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The model

Kinetic energy of a single electron:

T (α)(A) :=
√
α−2T (A) + α−4 − α−2,

where α > 0 is a parameter (fine structure constant).

T (A) :=

{
[σ · (−i∇+ A)]2 (Pauli)

(−i∇+ A)2 (Schrödinger).

Magnetic field B = ∇× A and σ = Pauli matrices.

H(Z,R, α,A) :=
Z∑
j=1

(
T (α)
j (A)−

M∑
k=1

Zk

|xj − Rk |

)
+
∑
j<k

1

|xj − xk |
,

The Hilbert space

H =
Z∧
j=1

L2(R3,C2).
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• Stability requires

Zkα ≤ 2/π, all k .

We will study Z →∞, α→ 0.
• For a given vector potential A, the ground state energy of the
electrons is given by

E0(Z,R, α,A) := inf Spec H(Z,R, α,A).

• Minimal total energy

E0(Z,R, α) := inf
A

{
E0(Z,R, α,A) +

1

8πα2

∫
R3

|∇ × A|2
}
.
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Energy in large Z limit. Non-relativistic, no A-field

H :=
Z∑
j=1

(
− 1

2
∆j −

M∑
k=1

Zk

|xj − Rk |

)
+
∑
j<k

1

|xj − xk |
,

Leading energy term of order Z 7/3 given by Thomas-Fermi theory
(proved by Lieb-Simon (1977)).
Next term—the Scott correction– predicted by Scott (1952),
proved by Siedentop-Weikard (1987) for atoms, Ivrii-Sigal (1993)
for molecules,

2 · 1

4

M∑
k=1

Z 2
k .

In the atomic case also the next (Dirac-Schwinger) term of order
Z 5/3 is known. Proved by Fefferman-Seco (90’s).
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Relativistic, no A-field

Kinetic energy T (α)(0) =
√
α−2(−∆) + α−4 − α−2.

Nuclear charges/positions Zk = Zzk , Rk = Z−1/3rk .
Scott correction proved by Solovej-Spitzer-Sørensen (alternative
proof by Frank-Siedentop-Warzel).

Theorem

There exists a continuous, non-increasing function S on [0, 2/π]
with S(0) = 1/4 such that as Z →∞ and α→ 0 with
maxk{Zkα} ≤ 2/π we have

E0(Z,R;α,A = 0) = Z 7/3ETF(z, r)+2
∑

1≤k≤M
Z 2
k S(Zkα)+O(Z 2−1/30) .
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Questions for full operator

Kinetic energy T (α)(A) :=
√
α−2T (A) + α−4 − α−2,

self-generated magnetic field.

H(Z,R, α,A) :=
Z∑
j=1

(
T (α)
j (A)−

M∑
k=1

Zk

|xj − Rk |

)
+
∑
j<k

1

|xj − xk |
,

E0(Z,R, α) := inf
A

{
E0(Z,R, α,A) +

1

8πα2

∫
R3

|∇ × A|2
}
.

• Does there exist a Scott correction?

• Is the Scott correction the same as without magnetic field?

For non-relativistic operators with self-generated field, we proved
recently that there is a Scott correction which depends on Zα2.
This motivates the second question.
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Affirmative result

Theorem (Relativistic Scott correction with self-generated field)

Assume that there exists κ0 < 2/π such that maxk{Zkα} ≤ κ0.
Then the ground state energy with self-generated magnetic field is
given by

E0(Z,R;α) = Z 7/3ETF(z, r) + 2
M∑
k=1

Z 2
k S(Zkα) + o(Z 2)

in the limit as Z →∞ and α→ 0.
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Techniques for the proof

Upper bounds as in [SSS] by taking A = 0.

Lower bounds: Local semiclassical analysis combined with
multiscaling. In order to localize one needs a new localization
inequality

Lemma (Pull-out estimate)

Assume that gi ≥ 0 are smooth,
∑

i∈I g2
i (x) = 1. Let Hi , i ∈ I , be

a family of positive self-adjoint operators on L2(R3,C2). Then√∑
i∈I

giHigi ≥
∑
i∈I

gi
√

Higi .
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Theorem (Lieb-Thirring inequality for T (β)(A))

There exists a universal constant C > 0 such that for any positive
number β > 0, for any potential V with [V ]+ ∈ L5/2 ∩ L4(R3),
and magnetic field B = ∇× A ∈ L2(R3), we have

Tr
[√

β−2T (A) + β−4 − β−2 − V (x)
]
−

≥ −C

{∫
[V ]

5/2
+ + β3

∫
[V ]4+ +

(∫
B2
)3/4(∫

[V ]4+

)1/4}
.

• If A = 0 this is the well-known Daubechies inequality.
• For the Schrödinger case, the Daubechies inequality was
generalized (and improved to incorporate a critical Coulomb
singularity) to non-zero A by Frank-Lieb-Seiringer using
diamagnetic techniques. For the Pauli operator there is no
diamagnetic inequality.
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Theorem (Local Lieb-Thirring inequality with a Coulomb potential)

Let φr be a real function satisfying suppφr ⊂ {|x | ≤ r},
‖φr‖∞ ≤ 1. There exists a constant C > 0 such that if
β ∈ (0, 2/π), then

Tr
[
φr
(√

β−2T (A) + β−4 − β−2 − 1

|x |
− V

)
φr

]
−

≥ −C
{
η−3/2

∫
|∇ × A|2 + η−3r3 + η−3/2

∫
[V ]

5/2
+ + η−3β3

∫
[V ]4+

+
(∫
|∇ × A|2

)3/4(∫
[V ]4+

)1/4}
,

where η := 1
10(1− (πβ/2)2).
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Reduction to semiclassics

After scaling by Z−1/3 and passing to the Thomas-Fermi potential,
we find a semiclassical problem

Tr
[√

β−2Th(Ã) + β−4 − β−2 − κV TF
z,r

]
−

+
λ

β2h3

∫
|∇ ⊗ Ã|2

with parameters

κ = min
k

2

πzk
, h = κ1/2Z−1/3, β = Z 2/3ακ−1/2 =

Zα

κ
h.
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Theorem (Scott corrected semiclassics with self-generated field)

Suppose that λ > 0. If 0 ≤ β ≤ h, and κ̃zk < 2/π, then∣∣∣ inf
Ã

{
Tr
[√

β−2Th(Ã) + β−4 − β−2 − κ̃V TF
z,r

]
−

+
λ

β2h3

∫
|∇ ⊗ Ã|2

}
− 2

(2πh)3

∫∫ [1

2
p2 − κ̃V TF

z,r (x)
]
−
− 2h−2

M∑
k=1

(zk κ̃)2S(βh−1κ̃zk)
∣∣∣

≤ o(h−2).
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Local semiclassics - no singularity

Theorem

Let θ,V ∈ C∞0 (B(1)), λ > 0 be fixed.

β ≤ Ch.

Then∣∣∣ inf
A

{
Tr
[
θ
{√

β−2Th(A) + β−4 − β−2 − V
}
θ
]
−

+
λ

β2h3

∫
B(2)
|∇ ⊗ A|2

}
− 2

(2πh)3

∫∫
θ(x)2

[1

2
p2 − V (x)

]
−

dxdp
∣∣∣ ≤ Ch−2+1/11.
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Upper bound: A = 0 (Solovej-Spitzer-Sørensen).

Lower bound: By Lieb-Thirring (for suitable vector fields A)

B2 =

∫
|∇ ⊗ A|2 ≤ Cβ2.

Also, (using Lieb-Thirring, Hölder and Sobolev)

Th(A) ≥ (1− 2ε)(−h2∆) + ε(−h2∆− ε−2A2)

≥ (1− 2ε)(−h2∆)− Ch−3ε−4B5

So (with γ−4 = β−4 − Ch−3ε−4B5 and h̃ =
√

1− 2ε h)√
β−2Th(A) + β−4 − β−2 − V (x)

≥
√
γ−2(−h̃2∆) + γ−4 − β−2 − V (x)

≥
√
γ−2(−h̃2∆) + γ−4 − γ−2 − (V (x) + Ch−3ε−4B5).

But with ε = h, β ≤ h, we get

h−3ε−4B5 ≤ h−2 TOO LARGE!
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Solution: Localize to balls of size `� 1.
Lieb-Thirring

B2 =

∫
B(2`)

|∇ ⊗ A|2 ≤ Cβ2`3.

Also, (using Lieb-Thirring, Hölder and Sobolev)

Th(A) ≥ (1− 2ε)(−h2∆) + ε(−h2∆− ε−2A2)

≥ (1− 2ε)(−h2∆)− Ch−3ε−4B5`1/2

So√
β−2Th(A) + β−4 − β−2 − V (x)

≥
√
γ−2(−h̃2∆) + γ−4 − β−2 − V (x)

≥
√
γ−2(−h̃2∆) + γ−4 − γ−2 − (V (x) + Ch−3ε−4B5`1/2).

But with ε = h, β ≤ h, we get

h−3ε−4B5`1/2 ≤ h−2`8

= h for ` = h3/8.
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Units

Length: h2/(me2).
Energy: me4/h2.
Vector potential: mec/h.
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