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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations:

−∆AΨ = κ2(1− |Ψ|2)Ψ
curl2 A = Im(Ψ̄∇AΨ)

where (Ψ,A) : Rd → C× Rd , d = 2, 3, ∇A = ∇− iA, ∆A = ∇2
A,

the covariant derivative and covariant Laplacian, respectively, and
κ is the Ginzburg-Landau material constant.
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Origin of Ginzburg-Landau Equations

Superconductivity. Ψ : Rd → C is called the order parameter; |Ψ|2
gives the density of (Cooper pairs of) superconducting electrons.
A : Rd → Rd is the magnetic potential. Im(Ψ̄∇AΨ) is the
superconducting current.
(Homogenous solutions:
(a) (Ψ ≡ 1, A ≡ 0), the perfect superconductor,
(b) (Ψ ≡ 0, A with curl A constant), the normal metal.)

Particle physics. Ψ and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively.
(One can think of A as a connection on the principal U(1)- bundle
R2 × U(1), and Ψ, as the section of this bundle.)

Similar equations appear in the theory of superfluidity and of
fractional quantum Hall effect.
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Ginzburg-Landau Energy

Ginzburg-Landau equations are the Euler-Lagrange equations for
the Ginzburg-Landau energy functional

EΩ(Ψ,A) :=
1

2

∫
Ω

{
|∇AΨ|2 + (curl A)2 +

κ2

2
(|Ψ|2 − 1)2

}
.

Superconductors: E(Ψ,A) is the difference in (Helmhotz) free
energy between the superconducting and normal states.

In the U(1) Higgs model case, EΩ(Ψ,A) is the energy of a static
configuration in the U(1) Yang-Mills-Higgs classical gauge theory.
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Quantization of Flux

From now on we let d = 2. Finite energy states (Ψ,A) are
classified by the topological degree

deg(Ψ) := deg

(
Ψ

|Ψ|

∣∣∣∣
|x |=R

)
,

where R � 1. For each such state we have the quantization of
magnetic flux: ∫

R2

B = 2π deg(Ψ) ∈ 2πZ,

where B := curl A is the magnetic field associated with the vector
potential A.
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Type I and II Superconductors

Two types of superconductors:

κ < 1/
√

2: Type I superconductors, exhibit first-order phase
transitions from the non-superconducting state to the
superconducting state (essentially, all pure metals);

κ > 1/
√

2: Type II superconductors, exhibit second-order phase
transitions and the formation of vortex lattices (dirty metals and
alloys).

For κ = 1/
√

2, Bogomolnyi has shown that the Ginzburg-Landau
equations are equivalent to a pair of first-order equations. Using
this Taubes described completely solutions of a given degree.
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Symmetries

Gauge symmetry: for any sufficiently regular function η : R2 → R,

Γγ : (Ψ(x), A(x)) 7→ (e iη(x)Ψ(x), A(x) +∇η(x));

Translation symmetry: for any h ∈ R2,

Th : (Ψ(x), A(x)) 7→ (Ψ(x + h), A(x + h));

Rotation and reflection symmetry: for any R ∈ O(2)

TR : (Ψ(x), A(x)) 7→ (Ψ(Rx), R−1A(Rx)).
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Equivariant Pairs

A key class of solutions is provided by equivariant pairs.

Given a subgroup, G , of the group of rigid motions (a semi-direct
product of the groups of translations and rotations) , an
equivariant pair is a state (Ψ,A) s.t. ∀g ∈ G , ∃γ = γ(g) s.t.

Tg (Ψ,A) = Γγ(Ψ,A),

where Tg is the action of G and Γγ is the action of for the gauge
group.

This leads to two classes of solutions:

G = O(2) =⇒ magnetic vortices (labeled by the equivalence
classes of the homomorphisms of S1 into U(1), i.e. by n ∈ Z).

G = the group of lattice translations for a lattice L =⇒ Abrikosov
lattices.
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Vortices

“Radially symmetric” (more precisely, equivariant) solutions:

Ψ(n)(x) = f (n)(r)e inθ and A(n)(x) = a(n)(r)∇(nθ) ,

where (r , θ) are the polar coordinates of x ∈ R2.

deg(Ψ(n)) = n ∈ Z.

The profiles are exponentially localized:

|1− f (n)(r)| ≤ ce−mf r , |1− a(n)(r)| ≤ ce−mar ,

Here mf = coherence length and ma = penetration depth.

κ = mf /ma.

(Ψ(n),A(n)) = the magnetic n-vortex (superconductors) or
Nielsen-Olesen or Nambu string (the particle physics).

The exponential decay is due to the Higgs mechanism of mass
generation.
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Stability/Instability of Vortices

Theorem

1. For Type I superconductors all vortices are stable.

2. For Type II superconductors, the ±1-vortices are stable, while
the n-vortices with |n| ≥ 2, are not.

The statement of Theorem I was conjectured by Jaffe and Taubes
on the basis of numerical observations (Jacobs and Rebbi, . . . ).
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Abrikosov Vortex Lattice States

A pair (Ψ,A) for which all the physical characteristics
|Ψ|2, B(x) := curl A(x) and J(x) := Im(Ψ̄∇AΨ)
are doubly periodic with respect to a lattice L is called the
Abrikosov (vortex) lattice state.

One can show that (Ψ,A) is an Abrikosov lattice state if and only
if it is an equivariant pair for the group of lattice translations for a
lattice L. Explicitly,

Ts(Ψ,A) = Γgs (Ψ,A), ∀s ∈ L,

where gs : R2 → R is, in general, a multi-valued differentiable
function, with differences of values at the same point ∈ 2πZ. The
last equation implies that satisfies

gs+t(x)− gs(x + t)− gt(x) ∈ 2πZ.
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Existence of Abrikosov Lattices

Let Hc1 and Hc2 be the magnetic fields at which the first vortex
enters the superconducting sample and the normal material
becomes superconducting.

Theorem (High magnetic fields). For for every L and B̄ < Hc2, but
close to Hc2, there exists a non-trivial L-lattice solution, with one
quantum of flux per cell and with average magnetic flux per cell
equal to B̄.

If κ > 1/
√

2, then the minimum of the average energy per cell is
achieved for the triangular lattice.

Theorem (Low magnetic fields). For every L, n and B̄ > Hc1 (but
close to Hc1), there exist non-trivial L-lattice solution, with n
quanta of flux per cell and with average magnetic flux per cell = B̄.
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References

- Existence for H ≈ Hc2: The Abrikosov lattice solutions were
discovered in 1957 by A. Abrikosov.

Rigorous results: Odeh, Barany - Golubitsky - Tursky, Dutour,

Tzaneteas - IMS (also for b > Hc2, κ < κc(τ) := 1√
2

√
1− 1

β(τ) ,

where β(τ) is the Abrikosov ’constant’).

Energy minimization by triangular lattices: Dutour, Tzaneteas -
IMS, using results of Aftalion - Blanc - Nier, on minimization of
the Abrikosov function.

Finite domains: Almog, Aftalion - Serfaty.

- Existence for H ≈ Hc2: Aydi - Sandier and others (κ→∞) and
Tzaneteas - IMS (all κ’s).

More references can be found in the books by E. Sandier and S.
Serfaty, 2007, and S. Fournais, B. Helffer, 2010, and the review
S. J. Gustafson, I. M. Sigal and T. Tzaneteas, JMP, 2010.
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

γ(∂t + iΦ)Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

σ(∂tA−∇Φ) = − curl2 A + Im(Ψ̄∇AΨ),

Reγ ≥ 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with −∂tE
neglected, (Ampère’s and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(Ψ∇AΨ), and Jn = σE .

I.M.Sigal based on the joint with S. Gustafson and T. TzaneteasStatics and Dynamics of Magnetic Vortices



Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)−Higgs (or Maxwell-Higgs) equations (Φ = 0)

∂2
t Ψ = ∆AΨ + κ2(1− |Ψ|2)Ψ

∂2
t A = − curl2 A + Im(Ψ̄∇AΨ),

coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics (written here in the
temporal gauge).
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Stability of Abrikosov Lattices

Consider two types of perturbations:
(a) Gauge -periodic perturbations of the same periodicity as the
Abrikosov lattice;
(b) Finite energy perturbations, those satisfying,

lim
Q→R2

(EQ(Ψ,A)− EQ(Ψ0,A0)) <∞.

Lattice shapes can be parameterized by τ ∈ C, satisfying
|τ | ≥ 1, Im τ > 0, −1

2 < Re τ ≤ 1
2 , and Re τ ≥ 0, if |τ | = 1.

Theorem (Tzaneteas - IMS)

There is 0 < κ∗(τ) < 1√
2

s.t. the Abrikosov vortex lattice solutions

for high magnetic fields are

(i) asymptotically stable for κ > κ∗(τ);

(ii) unstable for κ < κ∗(τ).
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Abrikosov’s ’Constant’

Moreover, 1) κper∗ (τ) := 1√
2

√
1− 1

β(τ) , where β(τ) is the

Abrikosov ’constant’:

β(τ) =
〈|ξ|4〉Ω
〈|ξ|2〉2Ω

.

Here Ω is an elementary cell of the lattice and ξ 6= 0 is the unique
solution of the equation

−∆A0ξ = κ2ξ, A0 :=
κ2

2
(−x2, x1),

satisfying, for any ν ∈ L,

ξ(x + ν) = e
iκ2

2
ν∧xξ(x).

2) κloc∗ (τ)(= κ∗(τ) for energy finite perturbations) satisfies

κper∗ (τ) ≤ κlot∗ (τ) <
1√
2
.
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Key Steps in Proof

Collar lemma for the infinite-dimensional manifold
M = {T sym

g u∗ : g ∈ G} of L− lattice solutions;

Estimates of the hessian, E ′′(u∗) at a Abrikosov lattice
solution u∗ = (Ψ∗,A∗);

Differential inequalities for Lyapunov - type functionals.
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Hessian

Theorem. The Hessian E ′′(u∗) at a Abrikosov lattice solution
u∗ = (Ψ∗,A∗) has the following properties:

I E ′′(u∗) is real-linear and symmetric in the inner product
〈w1,w2〉 =

∫
(Re ξ1ξ2 + α1 · α2), where wi = (ξi , αi );

I null E ′′(u∗) = Z := {Gγ : γ ∈ H2(R2,R)},
where Gγ := (iγΨ∗,∇γ);

I If θ := infv⊥Z,‖v‖=1〈v , E
′′

(u∗)v〉, then

θ > 0 for κ > κ∗(τ) (u∗ is linearly stable)

θ < 0 for κ < κ∗(τ) (u∗ is linearly unstable).
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Idea of Proof of Stability

The key point: u∗ = (Ψ∗,A∗) is equivariant =⇒ the Hessian
E ′′(u∗) commutes with magnetic translations,

Ts = e−igs Ss ,

where Ss is the translation operator Ss f (x) = f (x + s) and, recall,
gs : R2 → R is a multi-valued differentiable function, satisfying

gs+t(x)− gs(x + t)− gt(x) ∈ 2πZ.

This co-cycle condition implies

Tt+s = TtTs .

Hence Ts defines a unitary representation of L on
L2(R2;C)× L2(R2;R2).
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Direct Fibre Integral (Bloch Decomposition)

The Hessian operator E ′′(u∗) commutes with the representation Ts

of L ⇒ it can be decomposed into the fiber direct integral

UE ′′(u∗)U−1 =

∫ ⊕
Ω∗

Lkdµk

on the space

H =

∫ ⊕
Ω∗

Hkdµk ,

where Ω∗ is the fundamental cell of the reciprocal lattice (the dual
group to L under addition mod the reciprocal lattice), and
dµk = dk

|Ω̂|
is the Haar measure on Ω∗.
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Fibre Spaces and Operators

Above, U : L2(R2;C)× L2(R2;R2)→H is a unitary operator
given by

(Uv)k(x) =
∑
s∈L

χ−1
s Tsv(x),

where χ : L → U(1) is a character of the representation Ts of L,
explicitly given by

χs = e ik·s , k ∈ Ω∗,

Lk is the restriction of the operator E ′′(u∗) to H2(Ω), satisfying

Tsv(x) = χsv(x), s ∈ basis.
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Θ-function

In the leading order in ε :=
√

κ2−b
κ2[(2κ2−1)β(τ)+1]

, the ground states

of the fiber operators, Lk , are expressed through the entire
functions, Θk(z), z = x1 + ix2 ∈ C, k ∈ Ω∗, satisfying the
periodicity conditions

Θk(z + 1) = Θk(z),

Θk(z + τ) = e i(k2−k1τ)e−2inze−inτzΘk(z),

where τ is the shape parameter of the lattice L.

Using this and perturbation theory, one finds inf Lk (the lowest
band function) which give inf E ′′(u∗).
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Abrikosov Lattice. Experiment
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Extensions

Microscopic corrections to macroscopic solutions
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Dynamics of Several Vortices

Consider a dynamical problem with initial conditions, describing
several vortices, with the centers at points z1, z2, . . . and with the
degrees n1, n2, . . . , glued together, e.g.

ψz,χ(x) = e iχ(x)
m∏
j=1

ψ(nj )(x − zj),

Az,χ(x) =
m∑
j=1

A(nj )(x − zj) +∇χ(x) ,

where z = (z1, z2, . . . ) and χ is an arbitrary real function.
We will assume that R(z) := minj 6=k |zj − zk | � 1.
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Vortex Dynamics: Superconductors

The superconductor model (Gustafson - IMS):
For initial data (Ψ0,A0) close to some (Ψz0,χ0 ,Az0,χ0) with

e−R(z0)/
√

R(z0) ≤ ε� 1 we have

(Ψ(t),A(t)) = (Ψz(t),χ(t),Az(t),χ(t)) + O(ε log1/4(1/ε))

and that the vortex dynamics is governed by the system

γnj żj = −∇zj W (z) + O(ε2 log3/4(1/ε)).

Here W (z) ∼
∑

j 6=k(const)njnk
e
−|zj−zk |√
|zj−zk |

is the effective energy and

γn > 0.
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Vortex Dynamics: U(1)-Higgs Model

The Higgs model (Gustafson - IMS):

For times up to O
(

1√
ε

log
(

1
ε

))
, the effective dynamics is given by

γnj z̈j = −∇zj W (z(t)) + o(ε).

with the same effective energy/Hamiltonian

W (z) ∼
∑

j 6=k(const)njnk
e
−|zj−zk |√
|zj−zk |

and with γn > 0.
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Previous Results

Extensive literature on the Gross-Pitaevski equation (superfluids ).

The Gorkov-Eliashberg-Schmidt equations:
Non-rigorous results: Manton (κ ≈ 1√

2
), Atiyah - Hitchin

(κ ≈ 1√
2

), Perez - Rubinstein, Chapman-Rubinstein-Schatzman,

W.E.

Rigorous results: Stuart, Demoulini - Stuart (both, κ ≈ 1√
2

), Spirn

(independently), Sandier - Serfaty (bounded domains, large κ and
hex below Clogκ, Tice, Serfaty - Tice (the dynamics with applied
field and external current).

No results on the U(1) - Higgs model.
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Thank-you for your attention.
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