

Mathematisches Institut Prof. Dr. P. Müller

Klausur Donnerstag, 4. August 2011

Analysis 2

 $(Topologie\ und\ Differentialrechnung\ mehrerer\ Variablen)$ Klausur

Nachname:				Vorname: _		
Matrikelnr.:			Facl	semester: _		
Studiengang: Nebenfach:						
	timme der Ve er Matrikelm		g des Ergebi	nisses dieser	Klausur unt	er Angabe
	en Sie Ihr i ichtbild- und			0		sch; legen Sie
Bitte überpr	üfen Sie, ob	Sie sechs A u	ıfgaben erh	alten haben.		
	e bitte weder latt Ihren N				oder grün.	Schreiben Sie
ausreicht, ve	*	bitte die lee	ren Seiten a			er Platz nicht dies auf dem
Alle Lösunge	en oder Antw	orten müssen	hinreichend	detailliert b	egründet sei	in.
	Sie darauf, d ch, was nicht		_	nur eine Löst	ıng abgeben	; streichen Sie
Sie haben 12	20 Minuten	Zeit, um die	Klausur zu	bearbeiten.		
			Viel Erfolg!			
1	2	3	4	5	6	\sum

Name:	
manne.	

Aufgabe 1. (6 Punkte)

Berechne die folgenden eigentlichen oder uneigentlichen Integrale:

(a)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{\sin(x)} \cos(x) dx;$$
 (b) $\int_{0}^{\infty} x^{2} e^{-x} dx.$

Name:	
manne.	

Aufgabe 2. (6 Punkte)

Sei V der Vektorraum aller auf dem Intervall [0,1] definierten reellwertigen Polynome fhöchstens zweiten Grades. Welche der angegebenen Funktionen $p_j \colon V \to \mathbb{R}_{\geq 0}$ sind Normen auf V?

(a)
$$p_1(f) := |f(0)|;$$

(b)
$$p_2(f) := \int_0^1 |f(t)f(1-t)| dt;$$

(c) $p_3(f) := |f(0)| + |f(\frac{1}{2})| + |f(1)|.$

(c)
$$p_3(f) := |f(0)| + |f(\frac{1}{2})| + |f(1)|.$$

Name:	

Aufgabe 3. (6 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und $A: \mathbb{R}^n \to \mathbb{R}^n$, definiert durch $x \mapsto f(\|x\|_2)x$, ein Vektorfeld. Man zeige, dass A in allen Punkten $x \in \mathbb{R}^n \setminus \{0\}$ differenzierbar ist und es gilt

$$\langle \nabla, A \rangle(x) = f'(\|x\|_2) \|x\|_2 + n f(\|x\|_2) \qquad (x \in \mathbb{R}^n \setminus \{0\}).$$

Aufgabe 4. (6 Punkte)

Man bestimme Lage und Art der lokalen Extremstellen der Funktion $f\colon \mathbb{R}^2 \to \mathbb{R}$, definiert durch

$$(x,y) \mapsto xy^2 - 4xy + x^4.$$

Name:	
ranic.	 _

Aufgabe 5. (6 Punkte)

Sei (X,d)ein metrischer Raum mit der diskreten Metrik

$$d(x,y) := \begin{cases} 0, & \text{für } x = y, \\ 1, & \text{für } x \neq y. \end{cases}$$

Man zeige: Eine Teilmenge $A\subseteq X$ ist genau dann kompakt, wenn sie endlich ist.

Name:	
manne.	

Aufgabe 6. (6 Punkte)

Sei X:=C([-1,1]) der Banach-Raum der stetigen, auf dem Intervall [-1,1] definierten Funktionen, versehen mit der Supremumsnorm. Man zeige, dass es genau ein $f\in X$ gibt, so dass

$$f(x) = \frac{1}{2}\arctan(f(x)) + e^x$$

für alle $x \in [-1, 1]$ erfüllt ist.

Name:	

Name:	