobolev inequality

$$
\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \geq E\|u\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

then it solves the Euler-Lagrange equation

$$
-\Delta u(x)=c u^{p-1}(x), \quad \text { a.e. } x \in \mathbb{R}^{d}
$$

for some constant $c>0$.
(b) Prove that $h(x)=\left(1+|x|^{2}\right)^{-\alpha}$ with $\alpha=\frac{d-2}{2}$ is a solution of the above equation (for some c).

E6.2 Let $d \geq 3$. Prove that there exists a unique number $\lambda>0$ such that the following (i)-(ii) hold:
(i) We have

$$
\int_{\mathbb{R}^{d}}\left(|\nabla u|^{2}+V|u|^{2}\right) \geq 0, \quad \forall u \in \dot{H}^{1}\left(\mathbb{R}^{d}\right), \quad \forall\|V\|_{L^{d / 2}\left(\mathbb{R}^{d}\right)}=\lambda
$$

(ii) There exists $\|V\|_{L^{d / 2}\left(\mathbb{R}^{d}\right)}=\lambda$ and $0 \not \equiv u \in \dot{H}^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\int_{\mathbb{R}^{d}}\left(|\nabla u|^{2}+V|u|^{2}\right)=0
$$

Compute λ in terms of E given in E5.1(a).

E6.3 Prove that for all $d \geq 3$ and $u \in \dot{H}^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\int_{\mathbb{R}^{d}}|\nabla u|^{2} \geq 2 d(d-2) \int_{\mathbb{R}^{d}} \frac{|u(x)|^{2}}{1+|x|^{2}} \mathrm{~d} x
$$

Moreover, the equality occurs if and only if $u=z h$ with a constant z and with h given in E5.1(b).

Hint: You can use the Perron-Frobenius principle.

E6.4 Let B be the closed unit ball in \mathbb{R}^{d} and let $f: B \rightarrow B$ be a continuous function. Assume that there exists a constant $\varepsilon \in(0,1)$ such that

$$
x \cdot f(x) \geq \varepsilon, \quad \forall 1-\varepsilon \leq|x| \leq 1
$$

Prove that the equation $f(y)=0$ has a solution $y \in B$.
Hint: You can apply Brouwer's fixed-point theorem for $g(x)=x-\delta f(x)$ with some $\delta>0$.

Partial Differential Equations II

Homework Sheet 5
(Discussed on 30.5.2022)

E5.1 Prove that for every $\alpha, \varepsilon \in(0,1)$, there exists a constant $\delta=\delta(\alpha, \varepsilon)>0$ such that

$$
a^{\alpha}+b^{\alpha} \geq(1+\delta)(a+b)^{\alpha}, \quad \forall a, b \in[\varepsilon, 1] .
$$

E5.2 (a) Let $2^{*}=d /(d-2)$ if $d \geq 3$ and $2^{*}=\infty$ if $d \leq 2$. Prove that for every $d \geq 1$ and every $2<p<2^{*}$, there exists a unique parameter $\theta \in(0,1)$ such that

$$
E:=\inf \left\{\left.\frac{\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\theta}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1-\theta}}{\|u\|_{L^{p}\left(\mathbb{R}^{d}\right)}} \right\rvert\, u \in H^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}\right\}>0 .
$$

(b) Prove that E has an optimizer.

Hint: For (a) you can use the Sobolev inequality $\|u\|_{H^{1}} \geq C\|u\|_{L^{p}}$ and a scaling argument (c.f. E3.1). For (b), you can use the existence of optimizers for $\|u\|_{H^{1}} \geq C\|u\|_{L^{p}}$.

E5. 3 (Helly's selection theorem) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions $\mathbb{R} \rightarrow[0,1]$ such that $t \mapsto f_{n}(t)$ is increasing for every n. Prove that there exists a subsequence $f_{n_{k}}$ and a function $f_{\infty}: \mathbb{R} \rightarrow[0,1]$ such that

$$
\lim _{k \rightarrow \infty} f_{n_{k}}(t)=f_{\infty}(t), \quad \forall t \in \mathbb{R} .
$$

E5.4 Let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of Borel probability measures on $\mathbb{R}^{d}, d \geq 1$. Let μ be a Borel finite measure on \mathbb{R}^{d} such that $\mu_{n} \rightharpoonup \mu$ weakly in $\left(C_{c}\left(\mathbb{R}^{d}\right)\right)^{*}$, namely

$$
\int_{\mathbb{R}^{d}} f \mathrm{~d} \mu_{n} \rightarrow \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu, \quad \forall f \in C_{c}\left(\mathbb{R}^{d}\right)
$$

Prove that the following three statements are equivalent:
(a) $\mu\left(\mathbb{R}^{d}\right)=1$
(b) $\mu_{n} \rightharpoonup \mu$ weakly in $\left(C_{b}\left(\mathbb{R}^{d}\right)\right)^{*}$, namely

$$
\int_{\mathbb{R}^{d}} f \mathrm{~d} \mu_{n} \rightarrow \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu, \quad \forall f \in C_{b}\left(\mathbb{R}^{d}\right) .
$$

(c) The sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is tight, namely for every $\varepsilon>0$, there exists $R>0$ such that

$$
\liminf _{n \rightarrow \infty} \mu_{n}\left(B_{R}(0)\right) \geq 1-\varepsilon .
$$

Here $C_{c}\left(\mathbb{R}^{d}\right)$ is the space of continuous functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$ with compact support, and $C_{b}\left(\mathbb{R}^{d}\right)$ is the space of bounded continuous functions.

Partial Differential Equations II

Homework Sheet 4
(Discussed on 23.5.2022)

E4.1 (a) Prove that the constant

$$
a^{*}=\inf \left\{\left.\frac{\int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x}{\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|^{2}} \mathrm{~d} x \mathrm{~d} y}\left|u \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{3}}\right| u\right|^{2}=1\right\}
$$

is positive and finite.
(b) For $a \in \mathbb{R}$, consider the variational problem

$$
E=\inf \left\{\mathcal{E}(u): u \in H^{1}\left(\mathbb{R}^{3}\right), \int_{\mathbb{R}^{d}}|u|^{2}=1\right\}
$$

where

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{3}}|\nabla u(x)|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}}{|x|} \mathrm{d} x-\frac{a}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|u(x)|^{2}|u(y)|^{2}}{|x-y|^{2}} \mathrm{~d} x \mathrm{~d} y .
$$

Prove that $E=-\infty$ if $a \geq a^{*}$, and that E is finite and has a minimizer if $a<a^{*}$.
E4.2 Let $\{Q\}_{Q \in \mathcal{F}}$ be a collection of disjoint, unit cubes in $\mathbb{R}^{d}, d \geq 1$. Prove that for every $2 \leq p<2^{*}$ we have

$$
\sum_{Q \in \mathcal{F}}\|u\|_{L^{p}(Q)}^{2} \leq C\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}, \quad \forall u \in H^{1}\left(\mathbb{R}^{d}\right)
$$

for a constant $C=C_{d, p}$ independent of u. Here 2^{*} is the critical power in Sobolev's inequality (namely $2 d /(d-2)$ if $d \geq 3$, and ∞ if $d \leq 2$).

Partial Differential Equations II

Homework Sheet 3
(Discussed on 16.5.2022)

E3.1 Prove that there exists a constants $c>0$ such that

$$
\sup _{\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)=1}} \int_{\mathbb{R}^{2}}|u(x)|^{2} e^{c|u(x)|^{2}} \mathrm{~d} x<\infty .
$$

Deduce that for every $2<q<\infty$, there exist $C=C_{q}>0$ and $\theta=\theta_{q} \in(0,1)$ such that

$$
\|u\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{\theta}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1-\theta}, \quad \forall u \in H^{1}\left(\mathbb{R}^{d}\right) .
$$

E3.2 Let $d \geq 1$. Assume that $u_{n} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{d}\right)$ as $n \rightarrow \infty$. Prove that there exists a sequence $R_{n} \rightarrow \infty$ as $n \rightarrow \infty$ such that

$$
\mathbb{1}_{\left\{|x| \leq R_{n}\right\}} u_{n} \rightarrow u \quad \text { strongly in } L^{2}\left(\mathbb{R}^{d}\right) .
$$

Deduce that

$$
\int_{R_{n} / 2 \leq|x| \leq R_{n}}\left|u_{n}(x)\right|^{2} \mathrm{~d} x \rightarrow 0 .
$$

E3.3 Let $d \geq 1$. Let $w \in L^{\infty}\left(\mathbb{R}^{d}\right)+L^{p}\left(\mathbb{R}^{d}\right)$ with $p>(d / 2,1)$ and $w(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
Let $\left\{u_{n}\right\}$ and $\left\{R_{n}\right\}$ as in E3.2. Denote

$$
a_{n}=\mathbb{1}_{\left\{|x| \leq R_{n} / 2\right\}} u_{n}, \quad b_{n}=\mathbb{1}_{\left\{|x| \geq R_{n}\right\}} u_{n} .
$$

Prove that

$$
D\left(u_{n}\right)-D\left(a_{n}\right)-D\left(b_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where

$$
D(f)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|f(x)|^{2}|f(y)|^{2} w(x-y) \mathrm{d} x \mathrm{~d} y .
$$

E3.4 (IMS formula) Let $\varphi \in C^{1}\left(\mathbb{R}^{d}\right)$ be non-negative and bounded. Prove that

$$
\frac{\varphi^{2}(-\Delta)+(-\Delta) \varphi^{2}}{2}=\varphi(-\Delta) \varphi-|\nabla \varphi|^{2}
$$

as quadratic forms in $L^{2}\left(\mathbb{R}^{d}\right)$.

Partial Differential Equations II

Homework Sheet 2
(Discussed on 9.5.2022)

E2.1 Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $V \in L^{p}\left(\mathbb{R}^{2}\right)+L^{q}\left(\mathbb{R}^{2}\right)$ with $p, q \in(1, \infty)$. Assume that

$$
E=\inf \left\{\int_{\mathbb{R}^{2}}|\nabla u|^{2}+\int_{\mathbb{R}^{2}} V|u|^{2}: u \in H^{1}\left(\mathbb{R}^{2}\right), \int_{\mathbb{R}^{2}}|u|^{2}=1\right\}<0 .
$$

Prove that E has a minimizer.
E2.2 Let $V \in L^{d / 2}\left(\mathbb{R}^{d}\right), V \leq 0, V \not \equiv 0$ and $\lambda>0$. Consider the variational problem

$$
E=\inf \left\{\int_{\mathbb{R}^{d}}|\nabla u|^{2}+\lambda \int_{\mathbb{R}^{d}} V|u|^{2}: u \in H^{1}\left(\mathbb{R}^{d}\right), \int_{\mathbb{R}^{d}}|u|^{2}=1\right\} .
$$

(a) Prove that if $d \geq 3$, then E has a minimizer if λ is large enough, and E has no minimizer if λ is small enough.
(b) What happens if $d=2$?

E2.3 Let $d \geq 1$. Let $V, w: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $V_{-}, w \in L^{p}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ with $p>$ $\max (d / 2,1)$ and

$$
V(x) \rightarrow+\infty \quad \text { as } \quad|x| \rightarrow \infty .
$$

Prove that the following variational problem

$$
E=\inf \left\{\mathcal{E}(u): u \in H^{1}\left(\mathbb{R}^{d}\right),\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1\right\}
$$

has a minimizer, where

$$
\mathcal{E}(u)=\int_{\mathbb{R}^{d}}|\nabla u|^{2}+\int_{\mathbb{R}^{d}} V|u|^{2}+\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|u(x)|^{2}|u(y)|^{2} w(x-y) \mathrm{d} x \mathrm{~d} y .
$$

Partial Differential Equations II

Homework Sheet 1
(Discussed on 2.5.2022)

E1.1 (Brezis-Lieb's refinement of Fatou's lemma)
Let Ω be an open subset of $\mathbb{R}^{d}(d \geq 1)$ and let $1 \leq p<\infty$. Let $\left\{f_{n}\right\}_{n=1}^{d}$ be a bounded sequence in $L^{p}(\Omega)$ such that $f_{n}(x) \rightarrow f(x)$ a.e. Prove that

$$
\left.\lim _{n \rightarrow \infty} \int_{\Omega}| | f_{n}(x)\right|^{p}-|f(x)|^{p}-\left|f_{n}(x)-f(x)\right|^{p} \mid \mathrm{d} x=0
$$

Hint: For every $\varepsilon>0$ you may apply Dominated Convergence Theorem to

$$
g_{n, \varepsilon}=\left(\left|\left|f_{n}\right|^{p}-|f|^{p}-\left|f_{n}-f\right|^{p}\right|-\varepsilon\left|f_{n}-f\right|^{p}\right)_{+} \quad \text { with } \quad t_{+}=\max (t, 0) .
$$

E1.2 (Fourier representation of Sobolev spaces)
Let $d, s \in \mathbb{N}$. Recall the Hilbert space

$$
\left.H^{s}\left(\mathbb{R}^{d}\right)=\left\{f \in L^{2} \mathbb{R}^{d}\right): D^{\alpha} f \in L^{2}\left(\mathbb{R}^{d}\right), \quad \forall|\alpha| \leq s\right\} .
$$

Prove that

$$
\left.H^{s}\left(\mathbb{R}^{d}\right)=\left\{f \in L^{2} \mathbb{R}^{d}\right):\left(1+|2 \pi k|^{2}\right)^{s / 2} \hat{f}(k) \in L^{2}\left(\mathbb{R}^{d}\right)\right\} .
$$

E1.3 Recall that $C_{c}^{1}\left(\mathbb{R}^{d}\right)$ is dense in $H^{1}\left(\mathbb{R}^{d}\right)$ for all $d \geq 1$.
(a) Prove that if $d \geq 3$, then $C_{c}^{1}\left(\mathbb{R}^{d} \backslash\{0\}\right)$ is also dense in $H^{1}\left(\mathbb{R}^{d}\right)$. Is it true for $d=1,2$?
(b) In the lecture, by the Perron-Frobenius principle we proved that for all $u \in$ $C_{c}^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$

$$
\int_{\mathbb{R}^{3}}|\nabla u|^{2}-\int_{\mathbb{R}^{3}} \frac{|u|^{2}}{|x|} \geq-\frac{1}{4} \int_{\mathbb{R}^{3}}|u|^{2}
$$

and

$$
\int_{\mathbb{R}^{3}}|\nabla u|^{2} \geq \frac{1}{4} \int_{\mathbb{R}^{3}} \frac{|u|^{2}}{|x|^{2}} .
$$

Deduce the same bounds for all $u \in H^{1}\left(\mathbb{R}^{3}\right)$ using (a) and the density argument.
E1.4 (Sobolev inequalities in 1D)
(a) Using $\|u\|_{H^{1}(\mathbb{R})}^{2}=\int_{\mathbb{R}}\left(1+|2 \pi k|^{2}\right)|\hat{u}(k)|^{2} \mathrm{~d} k$ (see E1.2) to prove that

$$
\|u\|_{L^{\infty}(\mathbb{R})} \leq C\|u\|_{H^{1}(\mathbb{R})}, \quad \forall u \in H^{1}(\mathbb{R}) .
$$

(b) Using the scaling argument to deduce from (a) the following inequality

$$
\|u\|_{L^{\infty}(\mathbb{R})} \leq C\|u\|_{L^{2}(\mathbb{R})}\left\|u^{\prime}\right\|_{L^{2}(\mathbb{R})}, \quad \forall u \in H^{1}(\mathbb{R}) .
$$

Here $C>0$ is a universal constant.

