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N-boson system: described by wave function ¢y € L2(R3V).

Evolution governed by Schrodinger equation

0N = HNYN
with Hamiltonian

N N
Hy = ) (=Oz; + Vext(z))) + XD V(z; — zj)

Mean field regime: N > 1, A < 1, with N fixed. Study
dynamics generated by

We assume the potential to have at most Coulomb type singu-
larities, in the sense that

V2(z) < C(1—A)



Self-consistent evolution: consider a factorized initial state

N
vno(x) = [ e(z)) (x = (z1,...,2N)).

J=1
If factorization is approximately preserved in time,

N
YN (x) = J] ei(x;)

Jj=1
we may replace the many-body interaction by an effective one-
particle potential

1 & 1 2 2
S Vimi—a) = o> [ du Ve -a)led)? = (Ve (@)
N iz N iz

The one-particle wave function ¢; must solve the self-consistent
Hartree equation

Ot = — A+ (V x [pe]?) et -



Reduced Densities: For k= 1,.., N, the reduced k-particle den-
Sity matrix is given by

7](\72 =Trey1...N YN (UN acting on L2(R3F)

7](\;“2 is an operator on L2(R3%) with kernel

’YNt(kaXk;) —/dXN KON (X, XN 1)U N (X, XN k) S

- k
with xp = (x1,...,2%), XN_f = (:Uk+1,...,:cN), Tr /y](\f,z)f =

Convergence towards Hartree dynamics: for every fixed kK € N
and t € R, one finds

k
iy = lee) (e ®*

as N — oo.

First proof by Erd&s-Yau (2000), using techniques of Spohn
(1980), other methods and proofs by Rodnianski-S. (2007),
Frohlich-Knowles-Schwarz (2008), Knowles-Pickl (2009).



Fock space representation: let

n>0

Vectors in F are sequences ¢ = {%D(n)}nzl with () ¢ L2(R3").

Creation and annihilation operators: for f € L2(R3), define

(@ ()™ (@1, am) = jﬁjzijl Fa )™ D (@, 5 o)

(a(f)@b)(n) (x1,...,2n) = Vn+ 1/daf; mw(n_l_l)(af;,ml, e, Tn)

They satisfy canonical commutation realtions:

[a(f),a™ ()] = (f,9)2 [a(f),a(g)] = [a"(f),a"(9)] =0

For example,

f0,..0.6%V,0,...} = T Tg

where 2 = {1,0,...} is the vacuum.



We also introduce the operator-valued distributions a}, az S.t.

a*(f) = /dwf(a:)aj; and a(f) = /dm f(x) az

We define the number of particle operator
N = /dx aray

and the Hamiltonian

1
Hy = /daj VzarVzaz + N / dzdyV (z — y)a;‘;a;;ayam

Observe that

e Nt o, ., 0,0%N,0,...3 =1{0,...,0,e HINIL,ON o )

What did we gain by formulating the problem on Fock space?



Coherent states: for ¢ € L2(R3) define the Weyl operator
W(p) = exp(a™(p) —alp))

The coherent state with wave function ¢ is then given by

o0 % ' X2
(N — e—lel22 5~ Y jelr2), ¢
() e j;o i e P s

where 2 = {1,0,...} is the vacuum.
o W(p)* =W(p) !t =W(—¢p)
o (W(p)QQNW(0)Q) = |||

e \We have
W* (@) az W(p) = ag + o(x),
W* () az W (p) = az + @(x)



Evolution of coherent states: we consider the initial state

/2
W(\/NQO)Q:e_N/Q{l,\/Ngo,...,NJ_ g0®7,...}
V3!

and the one-particle density associated with its time-evolution
1 : .
rg\},%(m; y) = N <6_7’HNtW(V Np)S2, az az e_ZHNtW(\/ N¢)Q>

Expanding around ag; ~ v N ¢i(x), a; ~ VN p,(y), we conclude

r$@y) — eu@)zy)
= VW RS (4~ VN W)
x (a2 — VNei(z)) e MNW (VN)Q)

+ 2000w (VR (af — VRGw) W (VD)

+ 20 W (VN (s = V() PN (VN
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Fluctuation dynamics: since

(0} — VN3 (y)) = W/ NeD)al W™ (VNer)
(az — VN @i(y)) = W(VNer)azW*(VNey)

we write, following ideas of Hepp (1973),

Oy - @py) = 1 (UW ajes (DR

‘7075(5’3) * * @tcy) *
+ i <Q,u (1) ayl/{(t)§2>—|— i <§2,u (1) axl/{(t)§2>

with
U) = W(VNep)e "NTW*(VNp)

The problem reduces essentially to estimating

( QLU ()N U)RQ)

uniformly in N.



Observe that fluctuation dynamics satisfies

O (t) = Ly()U(t) with Un(0) =1

with time-dependent generator
La(t) = /daz VeatVaag + /d:r; (V # |¢1]?) (2)atan
+ [ dady V(@ - e (@)p(y) asay
+ [ dady V(@ — ) (pe(@)ee() atal + 2u(@)pr (W) asay)
+—— [ dody Via - ) a (way + 1(0)a)) as
4 % / dzdy V(z — y) atalayaq

Growth of N: Upn(t) does not preserves number of particles.
Still, one can show [Rodnianski-S. (2008)]:

(0, U* (1) (N + D u@)p) < ey, (W + 1)2FF2 )
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Consequence [Rodnianski-S. (2008)]: For every fixed k£ € N
and t € R, there exists constants C = C(k), K = K(k) > 0 with

CeKltl
N

k
L FM — |eoe) (0t ®F| <

Limiting fluctuation dynamics [Ginibre-Velo (1979)]: as
N — oo, U(t) approaches U (t) where

10t Uo (1) = Loo(t)Uo (1)

with time-dependent generator
Loo(t) = /d:c VzarVgaz + /dac (V x |ot|?) (z)ataz
+ [ dady V(@ — »)ei@)7i () asay
+ [ dady V(@ — ) (¢p(@)ei() ataf + 2u(@)pr(y)asay)
Since the generator is quadratic, Us(t) can be described as a

Bogoliubov transformation.
11



For f,g € L?(R3), let A(f,g) = a*(f) + a(g).

A Bogoliubov transformation is a linear map
© : L?(R3) @ L?(R3) — L2(R3) & L2(R3)
which preserves canonical commutation relation, i.e.

A(®(f1,91) A(S(f2,92))| = |Af1,91), Af2: 92)

for all f1, f2,91,92 € L%(R3).

Easy to check:

© Bogoliubov transf. <« @*(é 0 >@:<1 0 )

. U V
© @—<VU>

where U,V : L?(R3) — L2%(R3) are s.t. U*U — V*V = 1 and
U*V —V*U = 0.
12



The limiting fluctuation dynamics Ux(t) is so that

Uoo(t) A(f, 9) U (1) = A(S(f, 9))

for a time-dependent Bogoliubov transformation
°=( )

A simple computation shows that ©;—g = 1 and

. Dy —B
18t@t = < Bz _Ei ) @t

with Dy, By : L2(R3) — L2(R3) given by

Dif = —Af+ (Vo2 f+ (V5. e
Bif = (Vg f)p;



Back to factorized data: we compute

N VN VNI

— dN —Z'/HNt(a’*(SO))N * —1H Nt
=N <e o Q, a aye PyW (VNp)Q

. d —iH N (a’*(sp))N * —itH N
_WN<€ Hnt N 2, azaye 7 tW(\/NSO)Q>

with dp ~ N1/4 We introduce fluctuation dynamics:
1 *
1@ ) = (6 U@+ VNG () (ay + VN @)U (D)

= 2 @)eu(v) + 6 U (Dasa, (D)D)
7 () ei(y)

VN VN

. * N , * N
B = L (D )

+ (&, U (D)ayU (£)2) + (& U™ (t)azld (1)$2)

with

a* N
£=dNW*<W¢>( 5;‘;—)!) Q
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As before, the problem reduces to controlling the growth of

(& UT(ONU()S2)

uniformly in N.

Using the estimate

IV + 1)) <1,

and the bounds

(0, U* () (N + DFut)y) < celily, (W + 1)2F+2 y)

one obtains:

Theorem [Chen, Lee, S. (2011)]: For every k£ € N, t € R,
there exist constants C = C(k) and K = K (k) such that

CeKltl
N

k
Tr |y — lon) (]| <

15



A probabilistic setting: For a self-adjoint J on L2(R3), let

N .
j:ZJ(Z) WithJ(Z>=1®---®J®---®l
1=1

For example, if J = ya(x), for A C R3, J measures the number
of particles in A.

At time ¢t = 0, Yy = ©®V, and J is a sum of iid random variables.
Hence, we have a law of large numbers:

N .
S (I — (g, J0))
1=1

1
NN:

and a central limit theorem:

25>—>O as N — oo

zu“ (¢, Jp)) = N(0,02),  with 02 = (¢, J2p) — (¢, Jp)?
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What happens at time t = 07

The law of large number is still correct. In fact, with

j: J — <90t7<]90t>7

we find

P¢N,t (

1 &5
v 27

1
- 5—2Tr|sot><sot| Genc

as N — oo.

Natural question: does a central limit theorem hold w.r.t. ¥ ;7

17



Theorem [Ben Arous, Kirkpatrick, S. (2011)]: W.r.t. the
wave function ¢y ; the random variable

\/— Z (J(Z) SOt,JSOt>)

converges in distribution, as N — oo to a centered Gaussian
random variable with variance
2

of = <@t (JSOt,J—SOt) , Ot (JSOt,J—SOt)> — ‘<@t (JSOt,J—SOt) a\% (90,¢)>

Equivalently,

of = Ut + ViJoil|> — [, UrJor + Videg)|* > 0

So, w.r.t. N, central limit theorem still holds true, but the
variance changes.

18



Ideas from proof: compute moments in the limit N — oo.

For example,

2
Expy, (f 2 (79 = e JW)) =Ty PN TR (T9 )

First term gives ||Je¢||?, the result we would find for factorized
wave function @V

Second term gives contribution from correlations. It can be
computed writing

NTeyG (T@J) = N [ J(a1,21) T (wa,25) 1) (24, whi w1, 22)

and

1
VNt(CL’L Th; 1, L) = N2 <"¢N £ axl%z%/l%/zﬁij,t>
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As before, we put

a* ()N

VN!

¢ =dy W*(VNy) Q

Then
NTrh (T ® J)
= [ TG1,5) T (2, 25)
x (&,U*(t) (a3, + VNG(21))(ah, + VNG (22))
<(a, + VN (a + VNpa) UDR)

Counting & as order one, only terms with at least 2 factors ¢y
survive the limit N — oo.

On other hand, all terms with more than 2 ¢; factors vanish,
because (¢, Joi) = 0.
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We are left with

NTAR (T T) = (€U (0 : (a*(Ten) + alTen)” 1 UBR)
~ (&, U () AT, Jor) 2 Uso(£)S2) — || Tl
= (&, A(©(Jop, J01))?S2) — || T

Since £ ~ Q — %a*(go)QQ + ..., we conclude
) (T T = =
NTri] (T®J) = (2, AT, Jer))*R)

1 T T i
— (" (0)?Q A@1(Teor, J1))?Q) — || T

and therefore

2
By, (WZ( T~ 9"15’*]9"15>)>

— {<@t (JSOt,J—SOt> , Ot (JSOt,J—SOt)> — |<@t (Jsf?t, J@t) NG (¢, 90)>

2
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