

Existence of the thermodynamic limit for disordered Coulomb quantum systems

Mathieu LEWIN

mathieu.lewin@math.cnrs.fr (CNRS & University of Cergy-Pontoise)

joint work with X. Blanc (CEA, Paris), based on previous works with C. Hainzl (Tuebingen) & J.P. Solovej (Copenhagen)

Spectral Days Munich, April 11, 2012

Key references for this talk

	short range	Coulomb
stability of matter	Ruelle & Fisher (66)	Dyson & Lenard (67)
$\mathcal{F}(D) \geq C D $		Lieb & Thirring (75)
∃ thermo limit,	Ruelle (63)	Lebowitz & Lieb (72)
deterministic	Fisher (64)	Fefferman (85)
$\mathcal{F}(D) \sim f D $, ,	Hainzl, M.L. & Solovej (09)
∃ thermo limit,	Veniaminov (11)	
stochastic		
$\mathcal{F}(\omega,D)\sim f D $		

Main difficulty with Coulomb: quantify screening

Conlon-Lieb-Yau (88), Graf-Schenker (95): lower bounds on classical Coulomb systems when \mathbb{R}^3 split using a tiling

Grand canonical energy

Nuclei:
$$\mathcal{K} = \{(R,z)\} \subset \mathbb{R}^3 \times (0,\infty)$$

$$H_{\mathcal{K}}^{N}(D) := -\sum_{i=1}^{N} \Delta_{x_{i}} + V_{\mathcal{K},D}(x_{1},...,x_{N})$$

where $-\Delta {\rm =}$ Dirichlet Laplacian

$$V_{\mathcal{K},D}(x) = \sum_{i=1}^{N} \sum_{(R,z) \in \mathcal{K} \cap D} \frac{-z}{|R - x_i|} + \frac{1}{2} \sum_{1 \le i \ne j \le N} \frac{1}{|x_i - x_j|} + \frac{1}{2} \sum_{R \ne R' \in \mathcal{K} \cap D} \frac{zz'}{|R - R'|}$$

► Ground state energy for *N* electrons:

$$\mathcal{F}^N_{\mathcal{K}}(D) = \inf \left\{ \left\langle \Psi, H^N_{\mathcal{K}}(D) \Psi \right\rangle, \ \Psi \ \text{antisymm.}, \ \|\Psi\|_{L^2(D^N)} = 1 \right\} > -\infty$$

► Grand canonical energy:

$$\mathcal{F}_{\mathcal{K}}(D) := \inf_{N \geq 0} \mathcal{F}_{\mathcal{K}}^{N}(D) \qquad \bigg[= \inf \sup_{\bigoplus_{N \geq 0} \bigwedge_{1}^{N} L^{2}(D)} \bigoplus_{N \geq 0} H_{\mathcal{K}}^{N}(D) \bigg]$$

Stability of matter

Theorem (Stability of matter)

There exists a constant C, depending on $\max_{(R,z)\in\mathcal{K}} z$ but not on \mathcal{K} , such that

$$\mathcal{F}_{\mathcal{K}}(D) \geq -C|D|$$

for every bounded open set D.

Modern proof based on:

- Lieb-Yau (88) classical electrostatic estimate on many-body Coulomb
 → nearest neighbor one-body
- Lieb-Thirring (75) and Sobolev inequalities

[Sol-06] Solovej, Stability of Matter, Encyclopedia of Mathematical Physics, Elsevier (2006).
[LieSei-10] Lieb & Seiringer, The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010.
[HaiLewSol-09] Hainzl, M. L. & Solovej, Advances in Math., 221 (2009), pp. 454–487 & 488–546.

Disordered crystal

Typical situation:

$$\mathcal{K}(\omega) = \left\{ \left(k + \delta_k(\omega), z_k(\omega) \right), \ k \in \mathbb{Z}^3 \right\}$$

with δ_k and z_k i.i.d. random variables

Example: $\delta_k \sim \text{gaussian and } z_k \sim \text{Bernouilli}$

- \Rightarrow random many-body Schrödinger operator $H^N(\omega, D)$
 - random grand-canonical energy $\mathcal{F}(\omega, D)$

Ergodicity of nuclei

- **▶** General situation:
 - translation group $\mathbb{Z}^3 \curvearrowright \text{probability space } (\Omega, \mathscr{T}, \mathbb{P})$
 - ergodicity: $\tau_k A = A$, $\forall k \in \mathbb{Z}^3 \Rightarrow \mathbb{P}(A) = 0$ or 1
 - $\mathcal{K}(\omega)$ = countable subset of $\mathbb{R}^3 \times [z_{\mathsf{min}}, z_{\mathsf{max}}]$ with

$$\mathcal{K}(\tau_k \omega) = \mathcal{K}(\omega) + k$$
, for all $k \in \mathbb{Z}^3$ and a.s. in ω

- ▶ Example: $\Omega = (\Omega_0)^{\mathbb{Z}^3}$, $\delta_k(\omega) = \delta(\omega_k)$, $z_k(\omega) = z(\omega_k)$ and $\tau_k(\omega_\ell) = (\omega_{k+\ell})$
- ▶ Local distribution of nuclei: with $Q := [0,1)^3$, define

$$X_0(\omega) := \#(\mathcal{K}(\omega) \cap Q) = \sum_{(R,z) \in \mathcal{K}(\omega) \cap Q} 1$$

$$X_1(\omega) := \sum_{(R,z) \in \mathcal{K}(\omega) \cap Q} \frac{1}{\min_{(R',z') \in \mathcal{K}(\omega) \setminus (R,z)} |R - R'|}$$

Existence of the thermodynamic limit

Theorem (Existence of thermo limit [BlaLew-12])

Assume that

$$\mathbb{E} |X_1|^p < \infty$$
 for some $p \ge 2$.

There exists a cst f such that, for all 'regular' sequences (D_n) with $|D_n| \to \infty$,

$$\lim_{n\to\infty} \mathbb{E} \left| \frac{\mathcal{F}(\cdot, D_n)}{|D_n|} - f \right|^q = 0$$

for q = 1 if p = 2 and all $1 \le q < p/2$ if p > 2.

Rmk.

- Almost sure CV expected as well if (D_n) does not escape to infinity
- Neutrality in average:

$$\lim_{n\to\infty} \mathbb{E} \left| \frac{N(\cdot, D_n)}{|D_n|} - \mathbb{E} \left(\sum_{(R,z)\in\mathcal{K}\cap Q} z \right) \right|^2 = 0$$

Same result at finite temperature

Remarks on the assumptions on nuclei

Simple i.i.d. case, $\nu=$ law of displacement, charges all =z

- ► (Lieb-Yau '88) $\mathbb{E} \frac{\mathcal{F}(\cdot, D)}{|D|} \ge -C + \frac{z^2}{8} \mathbb{E} X_1$, so X_1 must be in $L^1(\Omega)$
- ▶ If ν decays fast, then $\mathbb{E} |X_0|^p < \infty \ \forall 1 \leq p < \infty \ \text{and} \ \mathbb{E} |X_1|^p < \infty \ \forall 1 \leq p < 3$
- ▶ If the support of ν is not compact, then $X_0 \notin L^{\infty}(\Omega)$
- ▶ If $\nu \ge \varepsilon > 0$ on $B(x,\varepsilon) \cup B(x+k,\varepsilon)$ for some $0 \ne k \in \mathbb{Z}^3$, then $X_1 \notin L^3(\Omega)$

Corollary (Harmonic oscillators)

For $\nu(x) = (2\pi\sigma)^{-3/2} \exp(-|x|^2/(2\sigma))$, then

- $\mathbb{E}|X_0|^p < \infty$ for all $1 \le p < \infty$ and $\mathbb{E}|X_1|^p < \infty$ for all $1 \le p < 3$;
- X_0 is not bounded and $\mathbb{E}|X_1|^3 = \infty$;
- $\mathbb{E} |\mathcal{F}(\cdot, D)|^3 = \infty$ for all fixed D;
- the thermo limit exists in $L^q(\Omega)$ for all $1 \le q < 3/2$.

Strategy of proof

In [HaiLewSol-09], abstract method based on Graf-Schenker inequality

- **1** Stability of matter: uniform lower bound on \mathcal{F} ;
- **2** Prove upper bounds $\mathbb{E} |\mathcal{F}(\cdot, D)|^q \leq C|D|^q$, for $q \leq p/2$

Screen the nuclei with radial electrons Radius $\sim \delta_R =$ distance to the nearest nucleus Cost in kinetic energy: $\sum_{(R,z)\in\mathcal{K}(\omega)\cap D} \delta_R^{-2} \in L^{p/2}(\Omega)$ when $\mathbb{E}\,|X_1|^p < \infty$

Strategy of proof

- Prove that periodic $D \mapsto \mathbb{E} \mathcal{F}(\cdot, D)$ satisfies abstract (deterministic) assumptions of [HaiLewSol-09]. Requires much more precise upper bounds \Rightarrow thermo limit exists for $\mathbb{E} \mathcal{F}(\cdot, D)$
- Graf-Schenker inequality together with ergodic thm:

$$\liminf_{n\to\infty} \frac{\mathcal{F}(\omega,D_n)}{|D_n|} \ge \lim_{n\to\infty} \frac{\mathbb{E}\,\mathcal{F}(\cdot,D_n)}{|D_n|} := f, \quad \text{almost surely}$$

- **③** Simple lemma: if (Y_n) bd in $L^1(Ω)$ is such that $\mathbb{E} Y_n \to e$, $Y_n \ge C$ and $\liminf Y_n \ge e$, then $\mathbb{E} |Y_n e| \to 0$
- **1** The result follows in $L^q(\Omega)$ by interpolation