
Prof. Dr. Fabien Morel Tutorial Sheet 12 Winter term 25/26
Laurenz Wiesenberger Algebra

Suggested Solutions

Exercise 1. Let G be a finite group of order 35.

(i) Show that G has a unique Sylow 5-subgroup, and that this subgroup is isomorphic
to Z/5Z. Moreover, show that G has a unique Sylow 7-subgroup, and that this
subgroup is isomorphic to Z/7Z.

Suggested solution. We have |G| = 35 = 5 · 7. By Sylow I, there exists a Sylow 5-
subgroup of G. Moreover, Sylow III implies that

n5 | 7 and n5 ≡ 1 (mod 5),

which forces n5 = 1. Hence, G has a unique Sylow 5-subgroup, and this subgroup is
isomorphic to Z/5Z. The same argument shows that G also has a unique Sylow 7-
subgroup, which is isomorphic to Z/7Z.

(ii) Deduce that G is abelian.

Hint: You may find Exercise Sheet 5 helpful.

Suggested solution. By Exercise Sheet 5, Exercise 2, we conclude that

G ∼= Z/5Z× Z/7Z.

In particular, G is abelian.

Exercise 2.
Answer each question with “Yes” or “No”. (Each correct answer is worth one point. Incor-
rect answers will not be counted.)

(i) The quotient ring Z[i]/(3) is a field.

Suggested solution. True. We have

Z[i]/(3) ∼=
(
Z[X]/(X2 + 1)

)/(
(3, X2 + 1)/(X2 + 1)

) ∼= (Z/3Z)[X]/(X2 + 1).

Moreover, the polynomial X2 + 1 has no roots in Z/3Z, and hence it is irreducible
over Z/3Z. Therefore the quotient is a field.



(ii) The quotient ring Z[i]/(2) is a field.

Suggested solution. False. In Z[i] we have the factorization 2 = (1 + i)(1− i).

(iii) R[X]/(X2 − 2) is isomorphic to C.

Suggested solution. False. The polynomial X2−2 is reducible in R[X]. In particular,
the quotient ring cannot be a field.

(iv) In Z, one has (9, 21) = (3).

Suggested solution. True. Indeed, we have gcd(9, 21) = 3.

(v) In a factorial ring, every nonzero prime ideal is maximal.

Suggested solution. False. Consider the ring Z[X]. Then Z[X]/(X) ∼= Z, which
shows that (X) is a prime ideal, but not a maximal ideal.

(vi) The element X is prime in Z[X, Y ].

Suggested solution. True. We have Z[X, Y ]/(X) ∼= Z[Y ], and Z[Y ] is an integral
domain.

(vii) The polynomial ring K[X] is a principal ideal domain if and only if K is a field.

Suggested solution. True. This was proved in the lecture.

(viii) The polynomial 2X17 + 10
7
X7 + 10

7
is irreducible in Q[X].

Suggested solution. True. Multiplying by 7 yields the polynomial 14X17+10X7+10,
which is irreducible by Eisenstein’s criterion with p = 5.

(ix) Let K be a field and let f(X), g(X) ∈ K[X] be irreducible. Then the composition
f(g(X)) is irreducible in K[X].

Suggested solution. False. For example, let K = R and consider the polynomials
f(X) = X − 1 and g(X) = X2 + 1. Then

f(g(X)) = g(X)− 1 = (X2 + 1)− 1 = X2 = X ·X,

so f(g(X)) is reducible in K[X].

(x) Let K be a field. Then every nontrivial ring homomorphism K → S is injective.
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Suggested solution. True. This was proved in the tutorials.

(xi) Let p be a prime and let a ∈ Z. If p ∤ a, then ap−1 ≡ 1 (mod p).

Suggested solution. True. Since a ̸= 0 in Z/pZ, the claim follows from Lagrange’s
theorem.

(xii) A commutative ring R is a field if and only if {0} is a maximal ideal of R.

Suggested solution. True. If K is a field, the only ideals of K are {0} and K. Con-
versely, every noninvertible element of a commutative ring is contained in a maximal
ideal. Since the only maximal ideal is {0}, it follows that every nonzero element is
invertible, i.e. K× = K \ {0}.

(xiii) Every field extension K/Q of degree 3 is Galois.

Suggested solution. False. For instance, consider the extension Q( 3
√
2)/Q, whose mi-

nimal polynomial is f(X) = X3 − 2. This extension is not normal.

(xiv) Let L/K be a finitely generated algebraic field extension. Then [L : K] < ∞.

Suggested solution. True. This was proved in the lecture.

(xv) There exists a finite algebraically closed field.

Suggested solution. False. Suppose there exists a finite algebraically closed field K.
Consider the polynomial f(X) = 1+

∏
α∈K(X −α). Then for every α ∈ K we have

f(α) = 1, and hence f has no roots in K. This contradicts the assumption that K
is algebraically closed, since deg f ≥ 1.

Exercise 3. Let p, q be prime numbers. Determine the degree of the field extension
K := Q

(
ζp, p

√
q
)

over Q, and prove that Q(ζp) ∩Q( p
√
q) = Q.

Suggested solution. We have degQ(ζp) = p − 1 and degQ( p
√
q) = p. Hence, by Corol-

lary 3.2.12 from the script, we obtain [Q(ζp, p
√
q) : Q] = p · (p − 1). Now set E :=

Q(ζp) ∩ Q( p
√
q). By the degree formula and using that [Q(ζp, p

√
q) : Q( p

√
q)] = p − 1, we

obtain
p− 1 = [Q(ζp) : Q] = [Q(ζp) : E] · [E : Q].

Therefore we must have [E : Q] = 1. Hence E = Q.

Exercise 4. Let K := Q(ζ5,
5
√
3).

(i) Show that K/Q is a Galois extension.
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Suggested solution. Since char(Q) = 0, the extension is separable. Moreover, K is
the splitting field of the polynomial f(X) = X5 − 3. Therefore K/Q is a Galois
extension.

(ii) Determine whether Gal(K/Q) is abelian.

Suggested solution. The group Gal(K/Q) is not abelian. Consider the automor-
phisms σ, τ ∈ Gal(K/Q) defined by

σ(ζ5) = ζ25 , σ(
5
√
3) =

5
√
3, τ(ζ5) = ζ5, τ(

5
√
3) = ζ5

5
√
3.

Then
στ(

5
√
3) = ζ25

5
√
3 ̸= ζ5

5
√
3 = τσ(

5
√
3),

and hence στ ̸= τσ. Therefore, Gal(K/Q) is not abelian.

Exercise 5. Let K := F16(Y ) and let f ∈ K[X] be an irreducible polynomial of degree 3.
Let L be the splitting field of f over K. Show that L/K is a Galois extension, and prove
that Gal(L/K) ∼= S3 or Gal(L/K) ∼= A3.

Suggested solution. We have char(K) = 2. Hence f ′ ̸= 0, and therefore f is separa-
ble. Consequently, its splitting field L yields a Galois extension L/K. In particular,
Gal(L/K) embeds into S3 via its action on the three distinct roots of f . Moreover, we
have |Gal(L/K)| ≥ 3. It follows that Gal(L/K) is isomorphic to either S3 or A3.

Exercise 6. Let a, b ∈ Q and assume that the polynomial f(X) = X4 + aX2 + b ∈ Q[X]
is irreducible. Let K be the splitting field of f over Q.

(i) Let α ∈ K be a root of f . Show that [K : Q(α)] ≤ 2.

Suggested solution. First note that the roots of f occur in pairs. That is, there exist
α, β ∈ L such that the roots of f are given by ±α and ±β. Now consider the field
Q(α). In Q(α)[X], we may divide f by (X − α)(X + α), which yields a quadratic
polynomial with coefficients in Q(α) whose roots are ±β. In particular, we obtain
[K : Q(α)] ≤ 2.

(ii) Prove that Gal(K/Q) is isomorphic to one of the following groups:

D4, Z/4Z, or Z/2Z× Z/2Z.

Suggested solution. Since f is irreducible of degree 4, we have [Q(α) : Q] = 4. By
the degree formula, we obtain

[L : Q] = [Q(α) : Q] · [L : Q(α)] ≤ 4 · 2 = 8.

In particular, [L : Q] ∈ {4, 8}.
If [L : Q] = 4, then Gal(L/Q) has order 4, and hence

Gal(L/Q) ∼= Z/4Z or Gal(L/Q) ∼= Z/2Z× Z/2Z.

If [L : Q] = 8, then |Gal(L/Q)| = 8. Since Gal(L/Q) embeds into D4, we conclude
that Gal(L/Q) ∼= D4.
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