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C,,» = best constant for general functions
C» , = best constant for radially symmetric functions
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Up to scalar multiplication and dilation, the optimal radial function is
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Questions: is optimality (equality) achieved ? do we have u, ;, = u’ . ?
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e Existence inside the half-strip a < b<a+1, a < %

e Symmetry (and existence) inthe zone a <b<a+1,0<a< %

e Nonexistence for a <0 and b=a or b =a + 1.
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SYMMETRY BREAKING: Catrina-Wang, Felli-Schneider.

Aubin, Talenti, Horiuchi, Lieb, Chou-Chui,...

Lin, Wang; Dolbeault, E., Tarantello (d=2)
Dolbeault, E., Loss, Tarantello

d(d — 2 — 2a)

2./(d—2—2a)2 +4(d—1)
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t =log|z|, w= =

1
= Tl e S y(tw) =|z| % u(z), A= . (d—2—2a)?

e Caffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become standard
interpolation inequalities of Gagliardo-Nirenberg type

[0 ) < Cap [IV01220) + AllvlI22 0]

Exlv] = Voll22 oy + Aol 2 0

Cpr,p b= C;}) = inf {5A(v) ; HU”%I’(C) = 1}

d—2
a<—— = A>0, a<0 = A> 1 (d—2)?
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The symmetry and the symmetry breaking zones are simply connected and separated
by a continuous curve.

AV

Open question. Do the curves obtained by Felli-Schneider and ours coincide ?
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Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Letd > 3. Foranyp € [2,p(0,d) := %], there exists a positive constant C(0, p, a)
such that

2 o] 1—6
wl? O\ / Vul? / ul?
d < C(6 d — d
(/R apr ) SCOPnA [ e @) o pEe

In the radial case, with A = (a — a.)?, the best constant when the inequality is restricted
to radial functions is C¢ (¢, p,a) and (see [Del Pino, Dolbeault, Filippas, Tertikas]):

* * p—_2—9
Coxn(0,p,a) > Coxn(0,p,a) = Coxn(0,p) A 2P

—1 p—2
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e Gagliardo-Nirenberg interpolation inequalities: if p € (2,2%),
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So 1 <1
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If we are able to find a positive A and a function g such that
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_result (2010, Dolbeault, E., Tarantello, Tertikas)

Let g(x) := (2m)~%/* exp(—|x|2/4). Choose A = Apg(p(8,d),d)
Symmetry breaking occurs if

L(p,d) := 5@1;7[9] <1

We have the following result:

b
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For 6 =1 and d > 2,

there exists a unique minimizer for the (CKN) problem, and it is symmetric, for all
A < A(p),forall p € (2, 2L).

Aw) =Y ;(11162; P < Ars(p).
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Let L? be the Laplace-Beltrami operator on S¢—1. So that —A on the cylinder becomes
—02 — L.

THEOREM. Letd > 2 and let u be a non-negative function on C = R x S~ that

satisfies
—0%v — L?v4+ Av=1oP"1

and consider the symmetric solution v, . Assume that
/ lv(s,w)|P dsdw < / lvk(8)|P ds
C R

for some 2 < p < 6 satisfying p < 2% . If A < A(p), then fora.e. w € S~ and
s € R, we have v(s,w) = v«(s — C) for some constant C'.
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Strategy of the proofs

Let L2 be the Laplace-Beltrami operator on S¢~1. So that —A on the cylinder becomes
—02 — L.

THEOREM. Let d > 2 and let u be a non-negative function on C = R x S¢~1 that
satisfies
—8?1} — L*v+Av=0oP"1!

and consider the symmetric solution v, . Assume that
/ lv(s,w)|P dsdw < / lvk(s)|P ds
C R

for some 2 < p < 6 satisfying p < 2% . If A < A(p), then fora.e. w € S~ and
s € R, we have v(s,w) = v«(s — C) for some constant C'.

REMARK 1. With the above normalization, we have

p—2

1 Vol2 + Av? d o
Cinr JelVOE A 2/ f”’:</ |v(s,w)|pdsdw> "
Ca,p ([ |v|P dz) =" C

REMARK 2. We choose dw to be a probability mesaure on S4—1.
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R Tierog n 14

LEMMA. Let V' = V(s) be a non-negative real valued potential in A (R) for some
v > 1/2 andlet —\1 (V) be the lowest eigenvalue of the Schrédinger operator

—% — V. Define

n 12 Ty +1)

)= T Ty 1 1/2) (

y—1/2\ "2
7+1/2) '

Then
MY < enn(r) / VT2 () ds
R

with equality if and only if, up to scalings and translations,

oy -1/4
Vis) = cosh?(s) =: Vo(s)

in which case
(Vo) = (v —1/2)% .

Furthermore, the corresponding ground state eigenfunction is given by

1/2
¥ s) =m (F(WPE?/%) [osh(s)] 7.
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With V = vP—2 | the equation —Av + Av = vP~1 can be seen as the “linear" equation
—Av — Vv =—Av.




With V = vP~2 | the equation —Av + Av = vP~1 can be seen as the “linear" equation
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Let us define f(w) := \/fR lv(s,w)|? ds . By the Lieb-Thirring Lemma, we find that a.e.
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With V = vP~2 | the equation —Av + Av = vP~1 can be seen as the “linear" equation
—Av — Vv =—Awv.

Let us define f(w) := \/fR lv(s,w)|? ds . By the Lieb-Thirring Lemma, we find that a.e.

in w,

—A/ |v(3,w)|2dsdw:/ /(’Ug—vp) dsdw—l—/ |Lv|? ds dw
C Sda—1 JR C

/ / (v -V v?) dsdw—l—/ |Lv|? dsdw =: F|v] .
Sd—1 JR C

1/~
il = =) [ ([leswras) e [ 02 do

1
Now, setting D := cpr(v)1/7 ([, vP dsdw) ™ , by using Holders’s inequality, we obtain

y—1

Flz [ @prae-p ([ pTaw) T e
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The generalized Poincaré inequality on the sphere states that for all ¢ € (1, T] ,

2
F1
—Zj/ (Lf)? dw > (/ fq+1dw)q —/ £ dw
Sd—l Sd—l Sd—l




The generalized Poincaré inequality on the sphere states that for all ¢ € (1, jl_;)],
T
?Z;—}/ (Lf)QdWZ(/ fq+1dw)q —/ f? dw
Sd—1 gd—1 gd—1
: 2~y +2
Choosing ¢+ 1 = 7—_71 =282,

_2
d—1 g+1 at+l 41 2
Elf] > (—q_l D) (/Sd_l f dw) o1 fa fedw .
d

To justify this step, we notice that ¢ < 2£1 is equivalentto p < 24




_2
Elf = (% —D) (/Sdl fatt dw) o =1 2 dw .

Sd—l

To justify this step, we notice that ¢ < 4E1 is equivalentto p < 24

Using the fact that dw is a probability measure, by Hélder’s inequality, we get

_2
(/ fatt dw) o > / 2 dw .
Sgd—1 Sgd—1
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2
Elf = (g —D) (/Sdl fatt dw) o =1 2 dw .

Sd—l

To justify this step, we notice that ¢ < 4E1 is equivalentto p < 24

Using the fact that dw is a probability measure, by Hélder’s inequality, we get

_2
(/ patl dw) s / £2 duw |
Sd—l Sd—l

Thus, if D < % ,and if A < A(p), we get

—A/ f?dw > E[f] > -D
Sd—1 Sd—1
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COROLLARY. Letd > 2. Fix v > 1 suchthaty > =L ifd > 4and let ¢ = li

Further fix D < . Among all potentials V' = V(s w) with

2~

1 1
cr () (/ Vrta dsdw) =D,
C

the potential V = V. that minimizes the first eigenvalue of —92 — L? — V on

L?(C, ds dw) does not depend on w . Moreover, u. = V*(2 7=1/4 is extremal for the CKN
inequality in the cylinder.

— 2 p—2 ’Y-I—l — 2D : : 1 pt+2
Remark. V = v and V'72 =v implies v = 3 —2 :

p+2

and with v = % o Ux = V*(27_1)/4 is equivalentto Vi = ul ™2,
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Both C'(A, p,d) and C*(A, p,d) are monotone non-increasing functions of A and

C(A,p,d) > C*(A,p,d) .

C*(A,p,d)=C*(1,p,d) A 27

so that limy 0, C*(A,p,d) =

Foranyp € (2, 24)ifd > 3,andany p > 2ifd = 2,

»d—2

Az T Vaul? + |u)?) d
lim L inf Joa (Vul” 4 |U|2 ) do — lim C(A,p,d)=0.
A—oo C(A,p,d)  weH ®RH\(0} ([ ulP da)>/P A—roo

p+2 \we can define

With these observations in hand and v = § 255

2
Ag(,u) ::inf{A>0 : ,LLQW;YLl = l/C(A,p,d)} :

If d =1, we observe that C(A, p,1) = C*(A,p, 1), so that AL () = AL (1) and
AL(1) = C*(1,p,d) P72 .
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The d-dimensional case I1

2
AL (p) = inf{A >0 pZAT = 1/C(A,p,d)} .

Next important point: A1 (V') can be estimated using Ai‘ﬁ(u) provided V' is controlled in

terms of .. The CKN inequality in the cylinder is equivalent to the following version of
the Keller - Lieb-Thirring inequality.

Theorem. For any v € (2,00) ifd = 1, or for any v € (1, 00) such that v > 4=1 if d > 2,

if V' is a non-negative potential in Ran- (C), then the operator —9? — L? — V has at
least one negative eigenvalue, and its lowest eigenvalue, —\; (V) , satisfies

1

Y

A (V) < Ag(,u) with pu = u(V) = (/C VI3 ds dw)

Moreover, equality is achieved if and only if the eigenfunction « corresponding to A1 (V)
satisfies u = V(27—1)/4 and w is optimal for CKN inequalities in the cylinder.

p+2

Remark. V = vP and V772 =P implies ~ = ipxs

i

pt2 = 4 =vVEr-D/4  jsequivalentto V = uP2

and with v = 1 et
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