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The model

Kinetic energy of a single electron:
TE(A) = \/or2 T(A)+ a4 —a 2
where az > 0 is a parameter (fine structure constant).

T(A) = {[a-(—iV+A)]2 (Pauli)

(—iV + A)? (Schrodinger).
Magpnetic field B =V x A and ¢ = Pauli matrices.
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Kinetic energy of a single electron:
TE(A) = \/a_2 T(A)+ a4 —a 2
where az > 0 is a parameter (fine structure constant).

T(A) = {[a-(—iV+A)]2 (Pauli)

(—iV + A)? (Schrodinger).
Magpnetic field B =V x A and ¢ = Pauli matrices.
(@) - Z 1
H(Z,R, o, A) := TAA) =y — = )4y
( =2 (A - X ) o
Jj= = J<k
The Hilbert space
z
n=\LRC.
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e Stability requires
Za <2/, all k.

We will study Z — 0o, a — 0.
e For a given vector potential A, the ground state energy of the
electrons is given by

Eo(Z,R, a, A) := inf Spec H(Z,R, o, A).

e Minimal total energy

Eo(Z,R, ) == inz‘f{Eo(Z R, a, A) +
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Energy in large Z limit. Non-relativistic, no A-field

H=> (5 38— Z|x— ) ZIXJ—XH

J=1

Leading energy term of order Z7/3 given by Thomas-Fermi theory
(proved by Lieb-Simon (1977)).

Next term—the Scott correction— predicted by Scott (1952),
proved by Siedentop-Weikard (1987) for atoms, Ivrii-Sigal (1993)

for molecules,
M
3z
k=1

In the atomic case also the next (Dirac-Schwinger) term of order
Z5/3 is known. Proved by Fefferman-Seco (90's).
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Relativistic, no A-field

Kinetic energy 7(®)(0) = /a2(-A) + a=% — a2

Nuclear charges/positions Zy = Zzy, Rx = Z- 3.

Scott correction proved by Solovej-Spitzer-Sgrensen (alternative
proof by Frank-Siedentop-Warzel).

Theorem

There exists a continuous, non-increasing function S on [0,2/7]
with S(0) = 1/4 such that as Z — oo and o — 0 with
maxy{Zxa} < 2/m we have

EO(Z, R;a, A= 0) = ZY/3ETF(Z, r)+2 Z Z,fS(Zka)+(’)(Z2_1/3O) )
1<k<M
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Questions for full operator

Kinetic energy T(®(A) := Va2T(A) + a4 — a2
self-generated magpnetic field.

z

M
3 () L 1
H(Z,R,a, A) —E (7; (A)_;|)9—Rk|>+j<§;|xj_xk|7

J=1

o 1 2
Eo(Z.R.a) := inf {Eo(z, R A)+ o= /Ra IV x A }

e Does there exist a Scott correction?
e Is the Scott correction the same as without magnetic field?

For non-relativistic operators with self-generated field, we proved
recently that there is a Scott correction which depends on Za?.
This motivates the second question.
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Affirmative result

Theorem (Relativistic Scott correction with self-generated field)

Assume that there exists ko < 2/m such that max,{Zxa} < ko.
Then the ground state energy with self-generated magnetic field is
given by

M
Eo(Z,R;a) = Z"PE™(z,r) + 2~ ZXS(Zka) + o(2?)
k=1

in the limit as Z — oo and o — 0.
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Techniques for the proof

Upper bounds as in [SSS] by taking A = 0.
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Techniques for the proof

Upper bounds as in [SSS] by taking A = 0.

Lower bounds: Local semiclassical analysis combined with
multiscaling. In order to localize one needs a new localization
inequality

Lemma (Pull-out estimate)

Assume that g; > 0 are smooth, Zl-e,giz(x) =1. LetH;, i €l, be
a family of positive self-adjoint operators on L?(R3,C?). Then

> giHigi > Y giv/Higi
\ e i€l
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Theorem (Lieb-Thirring inequality for 7% (A))

There exists a universal constant C > 0 such that for any positive
number 3 > 0, for any potential V with [V], € L%/? N L%(R3),
and magnetic field B =V x A € L?(R3), we have

Ti{\/B-2T(A) + =4 — B2 — V(x)]_

= —C{ Jwerae vt + (/52)3/4(/[\/]1)”4}_

o If A =0 this is the well-known Daubechies inequality.

e For the Schrodinger case, the Daubechies inequality was
generalized (and improved to incorporate a critical Coulomb
singularity) to non-zero A by Frank-Lieb-Seiringer using
diamagnetic techniques. For the Pauli operator there is no
diamagnetic inequality.
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Theorem (Local Lieb-Thirring inequality with a Coulomb potential)

Let ¢, be a real function satisfying supp ¢, C {|x| < r},

|¢rllo < 1. There exists a constant C > 0 such that if
B € (0,2/m), then

Tror(y/B2T(A) + 64— 2~ -~ V)s)]

[x]

> —C{n—3/2/|v x A2 49730 +77—3/2/[V]5+/2 +n‘3ﬁ3/[V]i
N </|V y A|2)3/4</[V]i)1/4},

where n := {5(1 — (73/2)?).
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Reduction to semiclassics

After scaling by Z~1/3 and passing to the Thomas-Fermi potential,

we find a semiclassical problem

Tr[\/ﬁ_27—h(’z)+/@_4_ﬁ_2 _’inTF B2h3 /|V®A’2

with parameters

”Zmi“i, h=x'2Z713  g=27Bax 2= Zah
k TZ P
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Theorem (Scott corrected semiclassics with self-generated field)

Suppose that A > 0. If0 < 3 < h, and Kzy < 2/7, then

| inf { Tr[\/B2Tu(A) + 54— 52— RVF] + 7 / Vear)

- ﬁ / / [%,;2 —RV]F (x)} —2n? ;(zkﬁ)%(ﬁh—l%zk)‘

< o(h™?).
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Local semiclassics - no singularity

Let 6,V € C°(B(1)), A > 0 be fixed.
B < Ch.

Then

‘lnf{Tr@{\/ﬁ 2Th(A) + 54 /3_2—\/}9]_

A / 5
T =5a VRA
B2h3 B(2)| | }
2 o1 5 —241/11
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Upper bound: A = 0 (Solovej-Spitzer-Sgrensen).
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Upper bound: A = 0 (Solovej-Spitzer-Sgrensen).
Lower bound: By Lieb-Thirring (for suitable vector fields A)

B2 :/|V®A|2 < Cp2.
Also, (using Lieb-Thirring, Holder and Sobolev)
Th(A) > (1 —2€)(—h?A) + e(—h*A — e 2A?)
> (1 —2¢)(—h?A) — Ch 3¢5
So (with y~* = =% — Ch=3¢*B% and h = /T — 2¢ h)
VB2Th(A) + 54— 572 = V(x)
> 72 (-R28) 9t = 57— V()

> \/7—2(—712A) + 4 =2 = (V(x)+ Ch 3¢ 8).
But with e = h, 8 < h, we get
h=3¢74B% < h2 TOO LARGE!

Ly,
f k) AARHUS UNIVERSITY
’l%um\“‘f Sgren Fournais



Solution: Localize to balls of size / < 1.
Lieb-Thirring

B? :/ V@ AP2 < CB253.
B(20)
Also, (using Lieb-Thirring, Holder and Sobolev)
Th(A) > (1 —2€)(—h?A) + e(—h*A — e 2A?)
> (1 —2€¢)(—h?A) — Ch=3e 4542
So
VA2 Th(A) + 54— 572 — V(x)
> 7 2(—RA) 44— 572 = V(x)
> \/ Y2(=R2A) + 44 — 472 — (V(x) + Ch 3B 11/?),
But with e = h, 5 < h, we get
h_3€_465€1/2 < h_2€8
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Solution: Localize to balls of size / < 1.
Lieb-Thirring

B? :/ V@ AP2 < CB253.
B(20)
Also, (using Lieb-Thirring, Holder and Sobolev)
Th(A) > (1 —2€)(—h?A) + e(—h*A — e 2A?)
> (1 —2€¢)(—h?A) — Ch=3e 4542
So
VA2 Th(A) + 54— 572 — V(x)
> \riRa) - - V()
> \/ Y2(=R2A) + 44 — 472 — (V(x) + Ch 3B 11/?),
But with e = h, 5 < h, we get
h=3¢ 48502 < h=2% = h for £ = K3/8.
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Length: h?/(me?).
Energy: me*/h?.
Vector potential: mec/h.
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