
Prof. Dr. Fabien Morel Repetition week 3 Winter term 25/26
Laurenz Wiesenberger Algebra

More about quotients

In the last repetition sheet we saw that if G is a group and N ⊴ G is a normal subgroup,
then G/N is, in a canonical way, again a group, where the group structure is induced by
G. Furthermore, the canonical projection

π : G −→ G/N, g 7−→ gN,

is an epimorphism with kernel N .
We have the following universal property. Let N ⊴ G be a normal subgroup. Then for
all groups M we have an injective map

Homgrp(G/N,M)
π∗

−−→ Homgrp(G,M), ϕ 7→ ϕ ◦ π,

whose image consists precisely of those homomorphisms ψ : G → M satisfying ψ|N = ∗,
where ∗ denotes the trivial group homomorphism.
In other words, we obtain the following: For all groups M and group homomorphisms
ψ : G→M , there exists a unique group homomorphism

ψ̃ : G/N −→M

such that the following diagram commutes:

G M

G/N

π

ψ

∃!ψ̃

if and only ψ|N = ∗.

Let us rephrase this again, as the following corollary:

Corollary (Fundamental theorem of homomorphisms). Let M be an arbitrary
group, ψ : G → M a group homomorphism, and N ⊴ G a normal subgroup such
that N ⊆ ker(ψ). Then there exists a unique group homomorphism

ψ̃ : G/N −→M
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such that the following diagram commutes:

G M

G/N

π

ψ

∃!ψ̃

Furthermore, one can show that ψ̃ is surjective if and only if ψ is surjective, and ψ̃
is injective if and only if N = ker(ψ). Hence, we always have

G/ ker(ψ) ∼= im(ψ).

In the tutorials we will see plenty of examples illustrating how to use this result.

Conjugation

Let g ∈ G be an arbitrary element. Then the map

cg : G→ G, h 7→ ghg−1,

is an automorphism of G. Now consider the homomorphism

c : G→ Aut(G), g 7→ cg.

The image of this map, denoted by

Inn(G) := im(c),

is called the group of inner automorphisms of G, and its kernel,

Z(G) := ker(c),

is called the center of G.
In particular, Z(G) ⊴ G and Inn(G) ⊴ Aut(G). Explicitly,

Inn(G) = { cg | cg(h) = ghg−1, g, h ∈ G }, Z(G) = { g ∈ G | gh = hg for all h ∈ G }.

How can we think of Inn(G)? These are the automorphisms that we can directly “see”,
they arise from elements of G itself. In general, however, we do not know what the other
automorphisms look like.
Hence, it makes sense to introduce the notion of the group of outer automorphisms, which
is defined as

Out(G) := Aut(G)/Inn(G).

Please note that, since Inn(G) ⊴ Aut(G), this is indeed a group. The cardinality of the
quotient |Out(G)| measures the number of distinct equivalence classes of automorphisms
of G modulo inner automorphisms, and can therefore be viewed as indicating how many
“essentially different” (non-inner) automorphisms G admits.
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Solvable Groups

Recall that for a group G, the commutator subgroup [G,G] is defined as the subgroup
generated by all commutators in G, i.e.

[G,G] := ⟨[a, b] | a, b ∈ G⟩, where [a, b] := a−1b−1ab.

In the tutorials, we showed that the inverse of a commutator of two elements in G is again
a commutator. Hence we concluded that

[G,G] = {[a1, b1] · · · [an, bn] | n ∈ N0, ai, bi ∈ G}.

We then showed that [G,G] ⊴ G, i.e. that the commutator subgroup is a normal subgroup
ofG. In one of the exercises (Exercise 4, not discussed in detail but with solutions available
on the website), we saw that the quotient G/[G,G] is abelian and the smallest normal
subgroup of G with this property. We call this quotient the abelianization of G and denote
it by

Gab := G/[G,G].

In the following, we use the notion of commutators to define the so-called solvable groups.
At this point, we do not yet know why this definition is useful or interesting, but we
will later learn in the lecture that this concept is fundamental, as it provides the precise
link between the solvability of finite groups and the solvability of algebraic equations by
radicals.

We define the i-th derived (or iterated commutator) subgroup of G inductively by

D0(G) := G, Di+1(G) := [Di(G), Di(G)].

The subgroup D(G) := [G,G] is also called the derived subgroup of G.

Definition. A group G is called solvable if there exists an n ≥ 1 such that Dn(G) =
∗, where ∗ denotes the trivial subgroup of G.

Equivalently, this means that there exists a descending chain of subgroups

G ⊵ D1(G) ⊵ D2(G) ⊵ · · · ⊵ Dn(G) = {e}.

Lemma. Let G be a group. Then the following are equivalent:

(i) G is solvable.

(ii) There exists a descending chain of subgroups

G = G0 ⊵ G1 ⊵ · · · ⊵ Gn = ∗

such that Gi ⊴ Gi−1 for all i, and each quotient Gi−1/Gi is abelian.

3



Algebra Repetition week 3

Corollary. If G is finite, then the following are equivalent:

(i) G is solvable.

(ii) There exists a descending chain

G = G0 ⊵ G1 ⊵ · · · ⊵ Gn = ∗

of subgroups such that Gi ⊴ Gi−1 and each quotient Gi−1/Gi
∼= Z/piZ is cyclic

of prime order.

Group Extensions

Before we define group extensions, we first introduce the concept of exact sequences.

Definition. A sequence of group homomorphisms

· · · −→ Gi−1
fi−→ Gi

fi+1−−→ Gi+1 −→ · · ·

is said to be exact at Gi if
im(fi) = ker(fi+1).

The sequence is called exact if it is exact at every Gi.

A short exact sequence is an exact sequence of the form

∗ −→ G′ f−→ G
g−→ G′′ −→ ∗. (1)

Remark. Sequence (1) is short exact if and only if f is a monomorphism, g is an epimor-
phism and im(f) = ker(g).

Definition. Let G,K,H be groups. Then G is called an extension of H by K if
there exists a short exact sequence

∗ −→ K
ι−→ G

π−→ H −→ ∗.

Since ι is injective, we can regard K as a subgroup of G. As im(ι) = ker(π), K ⊴ G is a
normal subgroup and we always have

G/K ∼= H.

The question of what groups G are extensions of H by N is called the extension problem.
As to its motivation, recall that the composition series of a finite group is a finite sequence
of subgroups

∗ = A0 ⊴ A1 ⊴ · · · ⊴ An = G,

where each Ai+1 is an extension of Ai by some simple group Ai+1/Ai. (A simple group is
one that has no nontrivial normal subgroups.)
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The classification of finite simple groups provides a complete list of all finite simple groups.
Thus, solving the extension problem — that is, determining all possible extensions of one
group by another — would in principle give enough information to construct and classify
all finite groups in general. In practice, however, the extension problem is very hard.
Now let

∗ −→ K
ι−→ G

π−→ H −→ ∗ (2)
be a group extension of H by K. We say that (2) is split if there exists a group homo-
morphism σ : H −→ G such that

π ◦ σ = idH .

Such a homomorphism is called a section (or splitting map).
Split extensions are particularly easy to classify, since, as we will see, an extension is split
if and only if

G ∼= K ⋊H,

whereK⋊H denotes a semidirect product ofK andH. Semidirect products themselves are
easier to study, since they are in one-to-one correspondence with group homomorphisms
H −→ Aut(K).

Example. Consider the following short exact sequence:

∗ −→ Z/2Z ι−→ Z/4Z π−−→ Z/2Z −→ ∗,

where ι(1) = 2 ∈ Z/4Z and π(x) = x mod 2.
This is an extension of Z/2Z by Z/2Z. However, this extension is not split : there
exists no homomorphism

σ : Z/2Z −→ Z/4Z

such that π ◦ σ = idZ/2Z. Indeed, if such a section existed, σ(1) would have to be
an element of order 2 in Z/4Z, but the only element of order 2 is 2, and π(2) = 0.
Hence no such section can exist.
In contrast, consider the direct product

G = Z/2Z× Z/2Z.

Then we have another short exact sequence

∗ −→ Z/2Z ι−→ G
π−−→ Z/2Z −→ ∗,

where ι(a) = (a, 0) and π(a, b) = b. This extension is split, since the map

σ : Z/2Z −→ G, σ(b) = (0, b),

satisfies π ◦ σ = idZ/2Z.
In summary:

• Z/4Z is a non-split extension of Z/2Z by Z/2Z.

• (Z/2Z)× (Z/2Z) is a split extension.
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Now let us turn to semidirect products. Let σ : H → G be a section of π. Then the map

K ×H −→ G, (k, h) 7−→ k σ(h),

is a bijection. Let
∗ −→ K −→ G

π−→ H −→ ∗

be a split extension. Then for all h ∈ H and k ∈ K, we have

σ(h) k σ(h)−1 ∈ K.

This defines an action
φ : H −→ Aut(K),

given by φ(h)(k) = σ(h)kσ(h)−1.

Lemma. Let H,K be groups and let φ : H → Aut(K) be a homomorphism. Then

(K ×H)× (K ×H) −→ K ×H, ((k1, h1), (k2, h2)) 7−→ (k1 φ(h1)(k2), h1h2),

defines a group structure on K ×H, denoted by

K ⋊φ H = K ⋊H,

and called the semidirect product of K and H.

Lemma (Characterization of Split Extensions). Every split extension

∗ −→ K −→ G −→ H −→ ∗

is isomorphic to a semidirect product K ⋊φ H.
Equivalently: Split extensions are precisely semidirect products.
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