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Suggested Solutions

Exercise 1. (a) Let G be an abelian group. Show that any subgroup of G is normal.

Suggested solution. Let U ≤ G be an arbitrary subgroup and let a ∈ U and g ∈ G
be arbitrary elements. Since G is abelian, we have

gag−1 = gg−1a = a ∈ U.

Hence U is a normal subgroup of G.

(b) Let f : G→ H be a group homomorphism. Show that ker(f) ⊴ G is normal.

Note: You have already seen in the lecture that the same does not hold for im(f).

Suggested solution. Let a ∈ ker(f) be arbitrary. Then

f(gag−1) = f(g) f(a) f(g−1) = f(g) eH f(g)
−1 = eH .

In particular, gag−1 ∈ ker(f) for all g ∈ G; i.e. ker(f) is a normal subgroup of G.

(c) Let k be a field. Show that SLn(k) ⊴ GLn(k) is normal.

Suggested solution. Let A ∈ SLn(K) and B ∈ GLn(K) be arbitrary matrices. Then

det(BAB−1) = det(B) det(A) det(B−1) = det(B) det(A) det(B)−1 = det(A) = 1.

Hence BAB−1 ∈ SLn(K), which shows that SLn(K) is a normal subgroup of
GLn(K).

(d) Let G be a group and [G,G] be the commutator subgroup. Show that [G,G] ⊴ G
is normal.

Hint: Note that it suffices to show that g[a, b]g−1 ∈ [G,G].
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Suggested solution. By definition, the commutator subgroup is generated by the
elements [a, b] with a, b ∈ G. Since (ab)−1 = b−1a−1, we have

[a, b]−1 = (aba−1b−1)−1 = bab−1a−1 = [b, a].

Thus every element of [G,G] is a finite product of commutators, i.e.

[G,G] =
〈
[a, b]

∣∣ a, b ∈ G
〉

=
{ n∏

i=1

[ai, bi]
∣∣∣ n ∈ N0, ai, bi ∈ G

}
.

We now follow the hint and observe that it suffices to show

g [a, b] g−1 ∈ [G,G] for all g, a, b ∈ G.

Indeed, if x =
∏n

i=1[ai, bi] ∈ [G,G], then

gxg−1 =
n∏
i=1

g[ai, bi]g
−1 ∈ [G,G],

once we know g[a, b]g−1 ∈ [G,G].

So let g, a, b ∈ G. Then

g[a, b]g−1 = g (aba−1b−1) g−1

= (gag−1)(gbg−1)(ga−1g−1)(gb−1g−1)

= (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1

= [ gag−1, gbg−1 ] ∈ [G,G].

Hence [G,G] ⊴ G.

Exercise 2. Let G be a group of prime order p. Show that for every nontrivial element
g ∈ G, we have ⟨g⟩ = G.

Suggested solution. Let g be an arbitrary nontrivial element of G. By Lagrange’s Theo-
rem, we have

ord(g) | |G|,

and therefore ord(g) ∈ {1, p}. Since g is nontrivial, its order must be p. Moreover, since
⟨g⟩ ⊆ G and ord(g) = |G|, it follows that

⟨g⟩ = G.
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Exercise 3. Show that [Sn, Sn] = An for all n ≥ 3.

Suggested solution. First recall

An = {σ ∈ Sn | sgn(σ) = 1}.

Furthermore, from linear algebra we know that the map

sgn : Sn −→ {±1}

is a group homomorphism, and hence Sn/An ∼= {±1}.
In particular, Sn/An is commutative, and by Exercise 4 (a) we have

[Sn, Sn] ⊆ An.

It remains to show that [Sn, Sn] ⊇ An.
Recall that for n ≥ 3, every element of An can be written as a finite product of 3-cycles.
So let (x1, x2, x3) be a 3-cycle. Then

(x1, x2, x3) = (x1, x3)(x2, x3)(x3, x1)(x3, x2)

= (x1, x3)(x2, x3)(x1, x3)
−1(x2, x3)

−1 ∈ [Sn, Sn].

Consequently, we have
[Sn, Sn] = An.

Exercise 4 (Abelianization). (a) Show that Gab := G/[G,G] is abelian and that [G,G]
is the smallest normal subgroup of G satisfying this property.

Gab is called the abelianization of G.

Suggested solution. By definition

eG[G,G] = (aba−1b−1)[G,G]

and hence
(ba)[G,G] = (ab)[G,G].

This shows that G/[G,G] is abelian.

Now let G/N be a commutative group. In particular,

(ba)N = (ab)N.

Thus, it follows eGN = aba−1b−1N and therefore aba−1b−1 ∈ N . Consequently, we
obtain [G,G] ⊆ N .
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(b) Show that the abelianization Gab, together with the projection π : G→ Gab, satisfies
the following universal property: For every abelian group H and every group ho-
momorphism ϕ : G → H, there exists a unique group homomorphism ψ : Gab → H
such that the following diagram commutes:

G H

Gab

ϕ

π
∃!ψ

Note: It also follows directly from the universal property that [G,G] is the smallest
normal subgroup of G such that the corresponding quotient is abelian.

Suggested solution. Let H be an abelian group and ϕ : G → H a group homomor-
phism. We now construct a group homomorphism

ψ : Gab −→ H,

such that ψ ◦ π = ϕ, where

π : G −→ Gab, g 7→ g[G,G]

is the canonical projection onto the quotient.

First, we note that there is only one possible choice for ψ. Indeed, since ψ ◦ π = ϕ,
we must have

ψ(g[G,G]) = ϕ(g).

So it remains to show that this choice is well defined.

Let g[G,G] = g′[G,G]. Then g′−1g ∈ [G,G]. Without loss of generality, we may
assume that

g′−1g = aba−1b−1

(for otherwise, we would have a finite product of commutators, but the proof works
in the same way) for some a, b ∈ G. Since H is abelian, we get

ϕ(g′−1g) = ϕ(aba−1b−1) = ϕ(a)ϕ(b)ϕ(a)−1ϕ(b)−1 = eH .

Hence ϕ(g′) = ϕ(g), and therefore ψ is well defined.

(c) Use the universal property to show that the abelianization Gab, together with π, is
unique up to canonical isomorphism.

Suggested solution. Assume there is another abelian group G′ together with a group
homomorphism

π′ : G −→ G′
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satisfying this universal property. Then we have the following commutative diagram:

Gab

G G′

Gab

∃!ψ
π

π′

π
∃!ψ′

This leads to
π′ = ψ ◦ π = ψ ◦ ψ′ ◦ π′.

Again using universal property and the uniqueness, it follows that

ψ′ ◦ ψ = idGab .

An analogous argument shows that ψ ◦ ψ′ = idG′ . Hence, Gab ∼= G′.

(d) Use the universal property to prove the following statement:

G ∼= H ⇒ Gab ∼= Hab.

Suggested solution. Let G ∼= H and consider the diagrams.

G H

Gab Hab

πG

β

πH◦β
πH

∃!βab

G H

Gab Hab

πG

β−1

πH
πG◦β−1

∃! (β−1)ab

Then we have

(β−1)ab ◦ βab ◦ πG = (β−1)ab ◦ πH ◦ β
= πG ◦ β−1 ◦ β
= πG.

By the universal property and uniqueness, we obtain (β−1)ab ◦ βab = idGab . Analo-
gously one shows βab ◦ (β−1)ab = idHab . Therefore Gab ∼= Hab.
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